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Topologically protected optical polarization
singularities in four-dimensional space
Christina M. Spaegele1*, Michele Tamagnone1,2*, Soon Wei Daniel Lim1, Marcus Ossiander1,
Maryna L. Meretska1, Federico Capasso1*

Optical singularities play a major role in modern optics and are frequently deployed in structured light, super-
resolution microscopy, and holography. While phase singularities are uniquely defined as locations of unde-
fined phase, polarization singularities studied thus far are either partial, i.e., bright points of well-defined po-
larization, or are unstable for small field perturbations. We demonstrate a complete, topologically protected
polarization singularity; it is located in the four-dimensional space spanned by the three spatial dimensions
and the wavelength and is created in the focus of a cascaded metasurface-lens system. The field Jacobian
plays a key role in the design of such higher-dimensional singularities, which can be extended to multidimen-
sional wave phenomena, and pave the way for unconventional applications in topological photonics and pre-
cision sensing.
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INTRODUCTION
The field of singular optics explores the wide range of physics linked
to phase and polarization singularities in electromagnetic fields (1–
7) and has led to a wide range of applications (8–11). The definition
of phase singularities is unambiguous: It describes points of vanish-
ing amplitude and undefined phase in a complex scalar field (2, 12,
13). Examples of phase singularities include Laguerre-Gaussian
beams (with azimuthal index m ≠ 0), which carry orbital angular
momentum (OAM) and have lines of zero intensity and undefined
phase along their optical axes (4).

Polarization singularities in monochromatic fields, on the other
hand, have a multivalent definition in the literature, requiring only
one or more parameters of the polarization ellipse (e.g., azimuthal
angle and ellipticity angle) to be singular (1, 4, 8, 14–22). They
cannot be considered as complete polarization singularities as the
polarization is either still defined at the singularity {e.g., L lines
and bright C points [(22) and the Supplementary Materials]} or sin-
gular only in a specific basis and not topologically protected {e.g., V
points, dark C points [(8) and the Supplementary Materials]}. They
are, hence, easily destroyed by perturbations arising from many
sources, such as stray light and device defects, which have the
effect of adding or subtracting complex fields. Such fragility
greatly limits their useful application range.

The shortcomings of the polarization singularities investigated
so far call for research into the existence and design of complete po-
larization singularities, i.e., topologically protected points where the
polarization is not defined. Polarization patterns have been explored
in two-dimensional (2D) and 3D configurations (the latter includ-
ing the phase degree of freedom) in Poincare beams, skyrmions, and
unstable singular membranes (23–25), as well as in the closely
related field of topological photonics (26–28). Our aim here is
instead to create a fully topologically protected, complete polariza-
tion singularity in structured light fields.

Conversely, one can already find topologically protected phase
singularities in random complex scalar fields such as the speckle
patterns of polarized monochromatic light reflected by a nonpola-
rizing random medium (13, 29–31). If the speckle pattern is project-
ed onto a 2D screen, several points of vanishing amplitude and
undefined phase appear. Sufficiently small perturbations in the
field (e.g., by the addition of stray plane waves) do not destroy
these phase singularities but only displace them in space. The stabil-
ity of these singularities against small field perturbations is guaran-
teed by the topological structure of wave fields; we call these singular
structures topologically protected and they are associated with
quantized invariant values known as the topological charge. The
only way to eliminate such singularities is to use a perturbation
that is strong enough to bring together topological charges of oppo-
site sign. This overlap will cause these singular structures to annihi-
late (13, 32).

In this work, we begin with a close elucidation of the protection
mechanism for speckle patterns in the 2D transverse plane spanned
by two Cartesian dimensions. We demonstrate that complete polar-
ization singularities are not protected against perturbations in 2D
and even 3D physical spaces. A higher-dimensional space is re-
quired to achieve such protection. It has been shown that any phys-
ical property of light (such as wavelength or angular momentum) or
system parameter can be used as a synthetic dimension to extend the
3D Cartesian space, which creates many opportunities for rich and
profound topological photonics effects (33). Using such a 4D syn-
thetic space formed by the three spatial dimensions and the wave-
length of light, we show that a topologically protected complete
polarization and phase singularity can be achieved by a direct gen-
eralization of the phase singularity protection concept in two di-
mensions. These complete polarization singularities have a well-
defined higher-dimensional topological charge.

