
Expert Systems With Applications 247 (2024) 123345

A
0
n

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

A numerical verification method for multi-class feed-forward neural
networks
Daniel Grimm a, Dávid Tollner b, David Kraus a, Árpád Török b,∗, Eric Sax a, Zsolt Szalay b

a Institut fuer Technik der Informationsverarbeitung, Karlsruhe Institute of Technology, Engesserstr. 5, Karlsruhe, 76131, Germany
b Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and
Economics, Műegyetem rkp. 3., Budapest, 1111, Hungary

A R T I C L E I N F O

Keywords:
Neural network verification
Nonlinear optimization
Explainable neural networks

A B S T R A C T

The use of neural networks in embedded systems is becoming increasingly common, but these systems often
operate in safety–critical environments, where a failure or incorrect output can have serious consequences.
Therefore, it is essential to verify the expected operation of neural networks before deploying them in such
settings. In this publication, we present a novel approach for verifying the correctness of these networks using
a nonlinear equation system under the assumption of closed-form activation functions. Our method is able to
accurately predict the output of the network for given specification intervals, providing a valuable tool for
ensuring the reliability and safety of neural networks in embedded systems.
1. Introduction

In many areas of critical infrastructures, such as Industry 4.0, the
automotive sector or energy technology, researchers are studying the
application of neural networks (NNs). The most important categories
of tasks performed by NNs are classification and regression. Based on
training, testing and validation data, the networks can be developed,
and their accuracy determined on the known data, e.g. Struye and
Latré (2020). However, what happens in practical use for previously
unknown data? Because of this issue, artificial intelligence (AI)-based
systems remain black-boxes from a societal perspective, with little trust
placed in them. However, especially in the area of critical applications,
the safety and security of deployed systems is the most important
constraint, e.g. Mekonnen and Sipos (2022). In order to be able to
justify the use of AI-based systems in practice, trust in the safety and
security of the systems must therefore be created, e.g. as researched by
Vu and Lim (2022). Therefore, the research field of verification and
validation of AI-based systems is flourishing. Some examples are in
the field of automated driving, e.g. Ehlers (2017a) and Vishnukumar,
Butting, Müller, and Sax (2017), or aircraft automation, e.g. Katz,
Barrett, Dill, Julian, and Kochenderfer (2017). Especially for NNs,
various researchers investigate methods to evaluate their robustness,
or correctness. More often, this boils down to modeling the problem
as a system of linear or nonlinear equations and solving them using
methods from linear or nonlinear programming. Depending on the type
and size of the neural network, approximations and transformations

∗ Corresponding author.
E-mail addresses: daniel.grimm@kit.edu (D. Grimm), tollner.david@kjk.bme.hu (D. Tollner), d.kraus@kit.edu (D. Kraus), torok.arpad@kjk.bme.hu

(Á. Török), eric.sax@kit.edu (E. Sax), szalay.zsolt@kjk.bme.hu (Z. Szalay).

are required for modeling the problem. Many works focus on the ver-
ification of Rectified Linear Unit (ReLU) activation function networks,
e.g. Katz et al. (2017). As a nonlinear activation function that is not
continuously differentiable, NNs using this activation function cannot
be readily analyzed using methods that require a continuous derivative.
Therefore, an active area of research is to transform networks with
ReLU activation function so that they are solvable by conventional
optimization methods. Some noteworthy publications were made by
Brown, Schmerling, Azizan, and Pavone (2022), Bunel, Turkaslan, Torr,
Kohli, and Mudigonda (2018), and Luenberger, Ye, et al. (1984). This
work continues a previous work of our research group’s collaboration,
in which a novel approach was developed to evaluate the correctness
of feed-forward NNs in binary classification problems. In this previous
work of Tollner, Ziyu, Zöldy, and Török (2022), the ReLU activation
function of the network was replaced by the mReLU (modified ReLU)
function, which is continuous differentiable. Thus, after training the
network on an artificial data set, the correctness of the network’s
prediction in a specified interval can be evaluated by solving the
equivalent system of nonlinear equations. In the work at hand, we
extend the approach to the analysis of multi-class NNs. For this purpose,
we present how the problem has to be reformulated. First, we show how
the Softmax activation function can be used in our framework. Further-
more, the work indicates that comparable results can also be obtained
with a mapping of the multi-class problem to a Sigmoid activation
vailable online 28 January 2024
957-4174/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.eswa.2024.123345
Received 20 June 2023; Received in revised form 16 January 2024; Accepted 23 J
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

anuary 2024

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
mailto:daniel.grimm@kit.edu
mailto:tollner.david@kjk.bme.hu
mailto:d.kraus@kit.edu
mailto:torok.arpad@kjk.bme.hu
mailto:eric.sax@kit.edu
mailto:szalay.zsolt@kjk.bme.hu
https://doi.org/10.1016/j.eswa.2024.123345
https://doi.org/10.1016/j.eswa.2024.123345
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.

b
d

f
i
b
o

t
u
z

function. A benefit of this approach is that the optimization procedure
only has to be carried out once. Additionally, an investigation of the
Swish activation function, analyzed by Ramachandran, Zoph, and Le
(2017), as an alternative to ReLU or mReLU, is implemented. In the
study of Ramachandran et al. (2017) it has been shown that the Swish
activation function always yields as good or better results as the ReLU
function. However, the advantage in comparison to ReLU is that this
function is continuously differentiable.

2. Motivation and objectives

In order to ensure the safety, reliability, and acceptable performance
of highly automated vehicle systems, it is crucial for the industry to
provide guarantees for the operation of Neural Networks applied in
automotive systems. Highly automated vehicles widely use NNs for
tasks such as object detection, lane keeping, and decision-making.
The functions are often involved in providing passenger or pedestrian
safety. Validating and verifying NNs help to identify and mitigate
potential risks and vulnerabilities in the models, reducing the likelihood
of severe accidents or malfunctions. At the same time, the automotive
industry is regulated by strict standards to warrant the safety of vehicles
on the road. Compliance with these standards is mandatory, and valida-
tion and verification processes help demonstrate that the NNs meet the
required safety and performance standards. Neural networks applied
by the automotive industry must perform effectively in diverse and
unpredictable real-world conditions. Considering Barrachina, Boldizsar,
Zoldy, and Torok (2019)’s results, NNs cannot provide solutions to all
emerging problems in the industry, thus it is important to continuously
develop verification solutions and improve their efficiency. Validating
and verifying NNs can provide guarantees how well the developed
neural network can operate in different circumstances/environments,
weather conditions, and traffic scenarios. On the other hand, NNs
must be resilient to failures and other unexpected events. Valida-
tion and verification of NNs contribute to identifying weaknesses and
vulnerabilities that may lead to hazardous events. Beyond this, artifi-
cial intelligence based systems in highly automated vehicles are often
subjected to continuous updates and improvements. Iteratively and
continuously validating and verifying neural network based decision
processes contribute to maintaining or enhancing system safety and
performance over time. In summary, neural network validation and
verification in the automotive industry is a critical task to warrant the
safe and reliable deployment of artificial intelligence based functions
in highly automated vehicles. It has to include comprehensive testing
and assessment of diverse scenarios, and compliance with industry
standards and regulations.

The most important scientific target related to neural network vali-
dation and verification in the automotive industry is to introduce well-
funded, approved, efficient and well-applicable methodologies provid-
ing a high level of safety assurance. As Cao and Zoldy (2021) stated,
safety is of key importance in the development and deployment of
highly automated vehicles, where artificial intelligence based solutions
play a crucial role in decision-making and control systems. Ensuring
that these networks are reliable, robust, and free from critical errors is
essential to prevent accidents and protect human lives. In the case of
safety–critical vehicle functions, it is crucial to provide full explainabil-
ity and transparency for NNs. For this, it is indispensable to improve the
interpretability of neural network models to enhance understanding of
their decision-making processes. This is critical for discovering errors,
assessing system behavior, and building trust among users, policy
makers, and users/human participants. Overall, the scientific gap in
this domain is the lack of a comprehensive framework for validating
and verifying NNs in highly automated vehicles, with a primary focus
on safety. Achieving this target requires interdisciplinary collaboration
among experts in machine learning, automotive engineering, control
systems to create safe, efficient and reliable artificial intelligence based
2

systems for the automotive industry. In more detail, it can be concluded o
that some of the formal efficient methods can be used under strict
conditions, such as monotonicity or piecewise linearity of the activation
function. This is a strong constraint that limits the applicability of these
models. Another important challenge is to avoid the use of simplified
models whenever possible and to examine the real model directly.

