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Interconnected Digital Solutions to Accelerate Modeling of
the Reaction Kinetics in Catalysis
Rinu Chacko,[a] Hendrik Gossler,[a] Sofia Angeli,[a] and Olaf Deutschmann*[a, b]

Microkinetic modeling is a widely used tool in the domain of
heterogeneous catalysis to gain valuable insights about the
fundamental surface kinetics, crucial to designing improved
catalysts. The development of a microkinetic model is a multi-
step process that demands expertise, a wide variety of
experimental techniques, substantial computational resources,
and extensive time and effort. In light of these challenges,
automation within catalysis research is becoming increasingly
important to allow exploration of a broader range of catalytic
systems in a shorter timeframe. To this extent, a variety of
digital tools and software have been developed to accelerate

the development of microkinetic models. This work aims to
highlight a selection of these tools that address the various
challenges confronting the researchers in this field. These tools
address diverse aspects, from the efficient storage of research
data that allows easy retrieval and reuse, to the establishment
of automated workflows that harness state-of-the-art numerical
solvers and algorithms that reduce manual effort. Through the
use of automation, these aim to expedite and streamline the
development and validation of models for catalytic systems,
thereby reducing errors and increasing efficiency.

1. Introduction

In the era of data and information revolution, automation has
emerged as the key driving force for technological progress.
Advancement in the field of catalysis is especially important
considering its multifaceted contributions to the modern world
(Figure 1). The wide range of length and time scales involved
from catalyst synthesis to the technical reactor and commercial
processes, and the increasingly complex data generated due to
a variety of interdisciplinary phenomena involved, underscore
the need for digital transformation in the catalysis research to
expedite the integration of knowledge generated from labo-
ratory-scale experiments to industrial applications.[1] Automa-
tion and data-driven learning have already begun to revolu-
tionize the various individual aspects of catalyst research,
ranging from establishment of databases that enable efficient
data reuse to modeling workflows leveraging advanced
machine learning algorithms. These solutions enable research-
ers to rapidly explore a diverse range of catalysts and their
compositions, structures, and operating conditions.[2–9] This, in
turn, facilitates the identification of novel catalytic systems and

reaction pathways.[10,11] However, the integration of these digital
solutions into a more synergistic approach remains unrealized.

In general, an essential aspect of catalyst development
involves kinetic modeling, because it plays a crucial role in
achieving scale-up. It also provides a fundamental understand-
ing of the underlying physical and chemical phenomena such
as interactions of the elementary reaction steps with transport
processes. This deep understanding serves as the foundation
for designing the next generation of catalysts and reactors. In
the following sections, we will provide a concise overview of
modeling techniques with a focus on microkinetic modeling
and discuss the distinct challenges encountered in developing
microkinetic models (MKMs). We have identified the following
key steps as vital components of MKM development: Efficient
archival and easy reuse of experimental data, reaction pathway
generation, numerical simulation and validation, and parameter
optimization and, we have structured the remainder of this
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Figure 1. Various applications of catalysis in the modern world.
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article accordingly. This concept article showcases various
computational tools and workflows which can help in the
acceleration of the development of MKMs and overcome some
of its current challenges.

2. Kinetic Modeling in Catalysis

Multiscale modeling approaches are used to bridge atomic-
scale models to industrial catalysts leading to knowledge-driven
catalyst design. A bottom-up approach to multiscale modeling
typically commences with the construction of atomistic models
to probe the energetics of elementary reaction steps. These
elementary steps are then used in the development of kinetic
models, combined with macroscopic heat and mass transfer
models.

The development of kinetic models spans a spectrum of
complexity, from empirical rate law expressions to more
intricate Langmuir-Hinshelwood models and ultimately to de-
tailed microkinetic models. Along this continuum, models
become progressively accurate and gain predictive power.
More importantly, the kinetic parameters associated with these
models acquire deeper physical significance as one transitions
from pure regression-based models to first-principle based
microkinetic models (MKMs).[12]

Two types of MKMs are predominant: mean-field micro-
kinetic models (MF-MKMs)[13,14] and kinetic Monte Carlo (KMC)
simulations.[15–17] MF-MKMs are based on the mean-field approx-
imation, which assumes a uniform distribution of all surface
species and active sites at the nanometer scale. To account for
the lateral interactions between adsorbates, which have been
recognized as important for correctly predicting the catalytic
activity, coverage-dependent activation energies are employed.
On the other hand, KMC simulations model the spatial
distribution of catalytic sites by tracking the positions of
adsorbates on a defined-lattice along with detailed lateral
interactions. Although KMC simulations are more accurate than
MF-MKMs, they are constrained by their large computational
demand. Hence, MF-MKMs are more commonly used as a
practical tool to study heterogenous catalysis.