We have realized complete polarization singularities using sub-
wavelength-spaced arrays of optical elements (metasurfaces) and
probed their topological protection with respect to stray light and
device imperfections. The metasurface is designed to create an ellip-
soid of light in the focal region of an aspheric lens with a complete
and topologically protected polarization singularity at its center.
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Spatially resolved measurements of the polarization in the focal
region demonstrate the existence of all possible polarization states
around the singularity. We perturb the field at and around the sin-
gularity by adding a perturbative polarized field at the singularity
position. The singularity is experimentally observed to be topolog-
ically protected against such perturbations. Last, we discuss the ap-
plications of this generalized class of optical fields to stimulated
emission depletion (STED) microscopy, optical metrology, and ad-
vancing the fundamental understanding of optical field topology.

RESULTS
Generalizing phase singularities
We will build up to the complete polarization singularity geometry
in 4D space by first examining the migration of the zeros of a simple
1D function when it is perturbed. Then, we will extend these obser-
vations to the 2D phase singularity. Last, we will generalize the find-
ings to design and characterize the polarization singularity in 4D
space. For all these descriptions, we will only consider the class of
twice continuously differentiable fields (C2), which is justified as we
can write steady-state electromagnetic waves in free space as the
linear superposition of a finite number of plane waves. Here,
regular type indicates scalars, boldface type indicates vectors (e.g.,
E), and overlines (e.g., J) indicate matrices and tensors.

We begin with an arbitrary 1D real-valued function f : ℝ1 ↦ ℝ1

(Fig. 1A). One can classify the zeros of f [i.e., f(x0) = 0] into three
categories, assigning them a simple topological charge m1D that is
dependent on the function’s sign changes when crossing the zero:
m1D = 1 if the function changes from negative to positive, m1D = −1
if it changes from positive to negative, and m1D = 0 if the function is
tangent to the axis at the zero but does not cross it. This topological
charge can be formalized as

m1D ¼ lim
μ!0

sign½f ðx0 þ μÞ� � sign½f ðx0 � μÞ�
2

ð1Þ

As necessary for topological invariants, m1D can be summed
across a domain [x1, x2] to yield information about the domain
itself (34). This sum is conserved under continuous deformations
(i.e., smooth transformation of the domain boundaries), as long
as the domain boundaries do not coincide with the zero points.

Suppose an infinitesimal, uniform, real-valued perturbation ε >
0 (with ε ∈ ℝ1) is added to f (Fig. 1B). This perturbation cannot
destroy a zero with m1D = ±1 as one is guaranteed to find a
nearby field value that cancels the perturbing field and thus
moves the zero to that new position. The only way to destroy a
zero with m1D = ±1 through a uniform perturbation is to increase
the perturbation strength to merge and annihilate two zeros of op-
posite charge, as can be seen from Fig. 1A, by shifting the function
upward or downward. In contrast, zeros with m1D = 0 (for instance,
second-order zero in Fig. 1B) are not protected against perturba-
tions: They either immediately annihilate or split into two zero
points of opposite charge (m1D = ±1) (35). These m1D = 0 zero
points are, hence, infinitely rare under experimental conditions. A
system can be designed to reach this edge case in theory, but in prac-
tice, it will not be perfectly realized because of experimental
imperfections.

We also notice that near first-order zeros [i.e., f ′(x0) ≠ 0], one
can approximate the function linearly by f (x) = f ′(x0) (x − x0),

and the topological charge simplifies to m1D = sign [ f ′(x0)] (36).
That means that for first-order zeros, the first derivative value is suf-
ficient to fully describe the topological properties of the zero.
Uniform infinitesimal perturbations will not destroy the zero but
offset it by an amount Δx = −ε/f ′(x0). We will see that this is true
also in higher dimensions. For higher-order zeros [ f ′(x0) = 0], the
protection depends on the detailed behavior of the higher deriva-
tives. We summarize these observations by stating that a zero of
the 1D real-valued function is topologically protected if its first de-
rivative is nonvanishing at the point, and that this zero is associated
with a topologically invariant quantity connected to the sign of the
derivative.