3. Contribution

The main contribution of our research results is that the developed
framework provides a comprehensive, general-purpose solution for the
verification of neural networks, with the potential for application in
safety–critical systems. The new method opens up the possibility to
test neural networks built from activation functions for which the
conditions of monotonicity or piecewise linearity are not fulfilled.
Another important research result is that the method tests the real
model structure, rather than a simplified model describing the process,
which would only provide approximate results due to the simplification
or would require an exponentially large number of tasks.

4. Background

Many activation functions are used in the field of neural networks,
with advantages and disadvantages. The (non-linear) activation func-
tion is needed because all neurons would provide linear transformation
of the inputs without it. The linear mapping is additive and homoge-
neous. Thus, NNs with only linear activation functions can be reduced
to a single neuron. This neuron would only be able to create a linear
decision boundary, so it would be able to solve only linearly separable
problems. In summary, the (nonlinear) activation function adds the
nonlinearity to the neural network. The continuously differentiable
property is also necessary for enabling gradient-based optimization
algorithms. There is no universal function that always performs better
than the others.

4.1. Linear activation functions

Rosenblatt (1958)’s perception is one of the first and simplest NNs,
a single-layer feed-forward network with one neuron. In this case, the
original activation was the Signum function for all 𝑥 ∈ R (Eq. (1)):

𝑦𝑠𝑔𝑛(𝑥) =

⎧

⎪

⎨

⎪

⎩

−1, ∀𝑥 < 0
0, 𝑥 = 0
1, ∀𝑥 > 0

(1)

The Signum function is only used as a regularization technique
in modern neural network applications to have smaller weights and
to prevent overfitting. A commonly used version is the Binary step
function (Fig. 1), where the output is 0 or 1, depending on whether
the output is positive or negative. In this case, the point 𝑥 = 0 can
e arbitrarily assigned to 0 or 1. The neurons can be interpreted as
eactivated or activated with these outputs, respectively.

The Binary step function has only two outputs, so it is widely used
or binary classification problems. If the problem is linear, one neuron
s sufficient. In the nonlinear case, the hidden activation functions can
e arbitrary, and the step function is used in the output neuron, so only
ne neuron is needed in the output layer.

The problem with the Signum and the Binary step function is that
hey are not differentiable at the point 𝑥 = 0, therefore the gradient is
ndefined, in theory. But in practice, the derivative can be forced to be
ero, as at all other points. Thus, the derivative is constant, independent
f the input, and ruins the logic of the backpropagation algorithm.

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.
Fig. 1. The shape of the Binary step activation function and its derivative.
4.2. S-shaped non-linear activation functions

The composition of non-linear activation functions allows back-
propagation and adds nonlinearity to the system. Moreover, as the
Universal approximation theorem states, any Borel measurable function
can be approximated to any desired degree of accuracy with only one
hidden layer network using squashing activation functions (Hornik,
Stinchcombe, & White, 1989).

Logistic and Sigmoid function
A traditional activation function is the Logistic function (Eq. (2)),

which is also often used in population theory.

𝑦𝑙𝑜𝑔𝑖(𝑥) =
𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)
(2)

where 𝐿 is the supremum of the curve, 𝑘 is the logistic growth rate
and 𝑥0 is 𝑥-value of the function’s midpoint. The Sigmoid function is
continuous, differentiable and monotonic.

Many hyperparameters can be set when training NNs, so parameter-
izing the activation function makes the task much more complicated.
Instead, the Sigmoid function is commonly used, which is the special
case of the Logistic function where 𝐿 = 1, 𝑘 = 1 and 𝑥0 = 0. The Sigmoid
is an S-shaped curve, which is bounded in the range of (0, 1) (Fig. 2).
This output can be interpreted as probability. In addition, it takes
values close to its lower and upper bounds in a relatively small input
interval. Due to these two properties, it is often used as an activation
function in the output layer to solve 2-class classification problems. As
it can be seen, the function has a nonzero-mean output. This can be a
problem because all the neurons will have the same sign, which makes
the training of the network more difficult and unstable and also leads
to slower convergence (Amari, 1998).

The Logistic function and its derivative are smooth. The gradient
value approaches zero at both positive and negative ends, therefore the
function suffers from the vanishing gradient problem. This significantly
impacts performance because if the gradient vanishes, the weights
cannot be updated.

Due to the exponential calculations, the Logistic function is compu-
tationally expensive. To compensate for this, the gradient calculation
is straightforward (Eq. (3)), which can speed up training.
(

𝑦𝑠𝑔𝑛(𝑥)
)′ = 𝑦𝑠𝑔𝑛(𝑥)

(

1 − 𝑦𝑠𝑔𝑛(𝑥)
)

(3)

Hyperbolic tangent function
3

The Hyperbolic tangent function – also known as the Tanh func-
tion – can be a good alternative to replace the Logistic function.
Mathematically, it can represented as (Eq. (4)):

𝑦𝑡𝑎𝑛ℎ(𝑥) =
1 − 𝑒−𝑥

1 + 𝑒−𝑥
(4)

Tanh and Sigmoid functions look similar (Fig. 3); however, a signifi-
cant difference is that Tanh crosses the origin, which can lead to faster
convergence. Also, it can be seen that the gradients do not decrease
quickly like the Sigmoid functions. Therefore, the gradient does not
vanish rapidly.

The connection between the Tanh and the Sigmoid functions is
shown in Eq. (5). The Tanh contains all the properties of Sigmoid with
the further advantage of crossing the origin. Therefore, it can provide
better performance results.

𝑦𝑡𝑎𝑛ℎ(𝑥) = 2 𝑦𝑠𝑔𝑛(2 𝑥) − 1 (5)

4.3. Piecewise linear activation functions

A different type of non-linear function is when the activation func-
tion is a combination of two linear functions.

ReLU function
The Rectified Linear Unit (ReLU) function defined by Nair and

Hinton (2010) (Eq. (6)) is one of the most used functions in the
hidden layers, as it eliminates several disadvantages of S-shaped curves.
Although, because of the linear functions, it does not add any true
nonlinearity to the system.

𝑦𝑟𝑒𝑙𝑢(𝑥) = max{0, 𝑥} (6)

ReLU is a continuous, monotonic function and bounded from below,
however it is not differentiable at 𝑥 = 0. In practice, the gradient is
defined as 0 at this point (Fig. 4). ReLU is not bounded from above, so
it does not suffer from the vanishing gradient problem.

ReLU only activates the neuron if its input is positive. Therefore,
many neurons are not involved in learning, reducing the tendency to
overfitting and increasing the computational efficiency. Also, it is faster
to calculate the values of ReLU and its derivative compared to S-shaped
functions, further reducing computational costs.

However, ReLU has a major drawback. If the input is negative, then
the gradient will be zero. Therefore, there will be no change in weights
during training; this is the dying neuron or dying ReLU problem.

Leaky ReLU, Parametric ReLU

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.
Fig. 2. The shape of the Sigmoid activation function and its derivative.
Fig. 3. The shape of the Tanh activation function and its derivative.
To overcome the dying neuron problem, Leaky ReLU introduced by
Maas, Hannun, and Ng (2013) assigns a positive slope linear function
to the negative inputs (Eq. (7)). For these inputs, the gradient will be
0.01 instead of 0 (Fig. 5). So, these parameters will also be updated.

𝑦𝑙𝑟𝑒𝑙𝑢(𝑥) = max{0.01 𝑥, 𝑥} (7)

The Parametric ReLU can be seen as an extension of Leaky ReLU,
where the 0.01 constant is replaced by a parameter (Eq. (8)).

