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We discuss the nonfactorizable corrections to Higgs boson production in weak boson fusion at the
Large Hadron Collider. Such corrections depend on the finite part of the two-loop virtual amplitude
qQ → q0Q0 þH which, up to now, has only been computed in the eikonal approximation. We combine this
contribution with real-virtual and double-real nonfactorizable QCD corrections and study their impact on
the various observables in weak boson fusion. We find that the nonfactorizable corrections are strongly
dominated by the two-loop virtual contributions, while all other contributions play a very minor role. This
striking imbalance between real and virtual contributions is caused by a process-specific kinematic
suppression of the former and a particular enhancement of the virtual corrections related to a Glauber phase.
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I. INTRODUCTION

Weak boson fusion (WBF) is an important Higgs boson
production channel; it has the second-largest cross section
at the Large Hadron Collider (LHC). In addition, it is
directly sensitive to the couplings of the Higgs boson to W
and Z bosons allowing for a detailed exploration of their
strengths and Lorentz structures.
Theoretical predictions for Higgs boson production

in weak boson fusion are very advanced. They include
next-to-leading order (NLO) QCD [1] and electroweak [2]
corrections as well as next-to-next-to-leading order
(NNLO) QCD [3–5] and next-to-next-to-next-to-leading
order (N3LO) QCD [6] corrections. In addition, effects
of multijet merging and an interplay between fixed order
perturbative computations and parton showers in weak
boson fusion were studied in Ref. [7]. However, available
QCD corrections are computed in the so-called factoriza-
tion approximation where strong interactions between
the incoming quark lines are systematically ignored. The
only exception is the identical-flavor contributions where
the interference of t- and u-channels appears. It is well-
understood that this interference is very strongly sup-
pressed both kinematically and by color at NLO QCD

when event selection criteria are applied [1,2]. Note that at
percent-level precision these effects should be taken into
account. However, in the present work we do not include
such interferences and focus solely on remaining contri-
butions to nonfactorizable corrections, which are so far
only partially known.
Historically, remaining nonfactorizable corrections were

neglected because they are color-suppressed [3], and,
moreover, they appear at NNLO QCD for the first time.
However, it was pointed out in Ref. [8] that these
corrections receive a peculiar π2-enhancement associated
with a Glauber phase. In Refs. [8,9] the numerical impact
of nonfactorizable corrections on various observables in
WBF was investigated. It was found that these corrections
are somewhat smaller than the factorizable corrections at
NNLO QCD but that they certainly exceed the magnitude
of N3LO QCD corrections.
To make further progress in understanding the nonfactor-

izable effects in weak boson fusion, there are two directions
to take. First, one can extend the calculation of the non-
factorizable two-loop amplitude for the WBF process qQ →
q0Q0 þH beyond the eikonal approximation. This is a
formidable task since it requires the computation of two-
loop five-point amplitudes with twomassive propagators and
an additional external massive particle which is beyond the
current state of the art. Second, one can study the effects of
all the other contributions relevant for computing the non-
factorizable correction through NNLO in perturbative QCD
while accounting for the double-virtual contribution in the
eikonal approximation. This is what we do in this paper.
Computation of NNLO QCD corrections to WBF

requires double-real and real-virtual contributions, in addi-
tion to the two-loop virtual corrections. Individually, each
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of these contributions is infrared divergent; to properly
define them a subtraction procedure is needed. Since in the
past decade remarkable progress in the development of
NNLO QCD subtraction schemes for collider processes has
been made, and since certain features of the nonfactorizable
correction to Higgs boson fusion in WBF make the infrared
structure of this process simple, construction of the sub-
traction scheme for computing the nonfactorizable correc-
tions to WBF becomes straightforward. In fact, the relevant
computation can be borrowed, almost verbatim, from a
similar computation of the nonfactorizable corrections to
single-top production reported recently in Ref. [10].
It is worth pointing out that the situation with real-virtual

contributions is somewhat peculiar. Although the relevant
one-loop amplitudes can be extracted from an existing
computation of NLO QCD corrections toH þ j production
in weak boson fusion [11], the fact that the corresponding
six-point amplitude needs to be evaluated close to singular
limits makes its use in the computation of NNLO QCD
corrections nontrivial.
The remaining part of the paper is organized as follows.

In the next section we recapitulate the construction of
the infrared-finite fully differential cross section suitable
for numerical computation. We discuss the numerical
implementation and address difficulties with evaluating
subtracted real-virtual contributions in Sec. III. We then
present the results of our computation and show that the
nonfactorizable corrections are strongly dominated by two-
loop virtual corrections. We conclude in Sec. V.

