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Abstract
We introduce KaRRi, an improved algorithm for scheduling a fleet of shared vehicles as it is used by
services like UberXShare and Lyft Shared. We speed up the basic online algorithm that looks for
all possible insertions of a new customer into a set of existing routes, we generalize the objective
function, and efficiently support a large number of possible pick-up and drop-off locations. This
lays an algorithmic foundation for ridesharing systems with higher vehicle occupancy – enabling
greatly reduced cost and ecological impact at comparable service quality. We find that our algorithm
computes assignments between vehicles and riders several times faster than a previous state-of-the-art
approach. Further, we observe that allowing meeting points for vehicles and riders can reduce the
operating cost of vehicle fleets by up to 15% while also reducing passenger wait and trip times.
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1 Introduction

Current transportation systems are largely based on a combination of individual transport
(often with heavy, polluting cars that consume a lot of energy and space) and public
transportation that is often slow, inconvenient, and underdeveloped. Ridesharing systems
that intelligently control large fleets of taxi-like vehicles have the potential to offer an
alternative that is more convenient than public transportation and more economical and
ecological than individually used cars [2, 15, 18]. This is particularly promising if these
vehicles have electrical propulsion and autonomous piloting. However, current such systems
do not deliver on these promises as the effectively usable capacity of the vehicles is quite
small, even threatening to increase rather than decrease the total number of driven car-
kilometers [14]. A main problem for larger capacity ridesharing vehicles is that picking up
and dropping off customers introduces large delays for other passengers of the vehicle.

This paper lays algorithmic groundwork for a better integration of ridesharing fleets into
a multi-modal transportation system. We focus on the question of how local transportation
(e.g., walking, bicycles or scooters) can be used to reach a pickup or dropoff location (PD-
location) that causes less delay for a vehicle, may be shared with other customers, and may
alleviate concerns of privacy for riders [16, 10]. (A next, related step will be an analysis of how
public transportation like trains or express buses may be used to cross large distances faster,
and more economically/ecologically – overall resulting in an effective use of the hierarchy
individual transportation, ridesharing, and public transit).

Our starting point is the LOUD system by Buchhold et al. [4] that comprises an online
dispatching system for large ridesharing fleets. It uses one-to-many routing based on bucket
contraction hierarchies (BCHs) [13, 9] to efficiently find the best insertion of a new customer
into the current schedule of a vehicle. This is a crucial step for handling large fleets in real
time and computing realistic simulations of such systems in transportation research.

We introduce the KaRRi (Karlsruhe Rapid Ridesharing) algorithm that extends LOUD
with the possibility of performing the pickup and dropoff of a passenger not at fixed locations
but at any location in the vicinity of the passenger’s origin and destination. The algorithm
computes optimal assignments of passengers to vehicles including locations for the pickup
and dropoff. We adapt LOUD’s objective function to this new scenario by incorporating
passenger wait times, trip times, and overheads for individual transportation to the pickup
location and from the dropoff location.

Finding not only the best vehicle for a request but an optimal combination of a vehicle, a
pickup location, and a dropoff location leads to a much larger number of possible assignments.
To determine the best assignment, we need to solve a number of many-to-many routing
problems between vehicle locations and all possible PD-locations. We use BCH queries to
address this issue and propose novel speedup techniques both for general purpose bucket
based queries and for the specific case of localized sources or targets. We find that these
techniques are also applicable for faster routing in the case of a single pickup and dropoff.

Our experimental evaluation uses realistic data sets to evaluate the efficiency of these
measures. We find that our implementation is several times faster than LOUD in the case of
a single pickup and dropoff. For multiple PD-locations, our routing techniques are up to three
orders of magnitude faster than a naïve extension of LOUD’s techniques. We also give first
indications that allowing multiple PD-locations can reduce the operating costs of a taxi fleet
by up to 15% without increasing passenger wait times or trip times . A closer investigation
of possible effects on the transport system is left to future work likely in cooperation with
application experts.
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Paper Overview. After a more detailed problem statement in Section 2 we introduce basic
notation and techniques in Section 3. We define the formal foundation for our cost model
in the presence of multiple PD-locations in Section 4. Section 5 gives an overview on the
KaRRi algorithm while Sections 6–8 address individual challenges. In Section 9, we evaluate
our approach experimentally.

2 Problem Statement

This section describes and gives the formal foundations for the dynamic ridesharing problem
considered by our approach.

Road Network. We consider a road network to be a graph G = (VG, EG) where edges
represent road segments and vertices represent intersections. Every edge e = (v, w) ∈ EG has
a travel time ℓ(e) = ℓ(v, w). We denote the shortest path distance (i.e. travel time) from a
vertex v to a vertex w by δ(v, w). Our algorithm uses two separate road networks Gveh and
Gpsg with associated ℓveh, δveh, ℓpsg, and δpsg to represent parts of the same road network
accessible to vehicles and to pedestrians, respectively. Note that we only consider walking but
Gpsg can also represent other modes of transportation, e.g. cycling. A passenger can board
or alight a vehicle at a location v if v is accessible in both networks, i.e. v ∈ Vveh ∩ Vpsg.

Vehicle, Stop. Our algorithm has access to a fleet F of vehicles. Each vehicle ν =
(li, cap, tmin

serv, tmax
serv) has an initial location li, a seating capacity cap and a service time interval

[tmin
serv, tmax

serv). The current route R(ν) = ⟨s0(ν), . . . , sk(ν)(ν)⟩ of a vehicle ν is a sequence of
stops scheduled for the vehicle. The vehicle’s current location lc(ν) is always somewhere
between its previous (or current) stop s0(ν) and its next stop s1(ν). Thus, k(ν) = |R(ν)| − 1
is the number of stops that the vehicle yet has to visit. Each stop s is mapped to a vertex
l(s) ∈ V in the graph. Abusing notation, we may write si instead of si(ν) and only si instead
of l(si). At each stop, a vehicle picks up and/or drops off one or more passengers, stopping
for a minimum time of tmin

stop which is a model parameter. We denote the occupancy of a
vehicle between stops si and si+1 by o(si). We update each vehicle’s route as new stops are
introduced for newly assigned passengers. For each stop s ∈ R(ν) we maintain the earliest
possible arrival time tmin

arr (s) and departure time tmin
dep (s) according to the current schedule.

Request. In our scenario, the dispatcher receives ride requests and immediately assigns
them to vehicles. A request r = (orig, dest, treq) has an origin location orig ∈ V , a destination
location dest ∈ V and a time treq at which the request is issued. We do not allow pre-booking,
i.e. the request time is also the earliest possible departure time.

Pickup (Location), Dropoff (Location). A possible pickup location (pickup for short) is
a location v ∈ Vpsg ∩ Vveh that is reachable from orig(r) in Gpsg within a time radius ρ.
Similarly, a possible dropoff location (dropoff ) is a location v ∈ Vpsg ∩Vveh from which dest(r)
can be reached in Gpsg within ρ. The sets of pickups and dropoffs for r and a radius ρ are
denoted by Pρ(r) and Dρ(r). Let Np(r) = |Pρ(r)| and Nd(r) = |Dρ(r)|. We collectively refer
to pickups and dropoffs as PD-locations. We call a pair of pickup and dropoff a PD-pair.
The radius ρ is a model parameter.

Insertion. The goal of the dispatcher is to find an insertion of a pickup and dropoff of each
request r into any vehicle’s route s.t. the cost of that insertion according to a cost function
is minimized. We formalize an insertion as a tuple (r, p, d, ν, i, j) indicating that vehicle ν

picks up request r at pickup location p ∈ Pρ(r) immediately after stop si(ν) and drops r off
at dropoff location d ∈ Dρ(r) immediately after stop sj(ν) with 0 ≤ i ≤ j ≤ k(ν) .
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2.1 Cost Function and Constraints

The cost of an insertion ι = (r, p, d, ν, i, j) considers the added vehicle operation time tdetour(ι)
of ν, the trip time ttrip(ι) of r, the sum of increased trip times t+

trip(ι) of existing passengers
of ν, and the walking time twalk(ι) (we defer the exact definitions of these terms to Section 4).

We consider a number of constraints for eligible insertions put forward in [4]. After the
insertion, the following must hold: First, the occupancy of ν must never be exceeded by an
insertion. Second, the vehicle must still reach its last stop before the end of its service time.
Third, every passenger already assigned to ν must still be picked up at their pickup stop
within a maximum wait time tmax

wait. Fourth, every passenger r̂ already assigned to ν must still
arrive at their destination within a maximum trip time tmax

trip (r̂) = α · δveh(orig(r̂), dest(r̂)) + β.
The values tmax

wait, α and β are model parameters.
All four constraints are hard constraints wrt. requests already assigned to ν. If ι breaks

a hard constraint, we set the cost to ∞. For the request r to be inserted, we treat the wait
time and trip time constraints as soft constraints, i.e. violating them leads to cost penalties.
Assume, the passenger is picked up at p at time tdep. We define the cost penalties as

cvio
wait(ι) = γwait · max{tdep − treq(r) − tmax

wait, 0}
cvio

trip(ι) = γtrip · max{ttrip(ι) − tmax
trip (r), 0}

with model parameters γwait and γtrip that scale the severity of the penalties.
For the total insertion cost, we use a linear combination of the vehicle detour times,

passenger trip times, walking times, and soft constraint violation penalties:

c(ι) = tdetour(ι) + τ · (ttrip(ι) + t+
trip(ι)) + ω · twalk(ι) + cvio

wait(ι) + cvio
trip(ι)

Note that we base our cost function on the one used in the LOUD algorithm [4]. However,
the original cost function does not consider passenger trip times or walking times. We weight
the importance of these times with the model parameters τ and ω. Our cost function is
equivalent to LOUD’s if τ = ω = 0.

3 Preliminaries

In this section, we describe several algorithms for the computation of shortest paths that
are being used in this work. Furthermore, we summarize the LOUD algorithm for dynamic
ridesharing [4] that serves as the basis of our work.

3.1 Shortest Path Algorithms

In the following, we explain a number of algorithms that compute different variants of shortest
path queries on road networks.

Dijkstra’s Shortest Path Algorithm. Dijkstra’s shortest path algorithm [8] computes the
shortest path from a source s ∈ V to all other vertices in a weighted graph G = (V, E, ℓ).

