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Purpose: With the increased use of focal radiation dose escalation for primary prostate cancer (PCa),
accurate delineation of gross tumor volume (GTV) in prostate-specific membrane antigen PET (PSMA-
PET) becomes crucial. Manual approaches are time-consuming and observer dependent. The purpose
of this study was to create a deep learning model for the accurate delineation of the intraprostatic
GTV in PSMA-PET.
Methods: A 3D U-Net was trained on 128 different 18F-PSMA-1007 PET images from three different insti-
tutions. Testing was done on 52 patients including one independent internal cohort (Freiburg: n = 19) and
three independent external cohorts (Dresden: n = 14 18F-PSMA-1007, Boston: Massachusetts General
Hospital (MGH): n = 9 18F-DCFPyL-PSMA and Dana-Farber Cancer Institute (DFCI): n = 10 68Ga-PSMA-
11). Expert contours were generated in consensus using a validated technique. CNN predictions were
compared to expert contours using Dice similarity coefficient (DSC). Co-registered whole-mount histol-
ogy was used for the internal testing cohort to assess sensitivity/specificity.
Results: Median DSCs were Freiburg: 0.82 (IQR: 0.73–0.88), Dresden: 0.71 (IQR: 0.53–0.75), MGH: 0.80
(IQR: 0.64–0.83) and DFCI: 0.80 (IQR: 0.67–0.84), respectively. Median sensitivity for CNN and expert
contours were 0.88 (IQR: 0.68–0.97) and 0.85 (IQR: 0.75–0.88) (p = 0.40), respectively. GTV volumes
did not differ significantly (p > 0.1 for all comparisons). Median specificity of 0.83 (IQR: 0.57–0.97) and
0.88 (IQR: 0.69–0.98) were observed for CNN and expert contours (p = 0.014), respectively. CNN predic-
tion took 3.81 seconds on average per patient.
Conclusion: The CNN was trained and tested on internal and external datasets as well as histopathology
reference, achieving a fast GTV segmentation for three PSMA-PET tracers with high diagnostic accuracy
comparable to manual experts.
� 2023 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 188 (2023) 109774 This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Prostate Cancer (PCa) is one of the most frequently diagnosed
malignancies in men worldwide [1]. External-beam radiotherapy
is a crucial pillar in the treatment of localized PCa. For this modal-
ity, an accurate GTV delineation is required to allow novel treat-
ment approaches like focal dose escalation with intensity-
modulated radiotherapy, brachytherapy or stereotactic body radio-
therapy [2,3].
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Deep learning based automated delineation of the intraprostatic gross tumour volume in PSMA-PET for patients with primary prostate cancer
The emergence of prostate-specific membrane antigen positron
emission tomography (PSMA-PET) has revolutionized PCa staging
and management. Not only does PSMA-PET detect visceral and
bone metastases but has also demonstrated significant potential
for characterizing intraprostatic tumor lesions. Some studies even
suggest higher sensitivities and comparable specificity of PSMA-
PET for detecting intraprostatic lesions compared to prostate mul-
tiparametric magnetic resonance imaging (mpMRI) [4,5].

Although new manual delineation techniques on 18F-PSMA-
1007-PET have been proposed and validated for GTV segmentation
[4], these approaches are time-consuming, require significant clin-
ical expertise, and are observer-dependent. To overcome this issue,
the use of automated software comes into mind.

Over the past decade machine learning has proven to be a valu-
able tool in the automation of complex tasks in medicine. Specifi-
cally convolutional neural networks (CNNs) have shown great
results for image recognition.

First studies on CNN-based intraprostatic GTV delineation for
PCa patients were conducted on 68Ga-PSMA-PET [6,7]. To the best
of our knowledge, this is the first work of describing a CNN trained
on 18F-PSMA-1007 PET/CT to segment intraprostatic GTV. Addi-
tionally, many modern deep-learning studies for medical imaging
remain confined to validation on small internal cohorts whilst
lacking external validation, histopathology reference, or data on
real-world clinical utility [8].

Thus, in this work, a dataset of 180 patients with 18F-PSMA-
1007 PET/CT was used to train (n = 128), and to internally as well
as externally test (n = 52) the CNN performance using different
metrics and PSMA PET tracers as well as co-registered histological
PCa information.
Materials and methods

Patients

In this study, 180 patients with primary PCa from six different
centers (Freiburg: n = 96, Cyprus: n = 32, Munich: n = 19, Dresden:
n = 14, Boston: MGH n = 9, Dana-Farber Cancer Institute n = 10)
were retrospectively included. Training was conducted using 128
patients, with a further 52 for testing. An overview of different
cohorts and patient characteristics is presented in Table 1. Inclu-
sion criteria were biopsy-proven primary PCa who have not
Table 1
Dataset characteristics.