II. CONSTRUCTION OF AN INFRARED FINITE
CROSS SECTION

A NNLO QCD computation requires the construction of
an infrared-finite cross section which can be integrated
over phase space of final-state particles in four dimensions.
This requires the use of a subtraction scheme since
contributions with different numbers of final-state partons
are not separately finite.
The construction of such a subtraction scheme for the

case of nonfactorizable contributions to single-top produc-
tion was recently presented in Ref. [10]. The discussion in
that reference applies almost verbatim to the computation
of nonfactorizable corrections to Higgs boson production in
weak boson fusion. Because of that, we confine ourselves
to reviewing the major building blocks of such a con-
struction in this section, and note that further details can be
found in Ref. [10].
Nonfactorizable corrections involve exchanges of real and

virtual gluons between the two quark lines of the partonic
process qQ → q0Q0 þH, where q and Q are arbitrary
quarks or antiquarks (see Fig. 1). Such corrections do not
contribute at next-to-leading order due to color conservation.
Indeed, both real and virtual nonfactorizable corrections
at NLO QCD contain just one single color generator Ta on
each fermion line. When one computes the interference of

the one-loop virtual amplitude with the leading-order ampli-
tude or the square of the real-emission amplitude, the
corrections vanish since the color generators are traceless.
Despite being absent at lower orders, nonfactorizable

contributions do appear at NNLO in perturbative QCD. For
example, virtual contributions with two gluons connecting
the upper and lower quark lines lead to a color factor
TrðTaTbÞ ¼ TRδ

ab for each line and clearly do not vanish
when the interference with the leading-order amplitude is
computed. We show some of the nonvanishing contribu-
tions in Fig. 2. Furthermore, it is easy to see that non-
factorizable contributions at NNLO can involve neither
diagrams with gluon self-energy corrections nor non-
Abelian QCD vertices. This latter feature renders all
nonfactorizable corrections QED-like and leads, as we will
discuss later in more detail, to a simple infrared structure of
such contributions. We will now consider the various
contributions to the NNLO QCD nonfactorizable correc-
tions and review the construction of the subtraction terms.

A. Double-real emission contribution

We begin with the nonfactorizable contributions to the
double-real emission process

qðp1Þ þQðp2Þ → q0ðp3Þ þQ0ðp4Þ þ gðp5Þ
þ gðp6Þ þHðpHÞ: ð1Þ

All such contributions to the amplitude squared carry the
same color factor given byX

a;b

TrðTaTbÞ2 ¼ T2
RðN2

c − 1Þ; ð2Þ

where TR ¼ 1=2, Nc ¼ 3, a and b are the color indices of
gluons p5 and p6, respectively, and the summation over
quark colors has been performed. Since the color factor is
always the same, it is convenient to work with color-stripped
amplitudes and restore the overall color factor at the end.
We write the relevant color-stripped amplitudes as1

Aij
0

�
1q; 2Q; 3q0 ; 4Q0 j5g; 6g

�
; ð3Þ

FIG. 1. Momentum, parton, and line conventions at Born level
used throughout the discussion. We do not show fermion flow
because q and Q each represent any (light) quark or antiquark.

1Dependence of the amplitude on the Higgs boson momentum
pH is not shown because it is not relevant for the present
discussion.
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where superscript iðjÞ∈ f1; 2g refers to one of the two
quark lines from which gluon 5(6) is emitted (see Fig. 1).
We emphasize again that only Abelian diagrams contribute
to Aij

0 and that, to obtain them, the color generators in
quark-gluon vertices are to be removed. Similarly, we
define color-stripped amplitudes Ai

0 for a single gluon
emission from line i∈ f1; 2g, and A0 for the amplitude of
the process without additional gluons.
Following Ref. [12] we define

Fnf
LM

�
1q; 2Q; 3q0 ; 4Q0 j5g; 6g

�
≡N

Z
dLips34HÔ

�fpi¼1;…;6; pHg
�ð2πÞdδðdÞ

×

�
p1 þ p2 − pH −

X6
i¼3

pi

�

× 2Re
�
A11
0 A22

0
⋆ þ A12

0 A21
0

⋆
�ð1; 2; 3; 4j5; 6Þ; ð4Þ

where dLips34H is the Lorentz-invariant phase space of
the two final-state fermions and the Higgs boson, N ¼
1=ð4N2

cÞ includes spin and color-averaging factors,
Ôðfpi¼1;…;6; pHgÞ is an arbitrary infrared-safe observable,
and d ¼ 4 − 2ϵ is the spacetime dimension.
To obtain the partonic differential cross section we

restore color charges and write

dσnfrr ¼ T2
RðN2

c − 1Þ
2s

�
Fnf
LMð1; 2; 3; 4j5; 6Þ

	
; ð5Þ

where s ¼ 2p1 · p2. We also define hFnf
LMð1; 2; 3; 4j5; 6Þi as

an integral over the two-gluon phase space2

�
Fnf
LMð1; 2; 3; 4j5; 6Þ

	≡ Z
½dp5�½dp6�θðE5 − E6Þ

× Fnf
LMð1; 2; 3; 4j5; 6Þ: ð6Þ

Note that we dropped the subscripts indicating the parton
type for brevity; we will continue to use this shortened
notation in what follows, unless parton type becomes
relevant. The phase-space element ½dpk� is defined as

