
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Software Plagiarism Detection on
Intermediate Representation

Bachelor’s Thesis of

Niklas Rainer Heneka

At the KIT Department of Informatics

KASTEL – Institute of Information Security and Dependability

First examiner: Prof. Dr. Ralf H. Reussner

Second examiner: Prof. Dr.-Ing. Anne Koziolek

First advisor: M.Sc. Timur Sağlam

Second advisor: M.Sc. Larissa Schmid

26. June 2023 – 26. October 2023

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I

have not used any other than the aids that I have mentioned. I have marked all parts of the

thesis that I have included from referenced literature, either in their original wording or

paraphrasing their contents. I have followed the by-laws to implement scientific integrity

at KIT.

Karlsruhe, 26. October 2023

. .

(Niklas Rainer Heneka)

Abstract

Source code plagiarism is a widespread problem in computer science education. To

counteract this, software plagiarism detectors can help identify plagiarized code. Most state-

of-the-art plagiarism detectors are token-based. It is common to design and implement a

new dedicated language module to support a new programming language. This process

can be time-consuming, furthermore, it is unclear whether it is even necessary. In this

thesis, we evaluate the necessity of dedicated language modules for Java and C/C++ and

derive conclusions for designing new ones. To achieve this, we create a language module

for the intermediate representation of LLVM. For the evaluation, we compare it to two

existing dedicated language modules in JPlag. While our results show that dedicated

language modules are better for plagiarism detection, language modules for intermediate

representations show better resilience to obfuscation attacks.

i

Zusammenfassung

Plagiate von Quelltext sind ein weit verbreitetes Problem in der Informatik. Um dem

entgegenzuwirken, können Software-Plagiatsdetektoren helfen, plagiierten Code zu er-

kennen. Die meisten modernen Plagiatsdetektoren sind token-basiert. Das Entwerfen und

Implementieren eines neuen dedizierten Sprachmoduls zur Unterstützung einer neuen

Programmiersprache ist dabei üblich. Dieser Prozess kann zeitaufwändig sein, und es ist

unklar, ob er überhaupt notwendig ist. In dieser Arbeit evaluieren wir die Notwendigkeit

von dedizierten Sprachmodulen für Java und C/C++ und leiten Schlussfolgerungen für das

Design neuer Sprachmodule ab. Um dies zu erreichen, erstellen wir ein Sprachmodul für die

Zwischensprache von LLVM. Für die Evaluation vergleichen wir es mit zwei bestehenden

dedizierten Sprachmodulen in JPlag. Während unsere Ergebnisse zeigen, dass dedizierte

Sprachmodule besser für die Erkennung von Plagiaten geeignet sind, zeigen Sprachmodule

für Zwischensprachen eine bessere Widerstandsfähigkeit gegen Verschleierungsangriffe.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Foundations 3
2.1. Token-based Software Plagiarism Detection 3

2.2. JPlag . 4

2.3. Obfuscation Attacks . 5

2.4. LLVM . 6

3. Related Work 9

4. Concept 13

5. LLVM IR Language Module 15
5.1. Simple Token Abstraction . 15

5.1.1. Functions . 15

5.1.2. Terminator Instructions . 16

5.1.3. Operations . 16

5.1.4. Memory Operations . 17

5.1.5. Other Operations . 17

5.2. Advanced Token Abstraction . 17

5.2.1. Functions . 18

5.2.2. Globals . 18

5.2.3. Terminator Instructions . 19

5.2.4. Operations . 20

5.2.5. Memory Operations . 20

5.2.6. Other Operations . 20

5.2.7. Meta Data, Types and Other Elements 22

6. Evaluation 23
6.1. Methodology . 23

6.1.1. Implementation . 23

6.1.2. Approach . 24

6.1.3. Data Sets . 26

v

Contents

6.2. Results and Discussion . 29

6.2.1. Impact of the Minimum Token Match 30

6.2.2. Impact of the Token Abstraction Version 34

6.2.3. Impact of the LLVM Optimization Level 37

6.2.4. Comparison with Dedicated Language Modules 41

6.3. Limitations . 45

6.4. Threats to Validity . 45

7. Future Work 47

8. Conclusion 49

Bibliography 51

A. Appendix 55

vi

List of Figures

2.1. JPlag’s token abstraction . 4

2.2. JPlag Pipeline . 4

2.3. JPlag’s language module . 5

2.4. LLVM Phases . 7

4.1. Support of multiple programming languages 14

6.1. Minimum token matches Programming Homework data set 31

6.2. Minimum token matches PROGpedia data set 32

6.3. Regression for minimum token matches 33

6.4. Token abstraction versions Programming Homework data set 34

6.5. Token abstraction versions PROGpedia data set 36

6.6. Optimization levels Programming Homework data set 39

6.7. Optimization levels PROGpedia data set 40

6.8. Language module comparison Programming Homework data set 42

6.9. Language module comparison PROGpedia data set 43

A.1. Function Filtering . 56

A.2. Similarities for each task Programming Homework data set 57

vii

List of Tables

5.1. Simple Function Token Types . 15

5.2. Simple Terminator Token Types . 16

5.3. Simple Operation Token Types . 17

5.4. Simple Memory Token Types . 17

5.5. Simple Other Token Types . 18

5.6. Advanced Token Types for Functions and Files 18

5.7. Advanced Token Types for Global Elements 19

5.8. Advanced Terminator Token Types . 19

5.9. Advanced Operation Token Types . 20

5.10. Advanced Memory Token Types . 21

5.11. Advanced Other Token Types . 21

6.1. GQM-Plan . 25

6.2. Code lengths with optimization levels Programming Homework data set 28

6.3. Code lengths with optimization levels PROGpedia data set 29

6.4. Best minimum token matches . 33

6.5. Token abstraction versions Programming Homework data set 35

6.6. Token abstraction versions PROGpedia data set 37

6.7. Optimization levels Programming Homework data set 38

6.8. Optimization levels PROGpedia data set 40

6.9. Language module comparison Programming Homework data set 43

6.10. Language module comparison PROGpedia data set 44

A.1. Number of generated tokens . 56

ix

1. Introduction

Software plagiarism is a widespread issue in computer science education [7]. It is common

for students to complete programming assignments. They are often assigned to get solved

at home within several days or weeks [17, 18]. These tasks are a practical test of the

student’s skills [12] and can replace classic exams. Therefore, such tasks are often graded.

The students are usually encouraged to discuss the assignments with classmates. However,

many students lack the time or skills to solve these assignments or want to improve their

grades [15, 18]. As a result, they copy code from other students, which is considered

plagiarism [7, 15].

Detecting such cases of plagiarismmanually becomes unfeasible at scale with an increasing

number of submissions. Therefore, multiple plagiarism detectors like JPlag [29] and

MOSS [32] were developed to automatically detect plagiarism in student assignments.

They analyze the students’ submissions and calculate a similarity score between each pair.

Submission pairs with high similarity are associated with plagiarism and can be checked

manually by a tutor or a teacher to decide if it is a case of plagiarism. Since students

may modify or transform their copied code to try to bypass such detection mechanisms,

plagiarism detectors must be able to deal with such measures to a certain degree [17].

The most widely used and state-of-the-art technique is token-based plagiarism detec-

tion [25]. Before comparison, the source code gets mapped to an alternative representation,

the so-called token list, in a process called token abstraction. Afterward, an algorithm

to calculate similarities between pairs of submissions gets applied to the token list. This

token abstraction employs some abstraction from the representation of the code. The

abstraction allows the comparison of the structure of the source codes, as this is more

difficult to change when plagiarizing [17]. Therefore, it only extracts elements of the code’s

structure and abstracts from elements like variable names since they are not part of the

code’s structure and are easy to change. This abstraction improves plagiarism detection

quality and resilience against modifications [18]. The mapping is often programming

language specific, and we call the implementation of it a language module. The resulting

tokens, as well as the calculation of similarities, are language-independent.

Themost commonway to support a new programming language is to create a new language

module for that particular language. The reason for this is the assumption that having a

dedicated language module for a specific language improves plagiarism detection since the

token abstraction refers directly to the language. However, this process can be very time-

consuming, yet it is unclear if this actually improves plagiarism detection. Therefore, it still

needs to be determined if a dedicated language module for each programming language

is even necessary. Our thesis will compare dedicated language modules with a language

1

1. Introduction

module supporting several programming languages. This allows us to draw conclusions

that indicate whether a dedicated language module for each programming language is

necessary or if a languagemodule supportingmultiple programming languages is sufficient.

Furthermore, we want to derive takeaways for designing new language modules based on

our approach.

To accomplish that, we create a language module for an intermediate representation (IR)

supporting several programming languages. An IR is the code used internally by compilers

to represent source code. We create the language module for the intermediate representa-

tion of LLVM [19]. LLVM is a collection of modular compiler and toolchain technologies

that operate on their intermediate representation, LLVM IR. There are many frontends

for programming languages that allow compiling source code to the LLVM IR, like the

Clang compiler [30] for C and C++. Therefore, our language module supports multiple

heterogeneous programming languages. We compare our LLVM IR language module

with dedicated language modules for Java and C/C++ to assess their necessity, indicating

whether dedicated language modules are generally necessary. In addition, we describe the

design decisions behind it to derive conclusions for creating new IR language modules.

We evaluate our approach by implementing the LLVM IR language module for JPlag [29]

and comparing it with the existing dedicated Java and C/C++ language modules from

JPlag. Our evaluation is divided into two parts. We first want to evaluate the LLVM IR

language module itself by comparing different designs and configurations with each other.

This step will result in a suitable language module and the design decisions behind it. In

the second part, we compare the LLVM IR language module with the dedicated Java and

C/C++ language modules from JPlag regarding their plagiarism detection quality. From

this, we can infer conclusions that indicate whether having a dedicated language module

for each programming language is necessary and, with the first part, how new IR language

modules can be designed.

Our results show that the two dedicated language modules perform better at detecting

plagiarism in student submissions than our IR language module. This suggests that it

is preferred to have language modules for each programming language as it improves

plagiarism detection in student submissions. However, our IR language module shows

better resilience to obfuscation attacks than the dedicated Java language module. As

students can use frameworks to obfuscate their plagiarized code automatically [8], an IR

language module can help detect such plagiarism. Regarding designing IR modules, we

show that higher optimization levels can lead to better detection quality and that more

fine-grained tokens can also improve plagiarism detection.

The remainder of this thesis is structured as follows. In chapter 2, we present the foun-

dations for this work. Chapter 3 gives an overview of relevant work in this field. In

chapter 4, we describe the concept of this thesis, followed by the construction of our

LLVM IR language module in chapter 5. Chapter 6 contains the results of our evaluation.

Chapter 7 presents ideas and suggestions for future work, and chapter 8 concludes this

thesis.

2

2. Foundations

This chapter describes the fundamental concepts and software relevant to this thesis.

Section 2.1 introduces token-based Plagiarism detection, which is relevant to the software

plagiarism detection we focus on in this work. Then, section 2.2 focuses on the basics of

the software we extend in this work, namely JPlag. Section 2.3 provides an introduction to

attacks on plagiarism detection. Finally, section 2.4 overviews relevant concepts of LLVM

and the LLVM IR.

2.1. Token-based Software Plagiarism Detection

Plagiarism can be defined as ”the act of imitating or copying or using somebody else’s

creation or idea without permission and presenting it as one’s own” [18]. Plagiarism in

student assignments and programs is frequent in academic contexts, especially in computer

science [6]. It is not intended that students submit solutions they did not create themselves

or include significant work from others. A plagiarized program can hereby be defined

as ”a program which has been produced from another program with a small number of

routine transformations” [27]. As a countermeasure to software plagiarism, many different

plagiarism detection tools and algorithms are available today [25].

Token-based software plagiarism detection is the most common technique in academia [25].

The principle is that the language module extracts tokens from the code that represent

the code’s structure, which are then compared. Therefore, submissions with the same

structure result in the same token list, regardless of their representation. In the first step,

the source code of the submission files gets parsed and mapped to the token list. The

mapping abstracts from the code’s representation and is typically specific to a language. We

call this token abstraction. Therefore, different programming languages require different

token abstractions. Designing the token abstraction requires deciding the token types and

defining rules for extracting the tokens from the parsed code. Consequently, the language

module has two tasks: Parsing the source code of the submissions and extracting tokens

according to specific rules. The idea is that the abstraction through token lists improves

performance and resilience against modifications while preserving the essence of the

program. Therefore, token abstraction is an essential part of the quality of plagiarism

detectors. The second step is calculating a similarity score of two token lists and is mostly

language-independent. The algorithms used in standard plagiarism detectors are greedy

string tiling [34] in JPlag and fingerprinting [32] in MOSS. An example of a source code

mapping to a token list is in Figure 2.1.

