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Towards Fine-Grained Sensor-Based Probabilistic Individual
Air Pollution Exposure Prediction using Wind Information

Paul Tremper! Till Riedel®

Abstract:

The estimation of pollutant exposure is highly dependent on the spatial and temporal resolution
of the underlying model. This work presents a street-level Gaussian Process Regression model for
urban air quality that uses a novel covariance kernel based on physical considerations to process
wind information. This model can be driven by information from observations from low-cost sensor
networks. We present the model, including the construction of the wind angle kernel, and discuss the
inconclusive evaluation to date, the current challenges, and the way forward.
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1 Introduction

Air quality plays a crucial role for our health [Or23]. Accurately assessing air quality is
challenging. Existing air quality dispersion models3, are computationally intensive. These
models further require often incomplete emission inventories to start with. Immission
modelling takes a different approach by using observations to predict the temporal and/or
spatial distribution of pollutants. The emergence of low-cost air quality sensors deployed by
citizen science [Oy22] or research initiatives [Bul7] has made immission models increasingly
attractive. However, those models currently lack the resolution of simulations. Sokhi et al.
recently conducted an extensive review on air quality research [So22]. They emphasised the
importance of data from dense air quality networks which makes interpolation naturally
come into focus. We construct a Bayesian inference-based interpolation model that uses
wind information to improve predictions and push the applicability of such models to the
street scale. To achieve this, we use Gaussian Process Regression to construct the wind
information processing from physical considerations. After discussing existing work, we
describe the structure of the used kernel in section 3 and particularly the construction of
the wind angle kernel and demonstrate its behaviour in section 4. We use these kernels to
make a spatial prediction of NO; values from simulated measurements and compare it with
purely spatial kernels to showcase the effect of the wind field information. We discuss our
current challenges and propose approaches to overcome them.

1 KIT, TM-PCS/TECO, Vincenz-Priefnitz-Str. 1, 76131 Karlsruhe, Germany paul.tremper @kit.edu
2 KIT, TM-PCS/TECO, Vincenz-PrieBnitz-Str. 1, 76131 Karlsruhe, Germany till.riedel @kit.edu
3 e.g. GRAMM/GRAL, https://github.com/GralDispersionModel or PALM https://gitlab.palm-model.org
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2 Background and Related Work

Multiple methods are being used for spatial interpolation of air quality data. Land Use
Regression (LUR) links air pollution measurements with land use to predict pollution at
unmeasured locations using statistics, e.g. [Sul6], [No20]. Supervised Machine Learning
(ML) uses historical pollution data and features such as weather, traffic and land use for
real-time or future air quality prediction, e.g. Random Forest, [Yul6]. Kriging (Gaussian
processes) estimates pollution using observed data correlations [DMZ17; Kil4; Pal6].

Wind information has been incorporated into spatial interpolation methods to improve
accuracy. For example, [CF16] use a modified inverse distance weighting (IDW) model
that favours windward points in a 30° sector, reporting positive results for traffic emissions
such as NO, NO; and SO,. [Zh21a] use kriging with upwind points, reporting a more
stable RMSE than ordinary kriging. In the context of land use regression (LUR), [Ar07]
incorporate wind fields, emphasising their influence on the intra-urban distribution of NO,.
[LGZ14] and [Zh21b] adapt IDW and deep learning, respectively, using wind paths for
better predictions. [Zh18] integrate wind directions as labels in a multiple kernel learning
ML model.

All of these models operate at much larger scales (10km to 100km): To the best of our
knowledge, no study has addressed the interpolation of air pollutants at street level without
relying on dispersion models for predictions. Furthermore, we have not found any study that
has attempted to model local wind angle dependence at a granular level into the covariance
function of a kriging model.

