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Abstract: Railway bridges are subjected to significant dynamic loads. A numerical model of the
bridge structure that captures its dynamic characteristics as accurately as possible is essential for the
simulation of train crossings. However, most existing CALCULATION MODELs either do not consider
the dynamic interaction between the structure and the soil, known as the soil–structure interaction
(SSI), or give it only secondary importance. As a result, the accuracy of the predicted dynamic
characteristics is affected. This paper illustrates how the dynamic interactions of abutments impact
the portal frame bridge’s SSI. This influence prompts the question of incorporating the frequency-
dependent influence of the structure–soil–structure interaction (SSSI) into the modelling process. We
propose a conservative estimation of the frequency range influenced by the shear wave interference
of the SSSI and recommend using it as an application limit in the development of computational
models. Based on this estimation, a CALCULATION MODEL is presented. In this approach, the SSI
is considered using the well-known quasi-static spring–damper method from foundation vibration
analysis, adhering to limitations based on the SSSI. For the application of the presented CALCULATION

MODEL, four concrete portal frame bridges with spans between 9 m and 17 m along the high-speed
line from Nuremberg to Munich, Germany, are investigated by analyzing the dynamic characteristics
and comparing them with the prediction of the proposed numerical CALCULATION MODEL. The
presented method shows good calculation accuracy.

Keywords: bridge dynamics; experimental modal analysis; calculation model;natural frequencies;
damping

1. Introduction

Observations of the Paris–Lyons railway line have demonstrated that the vertical
accelerations generated by passing trains have the potential to destabilise the ballast on
shorter bridges [1,2]. Consequently, limits for superstructure accelerations were established
in the 1990s [3,4]. The key to the dynamic calculations is a numerical model of the bridge
structure, where an accurate representation of the dynamic characteristics is essential to
avoid discrepancies in the system response. The numerical simulation of train crossings has
varying levels of complexity. Passenger trains are generally characterised by high-speed
load models that include representative train–load combinations [4–6]. However, more
sophisticated, explicit train models can be realised using a moving mass–spring-damper
system [7].

Focusing on the dynamic characteristics of portal frame bridges, the importance of the
soil–structure interaction (SSI) is widely recognised [4,8–11]. In this context, the dynamic
characteristics summarise the relevant eigenmodes’ natural frequencies and damping ratios.
In-depth investigations into identifying and understanding the mechanisms associated
with the SSI of portal frame bridges are described in [9,12].

According to the investigations in [12], the natural frequencies are mainly determined
by the system’s sensitivity to the correct determination of the stiffness and mass distri-
bution. The influence of the SSI can be reduced to the backfill material’s stiffening of the
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abutment walls and its effect on the eigenfrequencies. In addition, a significant increase
in natural frequencies due to a stiffening ballast layer can be largely excluded according
to the investigations in [13]. In addition, the damping characteristics react sensitively to
the SSI modelling method. Structural damping is considered in European and German
standardisation and is most comparable to material damping [3,4]. Higher damping levels
may only be used if further investigations, e.g., measurements, verify them. These further
investigations probably include the consideration of the SSI, but this is not explicitly ad-
dressed. This methodology requires a heightened sense of caution and places significant
responsibility on the design engineer. In practice, however, these circumstances often result
in the unintentional neglect of the SSI and its additional damping mechanisms. The ab-
sence of these relevant damping effects leads to large capacities of the system response
in the resonance region. Despite its complexity, modelling the SSI requires knowledge
of the dynamic soil stiffness, which is usually described by the soil profile’s shear wave
velocity VS. The described relationships highlight the importance of understanding the
dynamic interactions inherent in portal frame bridges and emphasise the need for practical
modelling methods.

In practice, the above-mentioned uncertainty in modelling is becoming apparent since
the dynamic characteristics of short bridges, especially portal frame bridges, show a con-
siderable discrepancy between numerically calculated and in situ-measured characteristics
(e.g., [11,14]). In particular, REITERER points out that the natural frequencies are underesti-
mated by 30–60% [14]. In the case of modal damping, the discrepancies are particularly
pronounced. Given that the dynamic properties used as the starting point for the analysis
are subject to significant deviations, this circumstance can lead to an overestimation of the
system response, particularly in resonance scenarios.

This paper introduces a new numerical CALCULATION MODEL designed to incorporate
application limits and thereby reduce the impact of shear-wave-induced structure–soil–
structure interactions (SSSIs) on abutments. While the model is partly based on established
principles [15], its innovation lies in applying a unique modelling technique complemented
by considering the application limits associated with the SSSI. Another foundational aspect
of the presented approach rests upon a numerical study, as presented in [12], exploring the
core SSI effects inherent in the embedded frame. The performance of the CALCULATION

MODEL was evaluated through a comparative analysis of the dynamic characteristics of
four concrete portal frame bridges in Germany. The investigations were carried out using
an operational modal analysis (OMA).

An introduction to the principles of the SSI and its modelling methods, including the
SSSI effect of adjacent foundations, is given in Section 2. This is followed by the proposed
CALCULATION MODEL in Section 3. A description of the investigated bridge structures and
the identification of the dynamic characteristics are given in Section 4. The results of the
CALCULATION MODEL are compared with the in situ tests in Section 5. A final summary is
given in Section 6.

