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A B S T R A C T   

Raman spectroscopy is considered a Process Analytical Technology (PAT) tool in biopharmaceutical downstream 
processes. In the past decade, researchers have shown Raman spectroscopy’s feasibility in determining Critical 
Quality Attributes (CQAs) in bioprocessing. This study verifies the feasibility of implementing a Raman-based 
PAT tool in Protein A chromatography as a CQA monitoring technique, for the purpose of accelerating pro-
cess development and achieving real-time release in manufacturing. A system connecting Raman to a Tecan 
liquid handling station enables high-throughput model calibration. One calibration experiment collects Raman 
spectra of 183 samples with 8 CQAs within 25 h. After applying Butterworth high-pass filters and k-nearest 
neighbor (KNN) regression for model training, the model showed high predictive accuracy for fragments (Q2 =

0.965) and strong predictability for target protein concentration, aggregates, as well as charge variants (Q2
≥

0.922). The model’s robustness was confirmed by varying the elution pH, load density, and residence time using 
19 external validation preparative Protein A chromatography runs. The model can deliver elution profiles of 
multiple CQAs within a set point ± 0.3 pH range. The CQA readouts were presented as continuous chromato-
grams with a resolution of every 28 s for enhanced process understanding. In external validation datasets, the 
model maintained strong predictability especially for target protein concentration (Q2 = 0.956) and basic charge 
variants (Q2 = 0.943), except for overpredicted HCP (Q2 = 0.539). This study demonstrates a rapid, effective 
method for implementing Raman spectroscopy for in-line CQA monitoring in process development and bio-
manufacturing, eliminating the need for labor-intensive sample pooling and handling.   

1. Introduction 

In the biopharmaceutical industry, it is increasingly challenging to 
enhance the productivity of research and development (R&D), facilitate 
efficient regulatory compliance, and shorten timeline from drug dis-
covery to market [1,2]. Over the past decade, enhancement in produc-
tivity and efficiency of upstream and downstream processing was driven 
by innovation in technology [3], as process intensification [4] and 
continuous manufacturing [2,5,6] evolve to be key trends in bio-
manufacturing. Mechanistic modeling has also been widely investigated 
and implemented in downstream processes for deep physical under-
standing and process knowledge [7]. In 2004, the US Food and Drug 
Administration (FDA) [8] encouraged the use of Process Analytical 
Technology (PAT) to ensure consistent product safety, quality, and 

efficacy with enhanced process understanding. In line with ICH Q13 
guideline [5], PAT enables the measurement of drug substances and 
impurities during continuous manufacturing to facilitate real-time 
monitoring of manufacturing processes and process control [6,9]. The 
industrial bioprocess development is striving to meet the quality by 
design (QbD) [10] paradigm to achieve a greater understanding of 
critical quality attributes (CQAs) [2,11]. PAT is considered a comple-
mentary technology for facilitating biomanufacturing through diverse 
analytical techniques and chemometric models [12,13]. Within the 
frame of PAT, in-line CQA monitoring is often desired in downstream 
process (DSP) for the purpose of accelerating process development and 
achieving real-time release in manufacturing. 

In the past few years, researchers have been testing a series of 
analytical techniques as PAT tools. Rolinger and coworkers [14] 
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compared UV and Raman spectroscopy in monitoring the protein con-
centration during Protein A chromatography using Partial Least Square 
(PLS) models and Convolutional Neural Networks (CNN), showing 
improved predictability with the UV-based model. Infrared spectroscopy 
was investigated for in-line protein concentration measurements in 
ion-exchanged chromatography by Akhgar et al. [15]. Patel and co-
workers [16] made progress on using a multi-angle light scattering 
system as PAT tool in real-time molecular weight measurements in hy-
drophobic interaction chromatography. Furthermore, water proton nu-
clear magnetic resonance spectroscopy under flow conditions 
(flow-wNMR) was proposed as a PAT tool for protein concentration and 
aggregates by Taraban and coworkers [17]. Based on the current 
research on PAT, Raman spectroscopy is considered a high-potential 
technique for in-line CQA measurements in downstream processes [6, 
14]. Initial progress made on Raman application in chromatography was 
presented by Feidl and coworkers [12] in 2019, comprising a novel flow 
cell and chemometric protocol for monitoring protein concentration in 
chromatography with in-line Raman spectroscopy. Zhang et al. [18] 
proposed a quantitative determination of aggregates based on Raman 
spectroscopy. Rolinger et al. [14] employed non-linear models CNN and 
data fusion in the model regression between Raman spectra and protein 
concentration, introducing a novel way of generating regression models 
using machine learning. Wei and coworkers [19] demonstrated the 
feasibility of a multi-attribute Raman spectroscopy (MARS) in drug 
substance development, the first study to quantify multiple product 
quality attributes (PQAs) with a single method. 