Various approaches have attempted to integrate data from dispersion modelling and sensor
data information: Data fusion methods (for example, [Sc17]), data assimilation techniques
(such as, [Jo22]), and machine learning methods applied to improve dispersion models
([Ka23]) have been employed to enhance predictions. We employ a dispersion model in
our study as synthetic ground truth to assess our interpolation model. The method does not
need such model when trained or applied on real data.

When previously comparing several interpolation methods [TRB21], one of which was
Gaussian Process Regression with a Gaussian (RBF) kernel, to determine their effectiveness
in interpolating sensors of the SmartAQnet deployment 4, we found that the interpolation
was able to capture the general trends of the time series at a distance of approximately
500m. In this paper, we discuss improvements to the Gaussian Process’s kernel function by
incorporating wind information to enhance its prediction accuracy.

4 A heterogeneous air quality sensor network in Augsburg, Germany. https://smartaq.net, [Bul7]
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3 Overall Kernel Structure

Gaussian Process Regression uses a covariance function (kernel) to map covariances between
input points, which are then used to generate predictions [RWO0S5]. Our approach is based on
the idea that we can split the total kernel into a product of a spatial distance kernel, a wind
strength kernel and a wind angle kernel whose covariances are independent of each other.

ktotal (Vl, V2, Wi, W2) = kspatial (vlv V2) : kstrength (Wl, WZ) . kangle (vl, V2, Wi, WZ) (D

The spatial distance kernel depends only on the spatial coordinates of the two input points
(v1,v2). The wind strength kernel, equivalently, depends only on the wind vector coordinates
(w1, wy) of the two input points. The wind angle kernel depends only on the relative angles
between the position vectors and the wind vectors. For very short distances, concentrations
are likely to be correlated regardless of wind direction and strength. To account for this case,
we add a complementary kernel of the wind direction and wind strength part with a very
short length scale hyperparameter in the spatial kernel. We denote the spatial kernel to this
complementary kernel as k, (k orthogonal) and the original spatial distance kernel as k|,
(k parallel). This implies £|; >> £, for the length scale hyperparameters of the respective
kernels. The structure of the full kernel is thus

ktutal(vl, V2, Wi, WZ) = k\ | (Vl, V2) : kstrength(wl, WZ) . kungle(vl, V2, Wi, W2)
+ky(vi,va) - [1 - kstrength(wl, wa) - kangle(vh Va2, Wi, WZ)] 2

In the limit of identical spatial kernel length scales (£, = ¢)), the full kernel reduces to a
purely spatial distance kernel.

We chose a kernel with a Gaussian profile (Radial Basis Function, RBF) for both the spatial
distance kernels and the wind strength kernel. These are of the form

kspatiul (Vl’ V2) = CXp kstrength(wl» W2) = exp

_(Vl - V2)2l
203y

_ (w1 = wa)? ]
265,
3)
For the spatial distance kernel, v = (x1, y1) and v, = (x2, y2) are two component spatial
position vectors, while for the wind strength kernel w; and w, are two component wind
field vectors.

4 Wind Angle Kernel

Only the relative angles of the input vectors v := v| — v,, wy and w, are relevant for the
construction of the angle kernel. Therefore, all vectors in this subsection are considered
normalised vectors. We refrain from adding another symbol to indicate this for readability
reasons.
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4.1 Defining Support Points

Covariance functions are constrained by

1. a scalar output k (%1, %3) € R! (the covariance)

2. symmetry under exchange of the two input points k (%1, *2) = k (%2, *1)

Constraint 1) led us to consider only scalar products of the normalised input vectors v, w
and w». The scalar products in question are then wyw,, vw; and vw,. We can discard one
of these angles as a degree of freedom by eliminating the rotational symmetry of the system
and remain with 6; = arg(vw) and 6, = arg(vw;). In this way we can visualise the angle
kernel function in the 8; — 6, plane, which makes it much easier to construct.