The algorithm stores a distance label δ(s, v) for every v ∈ V . An addressable priority
queue (PQ) Q with key(v) = δ(s, v) contains active vertices. Initially, Q := {s}, δ(s, s) := 0
and δ(s, v) := ∞ for v ̸= s. The algorithm proceeds by extracting the vertex with the smallest
distance label from Q and settling it. To settle u ∈ V , each outgoing edge (u, v) ∈ E is relaxed.
The relaxation of e = (u, v) tries to improve the distance label δ(s, v) with δ(s, u) + ℓ(e). If
the distance is improved, v is inserted into Q. The algorithm stops when Q becomes empty.
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Contraction Hierarchies. Contraction Hierarchies (CHs) [9] are a speed-up technique for
shortest path computations in road networks that exploits the hierarchical nature of road
networks. A CH is constructed in a pre-processing phase. Then, shortest path queries can
be computed on the CH using restricted Dijkstra searches.

To construct a CH, all vertices in a road network G = (V, E) are ordered heuristically by
their importance or rank [9]. Vertices are contracted in the order of increasing rank. The
contraction of v ∈ V temporarily removes v from the graph. To preserve shortest paths, a
shortcut edge (u, w) is created if (u, v, w) ∈ E2 is the only shortest path between u and w.

Let E+ contain all original edges E as well as all shortcut edges. The graph G+ = (V, E+)
constitutes the CH. The length ℓ+(e) of a shortcut edge e is the sum of the lengths of
replaced original edges while δ+ is the according distance function. For the query phase,
we partition E+ into up-edges E↑ = {(u, v) ∈ E+ | rank(u) < rank(v)} and down-edges
E↓ = {(u, v) ∈ E+ | rank(u) > rank(v)}. We define an upwards search graph G↑ := (V, E↑)
and a downwards search graph G↓ := (V, E↓). The distance functions δ↑ and δ↓ represent δ+

constrained to G↑ and G↓. The upwards CH search space G↑
v = (V ↑

v , E↑
v ) rooted at a vertex

v ∈ V contains all vertices V ↑
v ⊆ V that can be reached from v in E↑ and the according

edges E↑
v ⊆ E↑. The reverse downwards CH search space G↓

v = (V ↓
v , E↓

v ) rooted at a vertex
v ∈ V contains all vertices V ↓

v ⊆ V from which v is reachable in E↓ and the according edges
E↓

v ⊆ E↓.
For any two vertices s, t ∈ V , it can be shown that there is a shortest path from s to t that

is an up-down path in the CH, i.e. consists of only up-edges followed by only down-edges [9].
A CH-query from a source s ∈ V to a target t ∈ V runs a forward Dijkstra search from s in
G↑ and a reverse Dijkstra search from t in G↓. Whenever the searches meet, they find an
up-down-path from s to t, eventually finding a shortest path. The query can stop once the
radius of either Dijkstra search exceeds the best previously found distance from s to t.

Bucket Contraction Hierarchy Searches. Bucket Contraction Hierarchy (BCH) [13, 9]
searches find all shortest path distances from a source s ∈ V to a set of targets T ⊆ V in a
road network G = (V, E). A CH G+ of G is used as the basis of the algorithm.

The idea is to construct a (target) bucket B↓(v) at each vertex v ∈ V . For each target
t ∈ T , a reverse search in G↓ is run that adds an entry (t, δ↓(v, t)) to B↓(v) for every settled
v ∈ V . Then, a forward search from s in G↑ can compute tentative shortest path distances as
δ↑(s, v) + δ↓(v, t) for every bucket entry (t, δ↓(v, t)) ∈ B↓(v) at every settled vertex v ∈ V ↓

s .
BCH searches can analogously compute the distances from a set of sources to a single

target. In that case, we speak of source buckets B↑(v) for every v ∈ V .
The advantage of BCH searches is that the search space of each source and each target is

only traversed once, either to compute bucket entries or to scan bucket entries. However,
storing the bucket entries requires more memory than individual point-to-point CH queries.

Bundled Searches. Dijkstra-based shortest path algorithms for multiple sources can make
use of bundled searches where the searches for k sources are advanced simultaneously. A
bundled search maintains k tentative distance labels at each vertex. The search is rooted at
each of the k sources. Initially, the j-th distance label at the j-th source is set to 0, and all
other kn − k distance labels are set to ∞. As usual, vertices are settled by relaxing each
outgoing edge. When the search relaxes an edge (u, v) ∈ E, it tries to update all k distance
labels at v.

A bundled relaxation can be more cache efficient than k individual relaxations as all
k distances are stored in consecutive memory. However, the relaxation of (u, v) ∈ E may
perform unproductive work if not all k searches have reached u yet. Thus, bundling is
effective if all k searches relax largely the same edges. The value of k is a tuning parameter.



M. Laupichler and P. Sanders 5

The concept of bundled searches was first introduced for Dijkstra searches used for the
computation of arc-flags under the name centralized searches [11]. Since then, bundled searches
have been used in a number of Dijkstra-based many-to-many shortest path algorithms [1, 17,
7, 5, 6]. More recently, the idea has been extended to point-to-point queries in CHs [3].

Instruction-Level Parallelism in Bundled Searches. Additionally, single-instruction multiple-
data (SIMD) parallelism can be utilized for bundled searches [3]. Modern CPUs provide
special vector registers and instructions that can store and manipulate multiple data items
simultaneously. We can vectorize the computations needed during edge relaxations s.t. k

computations are performed at the same time using a single vector instruction. SIMD
instructions can substantially speed up bundled searches [3].

3.2 LOUD
Our algorithm is based on the dynamic ridesharing dispatching algorithm LOUD [4].

Given a fleet of vehicles and routes, the online algorithm matches incoming ridesharing
requests to vehicles. For each request, a feasible insertion of the request’s origin o and
destination d into a vehicle’s route is found s.t. the detour of the vehicle is minimized.

Elliptic Pruning. To compute the costs of possible insertions, the algorithm requires the
distances between existing vehicle stops and o and d. LOUD computes these distances using
BCHs with bucket entries for each vehicle stop and queries run from o and d.

We refer to these BCH searches as elliptic BCH searches as they utilize a pruning
technique for these buckets called elliptic pruning: Each insertion is subject to the same
soft and hard constraints that we describe in Section 2.1. The wait time and trip time hard
constraints of passengers already assigned to a vehicle ν ∈ F define a leeway λ(si, si+1), i.e. a
maximum permissible detour, between each pair of consecutive stops (si, si+1) ∈ R(ν). Any
detour that exceeds λ(si, si+1) breaks some hard constraint and is infeasible. The leeway
λ(si, si+1) defines a detour ellipse that contains all vertices at which a pickup or dropoff may
be made between si and si+1 without breaking a hard constraint. Thus, bucket entries for
si and si+1 only need to be generated at vertices within the ellipse. Elliptic pruning vastly
reduces the number of bucket entries that need to be scanned by the BCH searches and
limits the number of candidate vehicles for insertions [4].

Last Stop Distances. LOUD also allows the insertion of the origin and/or destination after
the last stop of a vehicle’s route. Here, elliptic pruning is not applicable since the leeway of
any vehicle is unbounded after the last stop. Instead, LOUD uses reverse Dijkstra queries
in the road network rooted at o or d to find the distances from last stops to o or d. These
Dijkstra queries, particularly for distances from last stops to the destination of a request,
constitute a significant part (at least 60% and up to more than 90%) of the total runtime of
LOUD.

4 Conceptual Changes for Multiple Pickup and Dropoff Locations

We observe that introducing passenger movement for pickup and dropoff locations requires a
careful consideration of its effects on vehicle detours and passenger trips. In the following,
we describe these effects in detail, leading us to the formal foundation of our cost function.

Remark that we ignore two special cases in this section for the sake of simplicity: First,
we assume that the pickup and dropoff for an insertion ι = (r, p, d, ν, i, j) are inserted after
the next stop of ν, i.e. i ≥ 1. Second, we do not consider the possibility of p or d coinciding
with existing stops, i.e. we assume p ̸= l(si) and d ≠ l(sj). We ignore these cases as they
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would lead to bloated definitions. However, with knowledge of the vehicle’s current location
lc(ν) and the location l(s) of each stop s ∈ R(ν), the ignored cases could be integrated into
the following definitions in a straight forward manner.

4.1 Walking Time and Walking to the Destination
The walking time of a regular insertion ι = (r, p, d, ν, i, j) is simply twalk(ι) := δpsg(orig, p) +
δpsg(d, dest).

We allow each passenger r to walk from their origin to their destination without ever
boarding a vehicle. This requires a manner of pseudo-insertion ιpsg where the passenger is
matched to no vehicle at all. Then, the cost of ιpsg depends only on the walking distance
twalk(ιpsg) = ttrip(ιpsg) = δpsg(orig, dest). The pseudo-insertion affects no vehicle operation
times or trip times of other passengers. We ignore the wait time soft constraint since the
passenger does not wait for a vehicle. In effect, the total cost is c(ιpsg) = τ · ttrip(ιpsg) + ω ·
twalk(ιpsg) + cvio

trip(ιpsg). We explicitly allow pseudo-insertions for any distance δpsg(orig, dest),
i.e. the distance does not have to be found within the radius ρ around orig or dest. Instead,
we use a CH query in the passenger graph to find δpsg(orig, dest). The cost c(ιpsg) can serve
as a first upper bound on the cost of any insertion.

4.2 Vehicles Waiting for Passengers
In the traditional dynamic ridesharing model, a request r = (orig, dest, treq) always waits to
be picked up by the vehicle at the origin location orig. The request is issued at time treq
and the vehicle ν matched to the request can start making its way to the pickup location
at the earliest at treq. If the pickup location is orig this means that the vehicle will always
arrive at the pickup location later than the passenger, i.e. only the passenger can wait
for the vehicle, not the other way around. In that case, the time a vehicle is stopped at
any stop is always exactly tmin

stop (unless the vehicle is idling, i.e. it currently has no other
stops to get to). Therefore, for each stop s, the scheduled arrival time can be inferred
from the scheduled departure time as tmin

arr (s) = tmin
dep (s) − tmin

stop. In the traditional dynamic
ridesharing model, it suffices to store the departure time at each stop for the full vehicle
schedule [4]. The shortest path distance between two consecutive stops si and si+1 is then
δveh(si, si+1) = tmin

dep (si+1) − tmin
stop − tmin

dep (si).
Now, consider an insertion ι = (r, p, d, ν, i, j) with p ̸= orig. Then, both the vehicle and

the passenger have to travel to p starting at tmin
dep (si) and treq, respectively. Consequently,

the vehicle can arrive at p earlier than the passenger, precisely if tmin
dep (si) + δveh(si, p) <

treq + δpsg(orig, p). In that case, the vehicle needs to wait for the passenger at p. An inserted
stop s at p can then take longer than tmin

stop. We, therefore, define the actual earliest possible
departure time at each pickup as the maximum of the earliest possible departure time of
the vehicle and that of the passenger at the pickup. The vehicle ν can depart from p at the
earliest after a stop time of tmin

stop and the passenger can depart as soon as they arrive at p

leading us to
tdep(ι) = max(tmin

dep (si) + δveh(si, p) + tmin
stop, treq + δpsg(orig, p)).