Our previous work demonstrated that automated calibration and in- 
line Raman detection [20] contribute to a dramatic reduction in inten-
sive lab-work and material requirements, allowing for the efficient 
establishment of machine learning models. High-throughput Raman 
collection was achieved by connecting Raman to a Tecan Liquid 
Handling robot, leading to success in accurately determining in-line 
aggregates and fragments during the Protein A chromatography 
elution phase [21]. In this study, a KNN regression following a series of 
Butterworth filters was applied to generate Raman-based model for CQA 
predictions in Protein A chromatography. The time-consuming mea-
surement and evaluation of various analytical techniques are considered 
a bottleneck for biopharmaceutical process development. The Raman 
model is an alternative for in-line monitoring in DSP, measuring CQAs 
without having pool analytics. But for successful implementation, 
feasibility assessment of the Raman model should be performed on 
actual DSP scenarios, including internal and external model validation 
to test the robustness and interpolation ability of the Raman-based 
model. 

In the field of biopharmaceutical development and manufacturing, 
various PAT tools have been implemented and verified. For example, 
Williams et al. [22] introduced a refractometry-based PAT system to 
monitor the cell culture metabolic activity with pH control strategy in a 
lentiviral vector (LVV) production bioprocess. São Pedro et al. [23] 
implemented a fluorescent dye (FD)-based microfluidic biosensor for 
real-time aggregation detection in an integrated lab-scale downstream 
process. Regarding the application of Raman spectroscopy in ultra- and 
diafiltration processes, Rolinger and coworkers [24] showcased its po-
tential for in-line protein concentration and buffer exchange monitoring. 
Compared to the predecessors’ work, we are the first to develop a 
Raman-based PAT tool that expended the technical ability of using 
Raman spectroscopy for measuring and predicting fragments, charge 
variants, and host cell proteins. The ability has been included into the 
settings of the process robustness study and, hence, into the monoclonal 
antibody (mAb) process development. The aim of the study is to develop 
a Raman spectroscopic method for the determination of CQAs and to 
verify this method’s predictability with 19 Protein A chromatography 
processes performed within a broad range of process parameters. The 
purpose of these 19 Design of Experiments (DoE) runs is to investigate 
the process robustness. To collect Raman datasets for training and in-
ternal validation, we performed a fractional Protein A chromatography 

run followed by a high-throughput calibration experiment and off-line 
analytics. Subsequently, using a series of Butterworth filters and the 
KNN regression, we developed a Raman-based predictive model for the 
determination of concentrations of the target proteins, high and low 
molecular weight species (HMW & LMW), acid and basic peak groups 
(APG & BPG), and host cell proteins (HCP). For those species, the 
model’s predictability based on the in-line Raman spectra of the 19 
Protein A chromatography runs was challenged by comparing the model 
outputs with the corresponding off-line measurements. This investiga-
tion validated the Raman-based predictive model for in-line determi-
nation of CQAs in Protein A chromatography and marks the latest 
development milestone of Raman spectroscopy application in the field 
of biopharmaceutical process development. 

2. Materials and methods 

2.1. Robustness study of a Protein A chromatography 

During downstream process development, a robustness study of 
Protein A chromatography step was conducted for an IgG1 antibody, 
mAb (Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Ger-
many). In the study, the mAb feedstock was harvest cell culture fluid 
(HCCF) with a titer of 6.42 g/L. MabSelect PrismA (Cytiva, Uppsala, 
Sweden) resin was used for Protein A chromatography. A column with a 
diameter of 1 cm and a height of 20.6 cm (i.e., CV = 16.18 mL) was 
packed for the robustness study. As listed in Table 1, 19 DoE runs were 
designed and varied with three process parameters, including elution 
pH, load density, and residence time. All the Protein A chromatography 
runs were carried out with a pH step elution, on an ÄKTA avant 25 
system (Cytiva, Uppsala, Sweden) under control of UNICORN™ 7.5 
software. For in-line Raman detection, a Raman flow cell with a dead 
volume 240 µL (Marqmetrix, Seattle, Washington, USA) was integrated 
into the ÄKTA system in between the conductivity and pH sensors. This 
flow cell was connected to a HyperFlux Pro Plus Raman spectrometer 
(Tornado Spectral Systems, Mississauga, Ontario, Canada) equipped 
with a 785 nm emission laser. During all DoE runs, the Raman acqui-
sition setup was set to a laser power of 350 mW with a 350 ms exposure 
time averaged over 20 exposures per scan (measuring time 7 s per 
spectrum) to avoid saturated detection. An ÄKTA I/O box was installed 

Table 1 
Overview of DoE input parameters and pool concentrations in project frame-
work for the purpose of investigating process robustness.  

Exp. 
no. 