We want to use the critical points {-1,0,1} of the scalar products as support points for the
covariance function we seek. To this end, we look at angular values of 6; € {0, %71’, T, %n}.
For two angles 81, 0, there are 42 =16 configurations which we show in figure 1, as well
as the desired covariance we have assigned to each configuration. The assignment of these
desired covariances is subjective in that the configuration of position and wind vectors must
be interpreted as a physical situation.

Desired Covariance
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Fig. 1: All vector configurations in consideration as support points as well as a color coding of their
desired covariance.

4.2 Constructing Building Blocks

Constraint 2) implies the symmetries shown in figure 2. These symmetries led us to
combine the scalar products wiw,, vw; and vw, into combinations that are invariant
under the exchange of v| and v,. These combinations serve as building blocks to construct
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Vectors Scalar Products Angles

v -y Wiwy — wawj arg(wywp) — arg(wiwy)
w| — wy - YW — —vw) arg(vwy) — arg(—vwy)
wy — Wi YWy — VW arg(vwy) — arg(—vwy)

Fig. 2: Symmetry constraints of the covariance function.

covariance functions that automatically satisfy constraints 1) and 2). From the possible
building blocks we chose

fw = fowi,wa) = (w1w2)2 @
2
o
1 - 2

where the numerical factors are normalisation factors to force the outputs into the [0,1]
interval. The squares provide smoother transitions between the parts of the function and
ensure that f, is invariant. Combining these functions, we construct the angle kernel in the
following way

kangle(v, wi,w2) = (1= fiw) + fuw [f+ +(1- f+)f—]
=1-fou(1=-f)(1-f) (7
The functional behavior of the full angle kernel is shown in figure 6 in the 66,-plane. The

desired high/low covariances of the support points show up as green/red circles. We can
see, that the function succeeds quite well in modelling the desired behavior.

gty

Fig. 6: kangle
Fig. 3-6: The angle kernel k 45,4/, and its constituent building blocks fy,, f+, f- in the ,6,-plane.

Regions with high (low) covariances are colored yellow (purple). Green (red) circles indicate a high
(low) desired covariance.

Note thatif vi = vy & v =0 < w; = wj. Hence f,, = 1, f4 =0, f- = 1/4 and therefore
kangte(0, w1, wi) = 1/4. Thus the diagonal of the angle part of the covariance matrix is
1/4, which has to be set to 1 manually. This is a consequence of arg(vwi) and arg(vw;)
becoming undefined in this case.
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5 Evaluation

We used a GRAMM/GRALS? dispersion simulation as train/test data for our model since
this should sufficiently capture the physical processes that govern pollutant dispersion. The
dataset used in our study encompasses an area of an Austrian city of 656 x 458 meters
with grid cells of 2 X 2 meters, leading to 75,670 datapoints per run. Each data point
provides information about u and v coordinates of the wind field, as well as the simulated
concentration c at 2 m height.

Spatial RBF Kernel Model (RBFxy): Since the spatial distance kernel of our model is an
RBF kernel, comparing the full model with a standard RBF kernel model as baseline is the
obvious choice. We call this model the RBFxy baseline model.

(i - Vz)zl ®)

krBFxy(V1,V2) = exp
203,

Wind-Spatial RBF Kernel (RBFxyuv): Another useful baseline model consists of an RBF
kernel in spatial coordinates multiplied by an RBF kernel in wind vector coordinates. This
construction mirrors the spatial distance kernel and the wind strength kernel of our full
model, but without the angle kernel and the split into a parallel and an orthogonal part. We
call this model the RBFxyuv baseline model.

(vl—vzﬁl [ (wl—wz)z}
B2 Tl B I 4 Vi

©)
203, 202,

kRBFquV(v19 V2, Wi, WZ) = exp [

5.1 Evaluation Methodology

We performed a grid search to determine the hyperparameters of the kernels. We used 20
randomly chosen points with concentration ¢ > 2 as training data (sensors). The reason
for this constraint was twofold: 1) it prevents from picking points inside of buildings and
2) it prevents from picking from the outer regions of the domain, where the simulation
does not account for sources outside of the domain. Other than that, ¢ > 2 is chosen to act
as a conservative lower bound for realistic sensor placements. Subsequenly, we used all
datapoints within 150 <= x <= 550 and 50 <=y <= 400 (to avoid errors of unaccounted
for sources from outside of the domain) with a concentration > 0 (to exclude unphysical
values and buildings) as test data.