The concepts of perturbation protection apply analogously to a
2D complex–valued function Ex: ℝ2 ↦ ℝ2 and can be used to de-
scribe phase singularities in speckle patterns on a 2D screen. As-
suming monochromatic light and horizontal polarization, the
complex scalar electric field Ex can be represented by its real ðRÞ
and imaginary ðIÞ parts Ex ¼ ðExR;ExIÞ

T , which depend on the
position u = (x, y)T on the screen (37). The speckle pattern shown
in Fig. 1C is obtained by adding together sinusoids of different
spatial frequencies, amplitudes, and phases. Singular positions
occur where ∣Ex(u)∣ = 0 with the phase ϕ ¼ argðExR þ iExIÞ ¼ atan
2ðExI; ExRÞ being undefined at these positions. The phase of the
field changes azimuthally around these singularities, which are as-
sociated with a positive or negative topological charge depending on
their orientation (2). In 2D, the total topological charge inside a
region bounded by a curve C is typically determined as the phase
accumulation along C (i.e., m2D ¼

1
2π

Þ
Crϕ � dlÞ, where C by con-

vention is taken counterclockwise (e.g., green curve in Fig. 1C). This
is equivalent to the winding number [(3, 4), detailed description in
the Supplementary Materials]. The topological charge of a singular-
ity is defined by taking an infinitesimally small curve C around it.

In analogy to the 1D case, we can write the Taylor expansion
around a singularity located at u0 as ExðuÞ ¼ Jðu � u0Þ, replacing
the derivative by the Jacobian matrix J, defined as

J ¼
∂ExR

∂x
∂ExR

∂y
∂ExI

∂x
∂ExI

∂y

 !

ð2Þ

and considering its determinant. Note that this definition is consis-
tent with the traditional definition of m = ±1 OAM line phase sin-
gularities: Close to the singularity, the complex scalar field is
approximately Ex(r, θ) = re±iθ = r(cosθ ± i sinθ) ≈ x ± iy, up to an
overall scale factor. In this case, the Jacobian is

J ¼ 1 0
0 +1

� �

ð3Þ

and the determinant equals ±1.
In direct analogy to the 1D case, there are two cases: For first-

order zeros, i.e., det(J) ≠ 0, the Jacobian is sufficient to fully describe
the topological properties of the zero, and the topological invariant
becomes m2D = sign [det(J)]. For higher-order zeros, i.e.,
detðJÞ ¼ 0;the topological charge can be determined only by exam-
ining the higher-order derivatives (13, 29). To better illustrate this
for the simulated speckle pattern in Fig. 1C, we plot det(J) in Fig. 1D
and notice that zeros with positive topological charges are always in
a region of positive det(J), and vice versa.
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In analogy to 1D zeros, singularities of this 2D complex field
with m2D = ±1 are topologically protected because they are sur-
rounded by field values of all complex phases (Fig. 1E, top). This
means that for an arbitrary small perturbing field dE, we can find
a nearby point u′ in the plane where the field value is E(u′) =
−dE to cancel out this perturbing field so that u′ is the new singu-
larity location after the perturbation. Higher-order singularities, on
the other hand, are not topologically protected and are either de-
stroyed or split into multiple simple singularities with m2D = ±1
by the perturbation (Fig. 1E, bottom).

The Jacobian plays a critical role in understanding and justifying
topological protection of first-order zeros. Starting with the Taylor
expansion in the vicinity of the singularity, Ex ¼ Jðu � u0Þ, an ad-
ditive small perturbation ε changes the field to

E0x ¼ Jðu � u0Þ þ ɛ ¼ Jðu � u0 þ J
� 1

ɛÞ ¼ Jðu � u00Þ ð4Þ

For a well-defined, unique J
� 1

, the singularity is hence moved by

an amount J
� 1

ɛ and is now positioned at u00 ¼ u0 � J
� 1

ɛ. There-
fore, a singularity is maximally protected (i.e., the singularity

position changes the least upon perturbation) if it is surrounded
by a large region of a uniform, uniquely invertible Jacobian with

large determinant as J
� 1
≏ 1

detðJÞ

� �

. Note that J
� 1

is unique and

well defined only if J is a square matrix and if det(J) is not zero.

A well-defined, unique J
� 1

further ensures that all phases are
found around the singularity. A small, arbitrary field dEx =
a(cosθ, sinθ)T with amplitude a and phase θ is located at the

unique offset du ¼ � J
� 1
dEx from the singularity.

Figure 1F shows that the field around the phase singularity
changes with the Jacobian and does not need to be circularly sym-
metric. The orientation, ellipticity, and rotation of the field are de-
termined by the singular value decomposition (SVD) of the
Jacobian (Supplementary Materials).