A typical MKM development process involves selecting
reaction pathways that are likely to be the most important to
describe the catalytic transformation of reactants into products.
The equilibrium constants for these elementary reactions are
determined from the changes in the Gibbs free energy. The
corresponding enthalpy and entropy changes are obtained
from experimental data or estimated through ab-initio density-
functional theory (DFT) calculations, the unity bond index-
quadratic exponential potential (UBI-QEP) method, linear scal-
ing relations, or Brønsted-Evans-Polanyi (BEP) relations.[18–21] The
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rate constants are expressed in terms of Arrhenius parameters
that is, the pre-exponential factor (or sticking coefficients for
adsorption reactions), the activation energy, and the temper-
ature-dependency parameter.

One of the most significant challenges in MKM develop-
ment lies in accurately estimating these parameters for all the
elementary steps within the MKM.[22] DFT-based methods are
very successful in providing reaction energetics in heteroge-
nous catalysis,[23] although are limited by their high computa-
tional cost for larger systems. Additionally, commonly used DFT
functionals such as the generalized gradient approximation
(GGA) suffer from issues such as the self-interaction error (SIE)
and the inadequate capture of van der Waals (vdW)
interactions.[24] Therefore, hybrid functionals and vdW-inclusive
functionals are used to mitigate SIE and incorporate long-range
interactions in DFT calculations. The emergence of new DFT
functionals, accelerated with the use of machine learning and
linear scaling DFT methods are gradually enabling their use for
larger systems.

In addition to selecting a suitable electronic structure
method for energy calculations, it is also important how the
catalyst particles and the support are approximated. While the
periodic slab model is suitable for larger nanoparticles (>5 nm),
more precise models are required for smaller nanoparticles. This
is further complicated by the increasing evidence in the
literature that the catalytic support can also influence the
catalytic activity due to an increased charge transfer between
the clusters and the support, and the formation of metal-
support interfaces which could act as active sites for certain
reactions.[25] Cluster-support interactions in DFT calculations are
currently not carried out on a large scale due to their computa-
tional expense. It is also well-known that DFT-derived energy
barriers have an inherent error between 0.1 to 0.2 eV.[26]

Moreover, DFT-calculations are conducted on model surfaces,
which do not account for dynamic changes in the catalytic
surface during the operating conditions and in the presence of
intermediates. Consequently, it is common practice to adjust
the parameters from DFT to match the MKM predictions to
experimental observations.[27] However, the conventional ap-
proach to manually elucidate the reaction pathways and the
subsequent kinetic parameter calculation and optimization is
laborious and time-consuming, and therefore offers many
opportunities for automation.

3. Data Archival and Reuse

As was emphasized in the GeCats whitepaper,[28] the fundamen-
tal requirements for achieving digital catalysis involve the
establishment of digital archives that adhere to standardized
and FAIR-complaint data storage, along with the development
of digital workflows facilitating data exchange and evaluation.
To this extent, Electronic Laboratory Notebooks (ELNs) are
being developed to meet the specific requirements of the
catalysis community to efficiently document, archive and
extract information across various stages of catalysis research,
especially the data pertaining to catalyst-synthesis and

characterization.[29] A recent paper by Marshall et al.[30] intro-
duced the AC/CatLab data archive as a data management
strategy that prioritizes automation while integrating ELN
functionalities with data archival processes. It is imperative that
the data is accompanied by rich metadata that assures data
provenance and reproducibility. To address this need, the
software Adacta has been developed to enable efficient data
archiving by allowing users to create digital twins of their
experimental setups, and subsequently tracing the time-
stamped measurement data to the specific devices used for
measurement.[31] This approach allows to trace the history of
the experimental setup in a timeline visualization, enabling
even those not directly involved in the data generation to
access and extract information, related to the equipment
employed or the samples in use during specific time periods.
Adacta also provides other visualization features to quickly
observe trends in the measured data.

4. Automated Mechanism Generation

The open-source software Reaction Mechanism Generator
(RMG)[32,33] can automatically predict reaction pathways and
their associated rate constants in MKMs (Figure 2). It relies on a
flux-based algorithm to identify important species and reaction
pathways combined with thermochemical parameter estimation
using thermochemistry databases for Ni and Pt, that are
augmented by scaling relations for other metals. Beyond the
generation of mechanisms, RMG also provides features for
model analysis incorporating local and global uncertainty
analysis including the ability to track correlated uncertainties in
model input parameters.

Studies by Kreitz et al. showcase the application of RMG in
automatic mechanism generation for CO2 hydrogenation over
Ni(111) and for catalytic conversion of exhaust gases from
gasoline engines on Pt(111).[34,35] A more recent study demon-
strated a universal framework for automated construction of
reaction mechanisms, with inherent capability of DFT-con-

Figure 2. Schematic representation of the Reaction Mechanism Generator for
prediction of a reaction scheme.
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strained model parameter optimization.[36] This is achieved by
sampling an ensemble of microkinetic models within the
correlated uncertainty space in the predicted energies of the
BEEF-vdW functional and choosing the final model as the one
that is able to best reproduce the experimental results.