𝑦𝑝𝑟𝑒𝑙𝑢(𝑥) = max{𝛼 𝑥, 𝑥} (8)

where 𝛼 is a positive constant, typically 0.01 ≤ 𝛼 ≤ 0.1.
In addition to the advantages, an extra hyperparameter is added to

the system. This 𝛼 value can be data-specific; its value needs to be set
properly, as the network is sensitive to it. Although, the 𝛼 can also be a
learnable parameter, which is learned along with the network weights
during the training phase.

4.4. Other activation functions

As neural networks have evolved, new activation functions have
appeared in recent years. These functions were designed to combine
4

the advantages of ReLU and Sigmoid functions and eliminate their
drawbacks. We have collected these properties and their explanations
in a list, which makes the analysis of the functions easier. The follow-
ing functions are smooth, continuously differentiable, non-linear, and
bounded from below (except Softmax).

Advantages:

+ Smooth: preventing jumps in output values, accelerates optimiza-
tion and helps generalization

+ Differentiable: enabling gradient-based optimization algorithms
+ Non-linear: helping to learn complex patterns
+ Bounded from below: deactivating neurons, sparsing the net-

work
+ Zero centered: faster convergence
+ Negative output: improving the ability to learn

Disadvantages:

– Bounded (from above and below): vanishing gradient problem
– Exponential term: computationally expensive

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.
Fig. 4. The shape of the ReLU activation function and its derivative.
Fig. 5. The shape of the Leaky ReLU activation function and its derivative.
– 0 gradients: dying ReLU problem
– >1 gradients: exploding gradient problem
– Hyperparameter: setting its value correctly is difficult

Softplus
Dugas, Bengio, Bélisle, Nadeau, and Garcia (2000) presented the

Softplus activation function (Eq. (9)), which is a smoothed version of
ReLU. Unfortunately, this also contains an exponential term.

𝑦𝑠𝑜𝑓𝑡𝑝(𝑥) = ln(1 + 𝑒𝑥) (9)

The relationship between Softplus and the Sigmoid function is
shown by (Eq. (10)):
(

𝑦𝑠𝑜𝑓𝑡𝑝(𝑥)
)′ = 𝑒𝑥

1 + 𝑒𝑥
= 1

1 + 𝑒−𝑥
= 𝑦𝑠𝑔𝑛(𝑥) (10)

Swish

The Swish function was introduced in 2017 by Ramachandran et al.
(2017). This function combines the advantages of Sigmoid and ReLU.

𝑦 (𝑥) = 𝑥 𝑦 (𝑥) = 𝑥 (11)
5

𝑠𝑤𝑖𝑠ℎ 𝑠𝑔𝑛 1 + 𝑒−𝑥
Swish, in addition to the abovementioned properties, is a non-
monotonic function (Fig. 6). However, one negative property of the
sigmoid function is preserved: the computation cost. Furthermore, this
function is self-regularized, meaning the output approaches zero for
large negative inputs. At the same time, there is a negative bump for
small negative inputs that prevents the dying ReLU problem.

Mish
Mish (Eq. (12)) function was inspired by Swish, but the Sigmoid

has been replaced with a composition of Tanh and Softplus functions
by Misra (2020). Mish outperformed Swish, despite similar features, in
well-known benchmark tests.

𝑦𝑚𝑖𝑠ℎ(𝑥) = 𝑥 𝑦𝑡𝑎𝑛ℎ(𝑦𝑠𝑜𝑓𝑡𝑝(𝑥)) = 𝑥 1 − 𝑒− ln(1+𝑒𝑥)

1 + 𝑒− ln(1+𝑒𝑥)
(12)

Mish (Fig. 6) is also a non-monotonic and self-regularized func-
tion. In addition to the many advantages, its complexity makes it
computationally very expensive.

ELU
Exponential Linear Unit (ELU) (Eq. (13)) is a classic alternative for

ReLU, where (Clevert, Unterthiner, & Hochreiter, 2016) replaced the

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.
Fig. 6. Shapes of Softplus, Swish and Mish activation functions.
Fig. 7. Shapes of Softplus, Swish and Mish activation functions.
output of the negative part by an exponential function to eliminate
the dying ReLU problem. As for Leaky ReLU and Parametric ReLU,
the output can be negative, but because of the exponential term, it
saturates in the negative quadrant. Disadvantages of ELU are the costly
calculation and the good setting of the 𝛼 parameter and the exploding
gradient can also be a problem.

𝑦𝑒𝑙𝑢(𝑥) =

{

𝛼 (𝑒𝑥 − 1), ∀𝑥 < 0
𝑥 , ∀𝑥 ≥ 0

(13)

where 𝛼 > 0 (typically lies in the range [0.1, 0.3]).

SELU
Klambauer, Unterthiner, Mayr, and Hochreiter (2017) developed

the Scaled Exponential Linear Unit (SELU) function (Eq. (14)). SELU
is a relatively new function, which differs from ELU because it has a
lambda scaling factor (Fig. 7).

𝑦𝑠𝑒𝑙𝑢(𝑥) = 𝜆

{

𝛼 (𝑒𝑥 − 1), ∀𝑥 < 0
𝑥 , ∀𝑥 ≥ 0

(14)
6

Softmax

As Agarwal, Balasubramanian, and Jawahar (2018) and Martins
and Astudillo (2016) confirmed, Softmax is one of the most widely
used activation function for classification tasks. The Softmax function
(Eq. (15)) is frequently used in the output layer. The output lies in the
range [0,1] and adds up to 1. Therefore, it can handle multiple classes
and perform a probability distribution consisting of n probabilities
proportional to the exponentials of the input.

𝑦𝑠𝑜𝑓𝑡𝑚(𝑥)𝑖 =
𝑒𝑥𝑖

∑𝑛
𝑖=1 𝑒

𝑥𝑖
(15)

where 𝑛 is the number of inputs.

From the discussion above, it is evident that the development of
activation functions is still ongoing. The main reason is that they also
need to adapt to different new architectures and application areas
according to Duan, Yang, and Dai (2022).

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.

𝑥

5. Related work

Evaluating the proper operation of neural networks was previously
the subject of many research studies. The identification of a general
and in-depth assessment framework of neural networks would enable
the developers to identify the input variables’ intervals where the
investigated neural network can be reliably applied. Yu, Duan, and Ye
(2022) investigated the neuron coverage as an outstandingly important
evaluation factor in the case of NNs. The method aims to increase
the number of evaluated neurons to identify more nested relationships
between the network components and the output variables. The authors
developed an advanced white-box testing method using the concept
of neuron coverage that makes it possible to determine the inconsis-
tent operation of NNs. The model identifies inactive components and
continuously stimulates them to optimize neuron coverage.

Kolman and Margaliot (2005) describe a Mamdani-type
all-permutations fuzzy rule base (APFRB) method. They introduced
the relationship between NNs and the developed fuzzy rule base,
including knowledge extraction from and knowledge insertion into
NNs. Another important application possibility of the introduced model
is the assessment of the dynamic behavior of different training methods.

Amjad, Liu, and Geiger (2021) analyzed the use of different in-
dicators to interpret and evaluate fully connected feedforward NNs.
Their study focused on the entropy, the mutual information with the
class variable, and a class selectivity measure based on Kullback–
Leibler divergence. This paper examines the relationship between the
indicators introduced and decision accuracy. According to their results,
mutual information and class selectivity had a positive correlation
with decision accuracy, especially in the case ReLU based networks.
Hayashi, Setiono, and Azcarraga (2016) introduced comprehensible
classification rules based on the pruned network by evaluating the
activations of the hidden neurons and the weights of the edges in
the pruned network. The results of their work demonstrate that the
rules derived from the neural networks could efficiently represent the
classification rules. Csiszár, Csiszár, and Dombi (2020) reduced the
black-box nature of NNs by integrating neural systems with contin-
uous models and multicriteria-decision-making systems. They present
that nilpotent logical systems can be applied for hybridization of the
investigated models. The authors constructed the network by applying
logical operators and multicriteria decision tools in the hidden layers.
In their article, the focus is on the structure of integrated models and
the identification of the components applicable in deep NNs.

Katz et al. (2017) introduced an efficient solver for interpreting
deep NNs based on the simplex method, improved to be capable of
integrating non-convex Rectified Linear Unit (ReLU) activation func-
tions. The interpretation procedure does not apply any simplifying
assumptions. The publication investigates the method on a sample
network developed for airborne collision avoidance applications. The
outcomes demonstrated that the developed approach can efficiently
interpret network characteristics.