½dpk�≡ dd−1pk

ð2πÞd−12Ek
θðEmax − EkÞ; ð7Þ

where Emax is a parameter that should be equal to or greater
than the maximal energy that a final-state parton can have
because of momentum conservation.
To construct the subtraction terms, we need to under-

stand the singularities of the matrix element in Eq. (6).
Although, in general, such singularities can arise when the
emitted gluons are either soft or collinear to other partons,
the case of nonfactorizable corrections is special because
only soft singularities are possible. However, since we
order gluons in energy and since the matrix element fully
factorizes in the double-soft E5 ∼ E6 → 0 limit because of
the Abelian nature of nonfactorizable corrections, it is
sufficient to write

�
Fnf
LMð1; 2; 3; 4j5; 6Þ

	 ¼ �½I − S6�Fnf
LMð1; 2; 3; 4j5; 6Þ

	
þ �

S6Fnf
LMð1; 2; 3; 4j5; 6Þ

	 ð8Þ

to obtain a fully regulated double-real emission contribu-
tion. We remind the reader that an operator Si extracts the
leading behavior of the function Fnf

LM in the limit where the
energy of parton i vanishes; see Ref. [12] for additional
details.
We now turn our attention to the subtraction term

containing the single soft singularity, i.e. the second term
on the right-hand side of Eq. (8). It is given by

S6Fnf
LM

�
1q;2Q;3q0 ;4Q0 j5g;6g

�
¼ −2g2s;bκqQ

Z
½dp6�θðE5 −E6ÞEiknf

�
1q;2Q;3q0 ;4Q0 j6g

�
×Fnf

LM

�
1q;2Q;3q0 ;4Q0 j5g

�
; ð9Þ

)d()c()b()a(

FIG. 2. Schematic examples of nonvanishing contributions to the nonfactorizable (a) double-real, (b) real-virtual, and (c)-(d) double-
virtual amplitude squared. It is easy to see that the color factor for each contribution is T2

RðN2
c − 1Þ, as stated in the main text. To

distinguish the two massless quark lines, one is printed in bold.

2We choose to order gluon emissions in energy and, therefore,
do not include the factor 1=2! to account for identical final states.
This has to be kept in mind when comparing to Ref. [10] where
the gluons were not ordered.
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where κqQ ¼ þ1 if both q and Q are either quarks or
antiquarks, and κqQ ¼ −1 otherwise. The eikonal function
in Eq. (9) reads

Eiknf
�
1q; 2Q; 3q0 ; 4Q0 j6g

� ¼ X
i∈ f1;3g
j∈ f2;4g

λijðpi · pjÞ
ðpi · p6Þðpj · p6Þ

; ð10Þ

with λij ¼ þ1 if both i and j are either incoming or
outgoing, and λij ¼ −1 otherwise. We also note that in
Eq. (9) we have introduced a nonfactorizable, single-gluon
emission contribution

Fnf
LMð1; 2; 3; 4j5Þ≡N

Z
dLips34HÔðfpi¼1;…;5; pHgÞ

× ð2πÞdδðdÞ
�
p1 þ p2 − pH −

X5
i¼3

pi

�

× 2Re
�
A1
0A

2
0
⋆
�ð1; 2; 3; 4j5Þ: ð11Þ

The normalization factor N and integration measure were
introduced in Eq. (4).
Integration of the eikonal factor over the gluon momen-

tum p6 in Eq. (9) has already been discussed in the
literature; see e.g. Ref. [13]. We obtain

�
S6Fnf

LMð1;2;3;4j5;6Þ
	

¼ −2½αs;b�κqQ
�ð2E5Þ−2ϵKnfð1;2;3;4ÞFnf

LMð1;2;3;4j5Þ
	
:

ð12Þ

The function Knfð1; 2; 3; 4Þ can be found in Appendix A
and ½αs;b� is defined as follows:

½αs;b�≡ g2s;b
8π2

ð4πÞϵ
Γð1 − ϵÞ : ð13Þ

There is still a soft singularity, E5 → 0, in the function
Fnf
LMð1; 2; 3; 4j5Þ in Eq. (12) that needs to be extracted.