Input parameters Output 

Load 
density 

Elution 
pH 

Residence 
time 

Pool concentration [g/ 
L] 

1 0 0 0 21.71 
2 − 1 0 0 16.80 
3 1 − 1 − 1 27.63 
4 − 1 0 1 16.90 
5 0 1 0 15.30 
6 1 0 0 28.03 
7 0 0 − 1 21.97 
8 0 − 1 1 25.83 
9 − 1 − 1 − 1 18.68 
10 − 1 1 − 1 11.10 
11 1 − 1 1 25.92 
12 − 1 1 1 14.10 
13 0 0 0 21.66 
14 − 1 − 1 1 16.23 
15 1 1 − 1 17.63 
16 0 1 1 18.43 
17 0 0 0 21.07 
18 − 1 − 1 0 16.93 
19 1 1 1 20.15 

Three set points are chosen for each single input parameter, labeled as − 1, 0, 1. 
Pool concentrations refer to off-line pool measurements. The experiments 
numbered by 1, 13, 17 are replicates in the designed experiments. 
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and used for time synchronization of Raman detection with the chro-
matography unit. Elution pooling was triggered once the UV absorbance 
at 280 nm reached 200 mAU, and subsequently stopped when the UV 
absorbance dropped below 200 mAU. After measuring the protein 
concentration, the elution pool was frozen at − 70 ◦C. Once all 19 DoE 
runs were conducted, the pools were thawed at 25 ◦C and measured by 
various analytical techniques for CQA determination. The in-line 
measured Raman spectra of the elution phase were averaged every 4 
spectra to reduce the signal-to-noise ratio, obtaining a dataset with a 28 
s resolution. The 19 datasets were used for external validation of Raman 
model trained. 

2.2. Fractional Protein A chromatography for internal validation 

For internal validation, one fractional Protein A chromatography 
step was conducted using the same HCCF materials, but one column 
with a 2.6 cm diameter and a height of 10.5 cm (i.e., CV = 55.75 mL). 
The experiment was performed on the same ÄKTA system, using an 
identical in-line Raman detection configuration as employed in the 
robustness study. The more detailed information about the process and 
setup has been explained by Wang et al. [21]. Fraction collection was 
triggered once the UV absorbance at 280 nm reached 200 mAU, and 
subsequently stopped when the UV absorbance dropped below 200 
mAU. The eluant was collected in 25 fractions with a volume of 6 mL 
each. The pre-eluate was also collected as a single fraction, thus in total 
26 fractions. As in the robustness study, the averaged in-line Raman 
spectra (28 s resolution) of the elution phase were used as an internal 
validation dataset for model performance evaluation. 

2.3. Off-line Raman detection for model training 

The 26 fractions obtained from the fractional Protein A chromatog-
raphy step were followed by a blank sample with elution buffer, in total 
27 samples. Using a Tecan Fluent 1080 Liquid Handler (Tecan, 
Männedorf, Switzerland), each two in sequence of the 27 samples with 
known quality attributes were automatically mixed with 6 different 
fractional ratios, resulting in 156 expanded data points of the elution 
profile. This procedure ultimately yielded a total of 183 samples with 
mathematically derived quality attributes. Subsequently, the 183 frac-
tions were automatically injected into a Raman flow cell connected to 
the Tecan system. The flow path was cleaned with 1 M NaOH, 1 M acetic 
acid, and purified water after every sample measurement. A Raman 
spectrometer located near the Tecan system was turned on for 25 h, 
continuously collecting Raman spectra of the samples. The off-line 
collected and sorted Raman spectra were averaged every 4 spectra 
and used as a training dataset. 

2.4. Off-line analytical reference methods 

Four analytical assays were performed for CQA determination of the 
25 elution fractions. A NanoDrop One UV–vis Spectrophotometer 
(Thermo Fisher Scientific, Madison, WI, USA) was used for protein 
concentration measurement. Size exclusion chromatography (SEC) was 
performed on a Waters Acquity Ultra Performance LC (Waters Cooper-
ation, Milford, MA, USA) for the determination of aggregates, fragments, 
and the SEC main peak. High-performance strong cation exchange 
chromatography (HP-SCX) was intended for APG, BPG, and the SCX 
main peak, conducted on a Waters system. HCP quantification was 
carried out on an Octet HTX system (Fortebio, Fremont, CA, USA) using 
an Octet Anti-CHO HCP Kit (Sartorius AG, Goettingen, Germany). 