2. Modelling of Soil–Structure Interaction

Due to their massive embedded abutments, portal frame bridges have a relatively
strong coupling to the surrounding soil. This interaction is the frequency ( f )-dependent
soil–structure interaction (SSI). The relationship between the superstructure and foundation
strongly influences the overall system, especially for portal frame bridges.

2.1. Fundamentals of Soil–Structure Interaction

The excitation of the bridge superstructure causes displacements at the abutments,
which usually results in a phase-shifted ground reaction and thus in radiation damp-
ing. The quotient of the ground reaction R and displacement x is both material- and
frequency-dependent and is called dynamic stiffness or the impedance function K. Due



Appl. Sci. 2024, 14, 1493 3 of 20

to the frequency dependence, the impedance function appears as a complex function by
transforming and substituting (not shown here) [16,17].

K =
R(t)
x(t)

(1)

...

= K0 · (kz + iΩcz) (2)

The constant K0 in Equation (1) is equivalent to the quasi-static stiffness (a0 = 0), which is
calculated as a function of the geometry and the soil stiffness. Solutions for the quasi-static
stiffness are given in the literature, e.g., according to LYSMER for circular foundations [18]
as a function of the shear modulus G, the radius r and Poisson’s ratio ν:

K0,K =
4 G r

1 − ν
(3)

Through the substitution and rearrangement of Equations (5) and (6) into the fundamental
equations of linear dynamics (omitted here), the computation of the radiation damping
ζA associated with the embedded foundation is achieved (Equation (4)). This is accom-
plished by determining the ratio between the imaginary (I) and real (R) components of the
impedance function.

ζA =
I(a0)

2 ·R(a0)
(4)

Figure 1 shows the frequency-dependent components (kz, cz) of the impedance function of
a massless rigid rectangular foundation in a trench on a homogeneous elastic half-space.
Additionally, comparative reference data from the literature, neglecting the trench, are
included [17,19–21].

c

HYBRID METHOD

F(ω)
F(ω)

26 m

2 a

2 
b x

y
AB

Figure 1. (a) A massless rigid square foundation under harmonic excitation in a trench on a homo-
geneous elastic half-space, (b) the system sketch, (c) the impedance function for ν = 0.3 and data
according to the literature [17,19–21].

kz = R

(
F(ω)

x(ω)

)
∗ 1

K0
(5)

cz = I

(
F(ω)

x(ω)

)
∗ 1

a0 K0
(6)

with x(ω) = complex displacement

In the following discussion, we will refer to the frequency-dependent component of the
function as the impedance function, which is a slight modification of the definition in
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Equation (1). Figure 1c illustrates the impedance function with respect to the dimensionless
frequency a0. Using a0 facilitates a straightforward plot of the impedance function with
changes in the shear wave velocity VS for varying foundation geometries. In the case of
rectangular foundations, the equivalent radius r0 can be assumed.

a0 =
ωr0

VS
(7)

r0 =

√
4 a b

π
(8)

with ω = 2π f (9)

The shown impedance function is based on the analysis of the hybrid model described
in Section 2.2. The presented relief (trench) corresponds to the BEM model outlined in
Section 2.3. Due to the centred position of the hybrid solution in between the reference
data in Figure 1, the relief only causes a minor modification of the impedance function.
For a0 < 2, the impedance function undergoes minimal variations (kz ≈ 1). Consequently,
this observation has led to the widespread application of frequency-independent methods
for the impedance function in simple geometric configurations.

The literature extensively covers the calculation of impedance functions, their deriva-
tion and their approximation for simple foundation geometries [17,19–26]. In contrast,
the solution for complex geometries, considering soil profiles and interactions between adjacent
foundations, is typically addressed by numerical methods implemented in computer programs.

2.2. Numerical Modelling of Soil–Structure Interaction

The consideration of the soil–structure interaction (SSI) in the numerical solution
of a dynamic problem requires compliance with the Sommerfeld radiation condition
(Figure 2a) [27]. This condition states that at the transition to the far field (infinity), only
one energy flow in the form of propagating waves is permitted. Due to the energy propa-
gation associated with space and surface waves, there is continuous energy dissipation,
quantifiable by the parameter of radiation damping ζA.

ζAζA

cut A-A
b) c) a)

A

artificial boundary

spring-
dashpot
elements

cut A-A

A

Compression-Extension
WavesΘ

F(ω)

Figure 2. (a) Illustration of the SSI of a concrete portal frame bridge depending on the numerical
solution: (b) using the direct method; (c) using the substructure method.

Consider the vertical oscillation of a uniformly loaded surface, where the analogue
damper is proportional to the primary wave velocity VP. The primary wave velocity is
determined by the Lamé constant λ, the shear modulus G and the material density ρ.
In addition, for spatially limited surfaces, such as foundation blocks, the Lysmer equivalent
velocity VLA, which depends on the Poisson ratio ν, proves beneficial. This is particularly
relevant due to the restricted wave propagation (with θ < 90°, as shown in Figure 2c)
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beneath the foundation resulting from the discontinuous loading. The derivation and
further explanations can be found in the literature [12,15,28].

VP =

√
λ + 2G

ρ
(10)

VS =

√
G
ρ

(11)

VLA = 3.4
VS

π (1 − ν)
(12)

For the numerical modelling of the soil–structure interaction, two main methods can
be used [19]:

1. DIRECT METHOD:
The near field is modelled using the FEM and the far field (Sommerfeld radiation
condition) is implemented using artificial boundary conditions. (Figure 2b);

2. SUBSTRUCTURE METHOD:
The near and far fields are considered separate subsystems and solved independently,
e.g., using impedance functions or macro finite elements based on the Boundary
Element Method (BEM) [29] (Figure 2c).