3

2. Foundations

Figure 2.1.: Example of JPlag’s token abstraction to map Java source code to a token list

Figure 2.2.: JPlag Pipeline

2.2. JPlag

JPlag is an open-source token-based plagiarism detection tool developed in 1996 at the

University of Karlsruhe [29]. It supports a variety of different programming languages [16].

To support a programming language, JPlag requires a language module that extracts a

token list from the source files. The comparison of code submissions consists of two

phases, as seen in Figure 2.2:

Token Abstraction

First, the corresponding language module takes the submissions and parses or scans each,

creating an abstract syntax tree (AST). Every language module can use whatever method

is preferred to build the AST. For example, the Java module uses the JavaC API, and the

C/C++ module uses an ANTLR grammar. After this step, the AST was built that describes

the program’s structure. Afterward, a list of language-independent tokens gets extracted

from the AST, where each token type stands for a syntactic concept of the language, like

assignments or loops. Details describing semantics, such as variable types or method

4

2.3. Obfuscation Attacks

Figure 2.3.: JPlag’s language module

signatures, are mainly abstracted so that the tokens represent the program’s structure.

That prevents many common code modifications, like parameter renaming. This phase,

also seen in Figure 2.3, is highly language-dependent, and each language module can

decide what types of tokens exist and how they get extracted.

Calculation of the Similarity Score

JPlag iterates over each pair of token lists and tries to cover one token sequence with

sections of the other. The used algorithm is a modified version of greedy string tiling [34]

and returns a list of matching sections within the two token lists. JPlag then outputs

the similarity score, meaning how much could be matched as a percentage. This score

represents the similarity of the two submissions. The minimum token match describes

the minimum number of tokens that must be identical to get marked as a match and

increase the similarity score. The optimal value can vary and depends on the language

module and the submissions. The minimum token match prevents detecting brief identical

sections typical in programs and do not indicate plagiarism. Additionally, JPlag allows

the specification of a base code, which is ignored in matching every file and is meant for

templates. The minimum token match and the base code are parameters that the user can

set.

2.3. Obfuscation Attacks

As mentioned before, students commonly attempt to hide their plagiarism by modifying or

transforming their submissions. If they explicitly intend to deceive a plagiarism detector,

we refer to such an action as an obfuscation attack. Karnalim [17] defines eight levels of

5

2. Foundations

attacks on source code plagiarism detection and lists specific attack types. Therefore, when

designing a language module, one has to consider which attack vectors are prevented by

the design. This step is even more relevant with program transformation frameworks like

MOSSAD [8]. They aim to automatically create one or multiple plagiarisms that can not

be detected from one original submission. This can be achieved with obfuscation attacks,

for example, by inserting new lines of code or reordering existing ones without affecting

the program’s results. In the case of JPlag, this splits up matching sections and keeps the

length of the sections below the minimum token match and is therefore not accounted as

plagiarism. Consequently, it is even more critical that plagiarism detectors are resilient to

such obfuscation attacks to a certain degree.

2.4. LLVM

LLVM [23] is a collection of modular and reusable compiler and toolchain technologies.

It began as a research project at the University of Illinois, providing a language and

target-independent compiler framework. Designed for static and dynamic compilation by

providing high-level information for compiler transformations at all stages of compilation

[19]. LLVM can be used to build optimizing compilers for high-performance programming

languages and compiler-based tools such as Just-In-Time (JIT) translators, analysis tools,

and more. Initially, they achieved this through the LLVM virtual instruction set and a

compiler design exploiting this code representation.

LLVM IR

LLVM IR is the intermediate representation of LLVM, a low-level virtual instruction set

used as the internal code representation, as seen in Figure 2.4. It is a three-address code

representation designed to be both language-independent and target-independent. The

instruction set avoids machine-specific constraints such as physical registers and low-level

calling conventions but captures the key operations of ordinary processors. LLVM provides

an infinite set of typed virtual registers in Static Single Assignment (SSA) [1] form that

requires each variable to be assigned exactly once and defined before it is used. These

registers can hold values of primitive types like integers, floating points, booleans, and

pointers. It provides a language-independent type system that enables a broad class of

high-level transformations on low-level code, instructions for performing type conversions,

and low-level address arithmetic while preserving type information. Further, it supports

exception handling for implementing language-specific exception semantics and type-safe

pointer arithmetic [19, 21].

6

2.4. LLVM

Figure 2.4.: LLVM Phases

Compiler Framework

The LLVM compiler framework allows sophisticated transformations at all stages of compi-

lation by operating on the LLVM IR of a program. Its components include interprocedural

optimizations at link time, machine-dependent optimizations at install time on each system,

and dynamic optimization at run time. Furthermore, they contain static and dynamic

analyses, native code generators, JIT compiler support, and more [19, 20].

Today, LLVM has become an umbrella project for several subprojects focusing on compiler

and toolchain technologies.

7

3. Related Work

Much research has been done in source code plagiarism detection, resulting in many tools

and algorithms [25]. There is further work focusing on token abstraction as well as the

support of multiple programming languages.

Greule conducts two experiments in his bachelor’s thesis [10] addressing the issue of token

abstraction. In his first experiment, he analyzes the extraction of tokens on two different

abstraction levels. He compares the use of a parser-based approach with a lexer-based

approach. The parser-based method uses an AST, which extracts syntactical elements

representing the structure, while the lexer-based approach uses a lexer to extract keywords,

separators, and operators. In his second experiment, he analyzes token abstraction by

defining categories for sets of token types and evaluates the quality of these categories.

His thesis focuses on the design of token abstraction for language modules in general. Our

thesis investigates whether these designs must be performed for each dedicated language

module. We do this by focusing on an IR language module’s design and token abstraction,

resulting in support for multiple programming languages.

Karnalim [17] analyzes plagiarism detection on bytecode level by extracting tokens from

Java bytecode. Using Java bytecode supports languages like Java, Kotlin, and Scala, which

compile to it. During token extraction, the instructions get generalized and reinterpreted,

linearizing the methods. Generalization combines several instructions into one token. For

example, iadd (integer addition), ladd (long addition), fadd (float addition), and dadd (double

addition) get mapped to only one addition token. Reinterpretation transforms special

instructions into simpler ones. For example, tableswitch and lookupswitch instructions get

translated into goto instructions. While the author does not provide details on the design

decisions, we want to describe the design of the language module to derive takeaways for

new language modules of IRs. Also, Karnalim works directly with the bytecode while we

extract our tokens from an AST. Moreover, it supports only JVM-based languages, while

our approach with LLVM IR supports more heterogeneous languages than Karnalims.

Rabbani and Karnalim [31] proposed a similar approach. They detect source code plagia-

rism on .NET programming languages by extracting tokens from a low-level representation.

This allows plagiarism detection for languages like Visual Basic and C#. They compare

the code in a pairwise approach. In the first step, both source codes get compiled to their

.NET CIL executable file. Afterward, the executable files get disassembled using the .NET

CIL disassembler to generate readable text of .NET CIL information. While the token

extraction is done directly on the text, they describe it only briefly, demonstrating how it

works. However, our thesis focuses on the token abstraction on an AST, describing the

9

3. Related Work

design and deriving takeaways for new IR language modules. Moreover, our approach

supports more heterogeneous languages as well.

The plagiarism detection tool Dolos [24] is based on the tree-sitter parser library [4], which

supports various programming languages. In the token abstraction step, Dolos uses this

library to convert each source file into an AST. Afterward, each AST gets serialized into

a list of tokens. Although Dolos supports various programming languages, the token

extraction step is not explained further. In contrast, we want to explain how we extract

our tokens to derive takeaways for new IR language modules.

Christian Arwin and S. M. M. Tahaghogi [3] propose the plagiarism detection tool XPlag,

which can detect plagiarized source code between programming languages. First, all source

files get compiled to an IR, namely the GCC Register Transfer Language (RTL), using the

GCC compiler with compiler optimizations. Then, the RTL gets converted into tokens

used to calculate the similarity. In the token extraction step, they represent the tokens

as keywords of the RTL, which are filtered to avoid variable or register names. XPlag

shows good results, as well as shows that the highest optimization level yields the best

results. However, the token extraction is only described briefly by mentioning the relevant

keywords. In contrast, we focus on token extraction and give a more detailed description.

Moreover, XPlag works with keywords and supports only programming languages that

can be compiled with GCC, while our approach works with an AST and supports a broader

range of programming languages with LLVM IR.

Jhi et al. [14] propose a software plagiarism detection prototype based on the observation

that some critical runtime values of a program are difficult to replace or eliminate by

semantic preserving transformation techniques. In several steps, they generate a sequence

of so-called core values, which then get compared. They extract runtime values, defined

as values from the output operands of the executed machine instructions. Then, the core

values get extracted from these runtime values. This sequence is then refined and can be

compared to others to calculate the similarity of programs. In Jhi et al. [13], they improved

this approach to become resilient to reordering attacks. While they explain the sequence

extraction, the prototype only applies to programs that can be compiled with GCC. In

contrast, our approach with LLVM IR supports a broader range. Furthermore, our token

extraction works on an AST, so we compare the structures of the programs while their

approach only compares runtime values.

Caldeira et al. [5] propose a method for clone detection using the LLVM IR. Clone detection

is the detection of duplicated code fragments within the software that reduces maintain-

ability. In their approach, the source code gets compiled to the LLVM IR beforehand.

Afterward, a clone detection tool is used on the IR, detecting such code duplicates. They

show that the compilation to LLVM IR reduces the syntactical variability of semantically

identical code and improves code clone detection. The main difference from our thesis

is that we are working on plagiarism detection instead of clone detection. Code dupli-

cates arise unintentionally by reusing the same code fragments several times with minor

modifications. In plagiarism detection, we deal with an attacker who intentionally uses

obfuscation attacks to bypass plagiarism detectors.

10

Additionally, there is further work on software plagiarism detection usingmachine learning

approaches. Yasaswi et al. [35] propose an unsupervised learning approach for detecting

source code plagiarism in an IR. In their method, they extract static features from the IR of

a program. They use the GCC compiler for the IR to compile the source code to the GCC

IR. Afterward, they apply an unsupervised learning technique on the extracted features to

form clusters of similar student solutions. Ullah et al. [33] proposed a different approach. In

a preprocessing step, they convert the source code into tokens now containing frequency

details. Afterward, they weight the tokens and perform a principle component analysis to

extract features. Ultimately, a multinomial logistic regression model is applied to these

features to classify the source codes based on predictions. Since their method does not

look at the syntax of a program, their approach is programming language-independent.

Both approaches support multiple programming languages simultaneously using machine

learning techniques. However, we use the AST to represent the syntactic elements of the

source code and generate tokens for the comparison step from it. We support multiple pro-

gramming languages by allowing plagiarism detection on the intermediate representation

of source codes.

11

4. Concept

Token-based plagiarism detection is a state-of-the-art technique frequently used in ed-

ucational settings [25]. While the pairwise comparison of the token lists is language-

independent, token abstraction is usually programming language-specific. As mentioned

in chapter 1 and section 2.2, adding support for a new programming language usually

involves designing and implementing a new language module specific to that language.

However, this process can be very time-consuming. It must first be defined how the

submission files get parsed, which is an effort of a technical nature. Then, the token

abstraction must be defined, as it is different for each programming language, which is

work at the conceptual level.

Moreover, there is no systematic process or pre-defined rules that explain how to design

a new language module. Most design decisions are based on experience from existing

language modules that have worked well so far. ”As a rule, tokens should be chosen such

that they characterize the essence of a program’s structure (which is difficult to change by a

plagiarist) rather than surface aspects.” [29]. This makes it more challenging to implement

language modules for new programming languages, which actually provide a desirable

detection quality.

However, it still needs to be determined if having a dedicated language module for each

new programming language is even necessary. A language module supporting multiple

programming languages might provide similar results to the dedicated ones. This way,

the parsing and token abstraction do not have to be redefined for each language. We

aim to draw conclusions indicating whether having dedicated language modules for

each programming language is necessary or if a language module supporting multiple

programming languages is sufficient. Additionally, we want to derive takeaways for

designing new language modules based on our approach.

To achieve this, we create a language module in an IR supporting several programming

languages. To accomplish support for several programming languages, we compile the

source code for each programming language to the IR. Afterward, we insert the IR code

into our IR language module, generating the tokens for the comparison. Figure 4.1 shows

an illustration of this.