Tollner et al. (2022) introduced a method, where a network is
trained with ReLU activation function, but replaced afterwards with a
modified ReLU (mReLU). Because mReLU is continuous differentiable, a
nonlinear equation system can be used to formulate analytic guarantees
about the neural network’s output in a given interval.

Probably, one of the most fundamental studies on neural network
verification written by Pulina and Tacchella (2010) aims to represent
the neural network as an abstraction and to separate safe/unsafe do-
mains using a solver based on the Satisfiability modulo theories. The
applicability of the method is critically affected by the adequacy of
the abstraction. The size of the network used by Pulina and Tacchella
(2011) is small/medium, as the number of hidden neurons in the
different examples ranges from 5 to 20. Pulina and Tacchella (2012)
demonstrated the NeVer framework through the application of the
7

Puma 500 robot manipulator.
The Planet system introduced by Ehlers (2017b) aims to assist the
Satisfiability modulo theories (SMT) solver with linear approximation
based node phase assignment. The efficiency of the method is strongly
determined by the approximation. The size of the network presented in
the demonstration is medium, since the number of hidden neurons is
40. The case study illustrating the proposal is presented on a collision
avoidance system.

Xiang, Tran, and Johnson (2018) investigates this domain as well.
They aim to estimate the sensitivity of the neural network by discretiz-
ing the input domain through solving a chain of optimization problems.
The network used in the demonstration is small, since the number of
hidden neurons is 5. A case study of a robot arm was used to illustrate
the proposal.

Bunel et al. (2020) and Katz, Barrett, Dill, Julian, and Kochenderfer
(2022) focused on the verification of NNs that contain a Piecewise
Linear activation function. The networks used in the demonstration are
intermediate or large, as the number of hidden neurons is above 30,
but some examples approach or exceed 1000. Beyond other demon-
strative examples, the case studies presenting the proposal illustrate the
applicability of the methods through the ACAS data set.

The comparison of the introduced NN verification methods summa-
rized in Table 1.

6. Methodology

6.1. Verification of binary classifying neural networks

In the previous work of Tollner et al. (2022), a method for verifica-
tion of binary classifying feed-forward neural networks was developed.
This section briefly summarizes the previous approach to provide the
basis for this publication. The basic approach is that a trained neural
network can be verified, if for a certain range of values of our input
variable �⃗� = (𝑥1,… 𝑥B) it can be guaranteed that the network predicts
only the expected class 𝑦target in this interval:

{�⃗� ∣ ∀ 𝑥𝑏 ∶ 𝑙𝑏 ≤ 𝑥𝑏 ≤ 𝑢𝑏}, 𝑏 ∈ (1,… ,B) ⟹ 𝐹 (�⃗�) = 𝑦target (16)

The set of inputs �⃗� that satisfy the boundary conditions is named
⃗𝑡. A feed forward network for binary classification is assumed to be
structured as follows: a set of H hidden layers, each with 𝑁ℎ neurons
(ℎ ∈ {1,… ,H}), is fully connected with each previous layer, but no
other layers or itself. The input layer is a set of 𝑁0 neurons with
identity activation, forming the input of 𝑁0 = B features. For binary
classification, the last layer of the network is assumed to consist of a
single neuron equipped with a Sigmoid activation function. For this
purpose, the two classes are represented by the values ‘‘0’’ and ‘‘1’’,
because the Sigmoid function can map its input values to the value
range of [0, 1] ∈ R. Typically, a value <0.5 is then assigned to class
‘‘0’’, and ≥0.5 to class ‘‘1’’. In sum, the total number of neurons 𝑁 in
the network is

𝑁 =
H
∑

ℎ=0
𝑁ℎ, (17)

with 𝑁H = 1. Aiming at the verification of NNs of this structure
analytically, the problem is formulated as an equation system. Gen-
erally speaking, the function of a neuron 𝑛ℎ,𝑖 can be described using
two variables 𝑥ℎ,𝑖 and 𝑦ℎ,𝑖, being the input and output, respectively. ℎ
indicates the layer index, while 𝑖 is the neuron index in the respective
layer ℎ. The input 𝑥ℎ,𝑖 is calculated according to the weights of its con-
nected predecessors. The output 𝑦ℎ,𝑖 is calculated using the activation
function 𝑓ℎ, assuming that each layer ℎ has a common, continuously
differentiable activation function. Accordingly, each neuron can be
modeled with two equations; one linear equation based on the weights,
and one possibly nonlinear for the activation:

𝑥ℎ,𝑖 =
𝑁ℎ−1
∑

𝑤𝑦ℎ−1,𝑛 ,𝑥ℎ,𝑖 ⋅ 𝑦ℎ−1,𝑛 (18)

𝑛=1

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.

a
i
n
s
t
s
a
w
a

𝑦

t
b
i
t

i

m

I
a
i
p
b
i
o
N
i

Table 1
Comparison of NN verification methods.

NeVer Planet SafetyVeri BaBSR Reluplex

Method SMT solver SMT with approximation Maximum sensitivity MILP with B&B Modified simplex

Case study Unimate PUMA 500
industrial manipulator

Road vehicle collision avoidance
system, 3000 tuples

Robotic arm model Numerous dataset (e.g.,
ACAS, PCAMNIST, etc.)

ACAS

Example network size Small-medium Medium Small Large Medium
Applied NN representation Abstraction Linear approximation Equation system Equation system Equation system

Demonstrated activation
function

Sigmoid Piecewise linear functions Any monotonic
function

Piecewise linear
functions

Piecewise linear
functions
6

c
o
m
t
S
p
t
m
A
c
o
b

6

m

𝑛

i
v
b
t

𝑐

Fig. 8. The mReLU function and its derivative.

𝑦ℎ,𝑖 = 𝑓ℎ(𝑥ℎ,𝑖) (19)

For verification, the requirements for our input data as of Eq. (16)
re formulated as boundary conditions on the system of equations. Typ-
cally, one requirement 𝑙𝑏 ≤ 𝑥𝑏 ≤ 𝑢𝑏 is formulated as two equations. For
onlinear activation functions (e.g. ReLU, Sigmoid, Swish), a nonlinear
olver is needed. An additional requirement, that the method places on
he neural network: the activation must be a closed function so that
olvers for continuous problems can handle it. Therefore, to apply the
pproach to the commonly used ReLU function, the mReLU function
as introduced in the previous work (see Fig. 8), which is a closed-form
pproximation of the ReLU function:

mReLU(𝑥) =

√

𝑥2 + 𝑥
2

(20)

While the formulation of ReLU and mReLU differ, the behavior of
he functions is the same. For verification purposes, this is sufficient
ecause a neural network trained with ReLU will give the same results
f mReLU is used instead — the derivative is only important for the
raining process.

Finally, the constrained optimization problem is formulated as min-
mizing or maximizing the output of the ‘‘last’’ neuron, i.e.

in
�⃗�𝑡

𝑦H,1. (21)

f the minimum and maximum both indicate the same class, i.e. in both
re <0.5 or ≥0.5, then the nonlinear equation system (NLES) is feasible
n the specified range of Eq. (16) and it can be checked whether the
redicted class corresponds to the desired one. Otherwise, all that can
e said about the result of the Neural Network 𝐹 in the given interval
s that both classes can be predicted. However, this is also an important
utcome: in intervals, where different outcomes are possible, the Neural
etwork cannot be relied on. In summary, the workflow of the method

s as follows:
8

1. Training of the NN.
2. If necessary, approximation of nonlinear activation functions by

closed functions, which have the same behavior, but may have
different derivatives.

3. Specification of intervals 𝑙𝑏, 𝑢𝑏 for feature values 𝑥𝑏, yielding
the set of target input vectors �⃗�𝑡 and associated expected output
𝑦target .

4. Formulation of the NN as a nonlinear system of equations, where
two equations are formulated for each neuron as :

(a) Based on the weights of the connections with its prede-
cessors.

(b) Based on the closed-form representation of the activation
to obtain the output.