The two methods can be applied and varied regardless of the dimension of the problem.
Several subvariations of the numerical modelling of the SSI are known and described in
the literature. The methods are overviewed in [12]. Furthermore, both methods can be
recombined so that hybrid models can integrate the advantages of both approaches [29].
This way, structures with arbitrarily shaped or wide and flexible foundations, i.e., complex
foundation geometries such as partly embedded frames, can be optimally represented.
In addition, different structures can interact with each other within a hybrid model, and
the structure–soil–structure interaction can be modelled in detail. However, these methods
are predominantly situated in an academic context and are not designed for construction
practice yet.

This paper presents a simple numerical CALCULATION MODEL. The validation of
the model is carried out using the complex hybrid method, as discussed previously [12].
The CALCULATION MODEL is based on quasi-static approaches within the substructure
method using spring–damper elements, as explained in [15].

2.3. Introduction to Structure–Soil–Structure Interaction

WOLF describes the structure–soil–structure interaction (SSSI) effect at adjacent piles
using the resonating mass between the piles and the ratio of the shear wavelength λS to
the pile spacing SS [19]. Resonant masses are well described for large Poisson’s ratios
(ν > 1/3), particularly in the context of single foundations, as explored in [19,30]. Here,
resonant masses continuously reduce the real part of the impedance function kz with
increasing frequency since the resonant masses work/move contrary to the stiffness. In the
context of group foundations, this decay is interrupted by the continuously increasing
dominance of the shear wave (λS → SS) between the piles. Upon reaching a limit criterion
fG = VS / 3SS, the soil oscillates increasingly in antiphase, leading to a significant gain
in stiffness. The maximum stiffness is achieved when both piles oscillate exactly out of
phase ( f = VS / 2SS ). An essential difference in the pile group effect compared to portal
frame bridge foundations lies in the relatively small diameter of the piles compared to their
spacing. Nevertheless, similar relationships described for pile foundations can be observed
for the twin foundations of portal frame bridges.

Further investigations are performed using the hybrid models described in [12].
Figure 3 presents the impedance function (kz, cz) for both single and twin foundations
(abutments), considering spans of L = 9 m and L = 21 m, respectively. The similarity
in characteristics between the impedance function of single foundations and the well-
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established functions associated with rigid, massless single foundations on a flat surface
can be observed (Figure 1, comp. [17,19–21]).

2 3

2 3

a a a

a a a

a

a

F(ω) F(ω)

single

F(ω) F(ω)c)

twin

b)a)

L = 9 m / 21 m, tWDL = 1.8 m / 4.2 m, r0 = 5.6 m / 5.8 m
foundation and backfill: massless and rigid

single foundation
twin foundation

L 
= 

9 
m

L 
= 

21
 m

Figure 3. Impedance functions of the massless rigid abutment; numerical results are based on the
hybrid method according to [12]. (a) Real part, (b) imaginary part, (c) visualisation of the systems.

Negative values of kz are due to a phase shift in the ground reaction force, similar to
the transition from a stiffness-dominated system to an inertia-dominated system. In this
context, the stiffness decreases significantly, allowing the resonant mass, which opposes
the stiffness, to become predominant. The 180° vectorial disparity results in a negative real
solution for the impedance function. Detailed representations of the single-mass oscillator
and its vectorial equilibrium of forces can be found in the existing literature [31].

The use of a modified limit criterion aG,i, inspired by WOLF [19], effectively highlights
the group effect (SSSI), as shown in Figure 3. This criterion is derived from the previously
discussed effects associated with achieving the maximum stiffness.

aG,i =
2 π r0

Ll
∗ (i − 0.5)withi ∈ N (13)

with

Li = clear width between the foundation bodies, here, Ll = L − 4 m

In the region of the ith limit criterion aG,i, the effect of the resonant mass becomes
apparent, causing the impedance function of the twin foundation to oscillate around the
solution of a single foundation. The pronounced nonlinearity of the impedance function,
which is significantly influenced by wave interference, underlines the complexity inherent
in this seemingly simple matter of the (S)SSI.

When Equation (4) is considered in conjunction with the distinctly nonlinear impedance
function for twin foundations (shown in Figure 3), it becomes obvious that the SSSI has a
significant effect on the resulting radiation damping of the structure, particularly in the
context of a portal frame bridge. This underlines the need for straightforward modelling
approaches considering application limits when simulating dynamic soil relationships.

Simplified approaches to implementing the SSSI in combination with frequency-independent
methods are partially available in the literature [32]. However, these cannot yet be practi-
cally implemented due to their interaction with time integration methods and currently
remain limited to academic contexts only.

3. CALCULATION MODEL

3.1. Development of Simplified Approaches

The development of predictive models for simulating train crossings and determin-
ing dynamic characteristics involves the recognition of inherent trade-offs. Due to the
damping paradox elucidated by WOLF [33], the implementation of the SSI in spatially
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constrained systems requires a full 3D modelling approach. In addition, 3D models allow
an accurate representation of spatial relationships, including considerations such as wing
walls, multidimensional stiffening effects and orthotropic stiffness. Furthermore, only
3D models can adequately capture relevant bending and torsional modes. Nevertheless,
the use of high-fidelity and complex hybrid models (see Figure 2a) requires significant
computational resources and expertise, as highlighted in [12,34–36]. Although this method
provides the important representation of the SSSI under discussion, its practical imple-
mentation is associated with several challenges and has not yet become established in
construction practice.