2.5. Model training, internal and external validation 

Raw Raman spectra consist of intensities at 3101 wavenumbers, 
ranging from 200 to 3300 cm− 1. To eliminate flow rate and instrument 
effects, we preprocessed all the averaged Raman spectra by using a 

series of Butterworth high-pass filters. Those filters were determined by 
155 different cutoff frequency coefficients, which were calculated using 
a geometric sequence (2− 2.5, 23.0) over a given cutoff value range (− 2.5, 
3.0). Subsequently, min-max normalization was applied to the filtered 
spectra due to data scaling, a requirement for k-nearest neighbor (KNN) 
algorithm. Following the preprocessing procedure, Raman spectra of 
183 samples were transformed into a 2-dimensional Raman image ma-
trix with dimensions (183, 155, 3101). A KNN regressor with 32 
neighbors (k = 32) was then employed to correlate spectral features with 
the 8 CQAs reference results, thereby developing a Raman-based KNN 
model. In the model regression algorithm, attributes related to SEC and 
SCX are multiplied by protein concentration and converted from per-
centage to g/L. In the KNN regressor, the training dataset was derived 
from a random sampling of the preprocessed 2-dimensional Raman 
image matrix, following a Gaussian distribution with standard de-
viations equivalent to 2-fold dataset errors. This sampling process was 
repeated ten times, yielding a matrix shape of (1830, 155, 3101). 
Similarly, the analytical label matrix Y, with dimensions (1830, 8), was 
generated through random sampling from a Gaussian distribution with a 
standard deviation of 0.01, also conducted ten times. 

The upper limit of the cutoff frequency range and the k-value are 
regarded as two determinative hyperparameters to be tuned for model 
optimization. Hyperparameter screening experiments were performed 
on the training dataset, followed by internal validation using the in-line 
Raman dataset from the fractional Protein A chromatography to eval-
uate model’s performance. The evaluation of regression analysis 
involved metrics such as the coefficient of prediction (Q2) and the Mean 
Absolute Percentage Error (MAPE) between off-line measurements and 
in-line Raman predictions. An initial grid search study was conducted 
with 12 evenly spaced frequency cutoff values in the range of (1.5, 7) 
and 13 evenly spaced k-values in the range of (8, 104). The outcome 
indicated that the models operating on cutoff values of 3, 3.5 and 4 have 
better performance with higher Q2 and lower MAPE. The subsequent 
fine-tuning was carried out applying the combination of 11 cutoff values 
in the range of (3, 4) and 10 k-values in the range of (8, 80). The optimal 
model, featuring a cutoff value of 3.0 and a k-value of 32, was deter-
mined based on the lowest MAPE and higher Q2 values. 

The trained model’s predictability was examined through external 
validation using datasets from 19 external Protein A chromatography 
DoE runs. The accuracy of the model in predicting 8 CQAs was assessed 
by comparing its predictions with pool analytical results as a reference. 
The average value of each CQA in each DoE run was calculated, 
considering the duration time from the initiation of pooling to regen-
eration. These average values served as the in-line pool predictions, and 
the model’s performance was evaluated using the same metrics Q2 and 
MAPE, as employed for internal validation. Due to the absence of pool 
materials for HCP measurements in DoE runs 13, 17, and 19, these three 
DoE runs were excluded from the HCP performance metrics assessment. 

3. Results and discussion 

3.1. Model optimization and internal validation 

To develop a Raman-based model and test whether the model can in- 
line predict all the CQAs, we performed two types of Raman detection on 
the same samples, using off-line dataset for model training and in-line 
dataset for internal validation. First, we conducted a Protein A chro-
matography run with in-line Raman detection, collecting 26 elution 
fractions and their in-line Raman dataset (4 spectra × 26 fractions × 8 
CQAs). The fractions of various measured CQAs were followed by a 
blank sample with elution buffer, in total 27 samples. Each two in 
sequence of the 27 samples with known quality attributes were mixed 
with 6 different fractional ratios, resulting in 156 expanded data points 
of the elution profile. This procedure ultimately yielded a dataset of 183 
samples with mathematically derived quality attributes, which was used 
for the model calibration. Subsequently, the continuous acquisition of 
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Raman spectra of each of the 183 samples lasted for 5 min. A hardware 
system connecting Raman to a Tecan Liquid Handling robot assisted in 
high-throughput mixing and Raman acquisition of the 183 samples 
within 25 h, obtaining a large off-line Raman dataset (40 spectra × 183 
samples × 8 CQAs). Due to different handling of the same elution 
fractions, it was necessary to apply the same preprocessing methods on 
both Raman datasets to remove the differences in hardware system and 
flow rate [21]. Raw Raman spectra consist of intensities at 3101 
wavenumbers. We averaged the raw Raman spectra every 4 spectra and 
preprocessed them using a series of Butterworth high-pass filters, to 
which 155 different cutoff frequency coefficients were applied. The 155 
cutoff frequency coefficients were computed by a geometric sequence 
(2− 2.5, 23.0) over a given cutoff value range (− 2.5, 3.0). Min-max 
normalization was applied to the filtered spectra. The upper limit of 
the cutoff frequency range and the k-value are regarded as two deter-
minative hyperparameters to be tuned for model optimization. After 
preprocessing, the Raman-based model was trained on the off-line 
Raman dataset of the 183 samples, and then internally validated on 
the in-line Raman dataset of the 26 fractions. Model optimization finds 
the optimal hyperparameter combination, a cutoff value of 3.0 and a 
k-value of 32, based on the coefficient of prediction (Q2) and the Mean 

