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Analysis of an interface crack with multiple electric
boundary conditions on its faces in a one-dimensional
hexagonal quasicrystal bimaterial

Abstract An interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric
effect under anti-plane shear and in-plane electric loadings is considered. Mixed boundary conditions at the
crack faces are studied. Using special representations of field variables via sectionally analytic vector-
functions, a homogeneous combined Dirichlet-Riemann boundary value problem and a Hilbert problem are
formulated. Exact analytical solutions of both these problems are obtained, and analytical expressions for the
phonon and phason stresses and the electric field as well as for the derivative jumps of the phonon and
phason displacements and also the electrical displacement jump along the bimaterial interface are derived.
The field intensity factors are determined as well. The dependencies of the mentioned values on the
magnitude and direction of the external electric loading and different ratios of electrically conductive and
electrically permeable crack face zone lengths are demonstrated in graph and table forms.
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1 Introduction

Quasicrystals (QCs), which were first discovered by Shechtman et al. [1], refer to a new class of functional
and structural materials. They possess both quasiperiodic long-range translational order and
noncrystallographic rotational symmetry, which are different from ordinary crystals and non-crystals. Due to
their unique atomic structure, QCs have desirable physical, chemical and mechanical properties, such as high
strength, low coef-ficient of friction, low adhesion, low electrical and thermal conductivity [2]. As a result of
these meritorious properties, quasicrystalline materials are used more and more in the aerospace, automobile
and nuclear fuel industries. On account of the engineering significance, the study of QCs has become an
important branch of solid-state physics, materials science and solid mechanics.

Because of the quasiperiodic lattice structure of QCs, concepts of a high-dimensional space are
introduced instead of the classical crystallographic theory. Two kinds of displacement fields are suggested to
describe the elastic properties of QCs [3]. One is a phonon displacement field, which describes the lattice
vibrations in QCs, and the other is a phason displacement field, which defines the quasiperiodic
rearrangement of atoms. Corre-sponding to the phonon and phason displacement fields, there are phonon and
phason stresses, respectively,
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and they are coupled to each other. Depending on in how many directions the atom arrangement is quasiperi-
odic, QCs can be categorized into three classes, i.e., one-, two- and three-dimensional ones [4]. Generalized
elasticity theory of QCs, material properties and convenient comprehensive reviews of the experimental and
theoretical investigations are given in [5—-10].

Many QCs possess piezoelectric effects. Due to this inherent electromechanical coupling, QCs are expected
to be exploited in the design of smart devices like transducers, sensors and actuators. Theoretical foundations
of the piezoelectricity of QCs were considered by Hu et al. [11] and Altay and Domeci [12]. Taking advantage
of the group representation theory, Li and Liu [13] and Rao et al. [14] investigated the physical properties
of piezoelectric QCs. Zhang et al. [15] presented the internal and interfacial Green’s functions of a one-
dimensional quasicrystalline bimaterial with piezoelectric effect. A set of three-dimensional general solutions
to static problems of one-dimensional hexagonal piezoelectric QCs was found by Li et al. [16] with use of two
displacement functions. Li et al. [17] obtained fundamental solutions within the framework of thermo-electro-
elasticity for an infinite/half-infinite space of one-dimensional hexagonal QCs. The general solution of the
governing equations of plane elasticity of one-dimensional orthorhombic piezoelectric QCs was expressed by
Zhang et al. [18] in terms of four potential functions. By utilizing the Stroh formalism and Green’s function,
Xu et al. [19] obtained the solutions of two-dimensional decagonal QCs with piezoelectric effect subjected to
multi-field loads. Guo and Pan [20] proposed and analyzed a three-phase cylinder model for composites of
piezoelectric QCs.

Experiments have shown that piezoelectric QCs are quite brittle and contain many micro-defects such as
cracks which reduce their strength. Therefore, it is important to understand and be able to analyze the fracture
characteristics of quasicrystalline structures so that reliable service life predictions of the pertinent devices
can be conducted. Nowadays, the crack problems in homogeneous piezoelectric QCs got due attention in the
literature. Fan et al. [21] obtained the fundamental solutions of three-dimensional cracks in one-dimensional
hexagonal piezoelectric QCs. A penny-shaped dielectric crack in the quasicrystalline plate of the same structure
was considered by Zhou and Li [22]. Using complex variable functions and operator techniques, Yu et al. [23]
presented solutions of plane problems in one-dimensional piezoelectric quasicrystals, and, as an application,
used the semi-inverse method to consider a mode-III stationary crack. Zhou and Li [24, 25] utilized the
integral equation approach to obtain the exact solution of two symmetrically distributed collinear mode-III
cracks parallel to and normal to the surface of a one-dimensional hexagonal piezoelectric quasicrystalline strip.
Under electrically impermeable, permeable and limited permeable conditions, Yang and Li [26, 27] and Yang
et al. [28] studied an anti-plane shear problem of a circular hole with a straight crack and an elliptical hole with
two collinear cracks in one-dimensional hexagonal piezoelectric QCs. The problem of a Yoffe-type moving
crack in one-dimensional hexagonal piezoelectric QCs was studied by Zhou and Li [29] under the action of
anti-plane mechanical loading and in-plane electric loading. Explicit expressions for the field components of a
moving non-constantly loaded anti-plane single crack embedded in an infinite region and within a half-space
of one-dimensional hexagonal piezoelectric QCs were determine by Tupholme [30, 31].