We found the following minima for the hyperparameters:

Wind Kernel Model t, =22,4,=100,¢, =15
RBFxy baseline model txy =50
RBFxyuv baseline model | £, =134,¢,, =1

5 https://gral.tugraz.at/
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Using these hyperparameters, we computed 1000 runs, each time randomly choosing a new
set of 20 training points. We report the MSE statistics when compared against the ground
truth in table 1.
c>0 | mean+std | (min, max) || c>2 | mean+std | (min, max)
Wind Model | 14.01 +3.16 | (8.53,38.02) || Wind Model | 13.47 +2.71 | (8.68,29.44)
RBFxy 11.90 + 0.84 | (10.01, 15.39) RBFxy 19.15 £ 3.25 | (11.48, 34.11)
RBFxyuv 14.08 £2.62 | (8.97,26.06) RBFxyuv 13.82 +£2.23 | (8.72,25.06)

Tab. 1: MSE Comparison of the baseline models (RBFxy, RBFxyuv) and our wind model. 1000 runs,
each with 20 randomized sensor positions at concentration values ¢>2, evaluating the central area of
the domain (see section 5). c>0 and ¢>2 refer to leaving out concentrations equal to zero (buildings)
and smaller than 2 ;1g/m3 (to match the training points).

RBF Model Prediction RBFxyuv Model Prediction Wind Model Prediction Ground Truth (CFD Simulation)
ey, L) = (134, 1.00) (fy, £y, ) = (100, 22, 1.50)

-

00 4
-m- e u;ln« | a ance (mi| dtance (ml

lllu||

Fig. 7: Comparlson of a random set of 20 training points (red dots) between baseline (RBF, RBFxyuv),
our wind model and and GRAMM/GRAL simulated ground truth. In all cases, the wind field stems
from the GRAMM/GRAL simulation.

5.2 Preliminary Evaluation Results

Although the predictions of our model look very different compared to the baseline kernels
(see Fig. 7), standard metrics such as MSE or MAE show no significant improvement. Table
1 shows that the wind model and the RBFxyuv model have a much higher variance than the
purely spatial RBFxy model. Although their mean MSE is generally higher, indicating a
poorer fit, their minimum values are lower, indicating that they are more sensitive to sensor
placement and have the potential for better predictions.

Indeed, Fig. 7 shows the potential of including wind information in the street level
interpolation, as both the RBFxyuv model and our wind model are able to model pollutant
concentrations along street canyons to some extent. All of the models shown suffer from
overestimating concentrations in small streets and backyards, which would require model
extensions to address. One possibility would be to include land use information in the model
or in a wind interpolation to suppress wind-protected areas.

We did not perform any evaluation against other state of the art prediction models since our
model to date does not outperform these simple baselines.
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6 Challenges and Future Work

Because our model uses covariance functions, it cannot represent aligned wind vectors
separated by an obstacle. Our model also only works in stationary (steady-state) situations.
When the wind field becomes dynamic in time, information about the individual transport
trajectories becomes much more important, which significantly complicates matters. Eg. if
a training point picks up a wind direction caused by a small eddy to point in a drastically
different direction than the larger wind flow of the area, the prediction will be significantly
distorted.

6.1 Challenges

Wind Strength Kernel: We chose an RBF kernel for the wind speed, a standard choice when
detailed information about the system is lacking. A kernel with a more nuanced functional
behaviour to capture the covariances between wind strengths as well as a non-stationary
kernel component to suppress low wind values could prove beneficial.