5. Minimization and maximization of the NLES, where the specified
intervals form the constraints of the NLES.

6. Evaluation of the feasibility of the NLES based on minimum and
maximum in terms of the decision boundary between the classes
and the fulfillment of the specification.

.2. Expanding on multi-class problems

For the extension to the multi-class approach, it is important to
onsider how a neural network is structured for this purpose. Instead
f classifying the input data into two classes ‘‘0’’ and ‘‘1’’, the network
aps to C classes. In the literature, a Softmax activation function is

ypically used as the last layer in the network for this purpose. The
oftmax layer consists of as many neurons as there are classes to
redict, i.e. 𝑁H = C instead of 𝑁H = 1. Since this layer does not map
o a single target variable 𝑦H,1 = 𝑦target for which a minimization or
aximization can be performed, a change in the method is necessary.
lternatively, instead of using the Softmax function, another final layer
an be used, that maps to a single variable 𝑦H,1 to which the previous
ptimization approach can be applied. In the following, a proposal for
oth possibilities is presented:

• an extension of our approach for networks with the typical Soft-
max activation function

• a Sigmoid-based multi-class classification, for which our approach
needs only minimal modification

.3. Verification of softmax-based multi-class networks

If the established approach to multi-class classification via the Soft-
ax function is chosen, the output of each neuron

H,𝑖, 𝑖 ∈ (1,… , 𝑁H), 𝑁H = C (22)

n the last layer corresponds to the probability that the classified input
ector �⃗� belongs to the respective class 𝑖. The predicted class 𝑐 is yielded
y the index of the neuron 𝑛H,𝑐 whose output 𝑦H,𝑐 is the maximum of
he outputs 𝑦H,𝑖, 𝑖 ∈ {1,… ,C}, i.e.,

= arg max 𝑦H,𝑖. (23)

𝑖∈{1,…,𝐶}

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.

s
n
c
o
𝑦

m

F
𝑓
o
f
f
i
i
a
e
i
w
s
o
T
w
S
i
n
o
v

𝑖

a
t
I
m
a
b
t
t

{

r

Fig. 9. Exemplary Softmax-based multi-class classification.

Thinking of the neural network 𝐹 whose output is in [0, 1]C (corre-
ponding to the output of the classifying neurons 𝑦H,1 to 𝑦H,C), the
eural network can be verified for a certain interval and desired target
lass 𝑦target = 𝑐, 𝑐 ∈ {1,… ,C}. Verification is successful if the minimum
f the output of the neuron corresponding to the desired target class
H,𝑐 is larger than all maxima of the other neurons, i.e.

in
�⃗�𝑡

𝑦H,𝑐 ≥ max
�⃗�𝑡

𝑦H,𝑖,∀ 𝑖 ∈ {1,… ,C} (24)

iguratively speaking, the activation functions of the output layer
𝑖 ∀𝑖 ∈ {1,… ,C} and 𝑓𝑐 is above all other functions 𝑓𝑖. An example
f the multi-class classification is given in Fig. 9, where the Softmax
unction is applied to artificial data of five classes. In Fig. 9, the
unctions represents the class probabilities, the color of the background
ndicates the dominant class with the largest probability related to the
nvestigated interval. Since, we assume that we have a priori knowledge
bout the proper operation of the system, with other words about the
xpected target class related to given input values, we can evaluate
f the system behaves according to our expectations. For example,
hen the output should be ‘‘0’’ for 2 < 𝑥 < 4 based on the system

pecification, then the verification is successful, because the probability
f class ‘‘0’’ is larger than all the other class probabilities in this interval.
o implement the verification of Softmax-based multi-class neural net-
orks in a common solver, one can take advantage of a property of the
oftmax layer. As the Softmax mapping is strictly monotonic function,
t does not change the ratios between the neurons of the layer, i.e., the
euron that provides the minimum of the output values of all neurons
f the Softmax layer for a given input �⃗� also has the minimum input
alue. Accordingly it can be formulated as

arg min
∈{1,…,C}

𝑦H,𝑖 = arg min
𝑖∈{1,…,C}

𝑥H,𝑖, (25)

nd arg max𝑖∈{1,…,C} respectively. Therefore, for the global determina-
ion of maximum and minimum, the Softmax function can be neglected.
nstead, the network is considered only up to 𝑥H,𝑖 and C NLES are
inimized and maximized respectively for 𝑥H,𝑐 . In addition to verifying
guaranteed prediction of the class 𝑦target , an alternative use case can

e pursued, the guaranteed non-prediction of certain classes 𝑦ex. For
his case, the reverse is checked to see if there is always a class above
he class 𝑦ex to be excluded:

𝑓i|max
�⃗�𝑡

𝑓ex < min
�⃗�𝑡

𝑓𝑖}, 𝑓i, 𝑓ex ∈ ⟹ 𝑓ex ∉ 𝐶 ,𝐶 ⊂ (26)

In summary, the following procedure emerges as the modified algo-
ithm for the verification of multi-class feed-forward NNs:

1. Training the NN with Softmax Output and cross-entropy loss.
2. If necessary, approximation of nonlinear activation functions by

closed functions, which have the same behavior, but may have
9

different derivatives.
3. Specification of intervals 𝑙𝑏, 𝑢𝑏 for feature values 𝑥𝑏, yielding
the set of target input vectors �⃗�𝑡 and associated expected output
𝑦target (2 and 3 same as in the original version).

4. Formulation of the NN as a nonlinear system of equations, where
two equations are formulated for each neuron of layers 1 to H−1
as:

• Based on the weights of the connections with its predeces-
sors.

• Based on the closed-form representation of the activation
to obtain the output.

5. For each of the classes 𝑐 ∈ {1,… ,C}:

• Form a sub-system of equations, extending the equation
system of (4) with only the equations containing the
weights of 𝑥H,𝑐 , connection 𝑛H,𝑐 to the previous layer H−1.

• Solve the NLES for the minimum and maximum in 𝑥𝑡.

6. Evaluate feasibility and verification based on minimum of NLES
for target class 𝑦target in comparison to maxima of other classes.

6.4. Verification of sigmoid-based multi-class networks

Instead of solving the Softmax-based approach using multiple opti-
mization problems, it is also possible to represent a multi-class problem
with a Sigmoid-based network. A network of this structure has only one
neuron in the last layer, and can therefore be minimized or maximized
using the previous approach. To do this, the Sigmoid function must be
able to predict C values instead of only distinguishing between two
classes 0 and 1. To this end, in particular, the decision for a class is
adjusted by dividing the Sigmoid function more finely. Depending on
the number of classes, the output of the Sigmoid function is divided
into equally sized sections. For example, for five classes at 0 ≤ 𝑦 ≤ 0.2
class ‘‘0’’ is predicted, 0.2 < 𝑦 ≤ 0.4 class ‘‘1’’, etc. (see Fig. 10(b)).
With four classes, the boundaries change accordingly to 0.25, 0.5, and
0.75 respectively (see Fig. 10(a)). Thus, the Sigmoid function serves
primarily to limit the output values, while being a continuous and
closed-form representative function. While the system of equations does
not change, the training process needs some modification. According to
the number of classes, the decision boundaries are calculated and the
target values of the classes are set for training. Target values for training
are the mean value between two decision boundaries. For example with
four classes, the target values are 0.125 for class ‘‘0’’, 0.375 for class
‘‘1’’, etc. Instead of using a loss metric for classification, training is
done with a regression metric. Finally, the feasibility evaluation must
be modified for verification. A neural network can then be verified for a
given interval of input data if the minimum and maximum of the output
are within the decision bounds of the Sigmoid function for the desired
class. The only difference to binary classification is that in general two
decision boundaries have to be checked instead of only against 0.5.

7. Results

In the following, we present the results using three examples of
multi-class classification: a self-generated toy dataset, the Iris dataset,
and a self-generated use case from the automotive sector. For the toy
dataset and the Iris dataset, we only discuss the results on the Softmax
classification.