It is worth to note that all mentioned results were performed for cracks in homogeneous piezoelectric
QC:s. On the other hand, the problem of an interface crack between dissimilar piezoelectric QCs, in spite of its
importance, has not obtained due attention in the literature because of its complexity. In this respect, we can only
mention a very restricted number of papers. Zhao et al. [32] and Dang et al. [33] gave a theoretical and numerical
analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-
electro-elastic quasicrystal bimaterial. A crack between dissimilar one-dimensional hexagonal piezoelectric
QCs with electrically permeable and impermeable conditions at the crack faces under anti-plane shear and
in-plane electric loadings was studied by Hu et al. [34]. A plane problem for an electrically permeable interface
crack in one-dimensional piezoelectric QCs was analyzed analytically by Loboda et al. [35]. Recently, Hu et al.
[36] considered the interaction of collinear interface cracks between dissimilar one-dimensional hexagonal
QCs with piezoelectric effect under anti-plane shear and in-plane electric loadings.

Smart electronic devices are often constructed with use of the thin film electrodes or conducting layers
embedded at some part of the material interface. Such electrodes generally can be considered as metal foils,
which are more flexible than the surrounding piezoelectric quasicrystalline materials. In many cases, the men-
tioned loadings can induce an incompatible strain field, which may lead to delamination of electrodes and
appearance of electrically conducting interface cracks. Within purely piezoelectric media, in which no phason
fields are present, many analyses of electrically conducting interface cracks were undertaken [37-39]. How-
ever, electrically conducting interface cracks in bimaterial and multi-material components between dissimilar
piezoelectric QCs have not been sufficiently studied till now. Motivated by this, in the present paper, a partially
electroded interface crack between two dissimilar piezoelectric QCs subjected to external anti-plane shear and



in-plane electric loadings is considered. An exact analytical solution of the full-fields in the cracked bimaterial
is derived. It should be noted that the solution of the correspondent problem is important for practice, and it is
mathematically much more complicated than for a completely electrically conducting interface crack. Stresses
as well as displacements in the phonon and the phason fields and the electric fields are obtained in closed form.
The field intensity factors and the crack faces sliding displacement are also derived and some conclusions from
the obtained solution are discussed.

2 Basic equations for piezoelectric quasicrystals

In the absence of body forces and free electric charges, the basic equations for piezoelectric QCs presented,
for example, by Altay and Démeci [12] include
the constitutive equations

0ij = Cijki&ki + Rijkiwks — ekij Ex, Hij = Rppijer + Kijkior — diij Ex, Di = eijrejp+dijkwjr+AijEj, (1)

the equilibrium equations

0ij,j =0, Hijj =0, Di; =0 2)
and the gradient equations
1
gij = E(Mi,j +uji)wij=wij, Ei =—¢; 3)

where i, j, k, I = 1, 2, 3; 0y, &;; and u; are the components of the stresses, strains and displacements of
the phonon field, respectively; H;;, w;; and w; are the components of the stresses, strains and displacements
of the phason field, respectively; D;, E; and ¢ are the electric displacements components, the electric fields
components, and the electric potential, respectively; C;;i; and K;jy; are the elastic constants of the phonon
and phason fields, respectively; R;jy; are the phonon—phason coupling elastic constants; e;jx and d; i are the
piezoelectric constants of the phonon and phason fields, respectively, and A;; are the dielectric permittivities.
Repeated indices imply summation (from 1 to 3) and the subscript comma denotes partial derivative with
respect to the rectangular Cartesian coordinates x; (i = 1, 2, 3).

In this paper, we will focus our attention on one-dimensional hexagonal piezoelectric quasicrystal medium
of a point group 6 mm, which has the (x1, xz)-plane as its isotropic periodic plane and the positive x3-axis as
its quasiperiodic poling direction.

Let the piezoelectric QCs be subject to combined anti-plane mechanical and in-plane electric loadings with
reference to the (x1, xp)-plane. In this case, only the displacement u3 of the phonon field, the displacement
w3 of the phason field and the electric potential ¢, which are independent of x3, will not vanish, i.e.,

uy =uy =0, uz =u3z(xy, x2), wy =wr =0, w3 =w3(xg, x2), ¢ =1, x2),

and the basic Egs. (1-3) for the anti-plane problem of one-dimensional hexagonal piezoelectric QCs can be
simplified as [23]

03m = 2C4483m + R3w3;m — e15Ep, H3pm = 2R383, + Kows;m — disEp,

Dy = 2e1583m + d15@3m + A11Em, “4)
O3m,m = 0, H3m,m =0, Dm,m =0, o)
1

&3m = 5”3,’”7 W3 = W3ms Em = —@m, m=1,2. ©)

Substituting the gradient Egs. (6) into the constitutive Egs. (4), then into the equilibrium Egs. (5), we get
that the functions u3, w3 and ¢ satisfy the equations