To address these challenges, this paper presents a numerical prediction model tailored
to the practical modelling of portal frame bridges, focusing on the modelling of the SSI
while excluding SSSI effects.

3.2. Application Limits

The proposed model is limited to certain geometries and frequency ranges, as the
differentiation of the SSSI effects becomes imperative. The proposed application limit is
denoted by a0,G, derived from the correlations associated with the shear wave interference
in the SSSI. This restriction is in line with the limits used in the literature for the application
of impedance functions, as discussed in Section 2.1 [30].

a0,G = min

{
a0 = 2π fir0

VS
≤ 1

aG,i=1
(14)

The frequency fi corresponds to the ith natural frequency relevant to the design
considerations, which corresponds to the first natural frequency that is decisive in the
context of this paper.

3.3. Modelling

The approach described in the studies of DOBRY and GAZETAS for arbitrarily shaped
foundations with embedded configurations was adopted and implemented in the numeri-
cal simulations using a special modelling technique [15,20]. The purpose is to present a
simple model characterised by robustness and user-friendliness. Figure 4 shows a schematic
representation of the system together with the corresponding spatial coordinates. Sub-
sequently, an exemplary calculation of the vertical (z) spring–damper elements within
the substructure matrix (KF,i, CF,i) is presented. Additionally, the dynamic bedding of the
horizontal degree of freedom x is shown, denoted by (kWDL, cWDL).

F

kWDL

cWDL

b)

Sy
m

et
ry

cut A-A

KF, CF

a) 

Sy
m

et
ry

A
A

not explicitly
modelled

x
y

z

x
y

z

D1

D2

hF

hS

d

tWDL

bFlueg

bF

h
L/2

structure

Wing walls & backfill 

Spring-dashpot matrix: 
6 degrees of freedom on 
enclosed foundation

spring-daspot: 
3 degrees of freedom on 
enclosed backfill

bF,1
2a

2b2a
a > b

Figure 4. CALCULATION MODEL of a portal frame bridge. (a) Problem description; (b) system sketch.

The backfill areas situated between the wing walls and above the foundation (see
Figure 4 within bF) are considered directly in the numerical model. Additional masses
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beyond the foundation slab but within the wing walls are considered by accounting for 40%
of the enclosed mass. The wing walls are modelled directly in the numerical model. This
approach provides the optimal capture of the stiffening effect of the backfill, particularly for
slender abutment walls. Only the adjacent horizontal soil layers are considered using equiv-
alent spring–damper approaches (kWDL, dWDL). The influence of this horizontal bedding
through “wall” and “trench” effects is discussed in detail in GAZETAS [28]. For separate
determination of the “wall” and “trench” effects when calculating the spring and damper
elements, it is necessary to distinguish between horizontal h and vertical v components
when selecting the input variables.

The horizontal bedding surfaces (D1, D2) are distinguished in the modelling proce-
dure. D1 is directly incorporated into the substructure matrix, while the effects of D2 are
represented as dynamically distributed bedding with stiffness and damping components.
This method leads to the determination of the following input parameters:

Vertical spring–dashpot elements in KF,i and CF,i:

K0,z,emb =
2 G a
1 − ν

(
0.73 + 1.54

(
b
a

)0.75
)
· Iv,Trench,i=1 · Iv,Wall,i=1 [N/m] (15)

Iv,Trench,i = 1.0 +
1

21
Di
b

(
1 +

4
3

b
a

)
(16)

Iv,Wall,i = 1 + 0.19
(

AS,i

AB

)2/3
(17)

C0,z,emb = ρvVLA,v AB + ρhVS,h As,1 [N s/m] (18)

with

ρv = density vertical subsoil

ρh = density horizontal soil

Geometry parameters:

a =
bT
2

(19)

b =
bF
2

∗ χF (20)

a > b (21)

here: χF is the elongation factor of the effective foundation due to

the wing walls and the backfill:

χF = 1 +
bw

3 ∗ bF
(22)

D = D1 + D2 (23)

AS,i = 2b · Di (24)

AB = 4ab (25)

The dynamic bedding parameters (kWDL, cWDL) for the adjacent horizontal soil layer
are calculated in a similar fashion using the methods outlined in [15,20] and implemented
with x, y and z components. Only the “trench” and “wall” effects of the adjacent layer D2
are considered, as discussed. This method facilitates the use of different materials in the
backfill compared to other soil regions. An illustration of kWDL,x is given below:
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Horizontal spring–dashpot elements:

kWDL,x =

[
2 G a
2 − ν

(
2 + 2.5

(
b
a

)0.85
)
(Ih,Trench,i=2 · Ih,Wall,i=2 − 1)

]
1

As,2
[N/m³] (26)

Ih,Trench,i = 1.0 + 0, 15

√
Di
b

(27)

Ih,Wall,i = 1.0 + 0.52
(

hi
b

Asi
a2

)0,4
(28)

cWDL,x = ρh VLA,h [N s/m³] (29)

The substructure is expanded to encompass material damping ζM. The dynamic
stiffness is modified following the methodology described in [15,20]. In this context,
the natural frequency corresponds to the analytical first frequency related to the bending of
the frame, denoted as ωR = 2π fR.