7.1. Toy dataset

As a first problem, we generated 10,000 samples with three classes
(‘‘1’’, ‘‘2’’, ‘‘3’’) and two features (𝑥1 and 𝑥2) using make_blobs from
the sklearn library. In addition, the data points were multiplied by a
matrix A:

A =
[

0.6 −0.6
]

(27)

−0.4 0.8

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.
Fig. 10. Sigmoid-based multi-class classification.
Fig. 11. Point-wise predictions for the toy data test set.

Table 2
Numerical verification results for the toy dataset.

Approach Class Minimum Maximum

Softmax
0 −5.9105 −2.3626
1 −0.9536 1.3732
2 1.4339 2.1518

Of the total amount of samples, we used 20% as unseen test data and
16% as validation data for early stopping and tracking the generaliza-
tion in the training process. We standardized the data by estimating
the mean and variance from the training dataset and using this to scale
the training, validation and test datasets. On the normalized data, we
trained a network with one input layer, two hidden layers with 20
neurons each, and one output layer. In the following, we only discuss
the results with Swish activation and Softmax classification. Fig. 11
shows the point-wise classification results on the test data set. The
neural net successfully identified the three generated clusters, with an
accuracy of 99.85% on the test dataset. Our method shall now be used
to validate that new data points that are similar to the training data
of class ‘‘2’’ are correctly classified. As an example, we therefore want
to show that an area around the data points of the yellow cluster in
Fig. 11 is completely assigned to class ‘‘2’’.

For this problem, we define the following specification interval for
the two features 𝑥1 and 𝑥2:

1.0 ≤ 𝑥1 ≤ 1.5 (28)
−1.5 ≤ 𝑥2 ≤ −1.0 (29)

Our assumption is that within this interval, which only contained data
points from class ‘‘2’’ in the training, only class ‘‘2’’ is predicted. The
10
specification interval defined by the Eqs. (28) and (29) can be vali-
dated, as the results in Table 2 show. As assumed, class ‘‘2’’ dominates
the prediction of the neural network in this area: The minimum before
the Softmax function for class ‘‘2’’ is higher than the maxima of classes
‘‘0’’ and ‘‘1’’. This means that class ‘‘2’’ is always predicted based on the
Softmax function if a data point lies within the specification interval of
the Eqs. (28) and (29).

7.2. Iris dataset

As a second example, we consider the Iris dataset. This small dataset
consisting of 150 samples classifies three species of the iris plant
(setosa, virginica, versicolor) based on four features. The four features
are the 𝑝𝑒𝑡𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ, 𝑝𝑒𝑡𝑎𝑙_𝑤𝑖𝑑𝑡ℎ, 𝑠𝑒𝑝𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ and 𝑠𝑒𝑝𝑎𝑙_𝑤𝑖𝑑𝑡ℎ, which
describe the flower shape and size of the plant. Since only 150 samples
are available, we chose a smaller test set of 10% of the data points
and 18% for validation. The network architecture in this example is
very similar to the one we used for the toy dataset: an input layer,
two hidden layers with 20 neurons each, and an output layer. We
used min–max normalization instead of standardization here, as this
provided slightly better results on the validation dataset. The network
thus achieves an accuracy of 93.3% on the test dataset (cf. Fig. 12(b))
with Swish activation function and Softmax classification. Based on
the training data (Fig. 12(a)), we can see that the ‘‘setosa’’ class can
be separated from the other two classes using the 𝑝𝑒𝑡𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ feature.
We now want to validate if the network has learned this knowledge
from the data. For data that is similar to the ‘‘setosa’’ data from the
training, ‘‘setosa’’ should therefore be predicted. We express this as a
specification interval as follows:

4.5 ≤ 𝑠𝑒𝑝𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ ≤ 5.0 (30)

2.0 ≤ 𝑠𝑒𝑝𝑎𝑙_𝑤𝑖𝑑𝑡ℎ ≤ 4.5 (31)

1.0 ≤ 𝑝𝑒𝑡𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ ≤ 2.0 (32)

0.0 ≤ 𝑝𝑒𝑡𝑎𝑙_𝑤𝑖𝑑𝑡ℎ ≤ 0.5 (33)

The numerical outputs of our tool are shown in Table 3. From the inf
and >105 values, we conclude that the solver does not find a minimum
and maximum for the three classes. Accordingly, the neural network
cannot be verified. It can therefore not be ruled out that a class other
than ‘‘setosa’’ is predicted for certain inputs in the specified interval.
While this may look like an undesirable result, it is a very important
conclusion, helping to develop safer NNs. Even though the accuracy
on the test set seems to be viable (>90%), the Iris dataset may not
contain enough samples to reliably train a NN with safe generalization
performance, or the test dataset may be too small to assess the true
generalization performance.

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.
Fig. 12. Results on the Iris dataset.
Table 3
Numerical verification results for the Iris dataset.

Approach Class Minimum Maximum

Softmax
Setosa − inf inf
Versicolor − inf inf
Virginica −5 ⋅ 105 5 ⋅ 105

7.3. Use case: emergency braking assist

As an example, we illustrate the two proposed approaches using
the ‘‘emergency braking assistant’’ use case from the automotive sector.
Emergency braking assistants will be mandatory in new vehicles in the
future. In the present work, a neural network is designed to classify the
action to be selected based on two features (𝑥1 and 𝑥2), the distance 𝑑
to a standing object in front of the ego vehicle, and the speed 𝑣0 of the
ego vehicle.

7.3.1. Data generation
The five classes for which data is generated describe, ‘‘do nothing’’,

‘‘warning’’, ‘‘preload brakes’’, ‘‘braking’’, and ‘‘crash/preload airbag’’.
The feature space is uniformly sampled to generate training data. The
required stopping distance is calculated based on the stopping sight
distance, assuming 1.5 s reaction time of the driver,

𝑠ssd(𝑣0) = 1.5𝑣0 +
𝑣20

2 ⋅ 𝜇H g
= 1.5𝑣0 +

𝑣20
2𝑎

, (34)

with g being the gravitational acceleration and 𝜇H the effective friction
coefficient. The friction coefficient depends on tires and street condi-
tions, with typical values for dry streets ≥0.8. For the classification
problem, the maximum available deceleration 𝜇H ⋅ g with 𝜇H = 0.8
is scaled from 25%, 50%, 75% to 100% yielding the four discrete
deceleration values 𝑎 ∈ {𝑎25,… , 𝑎100}. The maximum deceleration is
thus around 7.85m s−2 for the class ‘‘braking’’. The required distance to
stop, depending on speed and 𝜇H is shown in Fig. 13. Comparing the
required stopping distance when applying the four different discrete
decelerations to the available distance, the label 𝑙 for training is gener-
ated as the minimum deceleration sufficient to stop within the available
distance,
𝑙(𝑣0, 𝑑) =min 𝑎,

𝑠.𝑡. {𝑎 ∈ {𝑎25,… , 𝑎100}|𝑑 − 𝑠ssd(𝑣0, 𝑎) > 0}
(35)

The fifth class ‘‘Crash’’ is assigned if none of the possible braking
forces is sufficient to come to a stop in front of the object. Using this
procedure, we generated a data set of 100.000 samples which was split
randomly into 70% training data and 30% test data. The training data
set was randomly undersampled to yield a balanced distribution of
classes. In addition, the data was standardized to have zero mean and
unit variance. An additional validation data set was not used.
11
Fig. 13. Required distance to stop for different values of 𝜇H.

7.3.2. Neural networks training
For each of the two variants of our method, a neural network

is trained. The main difference is in the last layer, where Softmax
activation is used for method A and Sigmoid activation for method B.
Since the Softmax layer has significantly more connections than the
Sigmoid layer with only one neuron, for the same number of layers
the amount of trainable parameters is lower for Sigmoid activation.
To compensate for this, the Sigmoid-based approach (Fig. A.16(b))
uses a network with four hidden layers and the Softmax approach
(Fig. A.16(a)) uses two hidden layers. Implemented with Keras and
Tensorflow 2.1, the networks have 53 (Softmax) and 61 (Sigmoid)
trainable parameters. In the hidden layers, an activation that can be
represented in a closed form must be used for the applicability of
the verification method described here. In this work, the previously
introduced mReLU function is compared with the Swish activation. The
Softmax network is trained with categorical crossentropy loss function,
the Sigmoid network with mean squared error loss, since technically a
regression on five target values is trained. Figs. 14(a), 14(b) and Table 4
show the training process of the two types of networks. Both converge
quickly, showing a slightly superior performance of the Swish-based
networks compared to the ReLU networks. The confusion matrices in
Figs. 14(a) and 14(b) show the class-wise results, yielding comparable
performance of the Softmax and the Sigmoid based approaches.