Vs =0, Vws=0, Vi¢p=0 (V?=23>/oxi+d*/dx3),



i.e., they are harmonic. Therefore, according to the theory of complex variable function, u3, w3 and ¢ can be
represented as the real parts of three arbitrary analytic functions f;(z) (i = 1, 2, 3) of the complex variable
Z = X| + ixp, such that

u3 = 2Re f1(z), w3z = 2Re f2(z), ¢ = 2Re f3(2), 7

where ‘Re’ denotes the real part of an analytic function, and i = +/—1.
Introducing further the generalized displacement vector-function

u = [uz, ws, ¢l’,
the relations (7) can be written in the form
u = Af(z) + Af(2), (8)

where £(z) = [ f1(2), f2(2), f3(2)]", Ais a3 x 3 unit matrix.
From Egs. (4), (6), and (8), the generalized stresses vector-function

t = [o32, Hy, Dal"
can also be expressed in the analytic functions form as

t = Bf'(z) + Bf (2), )

where f/(z) = [fl’(z), £(2), fé(z)]T, and B is 3 x 3 matrix defined as

Ca4 R3 ey5
B=i| R3 K> dis
e1s dis —A11

Here and afterward, the superscript ‘7’ denotes transposition of a matrix, the overbar stands for the complex
conjugate and a prime ( ") implies the derivative with respect to the associated arguments.

The representations (8) and (9) are convenient for the fracture analysis based on the extended Stroh
formalism, but for the following analysis connected with an electrically conducting interface crack it is useful
to introduce the new vector-functions

B |:8u3 ows

T
=|—, —, Dy| , p=1los, Hx, E1]".
dx1  0xq

Using the relations (8) and (9), these vector-functions can be represented in the form
v =Mf'(z) + Mf'(2) (10)
p = Nf'(z) + Nf'(3) (11)

where the matrices M and N are defined by means of the reconstruction of the matrices A and B in the form

1 0 O iCyq4iR3 ies
M=]0 1 0 , N=|iR; iK;yidis
ieis idis —ii1 0 0 -1

‘We now consider an analysis of a bimaterial compound, which consists of two piezoelectric quasicrystalline
half-spaces x» > 0 and x» < 0 of different material properties. Performing the calculations presented in
Appendix A, one arrives at the representations

(v(x1) = Whx) = W (xp), (12)

p(x1,0) = GW*(x1) — GW ™ (x1), (13)



where the 3 x 3 matrix G is defined in Appendix A and the arbitrary vector-function W(z) =
[W1(2), Wa(2), W3(z)]T is analytic in the whole complex plane, including the bonded parts of the bimate-
rial interface. Here and afterward the brackets (...) denote the jump of the corresponding function over the
bimaterial interface.

In this paper, we consider one-dimensional hexagonal piezoelectric QCs of a point group 6 mm poled in
the x3-direction. For this case, the matrix G has the form

ig11ig12 g13
G=|igiigngs |. (14)
831 832 1833

where all gx; (k, [ = 1, 2, 3) are real.
Consider an arbitrary vector h = [h{, k>, h3] and its product hp(x{, 0), which, using the relation (13), can
be written as

hp(x1,0) = hGW*(x) — h(_}Wf(xl). (15)
Furthermore, we assume that
hG = —yhG

where y is a constant to be determined. Based on this condition, we arrive at an eigenvalues and eigenvectors
problem for determining the constant y and the vector A:

(yGT + (;T)hT —0. (16)

The condition of existence of a nontrivial solution of the system (16) provides the equation for determining
the eigenvalues:

det(yGT + (_}T> =0.

The roots of this equation are

148 1

= s = —, :1,
V1 1—3 V2 ” V3

where

5 — 831(812823 — 822813) + 832(£21813 — £11823)
233(811822 — &12821) '

The numerical analysis shows that for the considered kind of piezoelectric QCs the inequality 8> > 0 holds
true.

Knowing the eigenvalues y; (j = 1, 2, 3) of the system (16), we can find the corresponding eigenvectors
h; = [hjl, hj2, ihj3], where the constants 4 1, h ;3 are real and have the forms

23
hi1 = Athi2, hat = Avhoo, h31 = —§T3h32, h13 = —A28h12, ha3 = Axhan, h33 =0,

A1 = (820831 — 821832)/ A, Az = (g11822 — g12821)/ A, A = g11832 — 812831

while £ > can be replaced by any real numbers.
Introducing the new functions

Fi(z) =h;GW(z) = is;i W1(2) +isjpWa(z) + s;3W3(2)(j = 1,2,3), (17)
having the same properties as W(z), we can rewrite the relation (15) as
h;p(x1,0) = F(x1) + 7 F; (x1), (18)

where



Fig. 1 An interface crack with mixed electrical boundary conditions between two dissimilar one-dimensional hexagonal piezo-
electric QCs

sjit =hjig11+hjoga1 +hj3gst, sjp="hjigra+hjgn+hjzgsn, sj3="h;ig13+h;283 —hj3g33.
From the relation (18), assuming £ ;> = 1, we get the expression
hj1o32(x1,0) + Hz (x1,0) + ihj3 E1(x1,0) = F} (x) + y; F; (x))(j = 1,2,3) (19)

for the combination of the phonon and phason stresses and the electric field at the bimaterial interface.
Using the relations (12) and (17), we can write the expression for the combination of the derivative jumps
of the phonon and phason displacements and the electrical displacement jump over the bimaterial interface as

isji(us(x) +isja(wixn)) +sj3(Da(x1)) = F}L(m) —F () =1,2,3). (20)

By means of the representations (19) and (20), the problems of linear relationship for one-dimensional
piezoelectric quasicrystalline compounds with mixed boundary conditions at the bimaterial interfaces can be
formulated and successfully solved.