Dataset (n = 180) Freiburg Cyprus

Mean Age in years (standard deviation) 69.3 (8.1) 69.2 (7.5)
Median iPSA in ng/ml (min–max) 14.6 (4.2–164) 10.2 (2.75–167)
ISUP
1 5 (5%) 8(25%)
2 24 (25%) 4(12.5%)
3 29 (30%) 8 (25%)
4 21 (22%) 9 (28%)
5 17 (18%) 3 (9%)

-
unknown
cT stage
T1 - 11
T2 48 10
T3 46 9
T4 2 -
Unknown - 2
Training 77 32
Testing 19 -
With histological reference 19 -
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received prior treatment at the time of imaging. Approval or
exemption from local ethics committees was obtained from all
centers for this study.
Imaging (PET/CT)

An overview of scanner characteristics is provided in Table 2.
CT-based attenuation correction was used. Standardized uptake
values (SUV [g/ml]) were calculated to normalize images based
on decay-corrected injected activity per kg body weight. All
PSMA-PETs were performed as part of primary staging according
to the clinical practice at the respective study centers.
Contouring of PSMA PET/CT

For expert GTVs, the consensus contour of two different readers
board-certified in radiation oncology, diagnostic radiology and/or
nuclear medicine was used with a level of experience in intrapro-
static GTV contouring and PET image analysis of 3–7 years. For
each patient a slice wise segmentation was done, using a window-
ing of SUVmin-max of 0 to 10 for 18F tracers and 0–5 for 68Ga tracers
and inverted grey scale as colormap as proposed by Zamboglou
et al. [4 9]. Readers were instructed to delineate the suspicious
avidity without applying any specific SUVmax criteria. Prostatic
gland was manually contoured according to ESTRO-ACROP consen-
sus guidelines [10].

For software Eclipse v15.1 (Varian Medical Systems, USA) and
3DSlicer v4.10 were used. Images from Boston cohorts were con-
toured locally. For the rest of the data, contouring was conducted
in Freiburg.
Histopathology co-registration

Three-dimensional (3D) intra prostatic PCa distribution was
obtained using histology information from prostatectomy speci-
mens for 19 patients (Freiburg cohort). For co-registration, a previ-
ously established protocol was used [11]. Briefly, the resected
prostate specimen underwent formalin fixation as well as an ex-
vivo CT scan. A customized localizer and whole-mount step sec-
tions were used to cut the specimen into 4 mm slices. After Hema-
toxylin and eosin staining, slice-wise delineation of PCa tissue was
performed by pathologists. Contours were then transferred to reg-
Munich Dresden Massachusetts
General Hospital

Dana-Farber
Cancer Institute

67.2 (10.9) 70.4 (8) 74 (6.8) 70.8 (6.8)
10.4 (4.6 – 465) 16.5 (5–139) 18 (5–56.2) 11.9 (6.4–24.9)

2 (10%) 1 (7%) 0 2 (20%)
6 (32%) 2 (14%) 3 (33%) 3 (30%)
3 (16%) 4 (29%) 0 1 (10%)
6 (32%) 2 (14%) 5 (55%) 0
2 (10%) 3 (21%) 1 (11%) 4 (40%)
- - - -

2

- 4 4
12 4 2 3
6 4 3 4
1 - - -
- 2 - 3
19 - - -
- 14 9 10
- -
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istered ex-vivo CT and interpolated to create a 3D model. Manual
co-registration was used to transfer GTV contours from ex-vivo
CT to in-vivo CT. Hardware co-registration of hybrid PET/CT scan-
ners resulted in the final alignment of in-vivo CT and PET scans.
An example for co-registered histopathology can be seen in (Fig. 3).
Preprocessing

For PET imaging data, body weight-adapted SUVs were calcu-
lated and saved in nearly raw raster data format (nrrd). PET data
were resampled to a voxel size of 2x2x2 mm3 with bspline inter-
polation [7]. Contours were resampled using nearest neighbour
interpolation with SimpleITK v2.2.0 and plastimatch v1.8.0.

Inputs were cropped around the prostate to a size of 64x64x64
voxels, resulting in an approximate receptive field of 12.8 � 12.8
� 12.8 cm3 for each voxel in the predicted GTV segmentation.
Using value clipping (setting values above 15 to 15), SUV intensi-
ties were normalized to match an interval of [0, 15].
CNN

Architecture: A 3D U-Net variant was used [12],consisting of an
encoder and decoder part with 3 layers each. A detailed description
of the underlying architecture can be found in Supplementary
Fig. 2. PET and prostate contour are used as input. Sigmoid function
is used to create prediction probability values at the final layer. A
threshold function with a threshold of 0.5 maps outputs to final
GTV prediction. CNN was implemented in pytorch v1.10.