Absolute Percentage Error (MAPE) of internal validation. 
Fig. 1 shows the elution chromatograms of the training experiment, 

comparing the off-line measurements with in-line CQAs predicted by the 
KNN model. The CQAs of the 26 elution fractions (from F1 to F26) used 
for model calibration are displayed in concentration on the primary y- 
axis. The concentrations of target proteins and HCP are presented in 
Fig. 1(a), together with the in-line UV absorbance curve at 300 nm. The 
off-line and in-line target protein concentration correspond with UV300. 
Aggregates, fragments, and charge variants are concentration- 
dependent and exhibit similar tailing concentration profiles to protein 
concentration, as demonstrated in Fig. 1(b). Fig. 1(b) illustrates the 
model’s robust predictions for fragments, which have a shape closely 
resembling the off-line profile. The in-line pH curve represents a step-
wise pH elution applied to this Protein A chromatography run. 
Following the pre-elution phase of about 5 min, target proteins and 
impurities are eluted from the resin with a decrease in pH and con-
ductivity values. A significant decrease in pH and slight increase in 
conductivity are detected at the time point near maximum protein 
concentrations. Compared with off-line measurements, significantly 
higher in-line predictions of target protein (Fig. 1(a)), HMW, APG, and 
BPG (Fig. 1(b)) are observed starting from the sharp pH turning point in 
fraction 14 (F14). However, the model predictions for LMW (Fig. 1(b)) 
and HCP (Fig. 1(a)) appear to be less impacted by the same changes in 
pH. From fractions 3 to 8 (F3 to F8), the trained model has significantly 
lower predictions for target protein, HMW, APG, and BPG compared to 
off-line measurements. Furthermore, an unexpected prediction peak 
between fractions 3 and 8 is noticed. 

The correlations between off-line measurements of 26 fractions and 
in-line predictions were illustrated in Fig. 2 for 8 CQAs. In the internal 
validation dataset, the model demonstrates robust predictive perfor-
mance for fragments, where the in-line predictions have a shape closely 
resembling the off-line profile (Q2 = 0.965) and a minimal MAPE value 
of 22.13 % (Figs. 1(b), 2(c)). For protein concentration (Fig. 2(a)), ag-
gregates (Fig. 2(b)), charge variants (Fig. 2(d), (e)) and main peak of SEC 
and SCX (Fig. 2(g), (h)), the calibration model has strong predictability, 
reaching a Q2 of at least 0.922. However, when examined closely, the 
correlations for those CQAs show a weaker linearity within the medium 
concentration range. These discrepancies in the correlations are in 
agreement with the significantly higher predictions observed from F14 
and lower predictions from F3 to F8. The deviations in the predictions 
can be attributed to changing process conditions, particularly the al-
terations in pH. During the model calibration, the KNN regressor 
demonstrated a limited capability in extracting the spectral features 
related to pH. Regarding the HCP, the unexpected prediction peak be-
tween F3 and F8 results in a MAPE value of 142.91 % (Figs. 1(a), 2(f)). 
The model is therefore less predictive in terms of HCP than the other 
CQAs. 

Based on the internal validation results, the trained Raman model 
has robust predictability for protein concentration, aggregates, frag-
ments, charge variants, and main peak of SEC and SCX. However, the 
model’s prediction accuracy may be affected by fluctuations in elution 
pH. Moreover, the model’s predictive performance for HCP is unsatis-
factory. Overall, the internal validation results demonstrate that the 
trained calibration model can predict 8 CQAs simultaneously. 

3.2. Raman predictions on a process robustness study for external model 
validation 

During the process development, a robustness study was performed 
on the Protein A chromatography step to test acceptable ranges of three 
process parameters, including elution pH, load density, and residence 
time. Three varied set points were selected for each parameter, as listed 
in Table 1, resulting in a total of 19 DoE runs. In the study, in-line Raman 
detection was applied to the 19 runs to verify the trained Raman model’s 
predictability in CQA determination. The resulting in-line Raman data 
were used for external validation of the trained model. To evaluate the 