3 Formulation of the problem

Consider a crack by < x; < by located at the interface x, = 0 between two dissimilar one-dimensional
hexagonal piezoelectric quasicrystalline half-spaces x > 0 and x» < 0 (Fig. 1). The upper and lower
components of this bimaterial compound are piezoelectric QCs of a point group 6 mm, which have a poling
direction parallel to the x3-axis and material properties Cgﬁ), k® R(k) (ll;), a’f?, nd A(lkl) (k = 1 stands for
the upper half-space and k = 2 for the lower one).

We assume, that a part L, = (aj, az) of the crack faces is electrically conducting and the remaining part
Ly = (b1, a1)U (a2, by) is electrically permeable. Such situation can take place if the electrically conducting
interface crack (a;, ap) starts to propagate, i.e., increase its length to a certain value (b1, by). It is assumed
also that there is no traction and free charge on the crack surface and the half-spaces are mechanically and
electrically bonded along the bimaterial interface outside the crack. Thus, the interface crack problem must be
solved under the following mixed boundary conditions in the plane x; = 0:

oy =03 =0, HY) = HY) =0, E{" = EY =0, x, € La; @1
oV =0 =0, HY = H® =0, (D,) =0, (E) =0, x| € Ly; (22)
(032) = 0, (Hz2) =0, (u3) =0, (w3) =0, (Dy) =0, (E1) =0, x1 ¢ (b, b2). 23)

The half-spaces are subjected to uniformly distributed shear phonon 053 and phason Hsy stresses as well as
an electric field E7* at infinity, which do not depend on the x3 coordinate. This loading results in an anti-plane

mechanical and in-plane electric state for which the relations (19) and (20) are valid.



Due to the method by which the relations (19) and (20) are constructed, they automatically satisfy the
boundary conditions (23) at the bonded parts of the bimaterial interface and, accordingly, satisfy the conditions
(032) = 0, (H32) = 0, (E1) = 0 at the crack faces. Satisfying the remaining boundary conditions (21) and
(22) by means of (19), (20), we arrive at the equations

Fi(x)+yjF; (x1) =0, x1 € La; (24)
Re[F;(xl) + y,ij(xl)] —0, Re[F;(xl) — F]f(xl)] —0, x; € Ly (25)

The simultaneous satisfaction of both equalities (25) is possible only if the equation
ReFji(xl) =0, x1 €Ly (26)

is valid.
Taking into account that the functions F;(z) are analytic in the whole complex plane cut along L, U Lj,
and that for x| ¢ (b1, by) the relationships Fj?“(xl) =F j— (x1) = F;(x1) are valid, it follows from (19)

(1+yj)Fj(x1) = hjioxn(x, 0)+ Hzp (x1, 0) +ihj3E1(x;, 0) for x; — oo.

Using that p(x;, 0) = [o5y, HSS, E‘fo]T for x; — 00, one has from the last equation

hj10'39§+H3o§+ihj3E?O
Fj(Z)|Z_)OO = Ty ) (27)

4 Solution of the problem

Using the fact that 733 = 0, 533 = 0 and y3 = 1, the relations (24) and (26) lead to a homogeneous combined
Dirichlet—-Riemann problem

Or(x1) + Y Pyp(x1) = 0, x1 € Lgs (28)
Im®E(x)) =0, x1 € Ly, (29)

for the function ®¢(z) = —i Fy(z), where k = 1, 2 and to the Hilbert problem
F{(x1) + F5 (x1) = 0, x1 € (b1, b2), (30)

for the function F3(z).
On base of (27) one can derive the conditions at infinity for the functions ®;(z) and F3(z)

—ihk10302° — iH3°2° + hk3E1°°

P00 = TN : 31)
h310%5 + HY
F3(2)|: o0 = %. (32)

Considering that y» = 1 / ¥1, the solution of the homogeneous combined Dirichlet—-Riemann problem in
question for k = 2 can be obtained from the associated solution for k = 1. Therefore, our attention will now
be focused only on the case k = 1. The solution of such a problem concerning a rigid stamp was found by
Nakhmein and Nuller [40] and, concerning an interface crack, it was developed by Govorukha et al. [41].
Using these results, an exact solution of the problem (28), (29), satisfying the condition at infinity (31) as well
as the condition of the phonon and phason displacement uniqueness and the absence of an electric charge in
the crack region, is found and presented in Appendix B.

The solution of the Hilbert problem (30) can be obtained by using the results of Muskhelishvili [42] as

Coz + Cy
Ve=bNiz—b)

and after defining the arbitrary coefficients Cp and C; from the conditions (32) at infinity and the condition

F3(2) =



by
/ [F5(x1) — F5 (x1)]dx; =0,
by

it takes the form

_h3103°20+H3°2°( _b1+b2) 1
F3(2) = > 2 z—bN(z—by) .