As discussed in chapter 3, there is work on language modules in IRs. However, there is a

lack of evidence regarding the design of the token extraction, as there is no systematic

process that explains how to design a new language module. We compare our IR language

module with dedicated language modules to assess their necessity. In addition, we describe

the design decisions behind it to derive takeaways for IR language modules and to support

13

4. Concept

Figure 4.1.: Process to support multiple programming languages

the creation of new modules. These design decisions consist of the decisions behind the

token abstraction and the configurations for the minimum token match and compiler

optimizations.

Moving from dedicated to IR languagemodules adds a new abstraction level since the source

code must be compiled to the IR. This process usually comes with a loss of information

because only some elements get extracted, but some get abstracted. Additionally, this

abstraction can vary with different compiler optimizations performed on the IR. We want

to investigate if this loss of information affects detecting software plagiarism by comparing

our IR language module with dedicated ones. If the IR languages module performs worse

than the dedicated ones, we assume relevant information gets lost in the abstraction

step.

We evaluate our approach by implementing a language module in JPlag [29] and comparing

it with the existing dedicated language modules. We implement this language module for

the LLVM IR. There, we focus on the token selection and the token extraction. The token

selection consists of deciding which syntactical elements should be assigned a token. The

token extraction describes when which tokens will get extracted.

Since the LLVM IR is extensive and complex, we propose two versions for the language

module with different token abstractions. The first, simple version implements a simple

token abstraction. It focuses only on a subset of the LLVM IR language, namely function

and program instructions because they are the most relevant parts of the LLVM IR. The

second, advanced version implements a more extensive token abstraction. It is more

complex and considers the whole IR to take advantage of that. This differentiation lets us

derive design ideas when comparing the different versions.

14

5. LLVM IR Language Module

In this chapter, we describe the creation of the LLVM IR language module. We list the token

types and describe the mapping of LLVM IR elements to our token types. Furthermore,

we explain the design decisions behind our language module. Section 5.1 describes the

design of our simple version of the LLVM IR language module, and section 5.2 describes

our advanced version.

5.1. Simple Token Abstraction

For the simple version of our language module, we describe a simple token abstraction.

This means we decide on token types and generate tokens only for functions and program

instructions because they are the most relevant parts of the LLVM IR.

5.1.1. Functions

Table 5.1 shows the token types we decided on for functions. We create a separate token for

the beginning and the end of a function. This distinction allows us to separate individual

methods from each other. Furthermore, we distinguish between a function definition and

a function declaration since defined functions are implemented in the file, and declared

functions are externally defined functions that just get called. We decided not to generate

tokens for function parameters as they can be an easy target for an obfuscation attack. An

attacker can circumvent plagiarism detection by adding an unused parameter to a method

definition because one more token gets extracted. Additionally, we decided not to generate

tokens for attributes of functions and parameters since they merely contain information

relevant to plagiarism detection. They are primarily relevant for the compiler, for example,

to declare how a parameter gets aligned in memory.

Category Token Type Description
Functions FUNCTION_BODY_BEGIN Start of a function

Functions FUNCTION_BODY_END End of a function

Functions FUNCTION_DECLARATION Declaration of a function

Functions FUNCTION_DEFINITION Definition of a function

Table 5.1.: Simple Function Token Types

15

5. LLVM IR Language Module

Category Token Type Description
Terminator instructions RETURN Return control flow

Terminator instructions BRANCH Transfer control flow

Terminator instructions CONDITIONAL_BRANCH Conditional branch statement

Terminator instructions INVOKE Transfer control flow to function

Terminator instructions CALL_BRANCH Call branch statement

Terminator instructions SWITCH Switch branching statement

Terminator instructions INDIRECT_BRANCH Indirect branch statement

Terminator instructions RESUME Resume from a function call

Terminator instructions CATCH_SWITCH Set of possible catch handlers

Terminator instructions CATCH_RETURN Ends an existing exception

Terminator instructions CLEAN_UP_RETURN Transfer control flow

Table 5.2.: Simple Terminator Token Types

5.1.2. Terminator Instructions

Table 5.2 shows the token types for terminator instructions. We have a token type for each

terminator instruction of the IR for the simple version except one. The reason for separate

token types is that different control structures use different instructions. For example, an

if expression in a higher-level language is mainly implemented with a conditional branch,

while a switch case is implemented with a switch instruction. Furthermore, instructions,

like invoke and resume, are essential for the exception-handling routine of the LLVM IR,

which results from exception handling in the source code. The terminator instruction,

which is not represented, is the unreachable instruction, which specifies that a part of

the code is unreachable. We do not generate a token for this to improve the resilience of

obfuscation attacks that add unreachable code.

5.1.3. Operations

General operations are represented with only one token type, as seen in Table 5.3. This

operation token type combines multiple instructions, like instructions for adding integers

and floats, subtracting integers and floats, shifts, and binary instructions. The idea is that

these instructions often get generated from assignments like this:

in t x = 4 + 5 ;

double y = 2 . 5 ∗ x ;

in t z = x << 2 ;

The existing language modules in JPlag map these assignments on the same token inde-

pendent of the operator used. To stay consistent with these, we map such instructions

on the same token type for the simple version. We do this by generating an OPERATION

token for each of the instructions.

16

5.2. Advanced Token Abstraction

Category Token Type Description
Operations OPERATION Operation instructions

Table 5.3.: Simple Operation Token Types

Category Token Type Description
Memory Operations ALLOCATION Allocates new memory

Memory Operations LOAD Loads a value from memory

Memory Operations STORE Stores a value in memory

Memory Operations FENCE Introduce Happens-before relation

Memory Operations COMPARE_EXCHANGE Atomic exchange of values

Memory Operations ATOMIC_RMW Atomic read, modify and write

Memory Operations GET_ELEMENT_POINTER Get pointer from an element

Table 5.4.: Simple Memory Token Types

5.1.4. Memory Operations

Table 5.4 shows the token types for memory operations. For the simple version, we have

a token type for each memory operation of the IR. Because of this, we can differentiate

between the different memory operations as they are fundamentally different.

5.1.5. Other Operations

The LLVM IR also specifies other instructions for various use cases. These are instructions

for comparisons, conversions, exception handling, and more. Table 5.5 shows the token

types we decided on for the simple version.

Regarding comparisons, the LLVM IR provides instructions for integer and float compar-

isons. Different token types would enable an easy obfuscation attack by changing integers

to floats or vice versa, thus generating different tokens. So, we map both instructions on

one COMPARISON token.

For conversions, the LLVM IR consists of several different instructions, like converting

integers to pointers. Changing the type of variables like integer to float would be an

attack vector for an obfuscation attack similar to the comparisons. As a result, we map all

conversions on one CONVERSION token.

5.2. Advanced Token Abstraction

The advanced version of the LLVM IR language module considers the whole IR. This

allows us to derive whether other aspects of the IR than functions and instructions are

17

5. LLVM IR Language Module

Category Token Type Description
Conversions CONVERSION Conversions and casts

Comparisons COMPARISON Comparison of integers and floats

Others PHI SSA phi instruction

Others SELECT Selects value based on condition

Others FREEZE Stop propagation of particular values

Others CALL Function call

Others VARIABLE_ARGUMENT Instruction for variable size of arguments

Others LANDING_PAD Landing pad for an exception

Others CATCH_PAD Catch handler for an exception

Others CLEAN_UP_PAD Cleanup from an exception

Table 5.5.: Simple Other Token Types

Category Token Type Description
Files FILENAME Name of the LLVM IR file

Functions FUNCTION_BODY_BEGIN Start of a function

Functions FUNCTION_BODY_END End of a function

Functions BASIC_BODY_BEGIN Start of a basic block

Functions BASIC_BODY_END End of a basic block

Functions FUNCTION_DECLARATION Declaration of a function

Functions FUNCTION_DEFINITION Definition of a function

Table 5.6.: Advanced Token Types for Functions and Files

relevant and how we can use them. We grayed out all token types from the simple version

to better distinguish between new token types and types present in the simple version.

5.2.1. Functions

Table 5.6 shows the token types we created for functions and files. The difference from the

simple version is that we have a token type for the file name. This token type represents the

start of a file, as the filename is always at the top of the IR code. Additionally, we have token

types for the beginning and end of a basic block, which is a sequence of instructions that

terminates with an instruction that changes the program’s control flow. This distinction

allows differentiating programs with different control flows because different tokens will

be extracted.

5.2.2. Globals

We have new token types representing global elements of the IR, as seen in Table 5.7.

Global variables and type definitions are relevant parts of the functionality of an LLVM IR

18

5.2. Advanced Token Abstraction

Category Token Type Description
Globals GLOBAL_VARIABLE Definition / declaration of global variables

Globals ASSEMBLY Inline assembly and assembly module

Globals TYPE_DEFINITIONS Definition of a type

Constants STRUCTURE Definition of a struct

Constants ARRAY Definition of an array

Constants VECTOR Definition of a vector

Table 5.7.: Advanced Token Types for Global Elements

Category Token Type Description
Terminator instructions RETURN Return control flow

Terminator instructions BRANCH Transfer control flow

Terminator instructions SWITCH Switch branching statement

Terminator instructions CASE Case statement for a switch

Terminator instructions CONDITIONAL_BRANCH Conditional branch

Terminator instructions INVOKE Transfer control flow to function

Terminator instructions CALL_BRANCH Call branch statement

Terminator instructions RESUME Resume from a function call

Terminator instructions CATCH_SWITCH Set of possible catch handlers

Terminator instructions CATCH_RETURN Ends an existing exception

Terminator instructions CLEAN_UP_RETURN Transfer control flow

Table 5.8.: Advanced Terminator Token Types

program and, therefore, are assigned a token type. We map definitions and declarations

for global variables on a single token type since differentiating between them is a possible

attack vector. For example, declaring a global variable and assigning it a value later is

simple but generates different tokens. Furthermore, we have token types for constant

aggregate types. Classes and structures in high-level languages get mapped to structures

in the IR. Since initializing them and other aggregates like vectors and arrays are integral

to a program, we also define token types for them.

5.2.3. Terminator Instructions

Table 5.8 shows our token types for terminator instructions. The difference to the simple

version is that the INDIRECT_BRANCH token type was removed because it is similar to the

standard branch. Differentiating between them is a possible attack vector for obfuscation

attacks. So, we extract the BRANCH token for the indirect branch instruction, too. Second,

we have a new token type CASE for the cases of a switch statement. This allows tokens

for the case statements of higher-level languages to represent different outcomes.

19

5. LLVM IR Language Module

Category Token Type Description
Binary Operations ADDITION Addition

Binary Operations SUBTRACTION Subtraction

Binary Operations MULTIPLICATION Multiplication

Binary Operations DIVISION Division

Binary Operations REMAINDER Remainder

Bitwise instructions SHIFT Shift

Bitwise instructions AND And

Bitwise instructions OR Or

Bitwise instructions XOR Xor

Vector operations EXTRACT_ELEMENT Extract an element

Vector operations INSERT_ELEMENT Insert an element

Vector operations SHUFFLE_VECTOR Shuffle a Vector

Aggregate Operations EXTRACT_VALUE Extract a value

Aggregate Operations INSERT_VALUE Insert a value

Table 5.9.: Advanced Operation Token Types

5.2.4. Operations

The difference from the simple version for general operations is that we now have token

types for the different operations, as seen in Table 5.9. This distinction allows us to

distinguish between them and have a more fine-grained token extraction.

Regarding the operations, the LLVM IR differentiates between operations on floats and

integers. We map these on the same token type to prevent obfuscation attacks by sim-

ply changing the type. For example, the addition of integers and the addition of floats

gets mapped on the ADDITION token type. This measure increases resilience towards

obfuscation attacks as changing the variable type from integer to float should not decrease

similarity.

5.2.5. Memory Operations

Table 5.10 shows the token types for memory operations. The difference to the simple

version is that we have a new token type, ATOMIC_ORDERING, allowing us to represent

synchronizations in more detail.