Fig. 1. Comparing off-line measurements and in-line Raman predictions of 26 
elution fractions for 6 critical quality attributes (CQAs). F1-F26 refer to the 26 
fractions eluted from Protein A chromatography used for model calibration. 
Off-line and in-line data are compared regarding (a) target protein (Conc) and 
host cell proteins (HCP), (b) high/low molecular weight (H/LMW) and acid/ 
basic peak group (A/BPG). The primary Y-axis indicates CQA concentrations in 
g/L or ng/L. H/LMW concentrations are multiplied by 10 times for clear 
illustration. The maximum concentration about each CQA is given in the figures 
as additional information. In-line UV absorbance at 300 nm (in a light blue 
elution shape), pH (green dashed line) and conductivity (rose dashed line) 
values exported from Unicorn software are converted to a dimensionless unit 
and presented on a secondary Y-axis. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 
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model performance on the DoE runs, we calculated the pool concen-
tration of CQAs according to in-line Raman predictions and compared it 
with off-line pool analytical results. Model performance on external 
validation datasets is interpreted by metrics Q2 and MAPE. Table 2 
summarizes all the performance metrics of the trained Raman model in 
terms of 8 CQAs. Additionally, one-way Analysis of variance (ANOVA) 
test was employed to provide statistical evidence of whether the varied 
process parameters have a significant impact on the model prediction 
accuracy of 8 CQAs. The test compares the means of the four categorical 
groups, which refers to the three process parameter inputs and de-
viations between predictions and observations regarding one of the 8 
CQAs. Table 3 presents the ANOVA test’s results for the process pa-
rameters for the 8 CQAs, taking the significance level of 0.05 as the 
threshold. The DoE runs 3, 6, 8, and 11 were not taken into account in 
the ANOVA test. The elution profiles of these DoE runs were saturated, 
as the predicted concentration exceeds the dynamic range of the trained 
model. The dynamic range of a calibration model can be regarded as the 
broadest concentration range that the model calibrates. Within this 

dynamic range, the model can determine the concentration quantita-
tively with certain accuracy and precision. For instance, the target 
protein concentration in the model calibration ranges from a minimum 
of 0 g/L to a maximum of 44.94 g/L, as represented in Fig. 1. A p-value of 
0.002 between elution pH and the deviation in aggregates indicates that 
the aggregate prediction error has significant correlation with elution 
pH. Furthermore, the two process parameters, load density and resi-
dence time, have no significant impact on the prediction accuracy of the 
trained Raman model with respect to the 8 CQAs (p > 0.05). 

Fig. 3 presents the elution profiles of target proteins and impurities 
for the 19 DoE runs. These profiles are predicted by the trained Raman 
model. The in-line pH and conductivity curves indicate the process 
parameter variances of these 19 DoE runs, and the differences in the 
shape of UV300 reflect the variances in process performance. To assess 
the Raman model’s ability to identify proteins or buffer in the eluates, 
the starting elution, pooling and regeneration time points are matched 
to each DoE run and marked in the subfigures. The Raman model only 
identifies process buffer without proteins during the pre-elution phase in 
all runs. The predicted elution profiles of CQAs first arise until the 
corresponding starting pooling time. Obviously, the elution profiles of 
in-line concentration predictions match with the UV300 shapes, except 

Fig. 2. Comparison of off-line fractional measurements and in-line predictions applied the trained Raman model for 8 critical quality attributes. The corresponding 
metrics Q2 and MAPE in percent were displayed in the regression plots for (a) protein concentration, (b) high molecular weight (HMW) or aggregates, (c) low 
molecular weight (LMW) or fragments, (d) acid charge variants APG, (e) basic charge variants BPG, (f) host cell proteins (HCP), the main peak of (g) size variants SEC 
and (h) charge variants SCX. 

Table 2 
Performance metrics of the regression model in terms of 8 critical quality 
attributes.  

Critical quality attributes (CQAs) Model performance metrics  

internal validation external validation  

Q2 MAPE (%) Q2 MAPE (%) 

Concentration 0.937 25.96 0.956 3.67 
High molecular weight (HMW) 0.922 29.09 0.567 33.40 
Low molecular weight (LMW) 0.965 22.13 0.734 12.59 
Acid peak group (APG) 0.937 27.39 0.814 9.62 
Basic peak group (BPG) 0.936 26.84 0.943 6.41 
Host cell proteins (HCP) 0.851 142.91 0.539 259.93 
Main peak of size variants (SEC) 0.936 27.22 0.950 4.01 
Main peak of charge variants (SCX) 0.937 27.16 0.960 4.29 

The model’s accuracy and predictability on each CQA were evaluated on both 
internal and external validation datasets, using the coefficient of prediction (Q2) 
and the Mean Absolute Percentage Error (MAPE). 

Table 3 
Analysis of variance (ANOVA) test’s p-values for three process parameter inputs 
in terms of 8 CQAs.  

Deviation in CQAs (Critical quality 
attributes) 

p-value of ANOVA analysis 

Elution 
pH 

Load 
density 

Residence 
time 

Concentration 0.178 0.407 0.252 
High molecular weight (HMW) 0.002 0.621 0.363 
Low molecular weight (LMW) 0.483 0.081 0.464 
Acid peak group (APG) 0.222 0.381 0.754 
Basic peak group (BPG) 0.224 0.970 0.516 
Host cell proteins (HCP) 0.452 0.809 0.479 
Main peak of size variants (SEC) 0.531 0.600 0.241 
Main peak of charge variants (SCX) 0.382 0.902 0.441  
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for DoE runs 3, 6, 8, and 11. In these DoE runs, the predicted elution 
profiles appear to be saturated and limited by the model’s dynamic 
range. Although the measured UV300 curves are not saturated. These 
saturated elution profiles are a consequence of the actual protein con-
centrations exceeding the model’s dynamic range. A stepped and 
discrete shape of concentration profiles is noticeable across the DoE runs 
5, 10, 12, 15, 16, and 19 in Fig. 3. In contrast to other runs, the pH or 
conductivity profiles in these six DoE runs are noticeably arched or 
concaved before the starting pooling points. This common feature arises 
from the high elution pH level (set point +0.3), as listed in Table 1. 