Based on the obtained solutions (33), (B2) and the formulas (19), (20), the following equations for the field
quantities at the different parts of the bimaterial interface are found.

for x1 > by:
L+ |: O(x1) cos p(x1) P(x1)sin ¢(x1) }
h O+ H ,0) = — s 34
om0, 00+ Bz (0. 00 = = | e ot B0 | Y —antu — ) G4
_ _ b1+ by h3io55 + H3y
h31032(x1,0) + H33(x1,0) = <X1 > )\/()q = 5o (34b)
L+n [ P(x1)cos ¢(xy) Q(x1)sin ¢(x1) ]
E ,0)= — s 35
11, 0) hiz(xp —d) L V/(x1 —anxi —az)  /(x1 —b1)(x1 — ba) 53
for X1 € (al, az):
/ / L+ Q(x1)cos *(x1) P(x1)sin ¢*(x1)
= s 36
o) + sizfwen) Jrix1 —d) |:\/(x1 —bi)(by — x1) ¥ V&x1r —ap(az —X1)] (o)
, , _ _ b1+ by h3i055 + Hyy
s31(us(xn) + s32(wi(x1)) = (xl 5 )«/(Jq =000 ) (36b)
L+ [ P(x1)cos ¢*(x1) Q(x1) sin ¢*(x1) ]
D = — s 37
(D2(x) s13/V1(x1 —d) L/ (x1 —ar)(az —x1)  /(x1 — b1)(b2 — x1) 67
and for x| € (ap, by):
, L cosiwhoGey | PGsin[gGen]| QG cosh|doxn)|
sufusCen) +sufwst) = =4 L(xl RN CEr] B
, , _ _ b1+ by h31o3y + H3Y
s31(u3(x1)) + s32(wi(x)) = (xl 5 )J(xl =000 ) (38b)
2. /71 cos[mha(x1)] P(xl)cosh[qz(xl) — 7T81] O(x1) sinh[qs(xl) — 7181]
Ei(x1,0) = + s (39)
hi3(x1 — d) V(x1 —a)(x —a) V(x1 = b)) (b2 — x1)
where

a

aj by
KN ot dr . / hy(t)dt . / ho(t)dt
¢ (x1) = —Z"(x1) 81/—Z+(t)(t—x1)+l Z+(t)(t—x1)+l Zou— |

aj by az

az

ai by
TN i dr . / hi(t)dt ) / hay(1)dt
d(x1) = —iZ"(x1) 81/—Z+(t)(t—x1) +i Z+(t)(t—x1)+l T

aj by a

Relations (36a), (36b) and (38a), (38b) are the systems of two linear algebraic equations with respect
to (ug(xl)) and <wg(x1)), from which these functions can be easily derived. Then, the crack faces sliding
displacements can be found as



X1 X1

(u3(x1)) =/(u§(t))dt, (w3(x))) = /(wé(t))dt-

by by

It can be clearly seen that the field components of phonon stress, phason stress, electric field and electric
displacement possess an inverse square root type singularity at the points a; and by. Thus, we introduce the
field intensity factors for the phonon and phason stresses

K(I;Z = lim /27 (x; — by)ozp(xy, 0), KZZ = lim 0\/271()61 — by)H3o(x1, 0),

x1—>b2+0 x1—>b2+

and the electric field intensity factors

K§ = lim /27(x - a)Ei(x, 0, K2 = lim 27(by— x1)Ei(x1, 0).
—>by—0

X1—>az+ X1

Applying the formulas of Muskhelisvili [43] for Cauchy type integrals, which are expressed via the functions
@(x1), *(x1) and @(x1) in the vicinity of singular points a; and b,, one arrives at

d(b2) =0, ¢*(@) =7, Pplar) = mey.

Solving the system (34a), (34b) and considering the obtained expressions in the vicinity of the point by,
we arrive at the formulas for phonon and phason stress intensity factors

Ky = _W[@—L;z—b1>9(b2)+—hm§§2+ Hﬁ)}, (40)
Considering the expression (39) for x; — a3 + 0 and for x; — by — 0 leads to
Ko _ —2J2ry1  P(a) 42)

E " his(aa —d) Jlas —ar)’
by | 2m (1—y1)0(b)
Ke = by—by hizby—d) - @

k,= lim Omwg(xl))

x1—>by—

Furthermore, we introduce

and it is clear that the crack will be closed smoothly at the point b if
k, = 0.
Due to the formulas (38a) and (38b), the last equation can be written in the form
45320(b2) + s12(by — d)(by — by)(h310%5 + Hss) = 0. (44)

This equation gives a possibility to define the values of the external loading parameters for which the crack
closes smoothly.



Table 1 Material properties of the one-dimensional hexagonal piezoelectric QCs [15]

Upper material Lower material
C44(10°Nm2) 50 70.19
K»(10°Nm~2) 0.3 24
R3(10°Nm~2) 1.2 0.8846
e15(Cm~2) —0.138 11.6
di5(Cm=2) —0.16 1.16
A1(107°C2N~! m~2) 0.0826 5
<u3(x1> x10*
bz _bl
n - - - E’'=—2MV/m
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Fig. 2 The variation of the sliding displacement jump (#3(x;)) of the normalized phonon crack faces along the crack region for
different values of E{°

5 Numerical results and discussion

In this section, the selected numerical results are presented to analyze the fracture behavior of a partially
electroded crack between two dissimilar one-dimensional hexagonal piezoelectric QCs. The main attention
of the following numerical analysis will be devoted to the influence of the external electrical loading on the
mechanical and electrical intensity factors as well as the variations of the field quantities at the bimaterial
interface. The material properties of the QCs are listed in Table 1.