Analogous to Eq. (8), we do this by subtracting and adding
the soft limit of gluon g5. We find

�
S6Fnf

LMð1; 2; 3; 4j5; 6Þ
	

¼ −2½αs;b�κqQ
�½I − S5�ð2E5Þ−2ϵKnfð1;…; 4Þ

× Fnf
LMð1; 2; 3; 4j5Þ

	
− 2½αs;b�κqQ

�
S5ð2E5Þ−2ϵ

× Knfð1;…; 4ÞFnf
LMð1; 2; 3; 4j5Þ

	
: ð14Þ

The limit of the color-stripped single-real emission
amplitude is similar to Eq. (9) and reads

S5ð2E5Þ−2ϵFnf
LMð1; 2; 3; 4j5Þ ¼ −2g2s;bκqQð2E5Þ−2ϵ

× Eiknfð1; 2; 3; 4j5Þ
× Fnf

LMð1; 2; 3; 4Þ; ð15Þ

where we introduced

Fnf
LMð1; 2; 3; 4Þ≡N

Z
dLips34HÔðfpi¼1;…;4; pHgÞ

× ð2πÞdδðdÞðp1 þ p2 − pH − p3 − p4Þ
× jA0j2ð1; 2; 3; 4Þ ð16Þ

to describe the leading-order process. Upon integration
over the unresolved phase space of gluon g5 we find�

S5ð2E5Þ−2ϵFnf
LMð1; 2; 3; 4j5Þ

	
¼ −½αs;b�ð2EmaxÞ−4ϵ

�
KnfFnf

LMð1; 2; 3; 4Þ
	
; ð17Þ

where we suppressed the dependence of the functionKnf on
the Born momenta.
Finally, we combine Eqs. (8), (14), (17) and replace

½αs;b� →
α̃s
2π

μ2ϵ; ð18Þ

where α̃s ¼ αsðμÞeϵγE=Γð1 − ϵÞ, to express the result
through the strong coupling defined in the MS scheme.
The result is the fully regulated representation of the
double-real contribution to nonfactorizable corrections�
Fnf
LMð1; 2; 3; 4j5; 6Þ

	
¼ �½I − S6�Fnf

LMð1; 2; 3; 4j5; 6Þ
	
− 2

�
α̃s
2π

�
κqQ

×



½I − S5�

�
2E5

μ

�
−2ϵ

KnfFnf
LMð1; 2; 3; 4j5Þ

�

þ 2

�
α̃s
2π

�
2
�
2Emax

μ

�
−4ϵ�

K2
nfF

nf
LMð1; 2; 3; 4Þ

	
: ð19Þ

B. Real-virtual contribution

Next, we consider the real-virtual contribution to the
NNLO QCD nonfactorizable corrections. It arises from the
one-loop corrections to the process with an additional
gluon in the final state

qðp1Þ þQðp2Þ → q0ðp3Þ þQ0ðp4Þ þ gðp5Þ þHðpHÞ:
ð20Þ

The real-virtual contribution to the nonfactorizable correc-
tion is also proportional to the color factor shown in Eq. (2).
Hence, following the discussion of the double-real con-
tribution, we define a color-stripped amplitude Ai

1 as a sum
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of Abelian diagrams where a virtual gluon is exchanged
between the two quark lines and a real gluon is emitted
from line i. Using this amplitude, we write the real-virtual
contribution as

Fnf
LVð1; 2; 3; 4j5Þ

≡N
Z

dLips34HÔ
�fpi¼1;…;5; pHg

�

× ð2πÞdδðdÞ
�
p1 þ p2 − pH −

X5
i¼3

pi

�

× 2Re
�
A1
0A

2
1
⋆ þ A2

0A
1
1
⋆
�ð1; 2; 3; 4j5Þ: ð21Þ

The only singularity present in Fnf
LVð1; 2; 3; 4j5Þ arises in

the soft, E5 → 0 limit. To regulate it, we write�
Fnf
LVð1; 2; 3; 4j5Þ

	 ¼ �½I − S5�Fnf
LVð1; 2; 3; 4j5Þ

	
þ �

S5Fnf
LVð1; 2; 3; 4j5Þ

	
: ð22Þ

Although the first term in the above equation is fully
regular inasmuch as the real emission is concerned, it
contains an explicit infrared 1=ϵ pole which arises as a
result of the integration over the loop momentum. We
extract it by writing [14]

Fnf
LVð1; 2; 3; 4j5Þ ¼

α̃s
2π

2κqQI1ðϵÞFnf
LMð1; 2; 3; 4j5Þ

þ Fnf
LV;finð1; 2; 3; 4j5Þ; ð23Þ

where

I1ðϵÞ≡ 1

ϵ
ln

�
p1 · p4p2 · p3

p1 · p2p3 · p4

�
; ð24Þ

Fnf
LMð1; 2; 3; 4j5Þ is the color-stripped single-real emission

contribution defined in Eq. (11) and Fnf
LV;finð1; 2; 3; 4j5Þ is

the Oðϵ0Þ coefficient in the ϵ-expansion of Eq. (21).
We now discuss the second term on the right-hand side

of Eq. (22). The soft-gluon limit of any one-loop QCD
amplitude is known [15]. It contains two terms—the
product of the tree-level eikonal current and a one-loop
amplitude without the soft gluon, as well as the product of a
one-loop correction to the eikonal current and the relevant
tree-level amplitude. Since the one-loop correction to the
eikonal current is purely non-Abelian, it plays no role in the
computation of nonfactorizable corrections. We discard it
and write