5.2.6. Other Operations

The LLVM IR also specifies other instructions for various use cases. Table 5.11 shows the

token types for these. The difference to the simple version is that we removed the token

type for the freeze instruction, as the instruction is relevant for the compiler but not for

detecting plagiarism. Furthermore, we have another token type, BITCAST, to distinguish

20

5.2. Advanced Token Abstraction

Category Token Type Description
Memory Operations ALLOCATION Allocates new memory

Memory Operations LOAD Loads a value from memory

Memory Operations STORE Stores a value in memory

Memory Operations FENCE Introduce Happens-before relation

Memory Operations COMPARE_EXCHANGE Atomic exchange of values

Memory Operations ATOMIC_RMW Atomic read, modify and write

Memory Operations ATOMIC_ORDERING Ordering for synchronization

Memory Operations GET_ELEMENT_POINTER Get pointer from an element

Table 5.10.: Advanced Memory Token Types

Category Token Type Description
Conversions BITCAST Casts between types

Conversions CONVERSION Conversions and casts

Comparisons COMPARISON Comparison of integers and floats

Others PHI SSA phi instruction

Others SELECT Selects value based on condition

Others CALL Function call

Others VARIABLE_ARGUMENT Instruction for variable size of arguments

Others LANDING_PAD Landing pad for an exception

Others CLAUSE Clause statement for landing pad

Others CATCH_PAD Catch handler for an exception

Others CLEAN_UP_PAD Cleanup from an exception

Table 5.11.: Advanced Other Token Types

conversions further. While the other conversion operations describe operations between

built-in types like integer to pointer, the bitcast instruction describes conversions between

all other types. This instruction is essential for allocating memory and representing

structures from higher-level programming languages. Therefore, we give it a separate

token type to distinguish it from the other conversions. Lastly, we added a token type

CLAUSE, which is relevant for exception handling as it is part of the catch statement in

higher-level languages.

As with the simple version, the LLVM IR provides instructions for integer and float

comparisons. So, we map both instructions on one COMPARISON token again. Regarding

conversions, just like the simple version, changing the type of variables, like integer to float,

would be an attack vector for an obfuscation attack. As a result, we map all conversions

except the bitcast instruction on one CONVERSION token again.

21

5. LLVM IR Language Module

5.2.7. Meta Data, Types and Other Elements

As already mentioned, the LLVM IR is quite extensive. It allows metadata to be attached

to instructions and global objects that can convey extra information about the code

to the optimizers and code generators. However, the metadata does not contain any

relevant information for plagiarism detection. Therefore, we do not have any token types

representing it and do not generate any tokens for it. We additionally refrained from

generating tokens for types in the LLVM IR as they can be an easy target of obfuscation

attacks by changing the types of variables in the source code. There are also other elements

of the LLVM IR, which we do not cover here, like the data layout, compiler-specific code,

visibility styles, calling conventions, and garbage collection strategies. We do not generate

any tokens for them either, as we do not see their relevance for detecting plagiarism.

22

6. Evaluation

This chapter contains the evaluation results. We discuss the LLVM IR language module

and compare our language module to the dedicated Java and C/C++ language modules.

We describe the methodology of our evaluation in section 6.1. In section 6.2, we present

our results and conduct a discussion. Section 6.3 lists the limitations of our evaluation,

and section 6.4 describes threats to validity.

6.1. Methodology

In this section, we describe the methodology of our evaluation. We explain the implemen-

tation details of our LLVM IR language module to extend JPlag. We state our approach to

assess the necessity of dedicated language modules and how we derive conclusions for

new IR language modules. Afterward, we show the GQM-Plan of our thesis and describe

the data sets and their modifications we use for our evaluation.

6.1.1. Implementation

We implement our LLVM IR language module using JPlag to conduct our evaluation.

For the parsing of the input LLVM IR code files, we use ANTLR [28]. ANTLR is a parser

generator for reading, processing, executing, or translating structured text or binary files.

With a LLVM IR grammar, we can generate an AST, a parser, and an AST listener interface.

We use The LLVM IR grammar from the ANTLR grammar repository [2], with the most

recent modification in August 2023
1
.

We extract the tokens from the AST with the ANTLR listener interface. This allows us

to generate a token for entering each node of the AST representing a syntactic element

of the IR. The tokens are generated by their matching listener method. As an example

the enterFunctionDefinition listener method always generates a FUNCTION_DEFINITION

token.

The listener interface distinguishes further between instructions on values and expressions,

which are instructions on constants. For example, the listener interface contains a method

enterAddExpr for adding expressions and a method enterAddInst for adding values. In

our implementation, we do not distinguish between them and generate for instructions

1
https://github.com/antlr/grammars-v4/tree/768b12e1db509aa700a316e3eed1e23e8c4bdb06/llvm-ir

23

6. Evaluation

the same tokens as for their expressions. This avoids obfuscation attacks by changing

variables and constants in the source code to generate different tokens.

6.1.2. Approach

For the evaluation, we compare our LLVM IR language module with dedicated Java and

C/C++ language modules to determine if the abstraction to an IR results in a loss of

relevant information. With this knowledge, we derive conclusions that indicate whether

we need dedicated language modules or if an IR module supporting multiple programming

languages is sufficient or even better. Additionally, we explain the design decisions behind

our language module to derive takeaways that support the creation of new IR language

modules.

The data sets on which we carry out our tests can be seen in subsection 6.1.3. To use the

data, we compile the C/C++ source code to LLVM IR with the Clang compiler
2
[30]. The

Java source files get compiled to LLVM IR with GraalVM
3
[9]. For the evaluation, the

LLVM IR code is then used as input for JPlag, using the LLVM IR language module to

generate the similarities. The generation of the similarities for the dedicated language

modules will be done by directly running JPlag with the existing language modules on the

respective data. Here, we will use the Java language module for the Java source code files

and the ANTLR-based CPP language module for the C/C++ files.

We conduct our evaluation by comparing chosenmetrics for the different languagemodules

and configurations with each other. For the comparison, we calculate several metrics for the

difference of similarities between unrelated submission pairs and plagiarism pairs. We do

this because a larger difference between the similarities of non-plagiarized and plagiarized

pairs is more desirable. The further plagiarism is separated from non-plagiarism, the easier

it is for the user to recognize it. The score, which is the sum of all metrics, determines the

plagiarism detection quality. We use the following three values as metrics, with a higher

value being better:

• Difference of the mean between plagiarized submission pairs and unrelated pairs as

𝐷𝑖 𝑓 𝑓𝑀𝑒𝑎𝑛

• Difference of the median between plagiarized submission pairs and unrelated pairs

and as 𝐷𝑖 𝑓 𝑓𝑀𝑒𝑑𝑖𝑎𝑛

• Difference between the 25% quantile of plagiarized pairs and the 75% quantile of

unrelated submission pairs as 𝐷𝑖 𝑓 𝑓𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒

Therefore, a higher score means a better plagiarism detection quality.

The evaluation of the LLVM IR language module is divided into two parts, which are also

the two goals of our GQM-Plan in Table 6.1. The first part consists of a quality analysis of

the LLVM IR module, where we evaluate the module’s different token abstraction versions

2
Version 15.0.7-arm64-apple-darwin22.0

3
Version GraalVM CE 22.3.2

24

6.1. Methodology

Goal Question Metric
1. Analyze the different

token abstraction versions

and configurations of the

LLVM IR language module

1.1 Which token abstrac-

tion version results in a bet-

ter detection quality?

1.1.1 Similarity difference

of the LLVM IR language

module with the simple

and advanced version

1.2 What minimum token

match provides the best re-

sult?

1.2.1 Similarity difference

of the LLVM IR language

module with different min-

imum token matches

1.3What optimization level

provides the best result?

1.3.1 Similarity difference

of the LLVM IR language

module with different opti-

mization levels

2. Analyze whether a

language module in an IR

performs as well as

dedicated language

modules in plagiarism

detection

2.1 How does moving to

an IR affect the plagiarism

detection quality of a

language module?

2.1.1 Similarity difference

of the Java and C/C++

language module and the

LLVM IR language module

2.1.2 Change of the false

positive rate comparing the

Java and C/C++ language

module with the LLVM IR

language module

Table 6.1.: GQM-Plan

and configurations. There, we want to know which language module version, minimum

token match, and optimization level provide the best results regarding our metrics. In

the second part, we compare the language module with the dedicated C/C++ and Java

language modules. We want to determine howmoving to an IR affects plagiarism detection

regarding the similarity difference between plagiarized and non-plagiarized pairs.

The first part shows us which is the better LLVM IR language module and configuration

based on our metrics. In addition, we derive takeaways for new IR language modules by

explaining the design decision behind the better language module. The result of the second

part indicates whether dedicated language modules are actually necessary. If the dedicated

language modules show better results than our IR language module, we conclude that

compiling to an IR results in a loss of relevant information. This indicates that dedicated

language modules are superior and necessary for achieving the best plagiarism detection

quality. If the LLVM IR language module shows similar or better results, we conclude that

code can be compiled to an IR with little or no loss of relevant information. This indicates

that dedicated language modules are unnecessary, and IR language modules are superior

because they allow support for multiple programming languages.

25

6. Evaluation

6.1.3. Data Sets

We use real data sets of student submissions to evaluate our LLVM language module and

estimate quality in real-world scenarios. In this section, we describe the data sets we used

and the modifications made to them.

6.1.3.1. Programming Homework Data Set for Plagiarism Detection C/C++

For C and C++, we use the Programming Homework Dataset for Plagiarism Detection [22].

This data set contains homework submitted by students during two introductory pro-

gramming courses, where each course consists of multiple different assignments. The

solutions were programmed using C and C++. It includes additional files about the groups

of students considered to have been involved in plagiarism. This decision is based on code

similarity.

We applied several modifications to the data set. In the first step, we removed all files

named .c and .cpp because with no file name, they were not in the ground truth and,

therefore, are unlabeled. We further removed the course B2017 because it contains no

plagiarized submissions. Moreover, many files contain information about which course the

file belongs at the beginning of the file. Since these descriptions were not valid C/C++ code,

we had to remove them to compile them. Some source codes also contain special characters

like U+0001, U+0002, and null characters, which we removed as well to compile the codes.

Additionally, we removed all inline and block comments because this is important for

a later step, and they would only get ignored later. Therefore, we checked every line

of each file and deleted the line if it started with a forward slash or was part of a block

comment. These modifications affected 12943 files. Many submissions besides comments

only contain an empty main method or variables that were never used. These pairs

were not marked as plagiarism but had high similarities. To exclude such files from our

evaluation, we removed all files being smaller or equal to 200 Byte, which affected 6459

files. We previously removed the comments because they increased the file size without

containing relevant information. Next, since not every file could be compiled to LLVM IR

because of syntax errors, we only use the files that could be compiled. So, for an equal

evaluation, we removed the corresponding C/C++ files for which we could not generate

the LLVM IR code. This affected 1915 files. We further renamed one variable in 10 files to

avoid parsing errors with the CPP language module. In the last step, we removed 11 tasks

from the three courses as they no longer contain plagiarized submissions.

The course A2016 is summarized as follows:

• Language: C

• Submissions: 6674 originally, 6569 after modifications

• Plagiarized Pairs: 863

• Code length (min/avg/max): 13/73.56/1402

26

6.1. Methodology

The course A2017 is summarized as follows:

• Language: C

• Submissions: 13532 originally, 8911 after modifications

• Plagiarized Pairs: 389

• Code length (min/avg/max): 11/75.05/705

The course B2016 is summarized as follows:

• Language: C++

• Submissions: 12196 originally, 6204 after modifications

• Plagiarized Pairs: 45

• Code length (min/avg/max): 11/160.49/1268

6.1.3.2. Programming Homework Data Set for Plagiarism Detection LLVM IR

To generate our LLVM IR files, we compiled each C/C++ source file of our modified data

set to LLVM IR. For the compilation, we use the Clang compiler [30] for C and the Clang++

compiler for C++. Since not every file could be compiled to LLVM IR because of syntax

errors, we only use the files that could be compiled.

The data set is summarized as follows:

• Course A2016 Code length (min/avg/max): 58/410.71/4917

• Course A2017 Code length (min/avg/max): 42/432.95/4307

• Course B2016 Code length (min/avg/max): 14/9406.68/30029

We use the LLVM optimizer
4
to generate our optimized LLVM IR code. We generate it

for the four optimization levels: O0, O1, O2, and O3. Table 6.2 shows a description of the

code.

For our evaluation, we aggregate the results of all tasks for each course. To achieve this,

we compute the similarities for each task of every course and put all similarities of non-

plagiarized pairs together for each course. We do the same with the similarities of the

plagiarized pairs, which leaves us with all the similarities for each course separated into

non-plagiarized and plagiarized pairs. Figure A.2 shows a similarity distribution for each

task with the advanced version of the IR language module.