7.3.3. Verification
For demonstration of the verification approach, two exemplary

specification intervals are defined. In the first case, a specific class is

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.
Fig. 14. Training results.
Table 4
Training results for the emergency braking use case.

Approach Softmax Sigmoid

Activation ReLU Swish ReLU Swish

Accuracy (Train) 0.959 0.968 0.903 0.951
Accuracy (Test) 0.969 0.967 0.920 0.954

Table 5
Numerical verification results for case 1.

Approach Class Minimum Maximum

Softmax

0 49.3254 81.7770
1 38.8690 58.3571
2 29.5243 45.8864
3 −77.3205 −49.5316
4 −286.3853 −182.6587

Sigmoid 0.1186 0.1449

Table 6
Numerical verification results for case 1, refined intervals.

Approach Intervals Class Minimum Maximum
(50 ≤ 𝑥1 ≤ 60)

Softmax 150 ≤ 𝑥2 ≤ 160
0.2 49.3254 63.1035
0.4 38.8690 44.9161

Softmax 160 ≤ 𝑥2 ≤ 170
0.2 54.2292 67.8348
0.4 42.2932 48.3080

Softmax 170 ≤ 𝑥2 ≤ 200
0.2 59.0736 81.7770
0.4 45.7041 58.3571

expected to be the result. The expected outcome, given the specification
intervals

50 ≤ 𝑥1 ≤ 60 (36)
150 ≤ 𝑥2 ≤ 200 (37)

is for the class ‘‘do nothing’’, i.e. a deceleration of 25% or around
1.96m s−2 would be sufficient to come to a stop before the leading
object. The feature 𝑥1 represents the speed of the ego vehicle, and 𝑥2
the distance to the leading object. The minimum and maximum outputs
of the Sigmoid network for the given intervals are 0.1186 and 0.1449,
respectively (see bottom row of Table 5). The predicted class is 0 for
the given intervals as both values fall between the decision boundaries
of negative infinity and 0.2. This confirms the validity of the Sigmoid-
based classification approach for these intervals, as the expected and
predicted classes are the same. The upper rows of Table 5 provide
the minimum and maximum before calculating the Softmax function
to provide a better link to the verification intervals.

It can be observed, that class ‘‘0’’’s minimum is larger than the
maxima of classes 2, 3, and 4. Class ‘‘1’’’s maximum is larger than class
‘‘0’’’s minimum. Thus, class ‘‘1’’ can not be excluded. However, one can
12
look at refined verification intervals. Analyzing the results for

150 ≤ 𝑥2 ≤ 160, (38)
160 ≤ 𝑥2 ≤ 170, and (39)
170 ≤ 𝑥2 ≤ 200 (40)

separately, all intervals can be verified to result in class ‘‘0’’ (see
Table 6). As such, the Softmax-based network will predict class ‘‘1’’
for all other data points in the given intervals. Graphically, verification
results are shown in Fig. 15. As expected from the precedent inter-
pretation of Table 5, Fig. 15(a) shows class ‘‘0’’ predicted across the
whole interval presented in (36) and (37). The other classes are all
clustered in the lower part of the graph and are therefore not visually
distinguishable. One of the major challenges of the method is also
evident from the graph. After applying the Softmax function, class ‘‘0’’
clearly dominates graphically. Verification cannot be performed for the
entire interval in one step due to strongly varying values over the whole
interval. On larger specification intervals, a specific class is generally
above the other classes. However, its minimum can still be below the
maximum of another class. Therefore, if the values are widely spread
out before applying the Softmax function, a smaller verification interval
is necessary. The Sigmoid based approach in Fig. 15(b) yields a similar
interpretation. For further clarification, the sector division of Fig. 10 as
well as the projection of the results on the upper part of the graph is
added. As in the Softmax case, the Sigmoid classification can be clearly
specified to class ‘‘0’’, as the range of values lies within the specified
limits.

Looking at a second case,

60 ≤ 𝑥1 ≤ 80 (41)
20 ≤ 𝑥2 ≤ 60 (42)

we would expect that the network does predict classes ‘‘1’’, ‘‘2’’, ‘‘3’’
or ‘‘4’’, because the ego speed (𝑥1) is higher but the distance to the
lead object (𝑥2) is lower. Thus, a braking initiation would be expected.
The results in Table 7 indicate, that for the Sigmoid network, this
can be verified. Class ‘‘0’’ would require that the outputs minimum is
below 0.2, which is not the case. The same conclusion can be drawn in
Fig. 15(d). In contrast, for the Softmax network, the verification is not
possible, because the maximum of class ‘‘0’’ (−2.1213) is larger than the
minima of all the other classes. Thus, class ‘‘0’’ cannot be excluded from
the possible outputs. It is worth mentioning, that in the corresponding
Fig. 15(c) class ‘‘0’’ is barely visible but is a possible outcome within
the specified boundaries. This shows the superiority of using a formal
method instead of graphical approaches. In both surface graphs 15(c)
and 15(d), the transition between the classes over the specification
interval are identifiable. Fig. 15(c) shows the typical distribution of
the Softmax function which reinforces the differentiation between the
dominant class and the other class.

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.
Fig. 15. Verification results for both verification intervals. For the Softmax network, 𝑧-axis shows the probability of the predicted class. For the Sigmoid network plots, the 𝑧-axis
shows the output of the Sigmoid function with the classification boundaries.
Table 7
Numerical verification results for case 2.

Approach Class Minimum Maximum

Softmax

0 −36.8660 −2.1213
1 −28.4942 4.8156
2 −6.9890 4.5517
3 −7.1433 12.4059
4 −28.7765 25.3166

Sigmoid 0.3893 0.9275

8. Conclusion

In this work, a verification method for multi-class feed-forward
neural networks was developed. The method extends the previous work
of Tollner et al. (2022) by providing a formalization of the verification
principle required for the multiclass setting. With the new method,
multi-class feed-forward NNs using either a standard Softmax classifi-
cation, or a Sigmoid-based classification, can be verified. A nonlinear
solver is used to find minimum and maximum of the network output
in the given specification intervals of the input features. The approach
was successfully demonstrated on an example related to the auto-
motive industry with artificial data. However, a challenge, especially
for the Softmax-based networks, is the specification of an appropriate
observation interval.

For future work, we plan to extend the approach to other types of
data, e.g. image data. However, our primary assumption, that the net-
work neurons only contain activation functions that have a continuous
closed-form representation limits the use of off-the-shelf techniques for
image processing, e.g. Convolutional NNs. In addition, methodological
13
extensions to specify and refine the verification areas could be devel-
oped. Moreover, the approach will be evaluated on real-world data and
more sophisticated NNs, where verification becomes even more crucial.

CRediT authorship contribution statement

Daniel Grimm: Conceptualization, Methodology, Writing – original
draft, Data curation. Dávid Tollner: Conceptualization, Methodology,
Writing. David Kraus: Methodology, Writing – original draft. Árpád
Török: Methodology, Writing, Supervision, Investigation. Eric Sax:
Review & editing. Zsolt Szalay: Review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

Prepared with the professional support of the Doctoral Student
Scholarship Program of the Co-operative Doctoral Program of the Min-
istry for Innovation and Technology from the source of the National
Research, Development and Innovation Fund. The research was sup-
ported by the Ministry of Innovation and Technology NRDI Office
within the framework of the Autonomous Systems National Laboratory
Program.

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.

A

A

Fig. A.16. Structure of the used multi-class neural networks.
M

Appendix. Neural networks structure

See Fig. A.16.

References

Agarwal, N., Balasubramanian, V. N., & Jawahar, C. (2018). Improving multiclass
classification by deep networks using DAGSVM and triplet loss. Pattern Recognition
Letters, 112, 184–190.

mari, S.-i. (1998). Natural gradient works efficiently in learning. Neural Computation,
10(2), 251—276.

mjad, R. A., Liu, K., & Geiger, B. C. (2021). Understanding neural networks and
individual neuron importance via information-ordered cumulative ablation. IEEE
Transactions on Neural Networks and Learning Systems.