S5Fnf
LVð1; 2; 3; 4j5Þ ¼ −2g2s;bκqQ

Z
½dp5�Eiknfð1; 2; 3; 4j5Þ

× Fnf
LVð1; 2; 3; 4Þ; ð25Þ

where we introduced a color-stripped one-loop virtual
contribution

Fnf
LVð1; 2; 3; 4Þ≡N

Z
dLips34H × Ô

�fpi¼1;…;4; pHg
�

× ð2πÞdδðdÞðp1 þ p2 − pH − p3 − p4Þ
× 2Re

�
A0A⋆

1

�ð1; 2; 3; 4Þ: ð26Þ

The integral over unresolved momentum p5 in Eq. (25)
evaluates to

�
S5Fnf

LVð1; 2; 3; 4j5Þ
	 ¼ −2κqQ

α̃s
2π

�
2Emax

μ

�
−2ϵ

×
�
Knfð1; 2; 3; 4ÞFnf

LVð1; 2; 3; 4Þ
	
:

ð27Þ

To proceed further, we note that Fnf
LVð1; 2; 3; 4Þ contains

infrared poles from the loop integration. We make them
explicit by writing

Fnf
LVð1; 2; 3; 4Þ ¼

α̃s
2π

2κqQI1ðϵÞFnf
LMð1; 2; 3; 4Þ

þ Fnf
LV;finð1; 2; 3; 4Þ: ð28Þ

The function I1ðϵÞ has already appeared in Eq. (24).
Combining Eqs. (22), (23), (27), and (28), we obtain the

final result for the real-virtual contribution to the non-
factorizable corrections

�
Fnf
LVð1; 2; 3; 4j5Þ

	
¼ α̃s

2π
κqQ

�
2I1ðϵÞ½I − S5�Fnf

LMð1; 2; 3; 4j5Þ
	

þ �½I − S5�Fnf
LV;finð1; 2; 3; 4j5Þ

	
− 4

�
α̃s
2π

�
2
�
2Emax

μ

�
−2ϵ�

I1ðϵÞKnfFnf
LMð1; 2; 3; 4Þ

	
− 2

α̃s
2π

κqQ

�
2Emax

μ

�
−2ϵ�

KnfFnf
LV;finð1; 2; 3; 4Þ

	
: ð29Þ

C. Double-virtual contribution

The last contribution that we need to consider is the
double-virtual nonfactorizable correction to the process

qðp1Þ þQðp2Þ → q0ðp3Þ þQ0ðp4Þ þHðpHÞ: ð30Þ

We write the double-virtual amplitude of this process
separating the 1=ϵ infrared poles from the finite remainder
using the results in Ref. [16]. Since the nonfactorizable
corrections are Abelian, the divergent structure of the loop
amplitude is fully determined by the square of I1ðϵÞ;
cf. Eq. (24). We write
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�
Fnf
LVVð1; 2; 3; 4Þ

	 ¼ �
α̃s
2π

�
2�
2I1ðϵÞ2Fnf

LMð1; 2; 3; 4Þ
	

þ α̃s
2π

κqQ
�
2I1ðϵÞFnf

LV;finð1; 2; 3; 4Þ
	

þ �
Fnf
LVV;finð1; 2; 3; 4Þ

	
; ð31Þ

where Fnf
LVV;fin contains the finite result for the interference

of the two-loop and tree-level amplitudes as well as the
one-loop amplitude squared.

D. Explicit pole cancellation and IR finite result

The final result for the cross section is obtained by
combining the double-real, real-virtual, and double-virtual
contributions given in Eqs. (19), (29), and (31), respec-
tively. We write the partonic cross section as