For the sake of clarity of the numerical illustrations it is assumed that the center of the interval (by, b>)
coincides with the origin. The positions of the points a; and ap, determining the length of the electrically
permeable zones, are defined by the parameters ¥y = (a; — b1)/(ba — by) and ¥, = (by — a2)/(by — by),
respectively. Without loss of generality, the applied uniform phonon and phason stresses at far field are taken
as o3y = 1 MPa, H3Y =

The variation of the normalized crack faces sliding displacement jump for the phonon and phason fields,
i.e., the jump functions (#3(x1)) and (w3(x1)) along the crack region (b, b), for different electric field loadings
and ¥, = ¥, = 0.4 are calculated and presented in Figs. 2 and 3, respectively. It is clearly seen from these
results that for E{° = 0 the jump of the functions (#3(x1)) and (w3(x1)) have symmetrical behavior. However,
the deviation of E{° from zero leads to a cardinal distortion of the curves and their fast variation at the points a;
and a, dividing the electrically conducting and electrically permeable crack face regions. Moreover, it shows
that the maximum of the curves increases as the electric field loading increases. It is worth to be mentioned
also that the change of the sign of electric field loading E7° will lead to mirror mapping of the obtained graphs
with respect to the x»-axis.

The variation of (#3(x1)) in the left neighboring area of the point b, is shown in Fig. 4. Numerical
results are obtained for the same geometrical characteristics as before and various values of E{°. The value
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Fig. 3 The variation of the sliding displacement jump (w3(x)) of the normalized phason crack faces along the crack region for
different values of E{°
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Fig. 4 The variation of the sliding displacement jump (u#3(x)) of the normalized phonon crack faces in the left neighboring area
of the crack tip b, for different values of E{°

ET® = —10.6157 MV/m in this figure corresponds to the external electrical loading for which k, = 0. For this,
Eq. (44) has been solved. It can be seen that for above-mentioned electrical loading the crack closes smoothly
at its tip by, while for the two other cases a singularity is found at this point and the crack closes abruptly.

Figure 5 displays the effect of the length of the electrically permeable zones on the crack faces sliding
displacement jump for the phonon field under the different parameter 1, where ¥, = 0.4, E{° = —2 MV/m.
It can be seen that the phonon crack faces sliding displacement jump (u3(x1)) varies essentially with respect
to the geometrical parameters ¥; and . In addition, it follows from the presented results that the curves
for the case of two electrically permeable crack face zones tend to the curves of an interface crack with one
electrically permeable crack face zone while ¢ tends to zero. Moreover, with further approach of a; toward



Fig. 5 The variation of the sliding displacement jump (u3(x1)) of the normalized phonon crack faces along the crack region for
different values of
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Fig. 6 Variation of the normalized phonon stress 035(x1, 0) along the crack continuation x| > b, for different values of E{°

b1, the corresponding curves completely coincide and the present results can be reduced to the degenerated
case of the mixed electrical conditions at crack faces, which was considered by Loboda et al. [44].

Figure 6 shows the variations of the phonon stress o33(x1, 0) at the crack continuation x| > b; for different
values of electric loading and ¢ = ¥, = 0.4. It is clearly observed from this figure that the phonon stress
o32(x1, 0) is singular near the crack tip and tends to its nominal value for all x; being much larger than the
crack length. The value E{° = —8.71993 MV/m in this figure corresponds to the external electrical loading
for which ng =0.

Figures 7 and 8 show the coupling effect between the phonon and phason fields. Numerical results are

obtained for the same geometrical characteristics as before and E{® = —2 MV/m. Solid lines correspond to
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Fig. 7 The variation of the sliding displacement jump (w3(x1)) of the normalized phason crack faces along the crack region for
different coupling constants
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Fig. 8 Variation of the normalized phason stress H3, (x, 0) along the crack continuation x; > b; for different coupling constants

the complete analysis of the problem in which the phonon—phason coupling effect is taken into account, and
dashed lines show the results obtained by using the assumption of omitted coupling effect between phonon and
phason fields, i.e., Rz = 0. It follows from the numerical analysis that the coupling effect has strong influence
on the phason displacement and stress. However, its influence on the phonon displacement and stress is rather
weak. This phenomenon can be explained by consideration of only phonon loading in our problem.

The values of the mechanical and electrical intensity factors for ¢y = % = 0.4 and different values of
external electric loading E{° are presented in Table 2. It can be seen that the dependence of all intensity factors
on the external electric loading is rather essential. Moreover, due to certain values of the electric loading, each
intensity factor can be made equal to zero. For example, the values E° = 2190.1 V/m and E{° = —7.07318

MV/m in Table 2 correspond to the external electrical loading for which K Z? =0and K ZP = 0, respectively.
This means that tuning of E7° to the above mentioned values lead to removing the singularity in the electric
field at the points a; and b, respectively, and decreases the danger of the crack development.



Table 2 The values of the intensity factors for different values of ET°

E®[V/m] K2 [Nm/2) K2 [N/mY/ 2 K2 [V/m!/2] K2[vim'/2) k, [m"/ 2]

—1x 108 —1.855 x 10° —1.173 x 10° —7.915 x 10° 5.015 x 10* 1.969 x 1073
—1.06157 x 107 —3.853 x 10* —1.245 x 10* —8.404 x 10° 1.911 x 10° ~ 0