Consequently, these six DoE runs highlight a limitation of the current 
trained Raman model at the pH condition of set point +0.3. DoE runs 1, 
13, and 17 act as three replicate DoE runs. Except for HCP, identical 
concentration profile shapes are achieved in DoE runs 1 and 13. How-
ever, the predicted target protein concentration in the tailing part of the 
elution profile of DoE run 17 deviates from the UV300 signal. 

When the model is applied to a process robustness study in down-
stream process development, it is demonstrated that a single Raman- 
based model can deliver a full picture of target proteins and impu-
rities, without the need for lab-intensive fractionation and industry 

Fig. 3. A single Raman-based model predicting in-line concentrations of multiple critical quality attributes (CQAs) in continuous chromatograms at 28-second 
intervals. The elution chromatograms of 19 Design of Experiments (DoE) runs are predicted by the trained Raman model, for the concentrations of target pro-
teins, high/low molecular weight (H/LMW), acid/basic peak group (A/BPG) and host cell proteins (HCP). All the represented CQA concentrations are normalized 
along the Y-axis, ranging from 0 to 1, by dividing all Raman predictions by the maximum predicted target protein concentration, along with corresponding 95 % 
confidence interval. The maximum predicted target protein concentration was displayed in every DoE plot. In-line pH, conductivity and UV absorption at 300 nm 
(UV300) are converted to a dimensionless unit. The offset of conductivity is manually adjusted and zoomed in for the purpose of a clear overview. For every DoE, the 
initiation of elution, pooling, and regeneration time points are synchronized with the corresponding data obtained from the Unicorn software. 
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standard pool analytics. In the 19 external validation DoE runs, the 
Raman model demonstrates its ability to differentiate the process buffer 
and proteins. Regarding target protein concentration, APG, BPG, and 
main peak of SEC and SCX, the model shows strong predictability with 
good accuracy. The model can also provide with a high resolution of 
every 28 s, enabling continuous chromatograms of target proteins and 
impurities in DSP development and manufacturing. However, it is 
important to note that the model’s performance can be significantly 
affected by fluctuations in pH condition, leading to inaccurate elution 
profile shapes of protein concentrations. The influence of pH ranges 
should be comprehensively included in the model calibration and 
training by using additional samples with varied pH or by an interlinked 
advanced model regression approach. Additionally, the model’s preci-
sion in predicting the HCP profile is not as precise as desired. Dedicated 
fractional samples would allow a deeper evaluation of the model’s 
precision for other CQAs. 

Off-line measurements and in-line predictions of the 19 pool sam-
ples, along with performance metrics for the 8 CQAs are displayed in 
relation to elution pH-value in Fig. 4. Towards protein concentration 
(Fig. 4(a)), the Raman model fits the observations well, with a slight 
deviation at high concentration observed, obtaining a Q2 of 0.956 and a 
MAPE of 3.67 %. Within an elution pH range of set point ± 0.3, the 
model has strong predictability on APG (Q2 = 0.814 with MAPE = 9.62 
%, in Fig. 4(d)), BPG (Q2 = 0.943 with MAPE = 6.41 %, in Fig. 4(e)), the 
main peak of SEC (Q2 = 0.950 with MAPE = 4.01 %, in Fig. 4(g)) and the 
main peak of SCX (Q2 = 0.960 with MAPE = 4.29 %, in Fig. 4(h)). 
Obviously, the aggregate predictions of the trained model are lower than 
the observations, as shown in Fig. 4(b). The DoE runs conducted with 
high elution pH at a set point +0.3 have smaller deviations, compared to 
other pH values. The prediction for aggregates has a large systematic 
offset (MAPE = 33.40 %), and only 56.7 % observations can be well 
explained by the model (Q2 = 0.567). In Fig. 4(c), almost all the 

Fig. 4. Comparison between off-line pool analytical measurements and in-line pool predictions derived from in-line Raman profiles for 8 critical quality attributes. 
The findings were categorized and displayed in a filled plus marker for pH 0.3 smaller than set point, circle marker for pH at set point, and a star marker for pH 0.3 
larger than set point. The calibration experiment was performed at pH set point. The corresponding metrics Q2 and MAPE in percent were displayed in the regression 
plots for (a) protein concentration, (b) high molecular weight (HMW) or aggregates, (c) low molecular weight (LMW) or fragments, (d) acid charge variants APG, (e) 
basic charge variants BPG, (f) host cell proteins (HCP), the main peak of (g) size variants SEC and (h) charge variants SCX. 
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predictions on fragments are higher than the observations (MAPE =
12.59 %). The trained Raman model overpredicted HCP concentration 
with a Q2 of 0.539 and a MAPE of 259.93 % (Fig. 4(f)). 