We later use tdep(ι) in the definitions of the vehicle detour, passenger wait time and passenger
trip time needed for the cost function (see Section 2.1). In particular, the wait times of a
vehicle or of a passenger contribute to the vehicle operation times and passenger trip times.

Whereas in the traditional model we can infer tmin
arr (s) from tmin

dep (s) for a stop s, we have
to now explicitly store tmin

arr (s) and tmin
dep (s). The distance between a pair of consecutive stops

(si, si+1) can then be derived as δveh(si, si+1) = tmin
arr (si+1) − tmin

dep (si).
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We denote the scheduled wait time of a vehicle at stop s with tveh
wait(s) = tmin

dep (s)−tmin
arr (s)−

tmin
stop.

4.3 Added Vehicle Operation Time and Passenger Trip Times
In the following, we define the added vehicle operation time tdetour(ι), the trip time for the
new passenger ttrip(ι), as well as the sum of added trip times for existing passengers t+

trip(ι)
for an insertion ι = (r, p, d, ν, i, j). Vehicle wait times as explained in Section 4.2 have an
effect on all of these times.

In order to explain this effect, we first focus on the added vehicle operation time caused
by the insertion ι. Conceptually, the added vehicle operation time is the time difference
between the vehicle’s arrival time at the last scheduled stop after the insertion and the arrival
time at the last scheduled stop before the insertion.

Initial Detours. We start by explaining added vehicle operation times in a scenario without
vehicle waiting times, i.e. tveh

wait(s) = 0 for all s ∈ R(ν). In this case, the added vehicle
operation time for performing a pickup at p and a dropoff at d is simply equal to the detour
that vehicle ν has to take in its route after stop si and stop sj , respectively. We call these
detours the initial pickup detour and initial dropoff detour.

▶ Definition 1. The initial pickup (dropoff) detour for an insertion ι = (r, p, d, ν, i, j) is the
detour that results from the vehicle ν first driving to p (d) after stop si (sj) instead of driving
to si+1 (sj+1) directly.
Formally, we define the initial pickup detour as

∆init
p (ι) :=

{
tdep(ι) − tmin

dep (si) if i = j

tdep(ι) − tmin
dep (si) + δveh(p, si+1) − δveh(si, si+1) if i ̸= j

We define the initial dropoff detour as

∆init
d (ι) :=


δveh(p, d) + tmin

stop if i = j and j = k(ν)
δveh(sj , d) + tmin

stop if i ̸= j and j = k(ν)
δveh(p, d) + tmin

stop + δveh(d, sj+1) − δveh(sj , sj+1) if i = j and j ̸= k(ν)
δveh(sj , d) + tmin

stop + δveh(d, sj+1) − δveh(sj , sj+1) if i ̸= j and j ̸= k(ν)

Note that if i = j, the vehicle has to make a combined detour to go from stop si to p,
then to d and finally to si+1. In that case, only the leg between si and si+1 of the existing
route R(ν) is replaced by the combined detour. The definition of initial pickup and dropoff
detour account for this by subtracting the distance between si and si+1 only once in the
dropoff detour and not in the pickup detour if i = j.

Residual Detours, Added Vehicle Operation Time. Without vehicle wait times, the de-
parture time tdep(ι) at pickup p is the arrival time of ν at p plus the minimum stopping time
tmin
stop, so tdep(ι) = tmin

dep (si) + δ(si, p) + tmin
stop (see Section 4.2). The first effect that vehicle

wait times can have on the detour is the fact that tdep(ι) can depend on the passenger if
they arrive at the pickup later than the vehicle. As defined in Section 4.2, with passenger
movement we have tdep(ι) = max(tmin

dep (si) + δ(si, p) + tmin
stop, treq(r) + δpsg(orig, p)). Therefore,

in a scenario with vehicle waiting times, the initial pickup detour ∆init
p (ι) can be larger than

without them.
Furthermore, existing vehicle wait times at stops in R(ν) can also factor into the added

vehicle operation time. Assume j + 1 < a < k(ν), tveh
wait(sa) > 0 and tveh

wait(sb) = 0 for
b ̸= a. Let tmin

arr
′(s, ι) and tmin

dep
′(s, ι) describe the scheduled arrival time and departure time
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at stop s ∈ R(ν) after we perform insertion ι. After the insertion, vehicle ν will arrive at
stop sj+1 with a delay of ∆res

j+1(ι) = ∆init
p (ι) + ∆init

d (ι) compared to before the insertion,
so tmin

arr
′(sj+1) = tmin

arr (sj+1) + ∆res
j+1(ι). This delay in arrival times is propagated forward

through the route until stop sa, so for the delay arriving at sa we have ∆res
a (ι) = ∆res

j+1(ι).
However, before the insertion, the vehicle has to wait for a duration of tveh

wait(sa) at stop sa

for a passenger that is scheduled to be picked up here. Since the vehicle now arrives at sa

later, the waiting time may decrease. If the delay at sa is larger than the previous wait time
at sa, the vehicle may even now arrive at sa later than the passenger.

Effectively, the vehicle now uses the time that was spent waiting for the passenger at sa

to perform part of the detour needed for the pickup and dropoff of ι. Thus, the vehicle wait
times at stops after the pickup or dropoff of an insertion act as buffers to the added vehicle
operation time. In our example, we have

tmin
arr

′(sa, ι) = tmin
arr (sa) + ∆res

a (ι) but
tmin
dep

′(sa, ι) = tmin
dep (sa) + ∆res

a+1(ι) where ∆res
a+1(ι) = max(∆res

a (ι) − tveh
wait(sa), 0)

Note that the vehicle wait time at sa reduces the delay for the departure time at sa and
also the arrival times at all following stops. Formally, for every stop sb with a < b we get
∆res

b (ι) = ∆res
a+1(ι) so tmin

arr
′(sb, ι) = tmin

arr (sb) + ∆res
a+1(ι).

This leads us to the definition of residual detours which describe the actual delay that an
insertion ι causes for the arrival time at any existing stop of the route R(ν). It takes into
account the possibility that a vehicle wait time may exist at any stop that reduces the delay
for all later stops.

▶ Definition 2. The residual detour ∆res
a (ι) for an insertion ι = (r, p, d, ν, i, j) at stop

sa ∈ R(ν) describes how much later the vehicle ν will arrive at stop sa after the insertion is
performed. Formally, we define it as

∆res
a (ι) :=



0 if a ≤ i

∆init
p (ι) if i + 1 = a ≤ j

max(∆res
j (ι) − tveh

wait(sj), 0) + ∆init
d (ι) if a = j + 1 and i ̸= j

∆init
p (ι) + ∆init

d (ι) if a = j + 1 and i = j

max(∆res
a−1(ι) − tveh

wait(sa−1), 0) otherwise

Residual detours allow us to easily define the new arrival times tmin
arr

′ and departure times
tmin
dep

′ after an insertion ι at each stop sa ∈ R(ν) as

tmin
arr

′(sa, ι) = tmin
arr (sa) + ∆res

a (ι) and
tmin
dep

′(sa, ι) = max(tmin
arr

′(sa) + tmin
stop, tmin

dep (sa)).

Then, the added vehicle operation time can be defined as:

▶ Definition 3. The added vehicle operation time tdetour(ι) caused by an insertion ι =
(r, p, d, ν, i, j) is defined as

tdetour(ι) :=


∆init

p (ι) + ∆init
d (ι) if i = j = k(ν)

tmin
arr

′(sk(ν), ι) − tmin
arr (sk(ν)) + ∆init

d (ι) if i < j = k(ν)
tmin
arr

′(sk(ν), ι) − tmin
arr (sk(ν)) otherwise
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Trip Time, Added Trip Time For Existing Passengers. The previous definitions also enable
us to define the trip time ttrip(ι) of the passenger associated with the request r. The trip
time for r is simply the time between the request time treq(r) and the scheduled arrival of
the passenger at their destination dest(r). Chronologically, a trip starts with the passenger
moving to the pickup point p and possibly waiting for the vehicle to arrive at p. This is
followed by the actual ride in the vehicle from p to d. Finally, the passenger moves from the
dropoff d to their destination.

▶ Definition 4. The trip time ttrip(ι) for an insertion ι = (r, p, d, ν, i, j) is defined as

ttrip(ι) := (tdep(ι) − treq(r)) + tride(ι) + δpsg(d, dest(r))

where

tride(ι) :=
{

δveh(p, d) if i = j

δveh(p, si+1) + (tmin
dep

′(sj , ι) − tmin
arr

′(si+1, ι)) + δveh(sj , d) if i ̸= j

The final contribution to the total cost of an insertion is the trip time that is added for
passengers that are already assigned to vehicle ν. Consider a request r′ that has previously
been assigned to vehicle ν. Assume r′ is picked up by ν at stop si′ and dropped off at stop
sj′ . By definition of residual detours, performing the insertion ι will delay the arrival of the
vehicle at sj′ by ∆res

j′ (ι). Therefore, the trip time of r′ increases by that same amount of
time.

▶ Definition 5. Let Nd(s) be the number of dropoffs currently scheduled to be performed at
stop s ∈ R(ν) for a vehicle ν ∈ F . The combined added trip time for existing passengers
t+
trip(ι) caused by an insertion ι = (r, p, d, ν, i, j) is defined as

t+
trip(ι) :=

k(ν)∑
a=i+1

Nd(sa) · ∆res
a (ι)

5 Algorithm Overview

We introduce the KaRRi (Karlsruhe Rapid Ridesharing) algorithm that efficiently answers
ridesharing requests with multiple PD-locations using fast many-to-many routing. The
KaRRi algorithm dynamically accepts requests and finds an insertion for each request that
has optimal cost according to the cost function and current system state.

For a request r, the algorithm first finds the possible PD-locations in a walking radius
ρ around the origin and destination using bounded Dijkstra searches. Then, the algorithm
evaluates all insertions in the order of types illustrated in Figure 1. For each insertion, KaRRi
computes the cost according to the cost function (see Section 2.1). The insertion with the
smallest cost ι∗ is repeatedly updated and eventually returned.