We summarize the connection between topological protection
and the nonvanishing of the Jacobian by stating that the topological
protection of a singular point of Ex: ℝ2 ↦ ℝ2 can be ensured if the
determinant of the Jacobian is nonvanishing at the point (full proofs
in the Supplementary Materials). While it has been described before

Fig. 1. Generalization of phase singularities. (A) A simple 1D function with marked zeros and local extrema. (B) Only zeros with a nonzero derivative (topological
charge,m1D = ±1) are robust with respect to an infinitesimal perturbation ε (left and middle). Zeros that coincide with an extremum (m1D = 0, right) are not topologically
protected and either disappear or are split into multiple zeros of opposite charge when the perturbation is added. (C) Simulation of a random speckle pattern projected
on a screen, showing the field’s amplitude and phase. Equiphase lines intersect at singularities, i.e., points of vanishing amplitude and undefined phase. The phase
increases azimuthally from 0 to 2π around the singularities with a clockwise (counterclockwise) increase in phase corresponding to a negative (positive) topological
charge (highlighted respectively). Note that only zeros with a ±2π phase accumulation around the singularity are found in speckle patterns, corresponding to m2D =
±1. (D) The same speckle pattern as in (C), plotting the Jacobian determinant (see the main text); each positive singularity falls in a region of positive determinant (m2D =
1) and vice versa. (E) While singularities withm2D = ±1 are topologically protected against an additive infinitesimal perturbation ε to the field, singularities withm2D = 0
are destroyed or break into multiple singularities of opposite charges. They are hence not observed in random fields and do not appear in the speckle pattern shown in
(C). (F) The field around the singularity can be described by the Jacobian and does not need to be circularly symmetric.
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that the sign of the Jacobian can define the topological charge for
charge-one singularities (13, 29), in this work, we are focusing on
the role of the Jacobian to control the protection behavior and
extend the concept of protection to higher dimensions.

These conclusions apply more generally whenever zeros are con-
sidered for f : ℝN → ℝN, as the corresponding Jacobian is a square
matrix that allows a unique inverse if the determinant is nonzero.
While the topological invariant in the 1D case was concerned with
the function behavior at points to the left and right of the singularity
(more precisely, at the boundary of a 1D interval), and that of the 2D
case was based on the function’s behavior on a closed contour (at
the boundary of a 2D surface), the corresponding topological in-
variants for the N-dimensional case now correspond to function be-
havior at the boundary of an N-dimensional volume containing the
singularity. In the parlance of algebraic topology, this invariant is
known as the topological degree (38) of the function boundary,
which is equal to the sum of the topological charges of the singular-
ities inside the volume. For first-order singularities, the sign of the
determinant is the topological charge. These higher-dimensional
invariants are described further in the Supplementary Materials.

We can now use the acquired knowledge about the protection
mechanism in two dimensions to design a topologically protected
polarization singularity. If we consider polarized light beams prop-
agating along a direction z within the paraxial approximation (i.e.,
the z component of the field is negligible), the electric field vector
consists of four real components at each point in space, namely, the
real and imaginary parts of the x and y components of the field:
E ¼ ðExR;ExI;EyR; EyIÞ

T . All four components must be zero at
the polarization singularity. In the nonparaxial domain, this condi-
tion would still allow the field’s z component to be nonzero, which
would correspond to an L line in 3D Cartesian space (39) and an L
surface in 4D (Supplementary Materials). However, since every
system can approach the paraxial limit with an additional lens
included (Supplementary Materials), we design the experiment to
be firmly in the paraxial regime, justifying the assumption of
∣Ez∣ = 0. Since the Jacobian J that can be used to describe the field
EðuÞ ¼ Jðu � u0Þ can only be uniquely invertible if J is a square
matrix, we must match the number of “dimensions” to the
number of constraints on the complex field components. As E is
4D, it is hence necessary to consider a 4D space u, which replaces
the 2D screen in the case of the speckle patterns. This can be realized
by the three usual spatial dimensions plus the wavelength of light:
u = (x, y, z, λ)T.