dσnfnnlo ¼
T2
RðN2

c − 1Þ
2s

��
Fnf
LMð1; 2; 3; 4j5; 6Þ

	þ �
Fnf
LVð1; 2; 3; 4j5Þ

	þ �
Fnf
LVVð1; 2; 3; 4Þ

	�
¼ T2

RðN2
c − 1Þ
2s

��½I − S6�Fnf
LMð1; 2; 3; 4j5; 6Þ

	
− 2

α̃s
2π

�½I − S5�WðE5; 1;…; 4ÞFnf
LMð1; 2; 3; 4j5Þ

	
þ 2

�
α̃s
2π

�
2�
WðEmax; 1;…; 4Þ2Fnf

LMð1; 2; 3; 4Þ
	þ �½I − S5�Fnf

LV;finð1; 2; 3; 4j5Þ
	

− 2
α̃s
2π

�
WðEmax; 1;…; 4ÞFnf

LV;finð1; 2; 3; 4Þ
	þ �

Fnf
LVV;finð1; 2; 3; 4Þ

	
: ð32Þ

In Eq. (32) we introduced a finite function
WðE; 1; 2; 3; 4Þ defined as3

WðE; 1; 2; 3; 4Þ≡ κqQ

��
2E
μ

�
−2ϵ

KnfðϵÞ − I1ðϵÞ


¼ κqQ

�
−2 ln

�
2E
μ

�
ln

�
p1 · p4p3 · p2

p1 · p2p3 · p4

�

þ
X
i∈ f1;3g
j∈ f2;4g

λij

�
1

2
ln2ðηijÞ þ Li2ð1 − ηijÞ

�

þOðϵÞ; ð33Þ

where ηij ¼ 1 − cos θij with angles defined in the partonic
center-of-mass frame. The representation of the partonic
cross section given in Eq. (32) makes the cancellation of all
1=ϵ poles manifest and allows us to take the ϵ → 0 limit
right away. Note that upon doing so, the coupling constant
α̃s becomes αsðμÞ, the standard MS coupling constant.

III. NUMERICAL IMPLEMENTATION

The numerical implementation of the nonfactorizable
contribution Eq. (32) requires double-real amplitudes as
well as finite parts of real-virtual amplitudes and double-
virtual amplitudes. To obtain the required double-real
amplitudes, we extend the calculation of the factorizable
NNLO QCD corrections reported in Ref. [4].
To compute the real-virtual contributions, we require

nonfactorizable one-loop amplitudes for the processes

qþQ → q0 þQ0 þH and qþQ → q0 þQ0 þH þ g.
These amplitudes were computed in Ref. [11], and we
employ them in our numerical implementation. Extracting
the nonfactorizable contribution from the existing code
requires only minor changes.4 However, it turns out to be
nontrivial to achieve stable and reliable numerical results
close to singular limits.
The existing implementation uses numerical Passarino-

Veltman reduction point by point and the ONELOOP

library [17] for the evaluation of scalar integrals. To reach
sufficient numerical accuracy we limit catastrophic can-
cellation by working with scalelessOð1Þ quantities. This is
achieved by scaling out the energy of the incoming partons
in all momenta and masses in each phase space point and
reintroducing it at the very end of the calculation.
Furthermore, we find it necessary to work with quad-

ruple precision. With these two measures we achieve
agreement with the infrared pole prediction in Eq. (24)
to more than ten digits for most phase space points. In
addition to checking the amplitude’s pole structure, we also
find a satisfactory agreement between the exact six-point
amplitude and its expected limit when the energy of the
final-state gluon becomes small; see Eq. (25). Obviously,
this last feature is a necessary requirement for being able to
use Eq. (32) for phenomenological studies.
For the finite remainder of the two-loop amplitude,

Fnf
LVV;fin, we use the results of Ref. [8]. These results are

obtained in the eikonal approximation which provides the
leading term in the expansion of this amplitude in p⊥=

ffiffiffi
s

p
where p⊥ is a typical transverse momentum of the

3The ϵ-expansion of function Knf can be found in Appendix A;
see Eq. (A2).

4We are grateful to T. Figy for making the code used for the
computations reported in Ref. [11] available to us.
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final-state tagging jets. This approximation is motivated by
typical WBF signatures and the fiducial selection cuts
derived from them.5

As a final comment we note that the finite remainder
of the double-virtual amplitude [8] that we use in this
computation is an approximation to the exact result which,
so far, remains unknown. In particular, the amplitude
computed in the eikonal approximation [8] is infrared
finite which means that there is no connection between
the first two terms on the right-hand side of Eq. (31),
required to cancel divergences in the double-real and real-
virtual contributions, and hFnf

LVV;finð1; 2; 3; 4Þi. However, as
we will show in Sec. IV, it is quite unlikely that the missing
parts of the finite remainder of the double-virtual amplitude
that are linked to the cancellation of infrared divergences
can impact the phenomenology of weak boson fusion in a
significant way. We provide reference evaluations of the
finite remainder in an ancillary file [19].

IV. RESULTS

The goal of this section is to compute the nonfactorizable
NNLO QCD corrections to Higgs boson production in
weak boson fusion and to compare them to the factorizable
ones. To do that, we adopt standard parameters and
kinematic selection criteria from Refs. [5,13]; we reproduce
them here for completeness.
We consider 13 TeV proton-proton collisions. The Higgs

boson is chosen to be stable with a mass ofmH ¼ 125 GeV.
Vector boson masses are taken to be MW ¼ 80.398 GeV
andMZ ¼ 91.1876 GeV with widths ΓW ¼ 2.105 GeV and
ΓZ ¼ 2.4952 GeV, respectively. Weak couplings are derived
from the Fermi constant GF ¼ 1.16639 × 10−5 GeV−2, and
the Cabibbo–Kobayashi–Maskawa matrix (CKM) is set to
the identity matrix.
We use NNPDF31-nnlo-as-118 parton distribution

functions [20] and αsðMZÞ ¼ 0.118 for all calculations
reported below. The evolution of both parton distribution
functions and the strong coupling constant is obtained
directly from LHAPDF [21]. The dynamical renormaliza-
tion and factorization scales are set equal, μR ¼ μF ¼ μ,
with the central value [3]

μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mH

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H

4
þ p2⊥;H

rs
: ð34Þ

To define the WBF fiducial volume we employ the
inclusive anti-k⊥ jet algorithm [22] with R ¼ 0.4. Events
are required to contain at least two jets with transverse
momenta p⊥;j > 25 GeV and rapidities jyjj < 4.5. The
two leading-p⊥ jets must have well-separated rapidities,

jyj1 − yj2 j > 4.5, and their invariant mass should be larger
than 600 GeV. In addition, the two leading jets must be in
separate hemispheres in the laboratory frame; this is
enforced by requiring that the product of their rapidities
in the laboratory frame is negative, yj1yj2 < 0.
The analysis of the double-virtual contribution to the

nonfactorizable correction to Higgs boson production in
weak boson fusion has already been performed in
Refs. [8,9]. The new elements that we add to this analysis
are the double-real and real-virtual contributions. Although
typically one expects that all types of contributions are
comparable in magnitude, we find that for Higgs produc-
tion in WBF this is not the case.
For example, computing the nonfactorizable NNLO

QCD corrections to the fiducial WBF cross section for
central values of the renormalization and factorization
scales and for values of parameters as described above,
we find

σnf ¼ −3.1þ0.7
−0.9 fb: ð35Þ

The subscript and superscript correspond to results by
varying the dynamic scale in Eq. (34) by a factor of 0.5
and 2, respectively. We do not show the Monte Carlo
integration error; note, however, that it is negligible and at
the level of a few per mille.6

We note that the significant scale uncertainty stems from
the fact that nonfactorizable corrections appear at NNLO
for the very first time and there is no mechanism to e.g.
compensate the change in the strong coupling constant
when the renormalization scale is modified. For this reason
it is not surprising that we find Oð40%Þ uncertainty in σnf
upon varying μR and μF within an interval ½μ0=2; 2μ0�. We
also note that σnf provides Oð0.5Þ% correction to the
fiducial cross section computed through NNLOQCD in the
factorization approximation [4] and is about a factor of 10
smaller than the factorizable NNLO QCD corrections.
As we already mentioned, one would normally expect

that double-virtual, real-virtual, and real-real corrections
provide comparable contributions to σnf . However, it turns
out that this is not the case and that only 0.01% of σnf comes
from the real-virtual and the double-real contributions,
whereas the dominant 99.99% comes from the double-
virtual one.
This relation between the double-virtual and all the other

contributions holds for all kinematic distributions that we
considered. To give some examples, in Fig. 3 we show the
different contributions to the transverse momentum distri-
butions of the hardest jet and the distribution of the
invariant mass of the pair of leading jets.

5We note that fully analytic result for the leading eikonal
approximation is available in Ref. [18].

6The discrepancy with the result reported in Ref. [8] is due to a
different choice of dynamical scale and the use of an approximate
tree-level amplitude in that reference.
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To understand the reason for this unusual suppression of
the double-real and the real-virtual contributions, consider
the quantity

Lð1; 2; 3; 4Þ ¼ ln

�
p1 · p4p3 · p2

p1 · p2p3 · p4

�
; ð36Þ

which arises upon integration of the eikonal current
describing single gluon emission. We note that this quantity
appears in the integrated subtraction term described by the
function WðE; 1; 2; 3; 4Þ defined in Eq. (33).
For instance, to estimate the contribution of two soft

gluons to the nonfactorizable corrections in the presence of
fiducial WBF cuts, we consider the following integral:

σRR ∼
�
α̃s
2π

�
2

N2
c

�
L2ð1; 2; 3; 4ÞFnf

LMð1q; 2q; 3q; 4qÞ
	
: ð37Þ

To proceed we use the fact that in the relevant phase-
space region p3 and p4 are nearly collinear to p1 and p2,
respectively, and compute the function L in this limit. To
this end, we write

p3 ¼ α3p1 þ β3p2 þ p3;⊥;
p4 ¼ α4p1 þ β4p2 þ p4;⊥; ð38Þ

where α3, β4 ∼ 1 and

pi;⊥ · p1 ¼ pi;⊥ · p2 ¼ 0; ð39Þ

for i∈ f3; 4g. From the mass-shell condition for outgoing
quarks, we obtain

β3 ∼
p2
3;⊥
s

≪ 1; α4 ∼
p2
4;⊥
s

≪ 1: ð40Þ

We thus find

Lð1; 2; 3; 4Þ ¼ − ln
�
1þ β3α4

α3β4
−
2p⃗3;⊥ · p⃗4;⊥

sα3β4

�

≈
2p⃗3;⊥ · p⃗4;⊥

s
: ð41Þ

A typical transverse momentum in Higgs production in
weak boson fusion is ∼60 GeV, and a typical partonic
center-of-mass energy is approximately

ffiffiffi
s

p
≈ 600 GeV.