Since we consider sets of possible PD-locations, the number of potential insertions becomes
the main challenge of the algorithm. In particular, we face the issue of computing the shortest
paths between existing vehicle stops and each PD-location to filter out infeasible insertions
and to determine the cost of the remaining candidate insertions. In the following sections,
we describe the bundling and filtering methods that we employ to limit the running time of
the required many-to-many shortest path queries for each insertion type.
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Ordinary 0 < i < j < k(ν)
si si+1 sj sj+1

p d

Ordinary
Paired (OP) 0 < i = j < k(ν)

si si+1

p d

Pickup Before
Next Stop (PBNS) 0 = i ≤ j < k(ν)

s0 s1 sj sj+1

p d

Pickup After
Last Stop (PALS) 0 ≤ i = j = k(ν)

sk(ν)

p d

Dropoff After
Last Stop (DALS) 0 < i < j = k(ν)

si si+1 sk(ν)

p d

Figure 1 Insertion types. Shows characterization of each type based on the pickup and dropoff
insertion points i and j of an insertion ι = (r, p, d, ν, i, j). Illustrations depict the current route of ν

(solid arrows) with stops s ∈ R(ν) as well as the detours to and from p and d (dashed lines).

6 Ordinary, Ordinary Paired, and Pickup Before Next Stop Insertions

This section is concerned with ordinary, ordinary paired, and pickup before next stop insertions
(see Figure 1). In all three insertion types mentioned, both the pickup p and the dropoff
d are inserted between two existing stops of the route R(ν). To compute the cost of any
insertion of one of these types, we need to know the distances between existing vehicle stops
and the PD-locations. BCH searches with elliptic pruning (see Section 3.2) have been shown
to efficiently compute these distances [4]. We call these elliptic BCH searches. Additionally,
cost calculations for paired insertions require the PD-distance δveh(p, d). In this section, we
explain how we extend the required distance queries for multiple PD-locations.

6.1 Elliptic BCH Searches
We can extend elliptic BCH queries to multiple PD-locations by simply repeating the queries
for each PD-location. Even with elliptic pruning, this can lead to impractical running times
for large numbers of PD-locations, though. Therefore, we supplement elliptic BCH searches
with two techniques for better scalability to larger numbers of PD-locations. We describe
these techniques only for pickups but they work analogously for dropoffs.

Elliptic BCH Searches with Sorted Buckets. First, we propose using sorted buckets to
reduce the number of bucket entries scanned by BCH queries. We explain the principle only
for source buckets but it can be analogously applied for target buckets.

Recall that the constraints for existing passengers of a vehicle ν define a leeway λ(si, si+1)
for the detour between any two consecutive vehicle stops si and si+1 of ν (see Section 3.2).
When an elliptic BCH search to a pickup p scans a source bucket entry (s, δ↑(si, v)) ∈ B↑(v),
the tentative distance δ↑(si, v) + δ↓(v, p) can only lead to an insertion that holds all hard
constraints if δ↑(si, v) + δ↓(v, p) ≤ λ(si, si+1). This means the entry is only relevant for p if
δ↓(v, p) ≤ λ(si, si+1) − δ↑(si, v). We call λres(si, v) := λ(si, si+1) − δ↑(si, v) the remaining
leeway of a source bucket entry (si, δ↑(si, v)) at vertex v.

We sort the entries of each source bucket at each vertex v by their remaining leeway in
decreasing order. Then, an elliptic BCH search to a pickup p can stop scanning the entries at
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v once an entry (s, δ↑(s, v)) is scanned for which δ↓(v, p) > λres(s, v). In this case, we have
δ↓(v, p) > λres(s, v) ≥ λres(s′, v) for any subsequent entry (s′, δ↑(s′, v)), so the remaining
entries cannot lead to any insertions that adhere to the hard constraints. Maintaining the
order of each bucket comprises a time overhead when inserting bucket entries. However,
since bucket sizes are small, this overhead is limited. Note that sorted buckets can also be
applied in the case of only a single pickup.

Bundled Elliptic BCH Searches. Second, we employ bundled elliptic BCH searches that
exploit the locality of pickups.

Like any bundled search, a bundled elliptic BCH search is rooted at k pickups and updates
k distances with each edge relaxation (see Section 3.1). Additionally, we can bundle bucket
entry scans. Whenever a bucket entry for a stop s is scanned, the search tries to improve upon
any of the k tentative distances between s and any of the k pickups. We can effectively bundle
the edge relaxations and bucket entry scans of elliptic BCH searches because the localized
pickups share similar CH search spaces. Moreover, we can use vectorized instructions to
parallelize both edge relaxations and bucket entry scans. At the same time, elliptic pruning
and sorted buckets can still be applied. To our knowledge, our algorithm is the first to
explicitly use bundled BCH searches. The idea follows from the bundled CH searches used
in [3].

6.2 PD-Distance Searches
Computing the PD-distances, i.e. the distances between pickups and dropoffs, is a many-to-
many shortest path problem where the set of sources and the set of targets are localized.

Our algorithm uses a BCH approach to address this problem. We generate bucket entries
for all dropoffs in their reverse CH search spaces. Then, we run queries in the upward CH
search graph rooted at each pickup to find the PD-distances using the dropoff bucket entries.
We propose two methods to improve these BCH searches.

Firstly, let δmax
PD be an an upper bound on all PD-distances. Then, we only have to

generate and scan bucket entries in a radius of δmax
PD . We use

δmax
PD := max

p∈Pρ

δveh(p, orig) + δveh(orig, dest) + max
d∈Dρ

δveh(dest, d).

We can compute δveh(p, orig) for all p ∈ Pρ and δveh(dest, d) for all d ∈ Dρ using two local
Dijkstra searches rooted at orig and dest, respectively. We obtain δveh(orig, dest) with a
single preliminary CH query.

Secondly, we can once again use bundled BCH searches. More specifically, we can generate
bucket entries for batches of k dropoffs and then run queries for batches of k pickups where
k is a configuration parameter. Again, bundled PD-distance searches utilize the locality of
pickups and dropoffs and allow us to employ SIMD parallelism.

6.3 Enumerating Ordinary, Ordinary Paired, and Pickup Before Next
Stop Insertions

After running our elliptic BCH queries and PD-distance searches, we know all distances
that are required for ordinary and ordinary paired insertions. We enumerate the insertions
ι = (r, p, d, ν, i, j) with 0 < i ≤ j < k(ν) for a set of candidate vehicles found by the elliptic
BCH queries [4]. We compute the cost c(ι) for each insertion and update ι∗ to ι if c(ι) < c(ι∗).

To compute the cost of a pickup before next stop (PBNS) insertion ι = (r, p, d, ν, 0, j),
we lack knowledge of the distance δveh(lc(ν), p) from the vehicle’s current location lc(ν) to
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the pickup p. LOUD suggests filtering PBNS insertions based on a lower bound on the
cost of ι obtained from considering δveh(s0, p) instead of δveh(s0, lc(ν)) + δveh(lc(ν), p) for the
pickup detour [4]. This filter discards almost all PBNS insertions. For the remaining PBNS
insertions, we compute the missing distances δveh(lc(ν), p) with a bucket based approach.
We generate source bucket entries for the current location of every affected vehicle and run
bundled queries from the pickups. The average number of such queries per request is less
than 0.5.

7 Pickup After Last Stop Insertions

In this section, we consider pickup after last stop (PALS) insertions. The main challenge
of PALS insertions is the computation of the distances from last stops to pickups. The
authors of LOUD find that elliptic pruning is not applicable for the computation of these
distances [4]. Instead, LOUD uses a reverse Dijkstra search rooted at orig that is stopped
early when the search can no longer find an insertion better than the best known one. For
multiple pickups, we can compute the required distances by analogously running reverse
Dijkstra searches for each pickup. These Dijkstra searches may also be bundled to exploit
the locality of the pickups.

However, even with a single pickup, this Dijkstra search takes up a significant part of
the running time of the LOUD algorithm. Thus, for a large number of pickups, we expect
infeasible running times. In this section, we introduce two new BCH based approaches for
the computation of last stop distances. For the rest of this section, let ĉ denote an upper
bound on the best known insertion cost (initially ĉ := c(ι∗)).

Reformulation of Cost Function for PALS Insertions. Note that the cost of any PALS
insertion ι = (r, p, d, ν, k(ν), k(ν)) is fully characterized by the pickup p, the PD-distance
δveh(p, d), the walking distance δpsg(d, dest), the departure time tmin

dep (sk(ν)) of ν at sk(ν), and
the last stop distance δveh(sk(ν), p). Thus, we can write the cost of ι as

c(ι) = c′(r, p, δveh(p, d), δpsg(d, dest), tmin
dep (sk(ν)), δveh(sk(ν), p)).

7.1 Last Stop BCH Searches for PALS
Even though elliptic pruning is not applicable, we can still employ a BCH search approach
for distances from last stops to pickups. For this, we maintain a last stop bucket B↑

last(v) for
every v ∈ V . For every last stop sk(ν), we generate an entry (sk(ν), δ↑(sk(ν), v)) ∈ B↑

last(v)
at each vertex v in the upward CH search space rooted at sk(ν). Then, for every pickup
p ∈ Pρ, we run an individual (last stop) BCH query in G↓

p that scans the last stop bucket at
each settled vertex to compute the shortest path distances from last stops to p. When the
search scans an entry (sk(ν), δ↑(sk(ν), v)) ∈ B↑

last(v), it tries to improve the tentative distance
δ(sk(ν), p) with δ↑(sk(ν), v) + δ↓(v, p). Eventually, the shortest distance δveh(sk(ν), p) will be
found for every last stop sk(ν).

Whenever the last stop of a vehicle changes, we run two forward CH searches to remove
the bucket entries of the old last stop and insert new entries for the new last stop. We stop
the search early when the current distance no longer admits a PALS insertion with cost
smaller than the best known cost. Furthermore, we can bundle the BCH queries and use
SIMD parallelism in a similar manner to bundled elliptic BCH searches (see Section 6.1).

Cost Pruning of Bucket Scans using Sorted Buckets. A remaining issue of this approach
is the size of the last stop buckets. Without elliptic pruning, buckets contain many more
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entries, especially at vertices that have a high rank in the CH. Therefore, the queries have to
scan large numbers of bucket entries, rendering the last stop BCH approach ineffective.

The future work section of [4] suggests sorting the entries within each last stop bucket to
address this issue. For each v ∈ V , we sort the entries in B↑

last(v) by their distance δ↑(sk(ν), v)
in increasing order. Suppose a pickup query rooted at p ∈ Pρ scans the bucket B↑

last(v). Let

cmin(x) := c′(r, p, δmin
pd , 0, treq(r), x + δ↓(v, p)) where δmin

pd := min
p∈Pρ,d∈Dρ

δveh(p, d).