The wavelength dependence intended here assumes that the
system is illuminated by a light source with tunable wavelength.
As a direct extension of the 2D case, topological charges can
again be defined as the degree of the function
EðuÞ ¼ ðExR;ExI;EyR;EyIÞ

T , which is again equivalent to the
sign of the function’s determinant for first-order singularity. A
singularity in such a field E: ℝ4 → ℝ4 from (x, y, z, λ) to ExR; ExI;

EyR;EyIÞ will be a polarization singularity since both transverse po-
larizations are undefined (ExR ¼ ExI ¼ EyR ¼ EyI ¼ 0Þ. We can
further engineer the 4 × 4 Jacobian to have a nonzero determinant

(and hence a well-defined J
� 1

) to create topologically protected
complete singularities that are robust against the addition of arbi-

trary polarized perturbations. A well-defined J
� 1

further ensures
that all transverse field phases and polarizations exist in the vicinity

of this singularity. Analogously to the lower-dimensional cases, we
can locate a small, arbitrary field dE ∈ ℝ4 (and hence any combi-

nation of phase and polarization) at an offset du ¼ � J
� 1
dE from

the singularity position. Hence, the field evaluated at a given dis-
tance from the singularity consists of all polarizations and phases,
as in skyrmionic hopfions (23). In the remainder of this paper, we
will show how this type of singularity can be created and experimen-
tally realized using metasurfaces.

Design of complete polarization singularities in 4D space
We chose to design the polarization singularity at the center of a
focused light beam (Fig. 2A). The light field is generated by a polar-
ization-sensitive metasurface illuminated with horizontally polar-
ized light [(40) and the Supplementary Materials] and a cascaded
aspheric convex lens. The polarization-sensitive metasurface
behaves like a spatially varying waveplate and thus gives us
control over the local polarization state in the near field of the meta-
surface with high spatial resolution (41). The convex lens relaxes
design constraints on the metasurface since the metasurface is
then not required to imprint a focusing phase profile. Our objective
is a field distribution around the singularity that can be described by
an invertible Jacobian matrix (i.e., detJ = 0) to ensure topological
protection against perturbations.

We split the design procedure into two steps, starting with the
spatial dimensions and later dealing with the wavelength depen-
dence. As long as detJ = 0, the Jacobian and its constituent
matrix elements can be chosen freely (including off-diagonal ele-
ments) without destroying the protection of the singularity. While
strength and orientation of the field confinement can be designed
using the SVD of the Jacobian (Supplementary Materials), for sim-
plicity, we initially search for a design where the Jacobian is diagonal
in the spatial elements. Let (dx, dy, dz, dλ)T be a displacement from
the singularity position in 4D space. First, we consider the spatial
structure of the singularity at the design wavelength dλ = 0. We
can describe the field around the singularity as

dE ¼

dExR

dExI

dEyR

dEyI

0

B
B
@

1

C
C
A ¼ J

dx
dy
dz
dλ

0

B
B
@

1

C
C
A ¼ J0

1 0 0 J14
0 1 0 J24
0 0 1 J34
0 0 0 J44

0

B
B
@

1

C
C
A

dx
dy
dz
0

0

B
B
@

1

C
C
A

¼ J0

dx
dy
dz
0

0

B
B
@

1

C
C
A ð5Þ

where J0 is a constant with the dimensions of a field gradient.
Using spherical coordinates around the position of the singular-

ity

dx ¼ dr sinθ cosϕ
dy ¼ dr sinθ sinϕ
dz ¼ dr cosθ

ð6Þ

this vector dE can also be represented by a complex Jones vector
∣dψ⟩ ∈ ℂ2 in the horizontal/vertical polarization basis
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(Supplementary Materials)

jdψi ¼ dExR þ idExI

dEyR þ idEyI

� �

¼ J0½ðdxþ idyÞ jHi þ dz jVi�

¼ J0dr
sinθeiϕ

cosθ

� �

ð7Þ

where ∣H⟩ = (1,0)T and ∣V⟩ = (0,1)T correspond to the horizontal
and vertical basis vectors, respectively, and θ and ϕ range from 0
to π and 0 to 2π, respectively. The singularity described by Eq. 7
is surrounded by all possible polarization states at least twice on
the sphere (more precisely the ellipsoid) around it (Fig. 2B), with
point pairs positioned radially symmetric with respect to the singu-
larity having the same polarization but opposite sign, i.e., represent-
ing transverse fields phase-shifted by π.

The required phase and polarization profile is mapped on the
metasurface following an approach similar to the method used in
super-resolution STED (42): In the absence of the metasurface,
the impinging collimated light would constructively interfere at
the focal position of the lens. The metasurface acts as a spatially

varying waveplate that converts the impinging linearly polarized
light into all polarizations on the Poincare’ sphere (Fig. 2C). Imme-
diately after the metasurface, there are pairs of radially symmetric
points of equal polarization but opposite sign leading to destructive
interference at the focus of the lens since the two polarization states
have the same optical path length to the focus. When one moves
away from the focal position, this optical path difference becomes
nonzero for certain polarization pairs, leading to incomplete cancel-
lation around the singularity resulting in the intensity and polariza-
tion distribution shown in Fig. 2B (see the Supplementary Materials
for more details).