Therefore, L ∼ 10−2 in the relevant region of the partonic
phase space, and we find

FIG. 3. Nonfactorizable contribution to the transverse momentum distributions of the leading jet (left) and to the distribution of the
invariant mass of the tag-jet system (right). Contributions are shown individually for different terms on the right-hand side of Eq. (32),
and we label them with the present matrix element; e.g. the plot label Fnf

LMð1; 2; 3; 4j5Þ refers to the contribution of the full second term.
Note that in the plots we use ellipses for the sequence of Born momenta, 1,2,3,4, for representational purposes. For each plot (and
differently in upper and lower panes) contributions are scaled to be of similar orders. The lower pane shows the ratio with respect to
double-virtual contributions. See text for further details.
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σRR ∼
�
α̃s
2π

�
2

N2
c

�
L2ð1; 2; 3; 4ÞFnf

LMð1q; 2q; 3q; 4qÞ
	

∼
�
α̃s
2π

�
2

10−4σLO; ð42Þ

where we used N2
chFnf

LMð1q; 2q; 3q; 4qÞi ¼ σLO.
In comparison, virtual corrections do not vanish in the

forward region. In fact, as shown in Ref. [8], they are
characterized by a phase-space dependent function χnf
which is Oðπ2Þ in the forward region. We then estimate

σVV ∼
�
α̃s
2π

�
2

N2
c

�
χnfð1; 2; 3; 4ÞFnf

LMð1; 2; 3; 4Þ
	

≈
�
α̃s
2π

�
2

10σLO; ð43Þ

where we used π2 ≈ 10. Taking the ratio, we obtain

σRR
σVV

∼ 10−5; ð44Þ

which is consistent with the results of the explicit compu-
tation presented earlier in this section.
We have checked that the extraordinarily strong sup-

pression of the double-real and real-virtual corrections is a
consequence of the fiducial cuts which are used to identify
events when the Higgs boson is produced in weak boson
fusion. If the cuts are relaxed so that one does not require
strong rapidity separation of the two tagging jets and a
strong constraint on their invariant mass, the double-real
and real-virtual contributions increase by several orders of
magnitude. In fact, they become comparable to the virtual
corrections which only grow by an Oð1Þ factor.

V. CONCLUSIONS

In this paper we extended the calculation of nonfactor-
izable contributions to Higgs boson production in weak
boson fusion at Oðα2sÞ by combining the results for the
double-virtual contributions in the eikonal approximation [8]
with nonfactorizable real-virtual and double-real QCD
corrections. We observed that, thanks to the fiducial cuts
used to identify WBF events, and a peculiar enhancement
of the double-virtual contributions, the nonfactorizable
NNLO QCD corrections are entirely dominated by virtual
effects. We have checked that the striking dominance of the
two-loop virtual corrections extends to all major kinematic
distributions relevant for Higgs production in WBF.
Outside the fiducial region the relative importance of

the various contributions levels out. However, the eikonal

approximation will also start to break down. It would,
therefore, be interesting to understand how to go beyond
the eikonal approximation for the double-virtual amplitude
and estimate the impact of nonvanishing transverse
momenta of the final-state jets on the two-loop correction.
This question may be of some relevance for studies that
select harder Higgs bosons which happens, for example,
when one considers Higgs decays into a b-quark pair.
Furthermore, identical-flavor contributions are expected to
increase when relaxing the fiducial cuts. We leave these
questions for future investigations.
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APPENDIX: INTEGRATED SOFT EIKONAL

In this appendix we present results for the integrated soft
eikonal function that we have written in terms of the
function Knf ; cf. Eq. (12). The exact form of Knf reads

Knf

�
1q; 2Q; 3q0 ; 4Q0 ; ϵ

� ¼ 1

ϵ2

�
Γ2ð1 − ϵÞ
Γð1 − 2ϵÞ

X
i∈ f1;3g
j∈ f2;4g

λijηij2F1

× ð1; 1; 1 − ϵ; 1 − ηijÞ; ðA1Þ

where we use ηij ≡ 1 − cos θij ≡ ðpi · pjÞ=ð2EiEjÞ.
It may appear from Eq. (A1) that the function Knf

contains second-order poles in ϵ. This, however, cannot
be the case since collinear singularities cannot appear in
nonfactorizable contributions. An explicit computation
yields the result that confirms this expectation.
Expanding Knf in ϵ, we obtain

Knfð1q; 2Q; 3q0 ; 4Q0 ; ϵÞ ¼ 1

ϵ
ln

�
p1 · p4p3 · p2

p1 · p2p3 · p4

�

þ
X
i∈ f1;3g
j∈ f2;4g

λij

�
1

2
ln2ðηijÞ þ Li2ð1 − ηijÞ

�
þOðϵÞ: ðA2Þ
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