Barrachina, D. G.-L., Boldizsar, A., Zoldy, M., & Torok, A. (2019). Can neural network
solve everything? Case study of contradiction in logistic processes with neural
network optimisation. In 2019 modern safety technologies in transportation (pp.
21–24). IEEE.

Brown, R. A., Schmerling, E., Azizan, N., & Pavone, M. (2022). A unified view of
SDP-based neural network verification through completely positive programming.
In International conference on artificial intelligence and statistics (pp. 9334–9355).
PMLR.

Bunel, R., Lu, J., Turkaslan, I., Torr, P. H., Kohli, P., & Kumar, M. P. (2020). Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning
Research, 21(42), 1–39.

Bunel, R. R., Turkaslan, I., Torr, P., Kohli, P., & Mudigonda, P. K. (2018). A unified
view of piecewise linear neural network verification. Advances in Neural Information
Processing Systems, 31.

Cao, H., & Zoldy, M. (2021). MPC tracking controller parameters impacts in
roundabouts. Mathematics, 9(12), 1394.

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2016). Fast and accurate deep network
learning by exponential linear units (ELUs). arXiv:1511.07289.

Csiszár, O., Csiszár, G., & Dombi, J. (2020). Interpretable neural networks based
on continuous-valued logic and multicriteria decision operators. Knowledge-Based
Systems, 199, Article 105972.

Duan, B., Yang, Y., & Dai, X. (2022). Feature activation through first power linear unit
with sign. Electronics, 11(13), http://dx.doi.org/10.3390/electronics11131980.
14
Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., & Garcia, R. (2000). Incorporating second-
order functional knowledge for better option pricing. In T. Leen, T. Dietterich, &
V. Tresp (Eds.), Vol. 13, Advances in neural information processing systems. MIT Press.

Ehlers, R. (2017a). Formal verification of piece-wise linear feed-forward neural net-
works. In D. D’Souza, & K. Narayan Kumar (Eds.), Automated technology for
verification and analysis (pp. 269–286). Cham: Springer International Publishing.

Ehlers, R. (2017b). Formal verification of piece-wise linear feed-forward neural
networks. In Automated technology for verification and analysis: 15th international sym-
posium, ATVA 2017, Pune, India, october 3–6, 2017, proceedings 15 (pp. 269–286).
Springer.

Hayashi, Y., Setiono, R., & Azcarraga, A. (2016). Neural network training and rule
extraction with augmented discretized input. Neurocomputing, 207, 610–622.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5), 359—366.

Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017). Reluplex: An
efficient SMT solver for verifying deep neural networks. In International conference
on computer aided verification (pp. 97–117). Springer.

Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2022). Reluplex:
a calculus for reasoning about deep neural networks. Formal Methods in System
Design, 60(1), 87–116.

Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing
neural networks. Advances in Neural Information Processing Systems, 30.

Kolman, E., & Margaliot, M. (2005). Are artificial neural networks white boxes? IEEE
Transactions on Neural Networks, 16(4), 844–852.

Luenberger, D. G., Ye, Y., et al. (1984). Vol. 2, Linear and nonlinear programming.
Springer.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. Vol. 30, In Proceedings of the 30th international conference
on machine learning.

Martins, A., & Astudillo, R. (2016). From softmax to sparsemax: A sparse model
of attention and multi-label classification. In International conference on machine
learning (pp. 1614–1623). PMLR.

ekonnen, A. A., & Sipos, T. (2022). Crash prediction models and methodological
issues. Periodica Polytechnica Transportation Engineering, 50(3), 267–272.

Misra, D. (2020). Mish: A self regularized non-monotonic activation function. arXiv:
1908.08681.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann
machines. Vol. 27, In Proceedings of the 27th international conference on international
conference on machine learning (pp. 807–814). Omni Press.

http://refhub.elsevier.com/S0957-4174(24)00210-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb1
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb2
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb3
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb4
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb5
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb6
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb7
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb8
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb8
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb8
http://arxiv.org/abs/1511.07289
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb10
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb10
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb10
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb10
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb10
http://dx.doi.org/10.3390/electronics11131980
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb12
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb13
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb14
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb15
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb15
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb15
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb16
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb16
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb16
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb17
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb18
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb18
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb18
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb18
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb18
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb19
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb19
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb19
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb20
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb20
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb20
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb21
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb21
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb21
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb22
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb22
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb22
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb22
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb22
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb23
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb24
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb24
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb24
http://arxiv.org/abs/1908.08681
http://arxiv.org/abs/1908.08681
http://arxiv.org/abs/1908.08681
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb26
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb26
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb26
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb26
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb26

Expert Systems With Applications 247 (2024) 123345D. Grimm et al.

P

S

T

X

Pulina, L., & Tacchella, A. (2010). An abstraction-refinement approach to verification
of artificial neural networks. In Computer aided verification: 22nd international con-
ference, CAV 2010, Edinburgh, UK, July 15-19, 2010. proceedings 22 (pp. 243–257).
Springer.

ulina, L., & Tacchella, A. (2011). N e v er: a tool for artificial neural networks
verification. Annals of Mathematics and Artificial Intelligence, 62, 403–425.

Pulina, L., & Tacchella, A. (2012). Challenging SMT solvers to verify neural networks.
Ai Communications, 25(2), 117–135.

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation func-
tions. http://dx.doi.org/10.48550/ARXIV.1710.05941, URL https://arxiv.org/abs/
1710.05941.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6), 386—408.

truye, J., & Latré, S. (2020). Hierarchical temporal memory and recurrent neural
networks for time series prediction: An empirical validation and reduction to
multilayer perceptrons. Neurocomputing, 396, 291–301.

ollner, D., Ziyu, W., Zöldy, M., & Török, Á. (2022). Demonstrating a new evaluation
method on ReLU based neural networks for classification problems. TBD, X(X), X.
15
Vishnukumar, H. J., Butting, B., Müller, C., & Sax, E. (2017). Machine learning and
deep neural network — Artificial intelligence core for lab and real-world test
and validation for ADAS and autonomous vehicles: AI for efficient and quality
test and validation. In 2017 intelligent systems conference (intelliSys) (pp. 714–721).
http://dx.doi.org/10.1109/IntelliSys.2017.8324372.

Vu, H. T., & Lim, J. (2022). Effects of country and individual factors on public
acceptance of artificial intelligence and robotics technologies: a multilevel SEM
analysis of 28-country survey data. Behaviour & Information Technology, 41(7),
1515–1528. http://dx.doi.org/10.1080/0144929X.2021.1884288.

iang, W., Tran, H.-D., & Johnson, T. T. (2018). Output reachable set estimation and
verification for multilayer neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 29(11), 5777–5783.

Yu, J., Duan, S., & Ye, X. (2022). A white-box testing for deep neural networks based
on neuron coverage. IEEE Transactions on Neural Networks and Learning Systems.

http://refhub.elsevier.com/S0957-4174(24)00210-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb27
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb28
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb28
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb28
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb29
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb29
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb29
http://dx.doi.org/10.48550/ARXIV.1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb31
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb31
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb31
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb32
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb33
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb33
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb33
http://dx.doi.org/10.1109/IntelliSys.2017.8324372
http://dx.doi.org/10.1080/0144929X.2021.1884288
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb36
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb37
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb37
http://refhub.elsevier.com/S0957-4174(24)00210-0/sb37

	A numerical verification method for multi-class feed-forward neural networks
	Introduction
	Motivation and objectives
	Contribution
	Background
	Linear activation functions
	S-shaped non-linear activation functions
	Piecewise linear activation functions
	Other activation functions

	Related Work
	Methodology
	Verification of binary classifying Neural Networks
	Expanding on multi-class problems
	Verification of Softmax-based multi-class networks
	Verification of Sigmoid-based multi-class networks

	Results
	Toy dataset
	Iris dataset
	Use case: emergency braking assist
	Data generation
	Neural networks training
	Verification

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Neural networks structure
	References