6.1.3.3. PROGpedia Java

We use the PROGpedia [26] data set for Java source codes, a collection of tasks containing

submissions from introductory programming courses. It consists of multiple programming

exercises and the students’ solutions. We use the PROGpedia-19 and PROGpedia-56 task

4
Version 15.0.7-arm64-apple-darwin22.0

27

6. Evaluation

A2016 A2017 B2016
Data Min Avg Max Min Avg Max Min Avg Max
Level O0 58 410.71 4917 42 432.95 4307 14 9406.68 30029

Level O1 59 412.59 4919 42 434.10 4291 14 9355.43 29946

Level O2 59 412.59 4919 42 434.10 4291 14 9355.43 29946

Level O3 59 412.59 4919 42 434.10 4291 14 9355.44 29946

Table 6.2.: LLVM IR Code lengths with different optimization levels for the Programming

Homework data set

solutions from this data set. The PROGpedia-19 task does not contain a ground truth

about whether a solution is plagiarized. Therefore, one of the advisors with experience in

plagiarism detection in programming assignments labeled one of the Java data sets, using

JPlag and manually verifying plagiarism pairs. This process has been done by running

JPlag with the existing Java language module and going through high-similarity pairs to

identify actual plagiarism. Additionally, the usage of a template in this data set has been

identified. The template was then extracted and used as a base for our evaluation to reduce

the number of false positives. For the PROGpedia-56 task, we used a modified version

where all plagiarized pairs got removed first, leaving only non-plagiarized submissions.

Afterward, plagiarized codewas automatically generated for those submissions by inserting

new statements or reordering existing statements. This allows us to evaluate the resilience

of the language module to obfuscation attacks. The data set containing the submissions

for the two tasks can be described as follows:

PROGpedia-19

• Language: Java

• Submissions: 66

• Plagiarized Pairs: 91

• Code length (min/avg/max): 74/141.38/294

PROGpedia-56

• Language: Java

• Submissions: 112

• Plagiarized Pairs: 168

• Code length (min/avg/max): 40/109.88/503

6.1.3.4. PROGpedia LLVM IR

To generate our LLVM IR files from the PROGpedia data set, we first compile each Java

source file to Java class code using the Java compiler. Afterward, we use GraalVM [9] to

generate LLVM bitcode files from the Java class code. Next, we use the LLVM disassembler

from LLVM to generate our IR code files from the LLVM bitcode files. The resulting IR

28

6.2. Results and Discussion

PROGpedia-19 Task
Optimization Min Avg Max
Level O0 2181 4475.18 6726

Level O1 1883 3522.82 5127

Level O2 1879 3547.30 5186

Level O3 1897 3554.09 5257

PROGpedia-56 Task
Optimization Min Avg Max
Level O0 1181 2491.34 8263

Level O1 955 1958.38 6281

Level O2 954 1954.49 6195

Level O3 983 1978.83 6260

Table 6.3.: LLVM IR Code lengths with different optimization levels for the PROGpedia

data set

code has an average of 2 million lines. This causes performance problems with JPlag

because of the long files and issues with plagiarism detection. Most of the generated code

consists of internal Java functions compiled to LLVM IR and is independent of the actual

written source code. Since this code is in every IR file, all files have a similarity of around

97%-99% without base code. To prevent this, we generate separate bitcode files for every

function of a file with GraalVM from the Java class code. Then, we disassemble every

bitcode function to IR code and filter these functions by only taking matching functions

from the Java source code. We could significantly increase the performance and improve

the detection quality with our function filtering, as Figure A.1 shows. The following shows

a description of the IR code:

• PROGpedia-19 Code length (min/avg/max): 2189/4521.12/6782

• PROGpedia-56 Code length (min/avg/max): 1189/2511.05/8279

We again use the LLVM optimizer
5
to generate our optimized LLVM IR code. We generate

it for the four optimization levels: O0, O1, O2, and O3. Table 6.3 shows a description of

the code.

6.2. Results and Discussion

In this section, we present the results of our evaluation and discuss them. We show the

best minimum token matches for the data sets and analyze them. Next, we show the

results of the token abstraction versions and derive conclusions for the design of new IR

language modules. Afterward, we show the impact of the optimization levels and make

recommendations on using them. In the end, we provide the results for the comparison

with the dedicated language modules and discuss their necessity.

5
Version 15.0.7-arm64-apple-darwin22.0

29

6. Evaluation

6.2.1. Impact of the Minimum Token Match

We provide the results of the different minimum token matches and show the best value

for each data set. We further analyze the best values and show how a good reference can

be calculated.

Programming Homework Data Set

The results of the LLVM IR language module with different minimum token matches using

the Programming Homework data set can be seen in Figure 6.1. The graphic shows the

values of the three metrics for different minimum token matches. The best minimum

token match is the value with the highest score, which is the sum of all three metrics. We

get that the best value for the advanced version for course A2016 is 71. For course A2017,

61 is the best value, and for course B2016, it is 1043.

PROGpedia Data Set

Figure 6.2 shows the results of the different minimum token matches with the PROGpedia

data set. It shows the values of the three metrics for different minimum token matches.

The best value for the minimum token match of the advanced version is 189 for the

PROGpedia-19 task because it has the highest score. For the PROGpedia-56 task, the best

value of the advanced version is 101.

Best minimum token match

In Table 6.4, we can see the best minimum token matches for the different configurations.

We used the advanced version of the language module for the optimization levels. The

minimum tokenmatches of the LLVM IRmodule are significantly higher than theminimum

token matches of the Java and the CPP language modules. This is because a single line of

source code is usually mapped to multiple lines of IR code as the IR code is more low-level.

Subsection 6.1.3 shows that the average lines of codes of the IR are much higher than for

the source code. For example, the average Java code length of the PROGpedia-19 task

is 141.83 lines, while the average code length for the respective IR code is 4521.12 lines.

Similarly to the dedicated language modules, we generate at least one token for most

lines, so we need a much higher minimum token match to compensate for this. This also

accounts for the difference between the simple and the advanced versions. The advanced

version has a larger token set with finer-grained types of tokens. Therefore, it generates

more tokens than the simple version, as seen in Table A.1, and needs a higher minimum

token match.

Finding a good value for different data sets can be difficult because the range of possible

candidates is much larger than for dedicated language modules. Values can range between

60 and 70 for code compiled from C to more than 1000 for code compiled from C++.

30

6.2. Results and Discussion

66 68 70 72 74
Minimum Token Match

0.4

0.5

0.6

0.7

0.8

0.9

D
iff

er
en

ce

Advanced Version Course A2016

Metric
DiffMean
DiffMedian
DiffQuantile

56 58 60 62 64
Minimum Token Match

0.3

0.4

0.5

0.6

0.7

D
iff

er
en

ce

Advanced Version Course A2017

Metric
DiffMean
DiffMedian
DiffQuantile

900 950 1000 1050 1100 1150 1200
Minimum Token Match

0.0

0.1

0.2

0.3

0.4

D
iff

er
en

ce

Advanced Version Course B2016

Metric
DiffMean
DiffMedian
DiffQuantile

Figure 6.1.: Metrics for different minimum token matches using the advanced language

module for the Programming Homework data set

31

6. Evaluation

120 140 160 180 200 220 240
Minimum Token Match

0.70

0.75

0.80

0.85

0.90

D
iff

er
en

ce

Advanced Version with the PROGpedia-19 Task

plagiarized
DiffMean
DiffMedian
DiffQuantile

40 60 80 100 120 140 160
Minimum Token Match

0.65

0.70

0.75

0.80

0.85

0.90

D
iff

er
en

ce

Advanced Version with the PROGpedia-56 Task

plagiarized
DiffMean
DiffMedian
DiffQuantile

Figure 6.2.: Metrics for different minimum token matches using the advanced language

module and the PROGpedia data set

32

6.2. Results and Discussion

Programming Homework PROGpedia
Min Token Match A2016 A2017 B2016 19 56
Dedicated language module 17 17 12 17 6

Simple version 50 45 1200 128 71

Advanced version 71 61 1043 189 101

Optimization level 0 71 61 1043 189 104

Optimization level 1 71 61 1044 154 73

Optimization level 2 71 61 1044 156 74

Optimization level 3 71 61 1044 156 74

Table 6.4.: Best minimum token matches for the different configurations and data sets

0 2000 4000 6000 8000
Difference of Average Lines of Code

0

200

400

600

800

1000

M
in

im
um

 T
ok

en
 M

at
ch

Optimal Minimum Token Match

Figure 6.3.: Regression of theminimum tokenmatch depending on the difference of average

lines of code

However, there is a correlation between the minimum token match and the increase of

code lines when compiling the source code. Data sets with a larger increase in code length

from the source code to the IR code also have a higher minimum token match. Through a

regression of the minimum token matches depending on the difference of average lines of

code, as seen in Figure 6.3, we got the following formula to calculate a reference value for

other data sets:

𝑚𝑖𝑛_𝑡𝑜𝑘𝑒𝑛_𝑚𝑎𝑡𝑐ℎ(𝑥) = 48.2055162 ∗ 𝑒0.000333593799∗𝑥

𝑥 = (𝑎𝑣𝑔. 𝐿𝑂𝐶𝐿𝐿𝑉𝑀 𝐼𝑅 𝐶𝑜𝑑𝑒) − (𝑎𝑣𝑔. 𝐿𝑂𝐶𝑆𝑜𝑢𝑟𝑐𝑒 𝐶𝑜𝑑𝑒)

With x being the difference between the average lines of code from the LLVM IR code and

the average lines of code from the source code.

33

6. Evaluation

Figure 6.4.: Similarity distributions of plagiarized and non-plagiarized pairs for the simple

and the advanced version with the Programming Homework data set

6.2.2. Impact of the Token Abstraction Version

We provide the results of the different token abstraction versions in this section. Further-

more, we derive takeaways for designing new IR language modules based on our findings.

The values in bold in our tables are the best compared to the other values.

Programming Homework Data Set

Figure 6.4 shows the similarity distributions of the token abstraction versions for each

course of the Programming Homework data set. In the comparison between the simple

and the advanced versions, we see that the advanced language module performs slightly

better for each course than the simple one. We see that for course A2016, the similarities

of the plagiarized pairs of the advanced version are slightly higher than those of the simple

version, while the non-plagiarized pairs stay the same. For course A2017, the median

of the plagiarized pairs is higher in the advanced version. Lastly, for course B2016, the

non-plagiarized pairs have a generally higher similarity in the advanced version, which

is undesirable. However, the similarities of the plagiarized pairs are also higher in the

advanced version.

Comparing the metrics in Table 6.5, we see the exact results. The table shows the values

for the mean, median, and quantile and the difference for each course and version. We see

that the metrics are generally higher in the advanced version, which is also reflected in

the score. The scores of the simple version are 1.95 for course A2016, 1.60 for A2017, and

0.80 for B2016. The advanced version scores are all higher at 1.97 for course A2016, 1.62

for A2017, and 0.84 for B2016.

So, the advanced version performs better at detecting plagiarized submissions for the

Programming Homework data set, even though the differences are small.

34

6.2. Results and Discussion

Simple Version
Data Set Metric Plagiarized Non-Plagiarized Difference

A2016

Mean 0.7028 0.0742 0.6286

Median 0.8833 0.0 0.8833
Quantile 0.4394 0.0 0.4394

A2017

Mean 0.6173 0.0725 0.5448
Median 0.668 0.0 0.668

Quantile 0.3884 0.0 0.3884

B2016

Mean 0.4544 0.0793 0.3751

Median 0.4124 0.0 0.4124

Quantile 0.1152 0.1062 0.009

Advanced Version
Data Set Metric Plagiarized Non-Plagiarized Difference

A2016

Mean 0.7131 0.0844 0.6288
Median 0.8707 0.0 0.8707

Quantile 0.4701 0.0 0.4701

A2016

Mean 0.6202 0.0826 0.5376

Median 0.7015 0.0 0.7015
Quantile 0.3841 0.0 0.3841

A2016

Mean 0.4913 0.1135 0.3778
Median 0.4475 0.0 0.4475
Quantile 0.2155 0.1981 0.0174

Table 6.5.: Metrics for the different token abstraction versions of the Programming Home-

work data set.