The metasurface is implemented by dividing the required profile
into square unit cells of periodicity p = 420 nm. At each position, we
choose the dimension and rotation of a meta-atom that most closely
transforms the impinging linear polarized light to the required po-
larization and phase (i.e., matches the required Jones matrix most
closely) at the design wavelength of λ0 = 600 nm [(40, 41, 43, 44) and
the Supplementary Materials]. We use a meta-atom library

Fig. 2. Design of complete polarization singularities in 4D space. (A) A metasurface implements the required phase and polarization pattern, which is subsequently
focused with an aspheric lens forming the singularity at its focus. The constant light amplitude contour of a cross section is shown encircling the singularity. (B) The
polarization and phase (represented by a dot on the polarization ellipse) of the target electric field around the singularity. All polarizations exist twice on the ellipsoid,
with pairs of identical polarization and intensity but opposite phase. This produces destructive interference at the singularity position. (C) Target and simulated electric
field components at a distance of 1 μm from the metasurface (field’s phase and intensity are represented by color and brightness, respectively). For each point in the
target field, one can find exactly one other point of equal polarization, but with opposite phase, ensuring destructive interference at the asphere focus. (D) Simulated
normalized intensity of the electric field in the xy and zλ planes, showing a singularity of null field and its confinement (i.e., of surrounding increasing intensity) in all four
dimensions. The contour lines join points of equal field strength. (E) Simulated normalized intensity of the electric field in the xy and zλ planes when a field perturbation ε
is added, which can arise frommany sources, such as stray light and device defects. The singularity is shifted in the 4D space, but the singularity intensity minimum value
remains the same. The red star marks the position of the unperturbed singularity in the zλ plane. AU, arbitrary units.
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consisting of 49,613 titanium dioxide nanofins of height h = 600 nm
fabricated on a fused silica substrate.

Up to now, we have ensured that the singularity is surrounded by
light (i.e., confined) in the 3D space, but we have not yet considered
the last dimension λ. To ensure confinement in λ, we tune the chro-
matic dispersion of the metasurface by adding a constant global
phase offset to the required Jones matrix profile. This global
phase offset can be chosen freely as only phase differences
between the meta-atoms matter. Changing the global phase over
the whole metasurface Jones matrix profile hence does not change
the polarization distribution implemented by the metasurface.
Instead, the global phase changes the set of nanopillars chosen to
implement the required profile. As the size of the library is finite,
each set has a different combination of nanostructures, resulting
in a different dispersion behavior as different nanofins have a dif-
ferent chromatic dispersion (Supplementary Materials). This allows
us to maximize the singularity confinement in the wavelength di-
mension. Specifically, a higher dispersion implies a higher deriva-
tive of the fields with respect to the wavelength, so that the
aforementioned destructive interference among all polarizations
does not occur anymore for wavelengths different from λ0.

We emphasize the importance of the dispersion engineering
possible with metasurfaces (45) as it not only ensures that the Jaco-
bian is invertible but also enables control of the confinement in the
wavelength space. While tuning the global phase is sufficient to
create confinement in λ, dispersion engineering methods described
in (45) can further shape the confinement in λ. Implementing the
Jones matrix profile selection without this dispersion design may
lead to a zero (or very small) determinant of the Jacobian. In that
case, a small perturbation could either destroy the singularity [if
detðJÞ ¼ 0] or move the singularity to a displaced wavelength not
reachable by our experimental setup.

Figure 2C shows the target and simulated electric field just after
the metasurface. The implemented electric field is slightly different
from the desired field due to the limited size of the meta-atom
library. Simulations of the focal spot profile near the singularity
(Fig. 2D), which include the focusing by an aspheric lens,
confirm the existence of the complete polarization singularity in
the 4D space (x, y, z, λ) (see the Supplementary Materials).