KF,ζ = KF − ωR CF ζM (30)

CF,ζ = CF +
2KF
ωR

ζM (31)

The presence of soft layers on top of stiffer soils, where the latter are at least twice as
stiff (e.g., soil on rock), is of particular importance in the SSI. In such scenarios, the respective
frequencies of the first layer, denoted by fcv and fch, establish a lower threshold for the
transmission of waves through their own layer, characterised by a height HS [12,37].

fc,h =
Vs

4 HS
(32)

fc,v =
VP

4 HS
(33)

If the dominant frequency of an oscillating system, such as a bridge abutment, falls below
these specified limits, frequency-dependent energy transport within the soil layer ceases.
These frequencies then provide a cut-off point for radiation damping. Under these condi-
tions, the behaviour of the soil layer is close to the static case [19,37]. Hence, damping is
primarily governed by the material damping approach. To account for the cut-off frequency,
ZANGENEH recommends reducing the respective damping components using the following
correction factor [9]:

κC =


√

1 −
(

fc
fR

)2
for fR ≥ fC

0 for fR < fC

(34)

Moreover, the material properties of the soil are significantly influenced by the shear
strains γd of the propagating waves. The in situ tests carried out on the portal frame bridges
in Section 4 show that the estimated shear strains in the foundation area are approximately
γd ≈ 3 · 10−6. Consequently, linear elastic analysis and linear equivalent material properties
can be used in the analysis models to ensure adequate accuracy [30,38,39].

3.4. Validation

In Figure 5, the authors validate the dynamic characteristics of the CALCULATION

MODEL, focusing on the first natural bending frequency and the corresponding modal
damping. This validation was conducted through a study employing the hybrid modelling
technique outlined in Section 2.2 and published in [12]. The model was constructed using
linear elements (C3D8) in the ABAQUS software environment [40]. The dynamic charac-
teristics of the CALCULATION MODEL are derived from impulse-generated decay curves.
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The pulse is characterised by its transit time ∆t = min(1/12 fR ; 0.005 s. The amplitudes
of the applied impulses are insignificant, as the models lack nonlinearities. The ABAQUS

modal dynamics solver is used to compute the system response in the time domain with
a resolution of ∆t. The mesh size is determined as a function of the slab height, ensuring
a minimum of three elements over the height. Mesh widths in adjacent components are
kept similar.

bending slenderness: S=15

HYBRID MODELL
PREDICTION MODELL Eigenform 

corresponding to f1

Figure 5. A comparison of the dynamic characteristics of the frame using the hybrid modelling technique
and the CALCULATION MODEL when varying the span: (a) damping ratio; (b) natural frequency.

For reference, the analytical frame frequency fR [22] and the limit a0,G according to
Equation (14) are plotted in Figure 5. The figure shows that the natural frequencies f1 of the
shorter spans show a slight stiffening compared to the analytical natural frequency fR. This
deviation decreases as the span increases. The observed effect results from the stiffening of
the backfill, which is more pronounced for shorter bridges due to the assumed geometries.
Regarding the first eigenfrequency, there is also a good agreement between the different
modelling methods in regions where the limit a0,G is exceeded. Considering the primary
structural stiffness dependence of the eigenfrequencies, this correlation is expected [12].
As anticipated, the damping ratios show increasing discrepancies between the modelling
methods when the application limit is exceeded (here, Eb ≲ 450 MPa in Figure 5a).

Further results for a span of 17 m are provided in Figure 6.

Eigenform 
corresponding to f1

HYBRID MODELL
PREDICTION MODELL

a0,G1, 200 MPa

a0,G1, 450 MPa

a0,G1, 100 MPa

Figure 6. Comparison of the dynamic characteristics on the 17m frame using the hybrid modelling
technique and the CALCULATION MODEL when varying the abutment width: (a) damping ratio;
(b) natural frequency.

Here, the abutment width is varied while keeping the span constant. As the dimen-
sionless frequency increases (a0 > 1), it can be seen that the predicted damping ratios
increasingly deviate from the hybrid modelling approach. These differences can be related
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to the unaccounted SSSI effect in the CALCULATION MODEL, highlighting the importance
of imposing limitations to reduce such discrepancies.

Considering the imposed limitation, there is a satisfactory agreement between the
CALCULATION MODEL and the results obtained through the hybrid modelling approach.

4. In Situ Testing

To apply the CALCULATION MODEL, in situ tests were conducted on four concrete
portal frame bridges. Figure 7 displays one of the investigated portal frame bridges,
highlighting the substantial embedding of the structure in the surrounding soil.

Figure 7. General view of concrete portal frame bridge 12842.

The in situ tests were carried out in October 2022, southeast of Nuremberg, Germany.
The testing occurred on concrete portal frame bridges along the Nuremberg–Munich high-
speed railway line, which runs parallel to the A9 motorway. The bridges are paired in their
geometry, with differences occurring mainly in the soil profile and adjacent structures and
with a slight variation in crossing angles. Table 1 gives an overview of the bridges.

Table 1. Summary of the investigated concrete portal frame bridge.