35

6. Evaluation

Simple Version Advanced Version

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
rit

y

PROGpedia-19 Task

plagiarized
False
True

Simple Version Advanced Version

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
rit

y

PROGpedia-56 Task

plagiarized
False
True

Figure 6.5.: Similarity distributions of plagiarized and non-plagiarized pairs for the simple

and the advanced version with the PROGpedia data set

PROGpedia Data Set

Comparing the simple version with the advanced version for the PROGpedia data set

in Figure 6.5, we see the following. The advanced version performs slightly better than

the simple version for both tasks. The graphic shows the similarity distributions of non-

plagiarized and plagiarized pairs for each task. We see that for the PROGpedia-19 task, the

similarity of the plagiarized pairs is generally higher for the simple version. However, the

similarities of the non-plagiarized pairs are also generally higher. For the PROGpedia-56,

task the similarities of the non-plagiarized pairs are lower for the advanced version, while

the plagiarized similarities remain the same.

Comparing the metrics in Table 6.6 clarifies the results. We see that the metrics are

generally higher for the advanced version, which can also be seen in the score. The

score of the PROGpedia-19 task for the simple version is 2.57, while the advanced version

performs better, with a higher score of 2.61. The advanced version also performs better

for the PROGpedia-56 task, with a score of 2.55 compared to 2.50 for the simple version.

So, the advanced version performs better at detecting plagiarism than the simple version

for the PROGpedia data set.

Token Abstraction Strategy

The results from our evaluation show that the advanced version is better at detecting

plagiarism than the simple version. This is because the score of the advanced version is

higher for both tasks. Therefore, a more extensive token set is more effective, differentiating

between different operations and generating tokens for global variables and constants.

This indicates the importance of finer-grained types of tokens that capture a larger part

of the structure and behavior. Finer-grained token types reduce the overall similarity of

36

6.2. Results and Discussion

PROGpedia-19 Task
Simple Version Advanced Version

Metric Plagiarized Non-Plag. Diff. Plagiarized Non-Plag. Diff.

Mean 0.9641 0.1107 0.8534 0.9542 0.0865 0.8677
Median 1 0.1006 0.8994 1 0.0617 0.9383
Quantile 0.9793 0.1626 0.8167 0.9461 0.1411 0.8049

PROGpedia-56 Task
Simple Version Advanced Version

Metric Plagiarized Non-Plag. Diff. Plagiarized Non-Plag. Diff.

Mean 0.9406 0.1050 0.8356 0.9395 0.0858 0.8538
Median 0.9723 0.0951 0.8772 0.9711 0.0801 0.8909
Quantile 0.9193 0.1355 0.7839 0.9165 0.1149 0.8016

Table 6.6.: Metrics for the different token abstraction versions of the PROGpedia data set

non-plagiarized pairs while retaining the high similarity of plagiarized pairs. Table A.1

further shows the number of generated tokens and distinct tokens for each version.

Additionally, tokens for basic blocks further lower the similarity of non-plagiarized pairs

without affecting the similarity of plagiarized pairs much. This is because we decrease

the similarity of programs with different control flows due to generating different tokens.

However, common plagiarism and obfuscation techniques, like a verbatim copy and

inserting or reordering statements [17] usually do not change the control flow. Therefore,

plagiarized pairs are unaffected.

This result indicates that a more extensive token set with finer-grained token types,

like differentiating between operations, should be used when creating new IR language

modules. The following evaluation will now be carried out on the advanced version as it

is proven to be better.

6.2.3. Impact of the LLVM Optimization Level

We provide the results of the LLVM IR language module with different optimization

levels. We further discuss the results and make a recommendation for using compiler

optimizations. Again, the values in bold in our tables are the best compared to the other

values.

Programming Homework Data Set

Figure 6.6 shows the similarity distributions of the Programming Homework data set for

each course and optimization level. We see that the distributions are almost indifferent

for each optimization level. Therefore, the optimization level does not appear to have an

impact on plagiarism detection for the Programming Homework data set.

37

6. Evaluation

Data Set Optimization 𝐷𝑖 𝑓 𝑓𝑀𝑒𝑎𝑛 𝐷𝑖 𝑓 𝑓𝑀𝑒𝑑𝑖𝑎𝑛 𝐷𝑖 𝑓 𝑓𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 Score

A2016

No opt. 0.6288 0.8707 0.4701 1.9695

Level 0 0.6288 0.8707 0.4701 1.9695

Level 1 0.6288 0.8707 0.4701 1.9696
Level 2 0.6288 0.8707 0.4701 1.9696
Level 3 0.6288 0.8707 0.4701 1.9696

A2017

No opt. 0.5376 0.7015 0.3841 1.6232

Level 0 0.5376 0.7015 0.3841 1.6232

Level 1 0.5381 0.7015 0.3841 1.6237
Level 2 0.5381 0.7015 0.3841 1.6237
Level 3 0.5381 0.7015 0.3841 1.6237

B2016

No opt. 0.3778 0.4475 0.0174 0.8427

Level 0 0.3778 0.4475 0.0174 0.8427

Level 1 0.3796 0.4478 0.0206 0.848
Level 2 0.3796 0.4478 0.0206 0.848
Level 3 0.3796 0.4478 0.0206 0.848

Table 6.7.: Metrics of the LLVM IR language module with different optimization levels for

the Programming Homework data set

Comparing the results of the data set in Table 6.7, we see a minor improvement in the

score from level 0 to level 1. The table shows the metrics for each optimization level of

each course. However, apart from that minor improvement between levels 0 and 1, higher

optimization levels stay indifferent.

So, a higher optimization level improves the plagiarism detection quality, although the

improvement is only negligible.

PROGpedia Data Set

For the Java data sets, we can see the similarity distributions for the optimization levels

of the PROGpedia data set in Figure 6.7. We see an improvement from level 0 to level 1

for the PROGpedia-19 task, as the similarities of the non-plagiarized pairs are lower. We

can also see an improvement from level 0 to 1 for the PROGpedia-56 task because the

similarities of plagiarized pairs are higher, and the non-plagiarized pairs are more compact.

Apart from these improvements, higher optimization levels are almost indifferent.

Table 6.8 shows the metrics of each optimization level for the PROGpedia data set. Com-

paring the scores, we see that optimization level 1 performs the best in both cases. We

further notice that the detection quality even decreases slightly with a higher optimization

level.

So, using compiler optimization improves plagiarism detection for the PROGpedia data

set.

38

6.2. Results and Discussion

Figure 6.6.: Similarity distributions of plagiarized and non-plagiarized pairs for the different

optimization levels with the Programming Homework data set

39

6. Evaluation

No Optimization Optimization Level 0 Optimization Level 1 Optimization Level 2 Optimization Level 3

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
rit

y

PROGpedia-19 Task

plagiarized
False
True

No Optimization Optimization Level 0 Optimization Level 1 Optimization Level 2 Optimization Level 3

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
rit

y

PROGpedia-56 Task

plagiarized
False
True

Figure 6.7.: Similarity distributions of plagiarized and non-plagiarized pairs for the different

optimization levels with PROGpedia data set

PROGpedia-19 Task
Optimization 𝐷𝑖 𝑓 𝑓𝑀𝑒𝑎𝑛 𝐷𝑖 𝑓 𝑓𝑀𝑒𝑑𝑖𝑎𝑛 𝐷𝑖 𝑓 𝑓𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 Score

No opt. 0.8677 0.9383 0.8049 2.6108

Level 0 0.8675 0.9378 0.805 2.6104

Level 1 0.8844 1.0 0.8366 2.7211
Level 2 0.883 1.0 0.8353 2.7183

Level 3 0.8832 1.0 0.836 2.7192

PROGpedia-56 Task
Optimization 𝐷𝑖 𝑓 𝑓𝑀𝑒𝑎𝑛 𝐷𝑖 𝑓 𝑓𝑀𝑒𝑑𝑖𝑎𝑛 𝐷𝑖 𝑓 𝑓𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 Score

No opt. 0.8538 0.8909 0.8016 2.5463

Level 0 0.8581 0.8812 0.7834 2.5227

Level 1 0.8657 0.8981 0.8355 2.5993
Level 2 0.8636 0.8888 0.8368 2.5892

Level 3 0.8635 0.891 0.8362 2.5907

Table 6.8.: Metrics of the LLVM IR language module with different optimization levels for

the PROGpedia data set

40

6.2. Results and Discussion

Effects of Optimization Levels

Our results clearly show that using compiler optimizations leads to a better plagiarism

detection quality. Although the highest optimization level is not necessarily the best.

The LLVM optimizer uses various transformations for the optimization levels. For example,

at level 0 all functions marked as always-inline are inlined. Level 1 adds optimizations like

unrolling loops, deleting dead loops, and branch predictions. Level 2 implements a more

extensive inlining technique, and level 3 promotes by reference arguments to be by value
arguments to simplify the code and remove alloca instructions.

We assume that plagiarism detection improves because compiler optimizations reduce

the variance in an IR code with their optimizing transformations. We can also see in

Table 6.2 and Table 6.3 that the optimizations reduce the lines of code. Therefore, the

code is more compact, allowing less variance between the IR codes as well. Due to the

lower variance, it is easier to detect plagiarized pairs as they are more similar, leading to a

better detection quality. Furthermore, this result is similar to what Christian Arwin and

S. M. M. Tahaghogi [3] found out. They evaluated plagiarism detection on the GCC RTL

and found that higher optimization levels lead to better detection quality. They also justify

it by saying that optimizations lead to lower variance, improving plagiarism detection.

We conclude from our results that optimization level 1 provides the best overall results.

Therefore, it should be used as a preprocessing technique for our language module to

provide the best detection quality. This further indicates that compiler optimizations

should also be used for other IR language modules to improve plagiarism detection.

6.2.4. Comparison with Dedicated Language Modules

We show the results of the different language modules and compare them. For the com-

parison, we use the optimization level 1 for the LLVM IR language module as it delivered

the best results. We further discuss the need for dedicated language modules and the

advantages of IR language modules. Again, the values in bold in our tables are the best

compared to the other values.

Programming Homework Data Set

Figure 6.8 shows the similarity distributions for the dedicated CPP and our LLVM IR

language module. We see that the CPP language module performs better for each course,

even if it is just slightly. For courses A2016 and A2017, the similarities of the plagiarized

pairs are generally higher for the CPP language module, while the non-plagiarized pairs

remain the same. For course B2016, the similarities of the non-plagiarized pairs are lower

for the CPP language module and the mean of the plagiarized pairs is also higher.

Comparing the metrics in Table 6.9 shows the exact results. The CPP language module

performs better for each course, as the metrics are higher than the LLVM IR ones. This

41

6. Evaluation

Figure 6.8.: Similarity distributions of plagiarized and non-plagiarized pairs for the CPP

and the LLVM IR language module with the Programming Homework data set

can also be seen in the score. The scores for the CPP language module are 2.03 for course

A2016, 1.73 for A2017, and 1.22 for B2016. The scores of the IR language module are all

lower at 1.97 for course A2016, 1.62 for A2017, and 0.85 for B2016.

This means that the CPP language module performs better at detecting plagiarized sub-

missions for the Programming Homework data set than our LLVM IR language module.

PROGpedia Data Set

Figure 6.9 shows the similarity distributions of the language modules for the PROGpe-

dia data set. We can clearly see that in the case of the PROGpedia-19 task, the Java

language module performs better than the IR language module. The similarities of non-

plagiarized pairs are lower, and the similarities of plagiarized pairs are higher for the Java

language module. In contrast, the IR language module performs significantly better for

the PROGpedia-56 task. The similarities of non-plagiarized pairs are lower, while the

similarities of the plagiarized pairs are significantly higher for the IR module.

Table 6.10 shows the results of both language modules. Comparing the metrics, we see that

the Java language module performs better for the PROGpedia-19 task. For the PROGpedia-

56 task, however, the metrics are significantly higher for the IR language module, meaning

the IR module performs better. Comparing the scores for the PROGpedia-19 task, the Java

language module has a score of 2.95, while the IR language module has a score of only

2.72. Contrarily, regarding the PROGpedia-56 task, the IR language module has a score of

2.60, higher than the score of the Java language module, with 0.73.

So, we clearly see a difference in the detection quality between the two tasks. The Java

language module is better at the PROGpedia-19 task than our LLVM IR language mod-

ule. However, the IR language module shows a significantly better result regarding the

PROGpedia-56 task.