Then, for any entry e = (sk(ν), δ↑(sk(ν), v)) ∈ B↑
last(v), the value cmin(δ↑(sk(ν), v)) is

a vehicle-independent lower bound for the cost of any PALS insertion where a vehicle
drives a distance of at least δ↑(sk(ν), v) + δ↓(v, p) to p. Note that cmin(x) is linear in x.
Thus, since the entries of B↑

last(v) are sorted by δ↓(sk(ν), v), we can stop the bucket scan if
cmin(δ↑(sk(ν), v)) > ĉ.

Updating the Upper Bound Cost. It is possible to simply use c(ι∗) for the upper bound
cost ĉ needed for cost pruning. However, we can also improve ĉ during the search. Each
tentative distance δ(sk(ν), p) found acts as an upper bound on the actual shortest distance
δveh(sk(ν), p). Thus, whenever the tentative distance δ(sk(ν), p) is updated, we can compute
an upper bound

cmax = c′(r, p, δveh(p, dest), 0, tmin
dep (sk(ν)), δ(sk(ν), p))

on the cost of the best PALS insertion with ν and p. We update ĉ to cmax if cmax < ĉ. This
technique finds inexact cost upper bounds early which is helpful for the stopping criterion of
bucket scans.

7.2 Collective Last Stop Searches for PALS
Finally, we propose a search approach based on the idea that we do not actually need to
know the distance between every last stop and every pickup. If we knew the best PALS
insertion ι∗

pals = (r, p, d, ν, k(ν), k(ν)) in advance, we would only need to find δveh(sk(ν), p).
Obviously, we do not know ι∗

pals in advance but we find that it is possible to prune the
distance queries for individual pickups (or actually PD-pairs) by comparing them to each
other. We introduce a collective BCH query that finds the best PALS insertion ι∗

pals as well
as the last stop distance δveh(sk(ν), p). In the following, we explain how labels representing
PD-pairs are propagated through the CH search graph and how these labels can be pruned
based on label domination.

Open and Closed Labels. A PD-pair label (p, d, δ↓(v, p)) at a vertex v ∈ V consists of the
pickup p ∈ Pρ, dropoff d ∈ Dρ and downwards distance δ↓(v, p). At each vertex v ∈ V , there
is a set of open labels open(v) and a set of closed labels closed(v). An open label is a label
that has not been settled yet. For each open label l = (p, d, δ↓(v, p)), we store a lower bound
cmin(l) for the cost of a PALS insertion that can be found for l in G↓

v

cmin(l) := c′(r, p, δveh(p, d), δpsg(d, dest), treq(r), δ↓(v, p))

Algorithm Outline. We give pseudocode for a collective BCH search in Algorithm 1. Our
search maintains a priority queue Q that contains all open labels ordered increasingly by
cmin. Initially, at each pickup p ∈ Pρ, an open label (p, d, 0) ∈ open(p) is created for each
d ∈ Dρ. As long as Q contains a label l with cmin(l) ≤ ĉ for a known upper bound ĉ on the
cost of any insertion, our search proceeds with a next step. In each step of the search, the
label l := min(Q) is removed from Q and settled as described in the following.
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Algorithm 1 Collective BCH search used to find distances from last stops to pickups.

1: procedure CollectiveBCH(Pρ, Dρ, G↓ = (V ↓, E↓)) : (p∗, d∗) and δveh(sk(ν), p∗)
2: Q := PQ of labels with keyQ(l) = cmin(l); open(v) := ∅, closed(v) := ∅ for v ∈ V

3: ĉ := c(ι∗)
4: for each (p, d) ∈ Pρ × Dρ do
5: insertLabelAtVertex(p, (p, d, 0))
6: while Q ̸= ∅ do
7: l := Q.deleteMin()
8: if cmin(l) > ĉ then return
9: settleLabel(l)

10: procedure settleLabel(l = (p, d, δ↓(v, p)))
11: open(v).remove(l); closed(v).insert(l) ▷ mark l closed
12: for each e = (sk(ν), δ↑(sk(ν), v)) ∈ B↑

last(v) do ▷ scan last stop entries at v for l

13: if cmin(l, e) > ĉ then break
14: if cmax(l, e) < ĉ then
15: (p∗, d∗) := (p, d); ĉ := cmax(l, e)

16: for each (u, v) ∈ E↓ do ▷ propagate l to neighbors of v

17: insertLabelAtVertex(u, (p, d, ℓ+(u, v) + δ↓(v, p)))

18: procedure insertLabelAtVertex(v, l′ = (p, d, δ↓(v, p)))
19: if cmin(l′) > ĉ then return
20: for each l ∈ open(v) ∪ closed(v) do
21: if l dominates l′ then return
22: for each l ∈ open(v) do
23: if l′ dominates l then open(v).remove(l)
24: open(v).insert(l′); Q.insert(l′)

Settling Open Labels. Settling an open label l = (p, d, δ↓(v, p)) consists of three steps:
First, we mark l closed at v, i.e. we move l from open(v) to closed(v). Second, we search for
a new best insertion by traversing all entries in the last stop bucket B↑

last(v). For each entry
e = (sk(ν), δ↑(sk(ν), v)) ∈ B↑

last(v), we compute an upper bound cost

cmax(l, e) := c′(r, p, δveh(p, d), δpsg(d, dest), tmin
dep (sk(ν)), δ↑(sk(ν), v) + δ↓(v, p)).

If cmax(l, e) < ĉ, we mark ι = (r, p, d, ν, k(ν), k(ν)) as the best known PALS insertion, store
the tentative distance δ(sk(ν), p) = δ↑(sk(ν), v) + δ↓(v, p), and update ĉ := cmax(l, e). Note
that cmax(l, e) is the exact cost of the PALS insertion ι = (r, p, d, ν, k(ν), k(ν)) if δ(sk(ν), p)
is a shortest path distance. Since the BCH search finds shortest up-down paths, we will thus
eventually find the best PALS insertion. As before, we can stop each bucket scan early. For
this purpose, we compute a vehicle-independent cost lower bound cmin(l, e) s.t. we can stop
the search early if cmin(l, e) > ĉ using

cmin(l, e) := c′(r, p, δveh(p, d), δpsg(d, dest), treq(r), δ↑(sk(ν), v) + δ↓(v, p)).

Third, we propagate l to all neighboring vertices of v. For each neighboring vertex w ∈ V

with (w, v) ∈ G↓, we create a new open label l′ = (p, d, ℓ+(w, v) + δ↓(v, p)) at w. Here, we
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employ cost pruning by discarding l′ if the lower bound cost cmin(l′) for this PD-pair and
this distance exceeds ĉ. Furthermore, we may be able prune l′ at v if it is dominated by an
existing label at v as described in the following.

Domination Pruning. Propagating a label through the entire search space for every PD-pair
is too expensive. However, we find that we can compare labels at the same vertex and prune
dominated labels in a technique we call domination pruning. Intuitively, a label l dominates
a label l′ at a vertex v if we know that any insertion found in G↓

v that uses l′ has higher
costs than the equivalent insertion using l.

To formalize this, we first define an upper bound for the cost of a PALS insertion found in
G↓

v for a label l. Let l = (p, d, δ↓(v, p)) be a label at v and e = (sk(ν), δ↑(sk(ν), w)) ∈ B↑
last(w)

a last stop bucket entry at a vertex w ∈ V ↓
v . Then, we define an upper bound for the cost of

an insertion where ν drives from sk(ν) to p via w and v as
cmax(l, v, e) := c′(r, p, δveh(p, d), δpsg(d, dest), tmin

dep (sk(ν)), δ↑(sk(ν), w) + δ↓(w, v) + δ↓(v, p))

With this, we can formally define the domination relation between labels:

▶ Definition 6. A PD-pair label l dominates another label l′ at a vertex v ∈ V exactly if
cmax(l, v, e) < cmax(l′, v, e) for every w ∈ V ↓

v and e ∈ B↑
last(w).

▶ Theorem 7. If a label l dominates another label l′ at v, we do not need to settle l′ at v.

Proof. This can be shown by contradiction. Assume l = (p, d, δ↓(v, p)) dominates l′ =
(p′, d′, δ↓(v, p′)) at v. Further, assume that ι = (r, p′, d′, ν, k(ν), k(ν)) is the best PALS
insertion. Let π be a shortest path from sk(ν) to p′. Wlog. π is an up-down-path in the CH
consisting of an upwards prefix π↑ and a downwards suffix π↓. If π↓ does not contain v, then
the collective search will not find π in G↓

v, and we do not have to settle l′ at v.
Otherwise, π↓ = (w, . . . , v, . . . , p′) with w ∈ V ↓

v . Let e = (sk(ν), δ↑(sk(ν), w)) ∈ B↑
last(w).

Since π is a shortest path, we know that

cmax(l′, v, e) =c′(r, p′, δveh(p′, d′), δpsg(d′, dest), tmin
dep (sk(ν)), δveh(sk(ν), p′))

=c((r, p′, d′, ν, k(ν), k(ν))).

However, l dominates l′ which means that
c((r, p, d, ν, k(ν), k(ν))) ≤ cmax(l, v, e) < cmax(l′, v, e) = c((r, p′, d′, ν, k(ν), k(ν)))

This contradicts ι being the best PALS insertion. Hence, we do not have to settle label l′

at v to find the best pair for ν. ◀

Efficiently Computing the Domination Relation. We find that it is not trivial to compute
the domination relation efficiently because of the non-linearity of the cost function.

Consider two labels li = (pi, di, δ↓(v, pi)) for i = 1, 2 and two PALS insertions ιi =
(r, pi, di, ν, k(ν), k(ν)) found for these labels in G↓

v. Assume the vehicle ν arrives at v at
some time t = tmin

dep (sk(ν)) + δveh(sk(ν), v). If we know t, we can determine the cost difference
c(ι1) − c(ι2) irrespective of the actual vehicle ν. In other words, the difference ∆c(l1, l2, t) in
costs between any insertions that can be found for l1 and l2 in G↓

v is a function of t. Then, if
∆c(l1, l2, t) < 0 for all t ≥ 0, every insertion found in G↓

v will be better with l1 than with l2,
i.e. l1 dominates l2 .