At the design wavelength, the singularity appears as a single
point in the three spatial dimensions having null electric field,
with all polarizations appearing twice in its immediate vicinity
(see Fig. 2B) (Supplementary Materials). As mentioned above, the
invertible Jacobian ensures that all polarization and phases are
located in its immediate vicinity in 4D space and ensures its topo-
logical protection. The topological charge of the singularity is m4D

¼ sign½detðJÞ� ¼ � 1 (Supplementary Materials).
The only way to destroy the singularity by a constant perturba-

tion is to merge two singularities of opposite sign. For this, one must
push the singularity out of its surrounding region of increasing in-
tensity, which acts like a shield protecting the singularity from de-
struction. Hence, the singularity is protected if the perturbation
intensity is smaller than the intensity at the weakest point of this
protection shield (i.e., for 0 < I ≲ Imax/2, with Imax being the
maximum intensity of the surrounding field). Figure 2E shows
the field intensity distribution resulting from the inclusion of an ex-
emplary perturbation of amplitude ɛ ¼

ffiffiffiffiffiffi
Imax
p

3 ð1; 0; 0; 1Þ
T . While the

singularity position is shifted in the 4D space, the minimum inten-
sity value remains constant.

Experimental validation
The metasurface (Fig. 3B) of diameter d = 500 μm was fabricated
using the same process as described in (46, 47) (Supplementary Ma-
terials) on a fused silica substrate. The metasurface is illuminated by
a collimated supercontinuum laser filtered by a tunable band-pass
filter (bandwidth, 5 nm) to select visible wavelengths between 485
and 700 nm. The quality of the measurement depends on the mono-
chromaticity of the light source, with the intensity measured at the
singularity position decreasing with the bandwidth of the laser. An
aluminum aperture mask ensures that no light is transmitted
outside of the metasurface area. The light is then focused with an
aspheric lens of numerical aperture (NA) = 0.08 and imaged
through a 75× microscope (Fig. 3A). The spatially varying Stokes
polarization state over transverse planes is retrieved using rotating
quarter–wave plate polarimetry (48). A precise alignment of the
components with respect to the optical axis is essential to observe
the singularity with high contrast and was achieved with manual
and motorized nanopositioners. The full 4D space (x, y, z, λ) can
be explored by imaging the singularity for different z positions
and wavelengths λ. The field distribution results (Fig. 3, C to E)
confirm the theory and numerical predictions, showing a confine-
ment of the singularity along all four dimensions; the relative inten-
sity contrast is ~24 dB with respect to the intensity maximum, and
all polarizations can be found on a small ellipsoid around the sin-
gularity (see Fig. 3, F and G, and the Supplementary Materials).

Topological protection
The fact that the singularity is topologically protected with respect
to offsets in the fields provides robustness against perturbation. This
also explains why the singularity was easily found experimentally
despite imperfections in the metasurface fabrication process and ex-
perimental alignment. These imperfections did not destroy the sin-
gularity but simply shifted it in space and wavelength. To further
observe the topological protection behavior of our singularity, we
inserted a small opaque circular gold mask to shadow part of the
metasurface. Different areas of the metasurface convert the imping-
ing horizontally polarized light into different polarizations (see
Figs. 2C and 4, A and D), with each polarization having exactly
one counterpart of opposite phase on the metasurface, ensuring de-
structive interference at the focal spot of the aspheric lens. The
partial shadowing suppresses the destructive interference of specific
polarization pairs at the focus position and hence corresponds to
adding polarized fields with opposite phase and different magni-
tude at the position of the singularity. Using a gold disk with a
110-μm diameter, both simulation (Fig. 4, B and E) and experiment
(Fig. 4, C and F) show that the singularity persists despite the per-
turbation while being displaced in the 4D space, i.e., moving to a
slightly different position and a slightly different wavelength.

DISCUSSION
These topologically protected polarization singularities are the
direct generalization of phase singularities and can find applications
in light structuring, super-resolution STED microscopy, and polar-
imetry since they transform the polarization changes of light
induced by perturbations into the geometrical displacements of a
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tightly localized feature. The singularity could also have interesting
applications in dark-field optical tweezer and in ion traps, where the
position and trapping mechanism of the singularity can be actively
tuned by displacing a gold disk perturbation in front of the metasur-
face or changing the impinging laser wavelength, respectively.

The tight localization of the dark spot at the center of the pre-
sented singularity means that the singularity spatial position can be
measured with deeply subwavelength precision, better than that of
bright regions of light (49). This behavior may pave the way for an
expanded class of precision sensors that probe distant physical phe-
nomena [such as position displacements (50)] by precisely monitor-
ing minute beam perturbations in the vicinity of the singular region.
The polarization and chromatic sensitivity of the complete polari-
zation singularity expands the palette of detectable properties of
light that can be deterministically correlated with the singularity po-
sition in the combined Cartesian/spectral domain.