42

6.2. Results and Discussion

CPP Language Module
Data Set Metric Plagiarized Non-Plagiarized Difference

A2016

Mean 0.7282 0.0974 0.6308
Median 0.898 0.0 0.898
Quantile 0.5057 0.0 0.5057

A2017

Mean 0.6526 0.0922 0.5604
Median 0.7326 0.0 0.7326
Quantile 0.4348 0.0 0.4348

B2016

Mean 0.5337 0.0712 0.4624
Median 0.5235 0.0 0.5235
Quantile 0.3558 0.1172 0.2385

LLVM IR Language Module
Data Set Metric Plagiarized Non-Plagiarized Difference

A2016

Mean 0.7132 0.0844 0.6288

Median 0.8707 0.0 0.8707

Quantile 0.4701 0.0 0.4701

A2017

Mean 0.6206 0.0825 0.5381

Median 0.7015 0.0 0.7015

Quantile 0.3841 0.0 0.3841

B2016

Mean 0.4911 0.1116 0.3796

Median 0.4478 0.0 0.4478

Quantile 0.2154 0.1948 0.0206

Table 6.9.: Metrics of the comparison of the CPP and LLVM IR language module for the

Programming Homework data set

Java Language Module LLVM IR Language Module

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
rit

y

PROGpedia-19 Task

plagiarized
False
True

Java Language Module LLVM IR Language Module

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
rit

y

PROGpedia-56 Task

plagiarized
False
True

Figure 6.9.: Similarity distributions of plagiarized and non-plagiarized pairs for the Java

and the LLVM IR language module with the PROGpedia data set

43

6. Evaluation

PROGpedia-19 Task
Java Language Module LLVM IR Language Module

Metric Plagiarized Non-Plag. Diff. Plagiarized Non-Plag. Diff.

Mean 0.9690 0.0202 0.9488 0.9483 0.0639 0.8844

Median 1.0 0.0 1.0 1.0 0.0 1.0
Quantile 0.9967 0.0 0.9967 0.9457 0.1090 0.8366

PROGpedia-56 Task
Java Language Module LLVM IR Language Module

Metric Plagiarized Non-Plag. Diff. Plagiarized Non-Plag. Diff.

Mean 0.5211 0.1566 0.3645 0.9496 0.0839 0.8657
Median 0.4091 0.1382 0.2709 0.9777 0.0796 0.8981
Quantile 0.3107 0.2205 0.0901 0.9388 0.1034 0.8355

Table 6.10.: Metrics of the comparison of the Java and LLVM IR language module for the

PROGpedia data set

Necessity of Dedicated Language Modules

Our results show that the dedicated language modules perform better at the Programming

Homework and the PROGpedia-19 task. Since these data sets consist of student submis-

sions, the dedicated language modules perform better at detecting plagiarism by students

than our LLVM IR language module. We further see a higher similarity of non-plagiarized

pairs of our LLVM IR language module for the PROGpedia-19 task and the B2016 course,

meaning the IR language module also has a higher false-positive rate than the dedicated

modules. Therefore, we conclude that the additional abstraction level of compiling the

source code to an IR results in a loss of information relevant to detecting plagiarism.

However, dedicated language modules do not perform much better than our IR language

module. Still, the results suggest that it is preferred to have specific language modules for

each programming language to improve plagiarism detection in student submissions. This

indicates that dedicated language modules are necessary for the best detection quality,

even if IR language modules support multiple programming languages.

However, the IR language module shows significantly better resilience to obfuscation

attacks than the dedicated Java language module. We can see that from the better de-

tection quality of the LLVM IR module with the PROGpedia-56 task, which consists of

automatically obfuscated source codes. This resilience comes from the compilation step,

not from optimizations because the difference between no compiler optimizations and

optimization level 1 is relatively small, as Figure 6.7 shows. LLVM already uses various

optimizations by default when compiling the code. The plagiarism was generated by

adding new statements and reordering existing statements. The dead code elimination

performed at the compilation step already removes most of the new statements, making

it more resilient to this attack. Furthermore, we assume that with the code transformed

into SSA form, the language module also becomes more resilient to reordering statements.

On the other hand, the Java language module does not use such techniques, making it

44

6.3. Limitations

more vulnerable. This result is also consistent with Devore-McDonald and Berger [8],

who suspect that plagiarism detection on binary or low-level languages is more resilient

to obfuscation attacks. This also explains the difference in the results of the PROGpedia

data set, as the PROGpedia-19 task contains student submissions, and the PROGpedia-56

task automatically obfuscated code.

As students can use frameworks to obfuscate their plagiarized code automatically [8], an IR

language module can help detect such plagiarism. With this, and with support for multiple

languages and performance not significantly worse than dedicated language modules, a

language module for an IR can still be useful.

6.3. Limitations

There are several limitations to our language module and our evaluation.

An inherent limit of intermediate representations is that they are architecture-dependent.

Therefore, the same source code will produce different IR codes when compiled on different

architectures. This will ultimately result in a lower similarity as different tokens get

generated. Instructors would then get different results if they use different architectures

or if students compile the code themselves. We prevented this for our evaluation by

compiling all source codes on the same architecture to the LLVM IR. A solution for student

submissions is that one or all instructors perform the compilation on the same architecture

instead of each student separately.

Another limitation is that our language module needs LLVM IR code as an input. Therefore,

for student submissions, an instructor must compile each submission beforehand. This

process is time-consuming, especially if the compilation is not straightforward, like in the

case of Java. This step is unnecessary for dedicated language modules, which saves time.

However, this does not affect the results of our evaluation.

JPlag allows the user to view the pairs of submissions and marks all the parts of the code

that got matched by the algorithm. This allows an instructor to compare the submissions

more easily and decide if it is an actual case of plagiarism. For our LLVM IR language

module, JPlag only shows the matches between the IR codes and not between the actual

source codes. Therefore, comparing the submission with the dedicated language module

is easier as it shows the matches between the source code. As this affects the usability of

the language module in JPlag, it is irrelevant to the results of our evaluation.

6.4. Threats to Validity

Several factors limit the validity of our evaluation.

The choice of token types and token extraction may not be optimal for the IR language

module because there could be a better set of token types and token extraction rules

45

6. Evaluation

that score better results. However, this is unlikely as we put great effort into creating

our language module by testing different token abstraction strategies. Another effect is

the actual occurrence of token types, as there are token types with zero or only a few

occurrences. This is because several language features, like inline assembly, are absent in

the data sets we used. Therefore, our results might differ from results on other data sets.

The metrics we used for our evaluation may not represent the quality of a language module.

While usually, a more significant difference between non-plagiarized and plagiarized pairs

is more desirable, there might be metrics that represent this better. As the metrics play

an integral role in comparing the configurations and language modules, different metrics

might return different results.

As described in subsubsection 6.1.3.4, we made several modifications to the PROGpedia

data set to lower the runtime and increase plagiarism detection quality. We can not

guarantee that no relevant information gets lost with these modifications, but since this

was done for every file, this applies to every file the same. Furthermore, we rely on our

advisors’s judgment of plagiarism for the ground truth, supported by JPlag’s Java language

module.

A possible thread for the Programming Homework data set is that it contains many pairs

which are not labeled as plagiarized but score a very high similarity or even are identical.

This negatively affects the similarities of non-plagiarized pairs and tends to result in a

higher false-positive rate, but applies to the IR language module and the CPP language

module the same.

Lastly, the results of our evaluation are limited to the data sets, with their characteristics

of complexity, submission length, and used language features. The source codes from the

used data sets are real-world assignments but only a few hundred lines. In contrast, there

are assignments with more than a thousand lines. Furthermore, we only evaluate Java and

C/C++ as source languages, while more languages can be used as multiple languages can

be compiled to LLVM IR.

In order to improve the reproducibility of our evaluation results, we published our imple-

mentation of the languagemodule together with the test data and evaluation scripts [11].

46

7. Future Work

Our work focused on comparing dedicated language modules with an IR language module

regarding plagiarism detection. We created a language module for the LLVM IR and

compared it to existing dedicated language modules for our evaluation.

Future work might continue evaluating the language module with different data sets. The

average number of LOC of the programs in our data sets is only a few hundred. In contrast,

there are real-world assignments that have more than a thousand lines. Furthermore, data

sets with different complexity and used language features could also be evaluated to see if

the results are consistent.

We only used Java and C/C++ as source languages for our evaluation, but as mentioned, the

LLVM IR supports various programming languages. Therefore, future work could compare

our LLVM IR language module with dedicated language modules of other languages,

like Rust or Python. This would provide a more accurate statement about the need for

dedicated language modules. However, the limiting factor for such languages is the lack

of data sets that already contain a ground truth.

Another possible work could address the differences between different architectures. As

mentioned before, the IR is architecture-dependent, and different tokens are generated on

different architectures. Therefore, one could evaluate the differences between different

architectures for the same data set.

Future work might also address other intermediate representations. An IR like Java Byte-

code might provide better results in detecting plagiarism as it supports more homogeneous

languages based on the Java virtual machine. Therefore, the compilation step might lose

less relevant information, providing better results. With an IR similar to the LLVM IR,

such as the GCC IR, it could be shown if the results are consistent between different

intermediate representations or if there are significant differences.

Our evaluation shows that the IR language module is more resilient to obfuscation attacks

than the dedicated Java language module. As a next step, it could be evaluated how well it

copes with different kinds of obfuscation attacks, for example, generated by MOSSAD [8].

Future work might assess what exactly results in resilience against obfuscation attacks and

could develop methods to improve plagiarism detection based on these findings. These

methods could be used to improve dedicated languagemodules to make themmore resilient

towards such obfuscation attacks.

47

8. Conclusion

Token-based plagiarism detection is a state-of-the-art technique for detecting plagiarism

in programming assignments. However, supporting a new programming language usually

involves the creation of a new language module for that particular language on the

assumption that this improves plagiarism detection. This process is very time-consuming,

and it is unclear whether it actually improves plagiarism detection. In this thesis, we

evaluated the need for dedicated language modules by comparing them to an IR language

module supporting multiple programming languages. Furthermore, we derived takeaways

for designing and implementing new language modules for IRs. We created a language

module for the LLVM IR by describing themapping of the LLVM IR to tokens and explaining

our design ideas. For the evaluation, we used real-world data sets of student submissions

and compared our language module with the Java and C/C++ language modules in JPlag.

The evaluation highlights several factors that influence the ability of a token-based plagia-

rism detector to detect possible cases of plagiarism. These include the minimum token

match parameter, the optimization level, and the token extraction strategy. Regarding

designing IR modules, we show that a higher minimum token match is necessary as one

source code line gets mapped to several IR code lines. We furthermore provide a formula

to calculate a reference value for the minimum token match to ease usability. Higher

optimization levels lead to better detection quality as compiler optimizations lower the

variance between plagiarized pairs, making detecting them easier. Consequently, we rec-

ommend the use of compiler optimizations to improve plagiarism detection. Our advanced

version with more and finer-grained token types proved more effective than the simple

version regarding the design and token abstraction strategy. Therefore, a more extensive

token set is more effective, differentiating between different operations and generating

tokens for global variables and constants. This indicates the importance of finer-grained

tokens that capture a more significant part of the structure and behavior, resulting in a

lower similarity of non-plagiarized pairs.

Regarding the necessity of dedicated language modules, our results show that the two

dedicated language modules for C/C++ and Java perform better at detecting plagiarism by

students than our LLVM IR language module. We assume that the additional abstraction

level of compiling the source code to IR results in a loss of information relevant to detecting

plagiarism. Therefore, the results suggest that dedicated language modules for a specific

language are better than IR language modules supporting multiple languages at detecting

plagiarism. This indicates that dedicated language modules are necessary, to gain the best

detection quality and it is preferred to have a language module for each programming

language to improve plagiarism detection.

49

8. Conclusion

However, the IR language module shows significantly better resilience to obfuscation

attacks, like inserting new statements or reordering existing ones, than the dedicated Java

language module. As students can use frameworks like MOSSAD [8] to obfuscate their

plagiarized code automatically, it will be easier than ever to attack plagiarism detectors.

While our IR language module performs worse than dedicated language modules today,

with the use of such frameworks, this may change in the future. Then, an IR language

module showing certain resilience can help detect such plagiarism. With this, and with

support for multiple languages and performance not significantly worse than dedicated

language modules, a language module for an IR can still be useful.

50

Bibliography

[1] Bowen Alpern, Mark N Wegman, and F Kenneth Zadeck. “Detecting equality of

variables in programs”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. 1988, pp. 1–11.

[2] ANTLR Grammars. url: https://github.com/antlr/grammars-v4/tree/master/
llvm-ir (visited on 06/10/2023).

[3] Christian Arwin and S. M. M. Tahaghoghi. “Plagiarism Detection across Program-

ming Languages”. In: Proceedings of the 29th Australasian Computer Science Confer-
ence - Volume 48. ACSC ’06. Hobart, Australia: Australian Computer Society, Inc.,

2006, pp. 277–286. isbn: 1920682309.