If the cost function for PALS insertions were to grow linearly with t, then ∆c(l1, l2, t)
would be constant wrt. t. In that case, we could simply check for domination using
∆c(l1, l2, 0) < 0. However, the cost function does not increase linearly with t: Firstly, the
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cost is constant wrt. t as long as the vehicle arrives at pi earlier than the passenger, i.e.
t + δ↓(v, pi) + tmin

stop ≤ treq(r) + δpsg(orig, pi) (see Section 4.2). Secondly, due to the wait time
and trip time soft constraints, linear penalty terms are added to the cost function starting at
a certain threshold for the wait time and trip time, both of which t contributes to.

The passenger arrival time at pi and the thresholds for soft constraint penalties differ
between labels. Thus, ∆c(l1, l2, t) varies with t. Since we do not know which values of t are
possible for insertions found in G↓

v, we cannot trivially determine whether l1 dominates l2.

Approximating the Domination Relation. Instead, we under-approximate the domination
relation by computing a sufficient precondition. For this purpose, we find an upper bound
∆max

c (l1, l2) ≥ maxt≥0 ∆c(l1, l2, t) on the difference in insertion costs between any insertion
that can be found for l1 and l2 in G↓

v. Then, l1 dominates l2 if ∆max
c (l1, l2) < 0.

We now explain how to find this upper bound: The maximum difference in the departure
times at p1 and p2 is tmax

dep (l1) − tmin
dep (l2) with

tmax
dep (l1) := max{δ↓(v, p1) + tmin

stop, δpsg(p1, orig)}
tmin
dep (l2) := δ↓(v, p2) + tmin

stop

Then, for every insertion found in G↓
v, the difference in detours between l1 and l2 is bounded

by ∆detour(l1, l2) := tmax
dep (l1) + δveh(p1, d1) − tmin

dep (l2) − δveh(p2, d2). For the difference in trip
times, we first define:

tmax
arr (l1) := tmax

dep (l1) + δveh(p1, d1) + δpsg(d1, dest)
tmin
arr (l2) := tmin

dep (l2) + δveh(p2, d2) + δpsg(d2, dest)

Then, the difference in trip times is bounded by ∆trip(l1, l2) := tmax
arr (l1) − tmin

arr (l2). We define
upper bounds for the difference in penalties for the wait and trip time soft constraints as

∆vio
wait(l1, l2) := γwait max{tmax

dep (l1) − tmin
dep (l2), 0}

∆vio
trip(l1, l2) := γtrip max{∆trip(l1, l2), 0}

Note that the differences in detours and trip times are allowed to be negative to express a
cost advantage for l1 but the differences in penalties are not. Even if tmax

dep (l1) < tmin
dep (l2) or

∆trip(l1, l2) < 0, we may find insertions in G↓
v where no penalties apply for either label. In

those cases, the penalty difference has to be zero. Let ∆walk(l1, l2) be the fix difference in
walking costs. Putting it all together, we get

∆max
c (l1, l2) := ∆detour(l1, l2) + τ∆trip(l1, l2) + ω∆walk(l1, l2) + ∆vio

wait(l1, l2) + ∆vio
trip(l1, l2)

We can compute ∆max
c (l1, l2) in constant time with information that is known at v without

looking ahead in the search tree. Since we under-approximate domination, it is possible
that l1 actually dominates l2 but our condition does not hold. However, we find that our
domination criterion still manages to prune the vast majority of labels early.

Limitations. We remark that the insertion ι found by the collective search is only guaranteed
to be the best possible PALS insertion if ι holds the service time hard constraint. Since
our search ignores the service time constraint, it may return an insertion that breaks the
constraint even if there are other PALS insertions that do not.

Therefore, if ι breaks the service time constraint, we fall back to computing the distances
from every last stop to every pickup using individual last stop BCH searches. The fallback
individual BCH searches can make use of the good cost upper bounds found during the
collective search. We find that this is only necessary in exceedingly rare cases.
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Figure 2 Example dropoff after last stop insertions that illustrate why domination between
dropoffs is a partial relation. Shows existing vehicle route (solid) with current last two stops
(sk(ν)−1, sk(ν)), two pickups between these stops (p1, p2) and two dropoffs after the last stop (d1, d2)
with necessary detours (dashed), as well as the walking distances from either dropoff to the destination
(dotted). Edges are annotated with vehicle travel times or passenger travel times (marked with p).

8 Dropoff After Last Stop Insertions

The final insertion type are dropoff after last stop (DALS) insertions (see Figure 1). Similarly
to PALS insertions, we face the problem of not knowing the distances from the vehicles’ last
stops to dropoffs. We can use the same approaches of Dijkstra searches as well as individual
and collective BCH searches to find these distances with some minor differences.

Firstly, cost pruning is less effective than in the PALS case since the lower bounds on
costs cannot include the PD-distance. Secondly, we cannot update the global cost upper
bound ĉ during the searches in the DALS case as we lack information about the cost of
inserting the pickup earlier in the route. Thirdly, collective BCH searches have some more
intricate differences between the PALS and DALS cases. We go into more detail about these
differences in the rest of this section.

Pareto-Best Dropoffs. The largest difference of collective searches in the DALS case
compared to the PALS case is the goal of the search. Whereas collective PALS searches
always find a single best PD-pair, we cannot find a single best dropoff. Instead, we find a set
of pareto-best dropoffs per vehicle.

To see why there cannot always be a single best dropoff for a vehicle ν ∈ F , assume
that we would like to decide whether d1 ∈ Dρ always leads to better DALS insertions than
d2 ∈ Dρ. Dropoff d1 is always better than d2 for ν if c(ι1) < c(ι2) for any DALS insertions
ι1 = (r, p, d1, ν, i, k(ν)) and ι2 = (r, p, d2, ν, i, k(ν)) for any pickup p ∈ Pρ and 0 ≤ i < k(ν).

Consider the cost difference c(ι1) − c(ι2). The vehicle detour and trip time is the same
for both insertions up to sk(ν). Thus, the differences between ι1 and ι2 in the detours, trip
times, added trip times for existing passengers, walking times, and penalties for the wait
time constraint are all entirely independent of the choice of p and i. However, for different
choices of p and i, either insertion may or may not violate the trip time soft constraint. Thus,
it is possible that ι1 is better for some choice of p and i while ι2 may better for another.

To illustrate this issue, consider the example depicted in Figure 2. Suppose τ = 1 and
γtrip = 10. Further, let the maximum trip time tmax

arr (r) − treq(r) = 10. Let δpsg(orig, p1) < 3
as well as δpsg(orig, p2) < 3.

Consider the insertions ι1i = (r, p1, di, ν, k(ν) − 1, k(ν)) for i = 1, 2. Neither insertion
violates the trip time soft constraint as ttrip(ι11) = 3 + 1 + 1 + 4 = 9 and ttrip(ι12) =
3 + 1 + 3 + 1 = 8. The difference in detours is tdetour(ι11) − tdetour(ι12) = 5 − 7 = −2, leading
to a difference in costs of c(ι11) − c(ι12) = −1. Therefore, d1 is the better choice for p1.

Now, consider the insertions ι2i = (r, p2, di, ν, k(ν) − 1, k(ν)) for i = 1, 2. Here, both
insertions violate the trip time soft constraint since ttrip(ι21) = 12 and ttrip(ι22) = 11. The
difference in detours and trip times add up like before but with the added difference in
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Table 1 Key figures of our benchmark instances.

Instance |V | |E| #veh. #req.
Berlin-1pct 73689 159039 1000 16569
Berlin-10pct 73689 159039 10000 149185
Ruhr-1pct 394049 840587 3000 49707
Ruhr-10pct 394049 840587 30000 447555

Table 2 Average number of pickups (Np) and dropoffs (Nd) for specific values of the walking
radius ρ on the Berlin-1pct, Berlin-10pct, Ruhr-1pct, and Ruhr-10pct instances.

B-1% B-10% R-1% R-10%
ρ Np Nd Np Nd Np Nd Np Nd

0s 1 1 1 1 1 1 1 1
150s 10 10 10 10 12 11 12 11
300s 33 31 33 31 35 33 35 33
450s 68 66 68 67 70 68 70 68
600s 115 113 115 114 114 112 114 112

penalties, we get c(ι21) − c(ι22) = −1 + 10 = 9. Thus, d2 is the better choice for p2.
This demonstrates that we may not be able to choose a single best dropoff for DALS

insertions. Instead, we only know that a dropoff d1 always leads to better insertions than a
dropoff d2 if d1 is better for DALS insertions with and without a trip time violation. Thus,
we can only ever obtain a set of pareto-best dropoffs for each vehicle.

Algorithm Outline and Partial Domination. Our collective search maintains open and
closed dropoff labels of the form (d, δ↓(v, d)) at each vertex v ∈ V with d ∈ Dρ. Initially,
an open label (d, 0) is created at every d ∈ Dρ. As in the PALS case, we associate a lower
bound cost cmin(l) with each open label l. In each step, the open label l with the smallest
lower bound cost is settled by closing the label at its vertex v, scanning the last stop bucket
at v, and propagating l to neighboring vertices in G↓

v.
We use our cost based stopping criteria for bucket scans and the entire search. When

a label is propagated to a new vertex, we apply domination pruning. For the domination
relation, we test whether a dropoff will always be better than another dropoff with and
without trip time penalties:

▶ Definition 8. Let li = (di, δ↓(v, di)) for i = 1, 2 be two dropoff labels at v ∈ V . Let

∆detour(l1, l2) := δ↓(v, d1) − δ↓(v, d2)
∆trip(l1, l2) := δ↓(v, d1) + δpsg(d1, dest) − δ↓(v, d1) − δpsg(d2, dest)

Then d1 dominates d2 if
1. ∆detour(l1, l2) + τ∆trip(l1, l2) < 0 and
2. ∆detour(l1, l2) + (τ + γtrip)∆trip(l1, l2) < 0

9 Experimental Evaluation

Our source code is written in C++17 and compiled with GCC 9.4 using -O3. We check the
correctness of our implementation with a rigorous use of assertions (disabled for experiments).
We conduct our experiments on a machine running Ubuntu 20.04 with 512 GiB of memory
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Figure 3 Evaluation of bundled elliptic BCH searches (left) and PD-distance searches (right).
Shows mean search times (in ms) for either search on the Berlin-1pct and Berlin-10pct instances
with ρ ∈ {0s, 150s, 300s, 450s, 600s}. Considers k ∈ {1, 8, 16, 32} for elliptic BCH searches and
k ∈ {1, 16, 32, 64} for PD-distance searches, using SIMD instructions for k > 1. Additionally shows
running times without SIMD instructions for elliptic searches with k = 16 and PD-distance searches
with k = 32. Note the different x- and y-axes.

and two 16-core Intel Xeon E5-2670 v3 processors at 2.3GHz. We use 32-bit distance labels
and the AVX2 SIMD instruction set with 256-bit registers to compute up to 8 operations in
one vector instruction.