—1 x 107 —2.602 x 10* —1.173 x 10* —7.916 x 10° 1.580 x 103 —1.356 x 1077
—8.71993 x 10° ~0 —1.023 x 10* —6.903 x 107 8.887 x 102 —4.176 x 1077
—7.07318 x 10° 3.347 x 104 —8.294 x 103 —5.600 x 10° ~0 —7.803 x 1077
—1x 100 1.569 x 10° —1.173 x 103 —7.932 x 104 —3.278 x 103 —2.118 x 107°
-1 x 10* 1.770 x 10° —11.86 —9.648 x 102 —3.812 x 10° —2.336 x 1076
-1 x 102 1.772 x 10° —0.247 —1.813 x 102 —3.817 x 10° —2.338 x 107
0 1.772 x 10° —0.130 —1.733 x 102 —3.817 x 103 —2.338 x 107°
1.10621 x 102 1.773 x 10° ~0 —1.646 x 102 —3.817 x 10° —2.338 x 1076
2.1901 x 103 1.773 x 10° 2438 ~0 —3.818 x 107 —2.339 x 107°
1 x 10* 1.775 x 10° 11.596 6.181 x 102 —3.823 x 103 —2.341 x 107°

6 Conclusion

An interface crack between two dissimilar one-dimensional hexagonal piezoelectric quasicrystalline half-
spaces under the action of anti-plane mechanical and in-plane electric loadings is considered. Mixed electric
conditions at the crack faces are studied. It is assumed that the atom arrangement is periodic in the (x1, x2)-
plane and quasiperiodic in the direction normal to this plane, while the positive x3-axis represents also the
direction of polarization.

Due to a special transformation of the matrix—vector representations (10), (11) of the field variables via
analytical functions, the new representations (19), (20) convenient for the solution of the considered prob-
lem are found. On the basis of these representations, the problem is reduced to the homogeneous combined
Dirichlet-Riemann problem (28), (29) and to the Hilbert problem (30) with the conditions (31), (32) at infinity,
respectively. An exact analytical solution of these problems has been found, and analytical expressions for
the phonon and phason stresses and the electric field as well as for the derivative jumps of the phonon and
phason displacements and the electrical displacement jump along the bimaterial interface have been derived. It
is shown that the obtained solution has a conventional square root singularity at the singular points. Taking this
type of singularity into account, the mechanical and electrical intensity factors related to the singular points
a> and b have been determined.

The correctness of the obtained solution is confirmed by its comparison with the well-known solution
for the degenerated case of the mixed electrical conditions at crack faces. The variations of the phonon and
phason crack faces sliding displacements and the phonon stress along the corresponding parts of the material
interface are illustrated in a graphical form for different values of the external electric loading. Furthermore,
the mechanical and electrical intensity factors are presented in Table 2. It follows from the obtained results
that the mechanical and electrical intensity factors essentially depend on the magnitude and direction of the
applied external electric field and, moreover, each intensity factors can be set to zero by appropriate choosing
of the mentioned field. The same can be found concerning the smoothing of the crack tip closure. This means
that the crack propagation can either be enhanced or retarded depending on the electric loadings. Besides,
the maximum of the phonon and phason crack faces sliding displacements increases as the external electric
field increases. It is worth to be mentioned finally that the importance of the obtained analytical solution is
enhanced by the possibility of using the derived equations and results for the prediction of the numerical
solutions behavior at singular points for similar problems in finite-sized domains.
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Appendix A

Consider a bimaterial compound, which consists of two piezoelectric quasicrystalline half-spaces x; > 0 and
x2 < 0 of different material properties. We assume, that the stresses of the phonon and phason fields, and the
tangential component of the electric field are continuous across the whole bimaterial interface. This means
that the boundary conditions in the plane xp = 0 are

(032(x1)) =0, (H3(x1)) =0, (Ei(x1) =0, forx; € (—00,00). (A1)

To construct the representations, which satisfy the interface conditions, we use Egs. (10) and (11) for the
upper (m = 1) and lower (m = 2) half-spaces, which can be written in the form

(m)

= M™FM () 1+ M f(’") (A2)

/(m)

pi™ = N gy N™ f (A3)
where the arbitrary vector-functions f(1)(z) and £*)(z) are analytic in the upper and the lower half-spaces,
respectively.

According to the interface conditions (A1) and the relations (A3), we get

@ 7@ _

NOFD e +i0) = N7 f N® @ —i0) = NV F'D(x; — i0) for x; € (—o0, 00) (A4)

The left-hand side of equation (A4) is the boundary value of a vector-function being analytic in the domain
x3 > 0, and the right-hand side of this equation is the boundary value of another vector-function being analytic
in the domain x, < 0. Hence, both vector-functions can be analytically continued into the whole complex
plane, i.e., they are equal to an arbitrary vector-function, defined as

NOFD(z) — NOFO(z) for xp > 0

NP (z) — NOFD(z) forx, <0 (A5)

J(z) = {

which is analytic in the whole complex plane, including points along all bimaterial interface.