When comparing the concentration correlations in both Figs. 2 and 4, 
it appears to be surprising and contrary to the intuition that the model’s 
predictability for the 19 DoE runs shows smaller deviations with 
significantly lower MAPE values, with the exception of aggregates and 
HCP. However, the explanation is similarly obvious when considering 
different approaches of assessing model’s prediction accuracy in the 
internal and external validation were forced to be used. Within the in-
ternal validation dataset, as illustrated in Fig. 1, the absolute discrep-
ancy between model’s prediction and off-line measurement was 
evaluated fraction for fraction and finally summed up to the MAPE. As 
for the DoE runs, however, due to the nature of the non-fractionized 
analytics, over- and underpredictions within a single DoE run could 
compensate each other and be hidden in the final overall MAPE, as 
represented in Fig. 3. 

The ANOVA test shows that the elution pH significantly impacts the 
model’s accuracy in predicting aggregates, which aligns with the 
observed result that experiments with higher elution pH have smaller 
deviations (Fig. 4(b)). The pH influence can be attributed to the exper-
imental procedure, which involved different sample handling methods 
during the calibration experiment and the DoE runs. To minimize lab- 
intensive work, all DoE pool samples were frozen at − 70 ◦C after 
collection and thawed together for collective SEC and SCX analytics. In 
contrast, the 26 fractions for model calibration were measured imme-
diately after collection without freeze/thaw treatment. Protein A elution 
samples under low pH are known to be easily stressed by freeze/thaw 
treatment, forming more aggregates [25]. Consequently, after freeze/-
thaw stress, more aggregates were generated and measured under SEC 
analytics, resulting in large deviations between predictions and mea-
surements. Except for the pH influence on aggregate prediction, ANOVA 
test confirms that process parameters have no significant impact on the 
model’s accuracy in predictions, highlighting the model’s impressive 
interpolation ability. 

The deviation in fragment prediction originates from the analytical 
reference methods. Generally, SEC is considered a robust and accurate 
analytical technique for determination of protein aggregates, whereas 
underestimation of fragment population [26] in SEC can affect the ac-
curacy of quantifying fragments. One limitation of applying a 
Raman-based model is that the model calibration is based on the 
analytical reference methods, thus the model’s accuracy will never 
exceed the reference’s accuracy. Capillary electrophoresis with sodium 
dodecyl sulfate (CE-SDS) is a recommended analytical technique for 
quantifying the overall fragmentation population [26,27]. Thus, CE-SDS 
can be an alternative reference technique for the Raman model. 
Regarding the HCP overpredictions, it is challenging for the Raman 
model, because the HCP is a lumped CQA consisting of many 
sub-species. Different process conditions and experimental settings 
induce the elution of different subsets of HCP in different ratios, 
resulting in various combinations of Raman spectral features, presenting 
a major challenge for the data-driven machine learning model to cope 
with. Broader and more comprehensive subsets of HCP should be 
considered if a quantitative in-process prediction of HCP is prioritized. 

4. Conclusion 

In this study, we present a straightforward workflow for generating a 
PAT tool based on Raman spectroscopy. The underlying model, although 
trained on a single capture run, is capable of interpolating the profiles of 
target proteins and impurities in a commercially relevant robustness 
study with variations in process parameters like loading density, pH, and 
flow rate. This study signifies the first application of the Raman-based 
PAT tool for predicting in-line target proteins and seven impurities 
during Protein A chromatography elution phase at 28-second intervals, 
conducted in actual DSP scenarios. After validating the Raman-based 

KNN model with 19 different Protein A chromatography runs, the re-
sults confirm the model’s robust prediction ability for protein concen-
tration, fragments, charge variants and the main peak of SEC and SCX 
within an elution pH range of setpoint ± 0.3. These results demonstrate 
the feasibility of the Raman-based PAT tool to enhance process under-
standing and promote real-time process monitoring. However, the 
challenge of limited model predictability at the higher boundary of the 
pH conditions tested has been revealed. This should be addressed in 
future investigations. The PAT tool shows potential for quasi real-time 
decision-making and process optimization based on CQAs during pro-
cess development, thereby eliminating the need for labor-intensive 
pooling and sample handling. In addition, the Raman-based tool can 
also serve as a simplified analytical technique, reducing the analytical 
burden in applications like high-throughput process development, 
mechanistic model calibration, or candidate selection with high 
resolution. 
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