[4] Max Brunsfeld et al. tree-sitter/tree-sitter: v0.20.0. Version v0.20.0. June 2021. doi:

10.5281/zenodo.5044536. url: https://doi.org/10.5281/zenodo.5044536.

[5] Pedro M. Caldeira et al. “Improving Syntactical Clone Detection Methods through

the Use of an Intermediate Representation”. In: 2020 IEEE 14th InternationalWorkshop
on Software Clones (IWSC). 2020, pp. 8–14. doi: 10.1109/IWSC50091.2020.9047637.

[6] Daniela Chuda et al. “The Issue of (Software) Plagiarism: A Student View”. In: IEEE
Transactions on Education 55.1 (2012), pp. 22–28. doi: 10.1109/TE.2011.2112768.

[7] Georgina Cosma and Mike Joy. “Towards a Definition of Source-Code Plagiarism”.

In: IEEE Transactions on Education 51.2 (2008), pp. 195–200. doi: 10.1109/TE.2007.

906776.

[8] Breanna Devore-McDonald and Emery D. Berger. “Mossad: Defeating Software

Plagiarism Detection”. In: Proc. ACM Program. Lang. 4.OOPSLA (Nov. 2020). doi:

10.1145/3428206. url: https://doi.org/10.1145/3428206.

[9] GraalVM. url: https://www.graalvm.org (visited on 06/10/2023).

[10] Hannes Greule. “Evidence-based Token Abstraction for Software Plagiarism Detec-

tion”. Bachelor’s Thesis. Karlsruhe Institute of Technology, 2023.

[11] Niklas Rainer Heneka. Software Plagiarism Detection on Intermediate Representation
Data Set. Version 1.0.0. Zenodo, Oct. 2023. doi: 10.5281/zenodo.8403147. url:

https://doi.org/10.5281/zenodo.8403147.

[12] Petri Ihantola et al. “Review of Recent Systems for Automatic Assessment of Program-

ming Assignments”. In: Proceedings of the 10th Koli Calling International Conference
on Computing Education Research. Koli Calling ’10. Koli, Finland: Association for

Computing Machinery, 2010, pp. 86–93. isbn: 9781450305204. doi: 10.1145/1930464.

1930480. url: https://doi.org/10.1145/1930464.1930480.

51

https://github.com/antlr/grammars-v4/tree/master/llvm-ir
https://github.com/antlr/grammars-v4/tree/master/llvm-ir
https://doi.org/10.5281/zenodo.5044536
https://doi.org/10.5281/zenodo.5044536
https://doi.org/10.1109/IWSC50091.2020.9047637
https://doi.org/10.1109/TE.2011.2112768
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1109/TE.2007.906776
https://doi.org/10.1145/3428206
https://doi.org/10.1145/3428206
https://www.graalvm.org
https://doi.org/10.5281/zenodo.8403147
https://doi.org/10.5281/zenodo.8403147
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1930464.1930480

Bibliography

[13] Yoon-Chan Jhi et al. “Program Characterization Using Runtime Values and Its

Application to Software Plagiarism Detection”. In: IEEE Transactions on Software
Engineering 41.9 (2015), pp. 925–943. doi: 10.1109/TSE.2015.2418777.

[14] Yoon-Chan Jhi et al. “Value-Based Program Characterization and Its Application to

Software Plagiarism Detection”. In: Proceedings of the 33rd International Conference
on Software Engineering. ICSE ’11. Waikiki, Honolulu, HI, USA: Association for

Computing Machinery, 2011, pp. 756–765. isbn: 9781450304450. doi: 10.1145/

1985793.1985899. url: https://doi.org/10.1145/1985793.1985899.

[15] M. Joy and M. Luck. “Plagiarism in programming assignments”. In: IEEE Transactions
on Education 42.2 (1999), pp. 129–133. doi: 10.1109/13.762946.

[16] JPlag. JPlag GitHub Repository. url: https://github.com/jplag/JPlag (visited on

05/24/2023).

[17] Oscar Karnalim. “Detecting source code plagiarism on introductory programming

course assignments using a bytecode approach”. In: 2016 International Conference
on Information & Communication Technology and Systems (ICTS). 2016, pp. 63–68.
doi: 10.1109/ICTS.2016.7910274.

[18] Cynthia Kustanto and Inggriani Liem. “Automatic Source Code Plagiarism Detec-

tion”. In: 2009 10th ACIS International Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed Computing. 2009, pp. 481–486. doi:
10.1109/SNPD.2009.62.

[19] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong

program analysis & transformation”. In: International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 2004, pp. 75–86. doi: 10.1109/CGO.2004.1281665.

[20] Chris Lattner and VikramAdve. “The LLVMCompiler Framework and Infrastructure

Tutorial”. In: Languages and Compilers for High Performance Computing. Ed. by
Rudolf Eigenmann, Zhiyuan Li, and Samuel P. Midkiff. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2005, pp. 15–16. isbn: 978-3-540-31813-2. doi: https://doi.org/

10.1007/11532378_2.

[21] Chris Lattner and Vikram Adve. “The LLVM instruction set and compilation strat-

egy”. In: CS Dept., Univ. of Illinois at Urbana-Champaign, Tech. Report UIUCDCS
(2002).

[22] Vedran Ljubovic. Programming Homework Dataset for Plagiarism Detection. 2020.
doi: 10.21227/71fw-ss32. url: https://dx.doi.org/10.21227/71fw-ss32.

[23] LLVM Project. url: https://llvm.org (visited on 05/25/2023).

[24] Rien Maertens et al. “Dolos: Language-agnostic plagiarism detection in source

code”. In: Journal of Computer Assisted Learning 38.4 (2022), pp. 1046–1061. doi:

https://doi.org/10.1111/jcal.12662.

[25] Matija Novak, Mike Joy, and Dragutin Kermek. “Source-Code Similarity Detection

and Detection Tools Used in Academia: A Systematic Review”. In: ACM Trans.
Comput. Educ. 19.3 (May 2019). doi: 10.1145/3313290. url: https://doi.org/10.

1145/3313290 (visited on 05/24/2023).

52

https://doi.org/10.1109/TSE.2015.2418777
https://doi.org/10.1145/1985793.1985899
https://doi.org/10.1145/1985793.1985899
https://doi.org/10.1145/1985793.1985899
https://doi.org/10.1109/13.762946
https://github.com/jplag/JPlag
https://doi.org/10.1109/ICTS.2016.7910274
https://doi.org/10.1109/SNPD.2009.62
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/https://doi.org/10.1007/11532378_2
https://doi.org/https://doi.org/10.1007/11532378_2
https://doi.org/10.21227/71fw-ss32
https://dx.doi.org/10.21227/71fw-ss32
https://llvm.org
https://doi.org/https://doi.org/10.1111/jcal.12662
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290

[26] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. “PROGpedia: Collection

of source-code submitted to introductory programming assignments”. In: Data in
Brief 46 (2023), p. 108887. issn: 2352-3409. doi: https://doi.org/10.1016/j.

dib.2023.108887. url: https://www.sciencedirect.com/science/article/pii/

S2352340923000057.

[27] Alan Parker and James O Hamblen. “Computer algorithms for plagiarism detection”.

In: IEEE Transactions on Education 32.2 (1989), pp. 94–99. doi: 10.1109/13.28038.

[28] Terence J. Parr and RussellW. Quong. “ANTLR: A predicated-LL(k) parser generator”.

In: Software: Practice and Experience 25.7 (1995), pp. 789–810. doi: https://doi.

org/10.1002/spe.4380250705. eprint: https://onlinelibrary.wiley.com/doi/

pdf/10.1002/spe.4380250705. url: https://onlinelibrary.wiley.com/doi/abs/

10.1002/spe.4380250705.

[29] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. “Finding plagiarisms among

a set of programs with JPlag”. In: Journal of Universal Computer Science 8.11 (2002),
pp. 1016–1038. url: https://ps.ipd.kit.edu/downloads/za_2002_finding_

plagiarisms_jplag.pdf (visited on 05/22/2023).

[30] LLVM project. Clang: a C language family frontend for LLVM. url: https://clang.

llvm.org (visited on 05/27/2023).

[31] Faqih Salban Rabbani and Oscar Karnalim. “Detecting source code plagiarism on.

NET programming languages using low-level representation and adaptive local align-

ment”. In: Journal of Information and Organizational Sciences 41.1 (2017), pp. 105–123.
doi: https://doi.org/10.31341/jios.41.1.7.

[32] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. “Winnowing: Local Algorithms

for Document Fingerprinting”. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’03. San Diego, California: Association

for Computing Machinery, 2003, pp. 76–85. isbn: 158113634X. doi: 10.1145/872757.

872770. url: https://doi.org/10.1145/872757.872770 (visited on 05/24/2023).

[33] Farhan Ullah et al. “Software plagiarism detection in multiprogramming languages

using machine learning approach”. In: Concurrency and Computation: Practice and
Experience 33.4 (2021). e5000 cpe.5000, e5000. doi: https://doi.org/10.1002/cpe.
5000. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5000. url:

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5000.

[34] Michael J Wise. “String similarity via greedy string tiling and running Karp-Rabin

matching”. In: Online Preprint, Dec 119.1 (1993), pp. 1–17.

[35] Jitendra Yasaswi et al. “Unsupervised Learning Based Approach for Plagiarism

Detection in Programming Assignments”. In: Proceedings of the 10th Innovations in
Software Engineering Conference. ISEC ’17. Jaipur, India: Association for Computing

Machinery, 2017, pp. 117–121. isbn: 9781450348560. doi: 10.1145/3021460.3021473.

url: https://doi-org.ezproxy-kit-1.redi-bw.de/10.1145/3021460.3021473.

53

https://doi.org/https://doi.org/10.1016/j.dib.2023.108887
https://doi.org/https://doi.org/10.1016/j.dib.2023.108887
https://www.sciencedirect.com/science/article/pii/S2352340923000057
https://www.sciencedirect.com/science/article/pii/S2352340923000057
https://doi.org/10.1109/13.28038
https://doi.org/https://doi.org/10.1002/spe.4380250705
https://doi.org/https://doi.org/10.1002/spe.4380250705
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250705
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250705
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250705
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250705
https://ps.ipd.kit.edu/downloads/za_2002_finding_plagiarisms_jplag.pdf
https://ps.ipd.kit.edu/downloads/za_2002_finding_plagiarisms_jplag.pdf
https://clang.llvm.org
https://clang.llvm.org
https://doi.org/https://doi.org/10.31341/jios.41.1.7
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/https://doi.org/10.1002/cpe.5000
https://doi.org/https://doi.org/10.1002/cpe.5000
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5000
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5000
https://doi.org/10.1145/3021460.3021473
https://doi-org.ezproxy-kit-1.redi-bw.de/10.1145/3021460.3021473

A. Appendix

55

A. Appendix

Without Function Filtering With Function Filtering

0.0

0.2

0.4

0.6

0.8

1.0
S

im
ila

rit
y

PROGpedia-19 Task

plagiarized
False
True

Figure A.1.: Similarity distributions without and with function filtering on a 10% subset of

the PROGpedia-19 task with base code

Average Number of Generated Tokens
Data Set Simple Version Advanced Version

PROGpedia-19 3130 4127

PROGpedia-56 1752 2304

Programming Homework A2016 287 397

Programming Homework A2017 289 416

Programming Homework B2016 7570 9652

Average Number of Distinct Tokens
Data Set Simple Version Advanced Version

PROGpedia-19 18 30

PROGpedia-56 17 29

Programming Homework A2016 15 22

Programming Homework A2017 15 22

Programming Homework B2016 21 38

Table A.1.: Average number of generated tokens for each version of the LLVM IR language

module

56

Figure A.2.: Similarity distributions of the different tasks for each course from the Pro-

gramming Homework data set with the LLVM IR language module

57

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Token-based Software Plagiarism Detection
	JPlag
	Obfuscation Attacks
	LLVM

	Related Work
	Concept
	LLVM IR Language Module
	Simple Token Abstraction
	Functions
	Terminator Instructions
	Operations
	Memory Operations
	Other Operations

	Advanced Token Abstraction
	Functions
	Globals
	Terminator Instructions
	Operations
	Memory Operations
	Other Operations
	Meta Data, Types and Other Elements

	Evaluation
	Methodology
	Implementation
	Approach
	Data Sets

	Results and Discussion
	Impact of the Minimum Token Match
	Impact of the Token Abstraction Version
	Impact of the LLVM Optimization Level
	Comparison with Dedicated Language Modules

	Limitations
	Threats to Validity

	Future Work
	Conclusion
	Bibliography
	Appendix

