Understanding the chemistry of actinide compounds is crucial in many fields including medical research, energy, and radioactive materials disposal, and accordingly a number of in-depth studies have been conducted. [1] However, the electronic structures and bonding properties of actinides have not been studied as deeply as those for lanthanides or transition metals. In this work, we describe the use of high-energy resolution X-ray absorption/emission spectroscopy (HR-XAS and HR-XES, respectively) and resonant inelastic X-ray scattering (RIXS) techniques to probe the local atomic and electronic structures of the molecular [(UO2)F5] 3-, [(UO2)Cl4] 2-, and [(UO2)Br4] 2- complexes. In addition, we also detail the methodological approach for predicting the ligand K-edge high-energy resolution XANES, and U M4,5-edge core-to-core/valence band RIXS by means of first principles density-functional theory (DFT) calculations by using a time-dependent formalism and multiplet calculations, respectively, at the relativistic level (4-component Dirac Hamiltonian). [2] By comparing the theoretical and experimental spectra, our study also provides insight into the roles of the uranium 5f and 6d orbitals for the metal ligand bonding as a function of the equatorial ligand (fluoride, chloride, and bromide). ... mehrThe X-ray spectroscopic experiments were performed at the Karlsruher Research Accelerator (KARA) Light Source (Karlsruhe, Germany). The U M4-edge and Br K-edge high energy resolution X-ray absorption emission and resonant inelastic X-ray scattering data were recorded at the ACT station of the CAT-ACT beamline, [3a] the Cl K-edge XANES at the INE-Beamline, [3b] and the F K-edge XANES at the X-SPEC beamline. [3c] This work is supported by the ERC Consolidator grant “the Actinide Bond” (N° 101003292) under the European Union’s Horizon 2020 research and innovation program.
[1] (a) Tobin, J.G.; Ramanantoanina, H.; Daul, C.; Poussel, P.; Yu, S.-W.; Nowak, S.; Alonso-Mori, R.; Kroll, T.; Nordlund, D.; Weng, T.-C.; Sokaras, D.; Phys. Rev. B, 2022, 105, 125129; (b) Ramanantoanina, H.; Kuri, G.; Martin, M.; Bertsch, J.; Phys. Chem. Chem. Phys., 2019, 21, 7789; (c) Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P.S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M.A.; Geckeis. H.; Nature Communications, 2017, 8, 16053. [2] (a) Bagus, P.S.; Schacherl, B.; Vitova, T.; Inorg. Chem., 2021, 60, 16090; (b) Polly. R.; Schacherl, B.; Rothe, J.; Vitova, T.; Inorg. Chem., 2021, 60, 18764; (c) Vitova, T.; Pidchenko, I.; Biswas, S.; Beridze, G.; Dunne, P.Q.; Schild, D.; Wang, Z.; Kowalski, P.M.; Baker, R.J.; Inorg. Chem., 2018, 57, 1735. [3] (a) Zimina, A.; Dardenne, K.; Denecke, M.A.; Grundwaldt, J.D.; Huttel, E.; Lichtenberg, H.; Mangold, S.; Pruessmann, T.; Rothe, J.; Steininger, R.; Vitova, T.; J. Phys.: Conference Series, 2016, 712, 012019; (b) Rothe, J.; Butorin, S.; Dar denne, K.; Denecke, M.A.; Kienzler, B.; Löble, M.; Metz, V.; Seibert, A.; Steppert, M.; Vitova, T.; Geckeis, H.; Review of Scientific Instruments, 2012, 83, 043105; (c) Weinhardt, L.; Steininger, R.; Kreikemeyer-Lorenzo, D.; Mangold, S.; Hauschild, D.; Batchelor, D.; Spangenberg, T.; Heske, C.; J. Synchrotron Radiation, 2021, 28, 609.