Taking into account that the phonon and phason stresses and the electric field are bonded at infinity, it
follows from equation (A3) that J(co) = J°°, where J°° is a constant vector. But according to Liouville’s
theorem, this means that J(z) = J° holds true in the whole complex plane. Thus from equation (A5) it follows

F(g) = ( (2)> NOFD () — ( (2)) T for xa > 0,

~ /(1)

f/(2)(z) — (N(2)) N'f (N(z))_l.]oo for x, < 0. (A6)

Since f'(V(z) and f'®)(z) are arbitrary functions, one can set J*® = [0 00 ]T, and equations (A6) get the
form

FO() = (N(2)>_1N(1)f’(1)(z) for x; > 0,
£(z) = (N?) "N PO ) for x < 0. (A7)
Consider further the expressions
(w(x1)) = v (1 +i0) — vP(x; — i0)

for the derivatives of the jumps of phonon and phason displacements and electrical displacement jump over
the bimaterial interface, which, in view of (A2) and (A7), takes the form

(v(x1)) = DED(xy) + DFD,

- (2 -2\ —1
where D = M(D — M( )<N( )> N,
Furthermore, we assume that the part L of the bimaterial interface is mechanically and electrically bounded,
i.e., the boundary conditions at this part of the bimaterial interface are or



(v(x1)) =0forx; € L
D =MD (x) = —DFV(x;) for x; € L. (A8)

Continuity of the phonon and phason displacements and the electrical displacement across the bonded
bimaterial interface, as inferred from (A8), implies that an arbitrary vector-function defined as

Df'D(z) for xo > 0
W = { —Df'D(z) for xo < 0

is analytic in the whole complex plane cut along (—oo, co)\L. Then, the field variables at the bimaterial
interface can be expressed via the boundary values of the function W(z) in such a way that

(v(x1) = WH(x1) — W™ (xy), (A9)
P(x1,0) = GW'(x)) = GW (x1), (A10)
where G = N(V(D)~! and the superscripts ¢ + * and ‘—* indicate the limit values at the bimaterial interface

taken from the upper and the lower half-spaces, respectively.
Equations (A9) and (A10) can be used for the analysis of a bimaterial compound, which consists of
dissimilar one-dimensional hexagonal piezoelectric QCs with cracks at their bimaterial interface.

Appendix B

The general solution of the homogeneous combined Dirichlet—Riemann boundary value problem (28) and (29)
can be presented in the form [41]

®1(2) = XQ)[P(2) +i¥ () 0R)], (BI)
where

et (z—a1)(z—a)

X = ’ Y - - s

O = oVt P e—bte -t

ap a by
_ dr . hi(t)dt . hy(t)dt B In y;
vR =zl / Zi—o / Zvii -2 / Ze—o | T

aj b1 az

2() = G —anG — a)G — b — b2, hi(xa) =n*, ha(xr) = { o e,

n* is an integer, and d € (ap, by) is an unknown pole of the function X(z).
The function ¢(z) can be represented via elliptic integrals as

—2 { (z — a2)(z — bn)
&1

P(z) = p1(2)+

(b2 — ay)(az — by) (z—a1)z—by1)

Goae—a) o fe-boe-by

- bz —b)"? C—anz—a)’’
where

z—br  , @—a

$1(z2) = (a1 —bDI(p1, q) + (z —a)K(q), p1 = p] » P1 = ,
7z—ay ax — by
Z—by , bi—a
$2(z) = (b1 — b)M(p2, )+ (z —b)K(r), pp=pr———, p; = ,
7—b; by —ay
Z—a . bh-—a
¢3(Z)=(a2_al)n(uv P3s r)+(Z_a2)F([,L, r)’ P3 = P3 > P3 =

—a _bz—a]’



—a)(ba—b by— —b . br—ar)d—
q = JEERE, ¢ = \[PEEETE, u= arcsin [EEEEL Here P, ) and TG, p, ) are
incomplete elliptic integrals of the first and third kind, while K (r) and I1(p, r) are complete elliptic integrals
of the first and third kind.

The expansion of the function ¢(z) at infinity has the form

P@);mo0 = A1z + (Ag +E1AD) + (A3 +E1 A2 +£AD + 0(277),

where
a ap by .
e [P I ode L P Y ha(nde
Aj =g + i +i | —————, j=1,2,3.
Z(t) Z*(1) Z*(1)
aj b1 az

The integer n* and the pole d can be found from the condition of finite values at infinity of the function
¢(z) as

Ko _ o« __, K@

€1
K(r) K(r)

_81

4 = Albr=a)sn’(@. r)—ay(by—ay)
(ba—az)sn®(w, r)—(by—a1)
where sn(w, r) is the Jacobi elliptic function and w = €1 K(q) + n* K (r).

The polynomials P(z) and Q(z), appearing in the solution (B1), have the form

P(z) = Co+ C1z+ Caz%, Q(z) = Do + D1z + Daz?,
where the coefficients

2 2
Co=—C (d = é) —dC, (d - —X*> — X (D +2dDy),
X ) x

1 X 2x
Dy = —(C1+2dCy) — Di(d+ = ) —dDy|d + == ),
X X X

Ci=a1Dy —viCy,

Dy = -1 +n)Dy —a1Cs,

hizE> —h110% — HS
= ——L cosap+ ———22—32 §inqy,
1+]/1 1+]/1
—h“UOO—HOO h13EOO .
DQZMCOSO{()— L sin o
1+)/1 l+)/1

are determined by the condition at infinity (31) for the function ®;(z) as well as the condition of the phonon
and phason displacement uniqueness and the absence of an electric charge in the crack region. In the above
formulas

‘= (d —a))d — a)
(d —bi)by —d)’
L[(Zd —ay —a)(d — by)(by —d)+(2d — by — by)(d — ay)(d — az)}

*

T 2y (d —b1)2(by — d)?
1 ap+ap
n = —E(al +ay — by —by), vi = T+d’ ap = Az, o = Az +§1As.

Further, taking into account the expression F|(z) = i®(z), we get

Fi(z) = iX(2)[P(2) +iY (2) Q(2)]. (B2)
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