We evaluate our implementation on the Berlin-1pct (B-1%), Berlin-10pct (B-10%),
Ruhr-1pct (R-1%), and Ruhr-10pct (R-10%) request sets [4] that respectively represent 1%
and 10% of ridesharing demand in the Berlin and Rhein-Ruhr metropolitan areas on a
weekday. The request sets for Berlin were artificially generated based on the Open Berlin
Scenario [19] for the MATSim transport simulation [12]. The request sets for the Rhein-Ruhr
area were obtained by scaling up the Berlin request sets [4]. The underlying road networks
are obtained from OpenStreetMap data1. We use the known speed limit of each road to
determine the travel time of the according edge in the vehicle network. For the passenger
network, we assume a constant walking speed of 4.5km/h. We show the sizes of the networks
and request sets in Table 1. We scale the number of pickups Np and dropoffs Nd by using
increasing walking radii ρ ∈ {0s, 150s, 300s, 450s, 600s} which lead to the numbers of PD-
locations given in Table 2. Unless stated otherwise, we run 5 iterations per combination of
algorithm configuration, input, and radius ρ and report the average running times.

For our model parameters, we choose tmax
wait = 600s, tmin

stop = 60s, γwait = 1, γtrip = 10,
τ = 1, and ω = 0. We use the open-source library RoutingKit2 to compute the required CHs
of the road networks which takes only a few seconds for our instances. This pre-processing
step takes only a few seconds for each graph on any of our input instances.
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Figure 4 Evaluation of bundled last stop searches. Shows mean search times (in ms) for
bundled Dijkstra searches (left) and individual BCH searches (right) in the PALS (top) and DALS
(bottom) cases on the Berlin-1pct and Berlin-10pct instances with ρ ∈ {0s, 150s, 300s, 450s, 600s}.
Considers k ∈ {1, 16, 32, 64} for Dijkstra searches and k ∈ {1, 8, 16} for BCH searches, using SIMD
instructions for k > 1. Additionally shows running times without SIMD instructions for Dijkstra
searches with k = 64 and BCH searches with k = 8. Note the different y-axes.

9.1 Bundled Searches

In this section, we experimentally evaluate bundled searches in each of the described applica-
tions and find the optimal value of k for each of them. We conduct our experiments on the
Berlin-1pct and Berlin-10pct instances with ρ ∈ {0s, 150s, 300s, 450s, 600s}. Due to time
constraints, we first find the optimal value of k with vector instructions and then evaluate
the running time without vector instructions only for that value of k. We remark, though,
that the optimal values of k may differ depending on whether vector instructions are used at
all and which SIMD instruction set is available. We only run a single iteration of Dijkstra
searches because of their prohibitive running times.

Bundled Elliptic BCH Searches. We show experimental running times for bundled elliptic
BCH searches with k ∈ {1, 8, 16, 32} in Figure 3. We find that k = 16 is best suited here.

1 https://download.geofabrik.de/
2 https://github.com/RoutingKit/RoutingKit

https://download.geofabrik.de/
https://github.com/RoutingKit/RoutingKit
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Because of the use of shortcut edges, the search trees of each source in the CH only start
to overlap at larger distances from the sources. Therefore, we can bundle edge relaxations
and bucket scans in the periphery of the sources but not closer to each source. Sorted buckets
additionally shift the focus of the work closer to the sources where large values of k are
ineffective. The value of k = 16 strikes a balance between the two aspects of limiting the
overhead closer to the sources while bundling operations further away.

The advantage of k = 16 over k = 32 is more pronounced on the Berlin-10pct instance.
We attribute this to the fact that there are more vehicles in total which means that buckets
contain more entries on average. Thus, with sorted buckets, the focus on work closer to the
sources is more pronounced.

Bundled searches with k = 16 and without SIMD parallelism (no SIMD) lead to only
small speedups. Again, bundling works better for the smaller instance due to a larger relative
part of the searches’ work being performed further away from the sources.

Bundled PD-Distance Searches. In Figure 3, we show the running times for bundled
PD-distances searches with k ∈ {1, 16, 32, 64}. Since our PD-distance BCH searches perform
more work further away from the sources than elliptic BCH searches, the search trees of all
searches overlap more. Thus, larger values of k allow effective bundling of edge relaxations
and the generation and scan of bucket entries. Nonetheless, the potential for bundling is
limited and larger values of k lead to additional overheads closer to the sources. In effect,
k = 32 is the best choice for our PD-distance searches.

We additionally consider the running time at k = 32 without SIMD instructions (no
SIMD). We observe speed-ups of up to 2.2 even without SIMD parallelism. This is again due
to the larger amount of work performed in the periphery of the sources that can be bundled
well.

Bundled Last Stop Searches. We depict the running times of bundled Dijkstra searches
and individual BCH searches for the PALS and DALS cases in Figure 4.

We find that Dijkstra searches are well suited for bundling as we observe the smallest
search times with k = 64. Since Dijkstra searches do not use shortcut edges, the searches for
each individual source meet much earlier than BCH searches. Thus, the vast majority of the
large number of edge relaxations of Dijkstra searches can be bundled well. This is evidenced
by the fact that we see good speedups for bundled Dijkstra searches even without SIMD
instructions. Larger k ≥ 128 may be useful for larger numbers of sources but eventually we
will run into cache limitations as hundreds of bytes of distance labels need to be handled per
vertex.

The bundling of individual BCH searches is faced with the same issue as elliptic BCH
searches. Because of the sorted buckets, most bucket entry scans are performed close to
the sources of the BCH queries. In fact, this issue is even more pronounced for individual
BCH queries as the total radius of each search is smaller due to the cost based stopping
criterion. In the PALS case, the radius of each search is so small that bundling without
SIMD instructions even at k = 8 actually increases the running time. Bundled searches work
better in the DALS case since the stopping criterion is worse which leads to more work at
larger distances. With SIMD parallelism, k = 8 has almost no drawbacks compared to k = 1.
Thus, the optimal value in both cases is k = 8.

9.2 Sorted Buckets
In the following, we analyze the effect of sorted buckets on elliptic BCH searches as well as
individual and collective last stop BCH searches. We consider the reduction in the number
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Figure 5 Effectiveness of sorted buckets on running time of elliptic BCH queries. Shows
mean running times (in ms) at k = 1 on the Berlin-1pct and Berlin-10pct instances for ρ ∈
{0s, 150s, 300s, 450s, 600s}.

of bucket entries scanned as well as the effects on the running time of the searches and the
time for updating buckets. We experimentally compare all searches with sorted and unsorted
buckets on the Berlin-1pct and Berlin-10pct instances with ρ ∈ {0s, 150s, 300s, 450s, 600s}.
For elliptic BCH searches and individual last stop BCH searches, we use k = 1. We only run
a single iteration with unsorted buckets for elliptic BCH searches and individual last stop
BCH searches.

Sorted Buckets for Elliptic BCH Searches. The buckets for elliptic BCH searches are
already strongly pruned using elliptic pruning. Therefore, sorting these buckets only elicits a
major effect with a sufficiently large number of vehicles. As we can see in Figure 5, sorted
buckets only have a limited impact for the Berlin-1pct instances but a much larger one for
the Berlin-10pct instance as the latter considers ten times more vehicles. On the larger
input, sorted buckets reduce the number of entries scanned by about half, which leads to a
decrease in the search time by up to 40% (20ms). At the same time, maintaining the order
of bucket entries only increases the time for updating bucket entries by less than 10µs. In
conclusion, sorted buckets are a valuable improvement for elliptic BCH searches, particularly
with respect to the scalability to larger numbers of vehicles.

Sorted Buckets for Last Stop BCH Searches. For last stop BCH searches, sorted buckets
are vital to reduce the number of bucket entries scanned since we cannot use elliptic pruning.
We show the impact of sorted buckets on the last stop search times in Figure 6. For individual
BCH searches, more than 95% and 75% fewer bucket entries are scanned with sorted buckets
in the PALS and DALS cases, respectively. This reduces search times by up to 82% and 78%.
For collective searches, the number of bucket entries scanned reduces by about the same
relative factors. As collective searches scan fewer bucket entries in total, the impact on the
search times is less pronounced with reductions of up to 70% in both cases.

Maintaining sorted last stop buckets incurs an average overhead of less than 20µs per
request while the reduction in running time is between one and three orders of magnitude
larger.
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Figure 6 Effectiveness of sorted buckets on running time of last stop BCH queries. Shows mean
running times (in ms) of individual BCH queries (left; k = 1) and collective BCH queries (right)
in the PALS (top) and DALS (bottom) cases on the Berlin-1pct and Berlin-10pct instances for
ρ ∈ {0s, 150s, 300s, 450s, 600s} with and without sorted buckets. Note the different y-axes.

9.3 Collective BCH Searches

In Table 3, we compare the search times and the times needed for the enumeration of
candidate insertions for the three search approaches used for the PALS and DALS cases.
Additionally, we show the number of relaxed edges and scanned bucket entries. We show
the results for ρ ∈ {0s, 300s, 600s} on the Berlin-1pct and Berlin-10pct instances. We
only conducted one iteration of the experiments for Dijkstra searches because of their large
running time.

We find that collective searches are slower than individual BCH searches at ρ = 0s (except
for the DALS case on B-1%). This is due to the fact that there is only a single pickup
and dropoff which means the overhead for propagating labels instead of only distances is
unwarranted.

At ρ = 300s and ρ = 600s, collective searches offer the best search times and by far the
best enumeration times, though. The search times of collective searches are up to an order
of magnitude smaller than those of individual BCH searches. We attribute this to two main
advantages of collective searches.

Firstly, collective searches can be pruned more precisely because we use lower bounds
on the cost of specific PD-pairs or dropoffs instead of a general lower bound on the cost of
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Table 3 Comparison of the running times (in µs) of collective BCH searches (Coll.), individual
BCH searches (BCH), and Dijkstra searches (Dij.) for the PALS and DALS case and three radii
ρ ∈ {0s, 300s, 600s} on the Berlin-1pct and Berlin-10pct instances. Shows number of edge
relaxations (#rel.), number of bucket entries scanned (#scans), mean search time (tsearch) and the
mean time for enumerating possible insertions (tenum) per request. Times marked in bold are the
smallest times per radius.