5. Tools for Numerical Simulation

Simulating reactive flows involves the numerical solution of a
set of governing equations for a given reactor configuration to
calculate the reaction rates, species concentrations and/or
surface coverages. Various MKM solvers are available, each
offering its own set of advantages and limitations.[37] Notable
options include Chemkin,[38] OpenMKM,[37] DETCHEM,[39]

Cantera,[40] CatMAP,[41] CATKINAS,[42] CatalyticFOAM[43] and
more.[44–46] Chemkin pioneered the development of simulation
codes for gas-phase kinetics which was later extended to
support surface kinetics.[14,38] Cantera is a widely-used open-
access simulation toolkit for mainly homogenous reactions and
can be easily accessed through C+ + , Python and MATLAB
interfaces.[40] OpenMKM toolkit,[37] built on top of Cantera,[40]

targets the heterogenous catalysis applications incorporating
batch, continuous stirred tank reactor (CSTR), and plug flow
reactor (PFR) codes, integrated with pMuTT[47] for thermochem-
istry input file generation and RenView[48] for reaction path
analysis.

DETCHEM (DETailed CHEMistry),[39] a program package
written in FORTRAN is specifically developed for the simulation
of reacting flows, in particular heterogenous systems. It offers a
diverse array of modules tailored for computing the transport
and kinetic properties of species participating in both gas-phase
and surface reaction mechanisms. It supports several reactor
configurations, including batch reactors, CSTRs, PFRs, stagnation
flow reactors, packed bed reactors, catalytic monoliths, and
models designed for simulating high-temperature fuel and
electrolysis cells. DETCHEM also accommodates user-defined
expressions for calculating reaction rates, in addition to micro-
kinetic models defined in terms of Arrhenius equations. Its
versatility enables its usage in setting up workflows designed to
standardize and accelerate the development of microkinetic
models.

6. Automated Simulation and Visualization

CaRMeN (Catalytic Reaction Mechanism Network) is a software
that can take advantage of metadata-enriched archived exper-
imental data in conjunction with an MKM solver in order to
automate the simulation workflows.[49,50] The architecture of
CaRMeN is adaptable to any modeling software by configuring
an appropriate simulation driver, making it a versatile tool for
kinetics studies. These simulation drivers function as interfaces
that translate the data formats between CaRMeN and the
chosen modeling software. CaRMeN consists of several simu-
lation drivers for a variety of reactor configurations. Many
research projects have utilized its capabilities to execute and

compare multiple simulation models against the experimental
data measured at matching operating conditions.[51–54] It
markedly expedites workflows by automating the labor-inten-
sive process of setting up input files required for multiple
simulations and postprocessing outputs. At its core, CaRMeN
operates by deconstructing a simulation input into manageable
subsets or fragments, each of which can be independently
accessed and manipulated. These fragments can be thought of
as small building blocks that can be reused and combined with
other fragments. This modular approach allows users to
dynamically assemble these individual subsets within the user
interface to initialize multiple complete simulation configura-
tions (Figure 3).

A complete simulation configuration would mean that all
information about the reactor type and dimensions, operating
conditions, feed compositions, thermodynamic data, transport
data, appropriate chemical model, and corresponding exper-
imental data is provided. Consequently, when the need arises
to set up multiple simulations with several parameters remain-
ing constant, and the focus is on studying the impact of
changes in one or more specific parameters, CaRMeN enables
the reuse of the subset containing the constant parameters.
This eliminates the redundancy of rewriting the same parame-
ters for each individual simulation, streamlining the setup
process. The multiple simulations are then executed in parallel
and the outputs are postprocessed and subsequently visualized
in the user interface in an automated manner. To summarize,
CaRMeN can facilitate in reducing effort and errors in the
iterative steps involved in developing microkinetic models.

Figure 3. Modular approach followed in the CaRMeN tool to generate
multiple simulations.
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7. Automated Parameter Optimization

Workflows are also needed that can assist with fast optimization
of the kinetic parameters within the bounds of their estimated
uncertainties. Furthermore, very often researchers need to study
the effect of slight modifications in the known catalytic systems
such as change in the support material, or addition of
promoters. Such changes are first studied experimentally on a
laboratory scale and then models are used for scale-up or to
gain deeper insights on the underlying processes. In such cases,
it is not practical to build a complete microkinetic model from
scratch involving expensive DFT computations to ascertain the
kinetic parameters. Instead, existing microkinetic models that
are applicable for other similar catalytic systems can be fine-
tuned, to align them with the experimental data corresponding
to the modified system. The high dimensionality of the micro-
kinetic models make it unfeasible to individually set up
variations of the initial microkinetic model in order to run
simulations. Usage of optimization algorithms are therefore the
norm, with a suitable objective function chosen based on the
species of interest, range of values, and initial agreement
between the experimental and measured quantities. Based on
the task at hand and the uncertainties associated with
measured data, it may be necessary to use adjustable weights
or use logarithmic values of species concentrations in the
objective function.