Bridge L d tW DL AB
[ID] [m] [m] [m] [m2]

12842 17 1 1 84
12836 17 1 1 84
12829 9.5 0.6 0.8 75
13871 9.5 0.6 0.8 64

To determine the dynamic soil stiffness, the multichannel analysis of surface waves
(MASW) is used to compute the shear wave velocity on-site [41,42].

4.1. Concept and Methodology

The dynamic characteristics of structures can be determined using various in situ
methods, each with its own potential inaccuracies. Detailed information and an introduc-
tion to the identification of the dynamic characteristics of structures can be found in the
literature [22,43–47].

In this study, the time signals of the ambient excitation were used to determine the
natural frequencies. Averaged frequency spectra were generated and analysed using
the PYTHON software environment [47]. Eigenmodes were visualised using ARTEMIS

through operational modal analysis (OMA) [48]. Damping characteristics were assessed by
analysing the integrated lines of the decay curve resulting from pulse excitation. Stochastic
subspace identification in ARTEMIS and decay curves from train crossings were used for
comparison purposes only [48,49].
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The concept incorporates 22 geophones for the clear identification of the first three
eigenmodes, including bending and torsional modes, as well as rigid body modes and
abutment movements. The arrangement is illustrated in Figure 8. To ensure the contin-
uous operation of the railway line during measurements, the entire measurement setup
was installed beneath the superstructure without any artificial excitation of the structure.
As all four bridges have a similar structure and design, identical setups were used for
all measurements.
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Figure 8. Sketch with illustration and orientation of the measurement points.

4.2. Evaluation and Assessment

The following description and identification of the dynamic characteristics are given
as an example for bridge 12842.

4.2.1. Description of the Structure

Figure 9 shows the analysed concrete portal frame bridge, with a half-frame configu-
ration and a length of 17 m. The bridge was constructed in 2003 on a shallow foundation.
Multichannel analysis of surface waves (MASW) [41] was used to determine the shear
wave velocities VS at the foundation level (VS ≈ 358 m/s). The material properties of
the backfill (cement-stabilised wedge with VS,K ≈ 1000 m/s) and the adjacent soil layers
(coarse-grained soils with VS,H ≈ 300 m/s) were assumed.

The superstructure comprises five precast concrete elements (B45) cast on-site with
additional in situ concrete (B35) to form a monolithic frame. The abutment walls are
followed by wing walls with an opening angle of approximately 45°. The track and road
intersect at 90°. Above the in situ concrete are two layers of bitumen sealant, followed by a
tray of reinforced concrete (B35) and the slab track.

cement-stabilised wedge

Longitudinal cut

VS [m/s]

de
pt

h 
in

 [m
]

0

5

10

100

358

151
380

198
232

Figure 9. Longitudinal section of the bridge [DB Netz AG] and associated soil profile.
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4.2.2. Identification of Natural Frequencies

To determine the bending and torsional modes, MP1 and MP2 are considered. Derived
from the averaged ambient frequency spectra (FFT) shown in Figure 10, the resulting
eigenfrequencies are obtained and documented in Table 2. Higher modes were analysed
but are not of interest in the following.

For a deeper understanding, the representation of the eigenmodes using ARTEMIS is
also included in Figure 10. In contrast, OMA reveals the uncertainty of the first bending
eigenfrequency, denoted by f1, where it manifests as either 9.4 Hz (as identified in the
stable mode by stochastic subspace identification) or 9.9 Hz (as indicated in the Singular
Value Decomposition spectrum), depending on the methodology applied.

(a)

f1 = 9.5 Hz

(b)

f2 = 14.8 Hz

(c)
Figure 10. Evaluation of the natural frequencies and associated modal shapes of frame bridge 12842.
(a) Time history of the ambient vibration velocity and averaged frequency spectrum. (b) Evaluation
of 1st eigenmode. (c) Evaluation of 2nd eigenmode.

As a consequence of the averaging process applied to the windowed frequency
spectra in the ambient time signal analysis, nearby peaks are smoothed out, reveal-
ing only diffuse plots. The indeterminate nature of the initial bending eigenfrequency
(9.4 Hz < f1 < 10.1 Hz) remains apparent in the frequency spectrum resulting from pulse
excitation (Figure 11). In this case, the effect of averaging is reduced. Furthermore, the un-
certainty in the natural frequency is evident in the continuous wavelet transformation
(CWT) [50], where the signal characteristics are combined into a representation that is both
frequency- and time-dependent (Figure 11b).

In this scenario, the initial bending eigenfrequency defies definitive assignment to a
single frequency, with the abutments appearing to play a predominant role, as indicated
by a slight counter-phase of the abutment on the “Ingolstadt” side in the OMA. This can
lead to divergent structural stiffening due to a phase shift at about ≈10 Hz. The stiffening
phenomenon due to counter-phase vibrating foundations is discussed in [51].

4.2.3. Identification of Modal Damping

Modal damping is determined by the integration line of the peaks in the decay curve,
as shown in Figure 11a. The damping ratio is evaluated using the mean value of several
excitation points.
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Figure 11. Analysis of modal damping on the basis of the integrated decay curves in a quiet
environment with soft impacts. (a) Time domain, (b) CWT, (c) frequency spectrum.