Berlin-1pct Berlin-10pct
ρ Alg. #rel. #scans tsearch tenum #rel. #scans tsearch tenum

P
A
L
S

0
Coll. 33 7 4.46 0.49 12 12 3.66 0.53
BCH 30 7 3.16 0.37 12 7 2.31 0.42
Dij. 459 − 33.26 0.30 179 − 14.38 0.34

300
Coll. 225 34 40.98 0.65 68 33 19.47 0.68
BCH 493 152 41.20 27.55 357 570 62.02 93.33
Dij. 2125 − 255.21 24.64 1599 − 228.07 80.14

600
Coll. 439 64 112.81 0.79 100 52 52.47 0.89
BCH 2243 1135 191.32 408.40 1661 5530 420.25 1839.26
Dij. 14821 − 1551.77 366.51 12852 − 1689.69 1681.56

D
A
L
S

0
Coll. 177 1077 36.31 3.15 154 7895 112.76 6.89
BCH 183 1128 26.14 3.12 159 8283 116.17 7.27
Dij. 22317 − 1978.23 28.55 15780 − 1411.81 132.11

300
Coll. 197 1053 48.74 7.46 173 7857 126.67 20.13
BCH 1132 4792 134.84 97.13 1035 37684 605.15 363.65
Dij. 24762 − 3444.91 174.46 18522 − 2667.37 694.29

600
Coll. 213 1043 66.51 14.84 189 7837 141.38 40.57
BCH 3868 15484 432.85 754.17 3509 122199 1967.98 2403.68
Dij. 62087 − 8149.34 1639.57 49489 − 6807.04 5992.58

every PD-pair or dropoff. This applies to the stopping criteria for bucket scans and for the
searches as a whole.

Secondly, collective searches consider all sources in one search, maximizing the amount of
information that can be used by domination pruning. Bundled searches can only consider k

searches at once with time overheads for k > 8 (s.a.). Therefore, each edge may be scanned
by up to Np/8 or Nd/8 bundled searches with no way to bundle relaxations between searches.
Thus, the number of edge relaxations and bucket entry scans increases much faster with the
number of PD-locations (Np, Nd ∼ ρ2) for individual BCH searches than for collective BCH
searches. In fact, domination pruning works so well in the DALS case that the search time is
virtually constant with an increasing number of dropoffs (cf. Figure 6).

In addition, the enumeration times for collective searches are almost constant, too, while
they increase massively with ρ for individual BCH searches. This is due to the fact that
collective searches identify a single candidate insertion during the search while individual
BCH searches first find all distances and then enumerate an insertion for each combination
of candidate vehicle and PD-pair. Since the number of PD-pairs is proportional to ρ4,
enumeration times quickly become very large with tens of thousands of insertions tried.

9.4 Comparison with LOUD

In this section, we compare our approach with the LOUD algorithm [4].
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Table 4 Running times (in µs) of different phases of LOUD (ρ = L- . . . ) and KaRRi with different
radii (ρ ∈ {0s, 300s, 600s}) on B-1%, B-10%, R-1%, and R-10%. Shows mean times for finding Pρ and
Dρ, PD-distance searches, elliptic BCH searches, enumerating ordinary and PBNS insertions, PALS
and DALS searches, and updating routes and buckets as well as the mean total time per request.
Numbers with asterisks are estimates.

Inst. ρ
find

Pρ, Dρ
PD BCH Ord.&

PBNS PALS DALS update total

B-1%

L-0 0 17 124 147 43 1974 84 2388
0 2 36 123 42 3 28 132 367

300 95 155 497 119 43 56 138 1103
600 316 735 1703 469 156 81 140 3601

B-10%

L-0 0 16 368 415 23 1474 80 2376
0 3 35 362 353 3 119 200 1074

L-300 ∗104 ∗18930 28675 736 918 44071 ∗80 ∗93514
300 104 157 1502 641 24 140 203 2772

L-600 ∗353 ∗246521 48856 1900 8998 166244 ∗80 ∗472952
600 353 759 4804 1741 106 181 213 8158

R-1%

L-0 0 19 173 228 128 8572 82 9202
0 3 18 163 106 5 34 138 481

300 98 132 668 194 62 59 146 1375
600 293 566 1989 494 216 81 149 3807

R-10%

L-0 0 18 703 944 89 6154 80 7988
0 3 19 708 944 5 163 298 2155

300 106 138 3360 1293 42 182 320 5462
600 324 595 9396 2476 128 226 387 13554

Running Times. We give the running times for the different phases of both algorithms
on the Berlin-1pct, Berlin-10pct, Ruhr-1pct, and Ruhr-10pct instances in Table 4. For
KaRRi, we consider ρ ∈ {0s, 300s, 600s} and use the optimal last stop search approach in
each configuration. We also report the running times of the LOUD algorithm (ρ = L-0))
on all four instances. Additionally, we consider an estimate for the running time of a naïve
extension of LOUD to multiple PD-locations (ρ = L-300 and ρ = L-600) for the medium
sized Berlin-10pct instance.

First, we consider the scenario with a single pickup and dropoff (ρ = 0s) which is the
scenario considered by LOUD. Here, sorted buckets have little impact on the search times
of elliptic BCH searches even though the number of bucket entries scanned is reduced. We
attribute this to the fact that our implementation is meant to deal with any number of
PD-locations while LOUD is specialized for the case of Np = Nd = 1. Our last stop BCH
searches are well suited for ρ = 0s, though. They are up to 27 and 250 times faster than
LOUD’s Dijkstra searches in the PALS and DALS cases, respectively. Maintaining sorted last
stop buckets does lead to increased update times, though, especially for the larger instance
where buckets contain more entries. In total, we can reduce the average time per request by
factors of 6.5 for Berlin-1pct and 2.2 for Berlin-10pct compared to LOUD. On the larger
Ruhr instances, we achieve speedups of 19.1 and 3.7 for the Ruhr-1pct and Ruhr-10pct
instances.

Next, we consider our estimate for an extension of LOUD that uses only the techniques of
the original algorithm. For this, we configured KaRRi to use no bundled searches, no sorted
buckets, and to use Dijkstra searches for the PALS and DALS cases. For the PD-distances,
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Table 5 Solution quality of KaRRi with different radii (ρ ∈ {0s, 300s, 600s}) on B-1%, B-10%,
R-1%, and R-10%. For requests, we report the average and 95%-quantile wait time, and the average
ride and trip times (in mm:ss). For vehicles, we give the average times spent driving empty, driving
occupied, and making stops, as well as the average total operation time (in hh:mm).

Inst. ρ wait w.-95% ride trip empty occ stop op

B-1%
0 3:49 9:38 12:32 17:18 0:41 3:10 0:28 4:19

300 3:22 8:24 11:56 16:13 0:30 2:56 0:30 3:56
600 3:27 8:34 11:47 16:11 0:29 2:51 0:30 3:51

B-10%
0 2:31 7:11 11:57 15:07 0:16 2:29 0:26 3:10

300 2:20 6:20 11:33 14:41 0:09 2:12 0:27 2:48
600 2:30 7:34 11:27 14:50 0:08 2:08 0:27 2:42

R-1%
0 4:49 11:48 12:25 18:26 0:56 3:15 0:27 4:39

300 4:15 10:20 11:48 17:07 0:44 3:03 0:29 4:16
600 4:17 9:52 11:33 16:52 0:42 2:58 0:29 4:09

R-10%
0 3:11 8:46 11:46 15:48 0:24 2:40 0:25 3:29

300 2:45 7:07 11:13 14:51 0:16 2:26 0:26 3:08
600 2:55 7:58 11:06 14:56 0:15 2:22 0:26 3:03

we obtained an estimate for the time of running one CH-query per PD-pair by multiplying
LOUD’s PD-distance search time with Np · Nd. We find that bundling and sorted buckets
make elliptic BCH searches about one order of magnitude faster than the naïve extension.
For the PALS and DALS searches, our collective BCH approach beats the standard Dijkstra
approach by two and three orders of magnitude, respectively. We assume that the CH-queries
for PD-distances would in reality be faster than our estimate. Nonetheless, it is notable that
our BCH based approach is hundreds of times faster than the estimate.

Solution Quality. In the following, we give a first idea of how trip times and vehicle
operation times can be improved by extending ridesharing with walking.

In Table 5, we compare the solution quality of KaRRi with ρ ∈ {0s, 300s, 600s}. Note
that we allow passengers to walk to their destinations if the resulting walking time leads to
better cost than a ridesharing trip (see Section 4.1). The cost function used here equally
weights the passenger trip times and vehicle operation times (τ = 1). With larger values of
ρ, we observe improvements in both criteria. At ρ = 300s, the average vehicle operations
times and passenger wait times improve by up to 12% while trip times improve by up to 7%.
At ρ = 600s, the vehicle operation times and passenger ride times reduce further compared
to ρ = 300s.

There are a number of parameters not evaluated in these preliminary results. For instance,
we have not considered the willingness of passengers to walk longer distances in order to
reduce trip times in our cost function (since ω = 0). Also, we only show results for a fixed
number of vehicles and a density of requests representing a regular week day. In the future,
we would like to include these parameters in our analysis of the effects of PD-locations on
ridesharing and extend this evaluation to larger inputs.

10 Conclusions and Future Work

KaRRi develops efficient many-to-many routing with bucket contraction hierarchies that
allows efficient scheduling of large vehicle fleets considering many pickup and dropoff locations.
A flexible cost function allows configuration to many situations, e.g. using walking, bicycles
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or scooters. We expect that the new techniques like sorted buckets can also be applied for
other problems that use many-to-many routing with correlated sources and targets.

Next, we want to use KaRRi to evaluate different traffic scenarios. For example, we expect
that even larger savings over single PD-locations are possible when using faster individual
transport or when using fewer but larger vehicles.

Future work on the algorithmic side can achieve acceleration by clustering routing sources
into batches of size k by their proximity, by finding a collective approach for elliptic BCH
searches, and by parallelizing the algorithm both over requests (that use different vehicles)
and over different PD-locations. The overall cost could be further optimized by going away
from greedy online scheduling, instead taking into account pre-booked trips and opportunities
to transparently change existing trips for local search style optimizations.

We expect that additional generalizations can integrate KaRRi with public transportation
where pickup and dropoff locations can be stops of buses or trains and where the cost function
has to take into account the public transportation schedule.

A longer term perspective is to allow switching vehicles during a trip. This opens up
the possibility of more sharing using larger vehicles, eventually leading to a highly adaptive
software defined public transportation system. This implies interesting algorithmic challenges
as it leads to a combinatorial explosion of possible route options.
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