Many literature studies showcase the use of optimization
algorithms to optimize global kinetics models wherein the
number of kinetic parameters to be tuned are less.[55–57] In the
case of microkinetic models, the calculation of gradients of
complex governing equations with respect to the kinetic
parameters is non-trivial. Gradient-free global optimization
algorithms offer a generalized methodology for optimizing
these microkinetic parameters irrespective of the reactor
configuration.[58,59] Our previous paper showcases a proof-of-
concept for the same using the global optimization algorithm
Basin-Hopping[60] to optimize high-dimensional microkinetic
models for methanation of CO over Ni and methane oxidation
over Pd catalysts.[61] Basin Hopping is a stochastic algorithm
that searches for a potential global minimum by hopping within
the parameter search space as determined by a user-defined
step-size value. Once it has made a hop, it attempts to find a
local minimum by leveraging a local-search technique such as
the Nelder-Mead[62] method. Each new local solution is then
compared with the previously best solution, and is either
accepted or rejected based on the Metropolis criterion.[63] Since
these methods are gradient-free and work well for high
dimensional cases, they are quite useful in setting up
automated workflows to optimize kinetic models, incorporating
any kind of reactor configuration requiring the researcher to
only provide appropriate input files for the chosen modeling
software as shown in Figure 4.

It is important to emphasize that the primary objective of
kinetic modeling is to obtain meaningful insights about the
underlying reaction mechanism. Consequently, techniques such
as sensitivity analysis[64,65] and reaction path analysis[66] are
employed to identify which parameters and the reaction steps

have the most significant impact on the predicted outputs.
Campbell’s degree of rate control (DRC)[67] method is a highly
useful tool to analyze multistep reaction mechanisms to identify
the rate controlling transition states and intermediates and can
be easily implemented through the open-source code
CatMAP.[41] Additionally, both the DETCHEM simulation
package[39] and the OpenMKM[37] tool feature modules for
sensitivity analysis and reaction path analysis.

8. Summary

The field of microkinetic modeling for heterogenous catalytic
systems holds potential for advancement through automation,
as it can enhance the knowledge-driven design of catalysts. In
this work, we have highlighted a range of tools and software
solutions that can contribute to achieving this objective. An
overview of how these tools may work together is depicted in
Figure 5. The overall workflow of microkinetic modeling
involves several key steps, commencing from the generation of
an appropriate reaction scheme, followed by the estimation of
the kinetic parameters for each reaction, simulation of the
reactive system with thermodynamics consideration, validation
against experimental data, and optimization of the kinetic
parameters within their uncertainties to match the experimental
data. The various tools showcased in this work are poised to
expedite these steps by automating a variety of tasks that were
traditionally performed manually.

The use of data archival tools like Adacta and ELNs ensures
data provenance and storage of data in a manner that can be
reused long after its generation. The automated mechanism
generator RMG not only reduces the effort involved in MKM
development but also mitigates errors stemming from personal
bias in selecting the reaction steps for consideration. Auto-
mated simulation workflows facilitate the execution of multiple
models, validation against experimental data and visualization
of results. In cases where mismatches with the experimental
data occur, minor adjustments to the initial model can be

Figure 4. Steps involved in the optimization of kinetic models using the
Basin-Hopping algorithm.
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performed using global optimization algorithms such as Basin-
Hopping that are gradient-free and can be configured with
appropriate objective function incorporating suitable solvers for
running simulations. Consequently, the utilization of automated
workflows can accelerate microkinetic modeling and contribute
to the development of improved catalysts. However, a more
widespread use of automation to enhance catalyst design also
entails strengthening the research data infrastructure from the
ground up, with a focus on ensuring that the data generated in
all aspects of catalysis research are Findable, Accessible,
Interoperable and Reusable (FAIR).[68] Collaborative initiatives
such as NFDI4Cat[69] in conjunction with other National Research
Data Infrastructure (NFDI)[70] consortia like DAPHNE4NFDI[71] and
others, are diligently working to establish the necessary infra-
structures for the digitalization of catalysis research and related
disciplines. These initiatives aim to foster a culture of data
sharing and collaboration, further advancing the field of
catalysis.
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CONCEPT

Microkinetic modeling, typically a
time and labor-intensive process, can
be significantly expedited through the
application of automated software
and digital tools. This concept article
showcases the utilization of these
digital solutions in accelerating the
various key steps involved in the de-
velopment of a kinetic model from
identification of reactions and kinetic
parameters to subsequent simulation
and validation against experimental
data.
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