More generally, our work paves the way for an expanded meta-
surface optics design paradigm based on engineering not only the
light field amplitude but also its gradient to achieve fault-tolerant
metasurface designs. Such architectures will be ideal for

environments with high damage probability, such as in plasma
chambers (51, 52) and particle-laden media (53). Future work will
investigate higher- and mixed-order singularities (i.e., singularities
that have different topological charges depending on the considered
spatial dimension). Last, our results are applicable to other design
dimensions. For instance, the wavelength of light can be replaced by
another free parameter of the system, such as the angle of incidence.
The latter can be implemented using the same nomenclature intro-
duced here with the substitution λ → k∥, where k∥ is the tangential
component of the impinging wave vector along the metasurface
plane. We expect such a polarization singularity to have a similar
protection strength due to the precise angular dispersion control ca-
pability of metasurfaces (54). The results are further applicable to
other wave-like physical systems, as long as they can be represented
as (n + 1)-times differentiable fields (Cn+1), where n is the order of
the desired singularity.

Fig. 3. Experiment. (A) The experimental setup. The singularity is generated as in Fig. 2A and then imaged with a microscope. A motorized stage is used to move the
objective along the z direction. The light source is a supercontinuum laser with a tunable band-pass filter of 5-nm bandwidth used to explore different wavelengths. To
retrieve the polarization distribution in the singularity region, a Stokes polarimeter consisting of rotating quarter–wave plate and a polarizer was placed between ob-
jective and imaging lens (fig. S15). (B) Microphotograph of the fabricated 500-μm-diameter metasurface surrounded by an aluminum mask. Inset, SEM image of a small
metasurface region. (C to E) Intensity measurement showing a singularity that is confined in 4D space: (C) After determining the position (x0, y0, z0, λ0) of the singularity in
the 4D space, an xy imagewas acquired at λ0 = 526 nm, z0 = 0 μm. The decibel (dB) scale is normalized with respect to the maximum intensity in the 4D dataset. Scale bar,
2 μm. (D) The same as (C) for the zλ plane at x0 = 0 μm, y0 = 0 μm. (E) Sections of the 3D xyz space measured at λ = λ0 showing that the singularity is fully surrounded by
light. (F) Simulated (top) and measured (bottom) Stokes parameters normalized by its pixel-wise intensity S0 at z = z0, λ = λ0. Scale bar, 1 μm, showing good agreement.
(G) Polarization distributionmeasured on an ellipsoid of equal field intensity around the singularity (radius, 0.25 μm in the xy plane and length, 8 μm in the z direction, λ =
λ0), showing good agreement with the simulation (Fig. 2B).
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MATERIALS AND METHODS
Sample fabrication
To create the aluminum mask, we spin-coated LOR3A and S1805
photoresist on a 500-μm-thick SiO2 substrate, exposed it using
optical lithography everywhere except at the position of the meta-
surface, and subsequently developed it in MF319. After an oxygen
plasma descum, we deposited 150 nm of aluminum and lifted it off
by immersing it in Remover PG solution for 30 hours. Subse-
quently, we added another 50-nm-thick gold mask with a larger
opening at its center following the same procedure for alignment-
marker visibility during electron beam lithography. We then used
our standard metasurface process (46, 47) to create the metasurface
pillars in the central opening of the mask (see the Supplementary
Materials for a detailed process flow).

Numerical simulations
We created the metasurface pillar library using the rigorous coupled
wave analysis solver Reticolo (55) and the refractive indices nSiO2 =
1.457 and nTiO2 = 2.346. The field calculations around the singular-
ity were performed using MATLAB (see the Supplementary Mate-
rials for a detailed description of the simulations).

Measurements
The measurements were performed using a supercontinuum laser
source. The source generates light in the visible region from 485 to
700 nm, which we filter using a tunable band-pass filter with 5 nm
(full width at half maximum) bandwidth. We then focus the light
with an aspheric lens ( f = 3.1 mm, NAeff = 0.08) and image the sin-
gularity using a 100× Nikon objective (NA = 0.9), an imaging lens ( f
= 15 cm), and a scientific CMOS camera (pixel size, 6.5 μm by 6.5
μm; dynamic range, 21,500:1).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S18
References
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