The evaluation of small amplitudes induced by pulse excitation requires an undis-
turbed environment (verified by continuous wavelet transform) and a finely tuned mea-
surement chain. In this case, the dissipation mechanisms turn out to be comparable to
those observed for larger energy inputs, such as harmonic excitation or train crossings (not
further explained). Considering the undisturbed environment, the four evaluation points
result in a damping ratio of ζ ≈ 6.1%, matching to the first natural frequency. In compari-
son, the damping is calculated to be ζ = 6.3% using the stochastic subspace identification
algorithm implemented in the ARTEMIS.

In addition, damping was characterised on the basis of train crossings. Here, it is
important to use the correct reference frequency. In this case, the 4-fold of the base train
excitation is in the range of the natural frequency (4 · 2.5 Hz), and therefore, the modal
damping can be accurately determined to be ζtrain = 6.3–7% ≈ ζimpulse.

The assessment of damping ratios for higher modes follows a similar methodology,
although a detailed description is omitted here.

4.3. Dynamic Characteristics of In Situ Testing

A comprehensive summary of the collected results from the entire in situ test is
presented below in Table 2. The evaluation of the results for the remaining three bridges
follows the methodology outlined above.

Table 2. Summary of the studied bridges and their dynamic characteristics.

Bridge L [m] f1 [Hz] f2 [Hz] ζ1 [%] Vs [m/s] Limitation
Ambient Ambient Mean a0

12842 17 10.1 14.7 6.4 358 0.90 < a0,G
12836 17 10.1 14.9 5.9 485 0.66 < a0,G
12829 9.5 21.8 25.7 10.9 246 2.85 > a0,G
13871 9.5 21.3 25.6 11 600 1.08 > a0,G

A comparison of the measured dynamic characteristics clearly shows the pronounced
similarity in the eigenfrequencies of structurally identical bridge pairs despite variations in
soil stiffness. The robust eigenfrequencies emphasise the prevalence of structural stiffness as
the dominant factor influencing the natural frequency of portal frame bridges, superseding
the effects of the (S)SSI. Analogous results are supported by numerical investigations
presented in [12].
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In addition, the results are compared with the data collection of the “Railway bridge
dynamics DIBRST: concrete frame bridges—Expert Exchange” [52] in Figure 12. The mea-
sured parameters fit well with the data collection.

.

Figure 12. Dynamic characteristics of the investigated frame bridges compared to the data collection
of the DIBRST [52].

It is evident that the natural frequencies show minimal deviation from the analytical
natural frequency of the frame fR. This frequency is directly related to the stiffness of the su-
perstructure and consequently influences the normative deflection criterion. The tendency
of the bridge to have a natural frequency higher than fR is due to the stiffening effects
induced by the backfill and abutment walls, which are not included in the frame formula.
A wide range of damping ratios is observed, with the range appearing more extensive for
shorter bridges. However, no general principle can be derived for longer spans due to the
limited data set. The variability in damping ratios is not surprising, as the (S)SSI, rather
than the structure itself, determines the resulting damping characteristics.

5. Comparison of Calculation and Reality

In the following section, the results of the examined bridges are compared with the
presented CALCULATION MODEL. In order to explain the modelling approach, the model
will be illustrated using the example of bridge 12842.

5.1. Assumptions and Calculation

Primarily, the distinction between static and dynamic bedding approaches is delin-
eated in the context of the portal frame bridge, exemplified by a sample calculation.

According to the documentation, the soil stiffness is given by Es = 80–140 MN/m².
As a first approximation, the static bedding is calculated using the formula ks ≈ Es

fshape b , as

described in [53]. The shape factor fshape depends on the length-to-width ratio of the footing.
In the specific scenario considered, characterised by an average stiffness and an estimated
length-to-width ratio, the static bedding is determined according to Equation (35).

ks ≈
110 MN/m²
1.4 · 5.5 m

= 14.29 MN/m3 (35)

with

l = bT = 15.34 m; b = bF = 5.5 m; fshape = 1.4
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However, in the dynamic bedding calculation, neglecting the “trench” and “wall”
effects, the equivalent spring stiffness is determined using Equation (15).

K0,z =
2 G a
1 − ν

(
0.73 + 1.54

(
b
a

)0.75
)
· ITrench · IWall = 8108.8 MN/m

ITrench = IWall = 1

with

a = bT/2 = 7.67 m, b = bF/2 = 2.75 m, D1 = 1.43 m,

D2 = 6.5 m, AB = 84.37 m²; G = 256.33 MPa;

ρB = 2000 kg/m³; VS = 358 m/s (MASW); ν = 0.3 (assumption)

Considering the foundation area AB, the equivalent bedding is determined to be 96.11 MN/m3,
an increase of approximately 6.7 times compared to the static approach. The density and
shear wave velocity values are based on the MASW method report [54]. Furthermore, if the
lateral bedding effects are considered, the vertical spring stiffness, including Itrench,1–2 and
Iwall,1–2, is calculated as K0,z,emb = 12,585.9 MN/m.

ITrench,1–2 = 1.0 +
1
21

1.43 + 6.5
2.75

(
1 +

4
3
· 2.75

7.67

)
= 1.2

IWall,1–2 = 1 + 0.19
(
(1.43 + 6.5) · 15.34)

5.5 · 13.34

)2/3

= 1.29

The ageing effects of concrete are accounted for in the material approach, resulting in
an increase in Young’s modulus. As required by the Model Code 2010 [55], an increase of
19% is observed. When applied to the frequency/stiffness relationship, this enhancement
in Young’s modulus results in the corresponding stiffening of the eigenfrequency by ap-
proximately 4.4%. While analogous increases in Young’s modulus are often reported in the
literature, these cases are often associated with “dynamic stiffness” rather than concrete
ageing [14,56]. In contrast, research by HEILAND asserts that stiffening effects attributed to
dynamic loading have only a minor effect on concrete stiffness, with concrete ageing being
the main contributor [57].