More nuanced Angle Kernel: We chose to go with a rather simple version of the angle
kernel function (see 4). This could be changed: 1. Different, additional and/or more
nuanced support points. 2. Change the functional behavior that interpolates between them 3.
Introduce hyperparameter to the angle kernel. A more comprehensive systematization of
the construction process would be a prerequisite.

Factorization of Kernel Parts: The assumption that the distance , wind strength and angle
kernel factorize might not hold well enough. In reality, the different kernel parts are likely
interwoven. A numerical analysis (see paragraph below) further insight.

Numerical Kernel: A covariance analysis of an existing dataset could be used as basis for
a numerical kernel function. Since such a numerical approach would represent the true
covariance within the dataset, it could be used to validate an analytical approach such as
ours. Comparing the numerical kernel from different datasets would also shed light whether
or not the underlying physical processes govern the covariances at all.

Evaluation Metric: The value of the model might not lie in spatial coverage (as described
by the MSE), but, e.g., in directly predicting individual exposure in certain scenarios. This
would require defining meaningful metrics for the specific use case.

Sharpening the use case: Although an evaluation of an entire domain at high resolution
does not show a significant improvement in prediction, there may be specific use cases
where our model works generally better. For example, forecasting away from sources, areas
with more homogeneous wind fields or different pollutants.

Wind information from sensors: For our evaluation we used the wind field from the CFD
simulation. For an application, we would take the wind field from an interpolation of sensor
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data. This should work as model only draws information from the general flow and not
from finely resolved structures. In fact, we suspect that eddies have a negative impact on the
predictions.

Improve Model Training: Currently, optimisers struggle to find minima of the loss function,
leaving us with brute force grid search. In addition, GPR is known to have problems with
hyperparameter optimisation when the covariance matrix becomes indefinite. Both problems
probably require the kernel to be analysed for critical points and made numerically more
stable.

Dataset: Due to the reactivity of NO;, which is taken into account by GRAMM/GRAL,
a small-scale prediction of PM may be more feasible. In addition, the small domain and
high spatial resolution of the CFD simulation poses a problem for the interpolation method.
We suspect that a gradual coarsening of the resolution could improve the prediction. Other
studies focusing on the integration of wind information into pollutant interpolation consider
much larger and much coarser urban domains, see for e.g. [Ar07] [LGZ14].

6.2 Future work

We see two promising paths forward for our model: 1. Stay on street level scales to push
the boundaries of air quality interpolation methods for predicting personal exposure. 2.
Take the model to coarser scales and compare our model with state of the art interpolation
methods which use wind fields in their predictions. The latter likely requires changing the
angle kernel function as larger area correlations might have different patterns than street
level correlations. In both cases, the steps we plan to take are as follows:

. Specify a use case and determine a meaningful evaluation metric for that use case

. Perform a correlation analysis of a dataset to get information on how to improve the
kernel and verify the results on a second dataset.

. Evaluate the improved kernel for the use case and interrelate with other wind
incorporating methods such as LUR [Ar07], IDW [LGZ14] or ML models [Zh21b].

. In case of success, evaluate our model with interpolated wind data from sensors.

7 Conclusion

We presented a Gaussian Process Regression model capable of processing wind information
to make predictions about pollutant concentrations. We explained the construction process
of the kernel and its inconclusive evaluation so far. We then discussed challenges, possible
improvements and our plans going forward. Despite the inconclusive evaluation, we
stress that models constructed from physical considerations have value because of their
straightforward interpretability. Gaussian Process Regression (GPR) offers a framework,
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which employs the advantages of machine learning while at the same time offering physically
interpretable hyperparameters. On top of that, GPR predictions natively come in form of
gaussian distributions, offering a measure of error to the prediction. A Gaussian Process
Regression based interpolation model, which is able to reliably predict pollutants at street
level in real time with a native error measure would be a valuable tool to estimate personal
exposure.
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