The numerical model represents the bridge structure by both C3D8 and C3D10 ele-
ments. The backfill (C3D8) is rigidly connected to the bridge. The caps and the trough
of the slab track, which are characterised by continuous reinforcement in the transverse
direction, are assumed to have a stiffness of 20%. In addition, a material damping of 1.5%
is attributed to the subsoil.

5.2. Results

The determined natural frequencies, their corresponding eigenmodes and the associ-
ated damping ratios show substantial agreement with the results derived from the in situ
test, as shown in Table 3. In particular, the discrepancies highlighted in Section 3 have been
significantly reduced.

Table 3. Comparison of the numerical and in situ measurement results regarding the dynamic
characteristics for bridge 12842.

f1 [Hz]/ζ [%] f2 [Hz] f3 [Hz] f4 [Hz]

CALCULATION
MODEL

9.9/6.9 13.8 25 28.3

In situ test
(ambient) 10.1/6.4 14.7 25 28

Deviation [%] 2/7 6 0 1
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An examination of the deviations in Table 3 shows that the first torsional mode
has a more pronounced measured deviation than the other eigenmodes. Studying the
eigenmodes in Figure 13, it can be seen that the second mode has more curvature pro-
portions in the abutment regions, particularly in the transverse direction, than the third
mode. Consequently, the in situ stiffnesses of the transverse contribution exceed those
obtained numerically.

backfill
concrete
precast concrete
caps
track

Figure 13. Illustration of the numerically determined first four eigenmodes using ABAQUS.

5.3. Summary of the Dynamic Characteristics

The overall results in Table 4 show good agreement, especially with respect to the
natural frequencies. Notably, as demonstrated in both 12842 and 12836, the first eigenmode
achieves a high degree of agreement, while the second eigenmode shows a marginal dis-
crepancy.

Table 4. Comparison of the modal characteristics of the examined frame bridges.

Bridge L [m] f1 [Hz] f2 [Hz] ζ1 [%] a0
Numeric/In Situ Numeric/In Situ Numeric/In Situ

12842 17 9.9/10.1 13.8/14.7 6.9/6.4 0.90 < a0,G
12836 17 10/10.1 13.8/14.9 4.2/5.9 0.66 < a0,G
12829 9.5 22.4/21.8 24.8/25.7 8.5/10.9 2.85 > a0,G
13871 9.5 23.7/21.3 25.5/25.6 5.3/11 1.08 > a0,G

Following this trend, the results for 13871 show excellent agreement in the second
eigenmode but a slight overestimation in the first eigenmode. This observed discrepancy
suggests an inadequate representation of the lateral stiffnesses, possibly due to the specific
structure of the slab track.

The predicted damping ratios for the bridges are very close to the measured values.
Unexpectedly, bridge 12829, characterised by a0 = 2.85 > 1, also gives relatively accurate
prediction results. However, it is important to note that reaching the application limit does
not necessarily lead to poor predictions, as the shape of the impedance function for twin
foundations has a strongly oscillatory character (Figure 3).

Furthermore, the CALCULATION MODEL for 13871 shows a notable disparity in the
damping ratios. This particular bridge has a directly adjacent retaining wall on one side,
located in the transition zone between the railway and motorway bridges, at a distance of
approximately 15 m. The omission of this additional interaction in the model explains the
increased discrepancies observed in the predictions.
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6. Summary and Outlook

This paper highlights the significant influence of the structure–soil–structure inter-
action (SSSI) on the soil–structure interaction (SSI) and resultant (radiation) damping for
concrete portal frame bridges. To simplify engineering calculations, the SSSI’s dynamic
shear wave interference can be minimised by setting application limits. This ensures the
reliability and robustness of the presented numerical CALCULATION MODEL, which uses a
special technique incorporating quasi-static dynamic stiffnesses and damping coefficients
of arbitrarily shaped rigid foundations to model the SSI.

The validation of the CALCULATION MODEL and the comparative in situ investigation
of four concrete portal frame bridges on the Nuremberg–Munich high-speed line show
a good agreement in the dynamic characteristics. In addition, this study highlights the
importance of structural stiffness as the dominant factor influencing natural frequencies.

Given the primary correlation between structural stiffness and natural frequencies,
the prediction of modal shapes remains robust even when application limits are exceeded.
In terms of damping, compliance with the proposed application limit emerges as a critical
factor. Adherence to this limit effectively excludes the influence of the SSSI and represents
a conservative scenario. Conversely, exceeding the limit can lead to noticeable differences
in the damping determination, but interestingly, in certain cases, it can also lead to accurate
predictions. The oscillatory nature of the impedance function proves to be a key factor in
this regard.

Further research efforts have the potential to refine the proposed application limits.
In particular, a deeper investigation and explanation of the effects and implications of the
SSSI are required. The development of standardised impedance functions for common
foundation geometries would be a significant step forward.

The stiffness interactions between the slab track and the bridge superstructure are
currently unclear and require additional investigation for a more complete understanding.
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