Training: For network optimization, the training dataset
(n = 128) was further split randomly using 80%/20% split for train-
ing and validation. Prostate contour and normalized SUV-PET were
used as input for the CNN. Manual GTVs were used for loss calcu-
lation while training. Hyperparameters were optimized using
optuna [8]. Final model was trained using mini batch gradient des-
cent with adaptive moment estimation, with a batch size of 8 and
soft dice loss as loss function. While training, dice loss was calcu-
lated on the whole batch as a pseudo volume.
Evaluation

Volumetric Dice Similarity Coefficient (DSC) [13] and Hausdorff
Distance (HD) [14] were assessed between expert GTVs and CNN
GTVs at voxel level. Co-registered whole-mount histology was
used as standard of reference to calculate sensitivity and specificity
for the internal validation cohort as described previously [15]. For
visual comparison between histopathology and GTVs, the prostate
was divided into four equal segments for each slice in CT from
PSMA-PET/CT images. A mean of 54 segments (range: 32–68) were
analyzed per patient. Due to the lack of information on extra pro-
static PCa tissue, only intraprostatic delineations were used for
final calculations. As the dataset also contained patients with mul-
tiple intraprostatic GTVs, the CNN was trained to perform contour-
ing of all intraprostatic GTVs within the same prostate. In instances
where multiple intraprostatic GTVs were present, all of them were
taken into consideration during the evaluation process. Reported
values were then calculated on an individual patient basis, ensur-
ing a patient-centric analysis.

Although a custom GPU accelerated implementation was used
to calculate batched dice score while training, final evaluation met-
rics were calculated using MedPy v0.3.0 package for each individ-
ual patient to provide better comparability. In Freiburg plain
Ubuntu with GPU acceleration was used whereas Boston used
WSL without GPU acceleration.



Deep learning based automated delineation of the intraprostatic gross tumour volume in PSMA-PET for patients with primary prostate cancer
External validation

External validation was performed in two cohorts from Boston
(18F-DCFPyL-PSMA and 68Ga-PSMA-11 PET/CT images, respec-
tively). The previously trained model was transferred to Boston
and GTV predictions were made locally. The same methods used
for internal testing were applied. No additional training of the
model was performed on 18F-DCFPyL-PSMA and 68Ga-PSMA-11
PET/CT images.
Statistical analysis

Pairwise comparisons were performed using Wilcoxon single
rank test with Bonferroni correction as the data did not show an
underlying normal distribution (D’Agostino-Pearson test). For
analysis, scipy library was used. Tests were performed two sided
and significance level was set to 0.05. Figures were created using
matplotlib. For non-gaussian distributed data, outlier identification
was done based on visual inspection. For gaussian distributed data,
grubbs test was used.
Results

Comparing CNN predictions (GTV-CNN) to expert contours
(GTV-Expert) on the internal 18F-PSMA-1007 PET cohort, a median
DSC of 0.82 (IQR: 0.73–0.88) and HD of 3.3 mm (IQR: 2.12–6.03)
were observed. Sensitivity and specificity were calculated based
on histopathology reference standard. Sensitivity of the CNN had
no statistically significant differences (p = 0.401) to manual con-
tours, with a median sensitivity of 0.88 (IQR: 0.68–0.97) and 0.85
Fig. 1. Sensitivity and Specificity using histological whole mount as reference.
Comparison of Specificity and Sensitivity visualized as boxplot using histopatho-
logical information of prostate specimen as reference. Experts have a slightly higher
specificity, while the CNN has a slightly higher sensitivity. Legend: *: significance
level of p = 0.05 for Wilcoxon single rank test was reached.
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(IQR: 0.75–0.88), respectively (Fig. 1). With a median specificity
of 0.83 (IQR: 0.57–0.97) and 0.88 (IQR: 0.69–0.98) for CNN and
expert contours, respectively, CNN specificity was slightly lower
(p = 0.013) (Fig. 1). Histopathology-based sensitivity and specificity
values showed concordance between the CNN and experts regard-
ing challenging cases (lower quartile in Fig. 1.).

Absolute GTV volumes did not differ significantly (Expert vs.
CNN: p = 0.148, CNN vs. Histology: p = 0.287, Expert vs. Histology:
p = 0.676) with a median of 3.2 ml (IQR: 1.6 ml-5.2 ml) for GTV-
CNN, 3.1 ml (IQR: 1.4–5.1 ml) for GTV-Expert and 2.3 ml (IQR:
0.9–4.3 ml) for whole mount histology as reference (Fig. 2).

For external testing, the Dresden dataset yielded a median DSC
of 0.71 (IQR: 0.53–0.75) and a median HD of 7.81 mm (IQR: 5.85–
11.39). Expert GTVs showed no significant (p = 0.135) differences
to CNN predictions in terms of volumes with a median of 3.3 ml
(IQR: 1.4––6.3 ml) for experts and a median volume of 4.4 ml
(IQR: 1.5–7.3 ml) for CNN.

External testing on 18F-DCFPyL tracer at the Massachusetts Gen-
eral Hospital showed a median DSC of 0.8 (IQR: 0.65–0.82) and a
median HD of 4.12 mm (IQR: 3.00–7.00). Median absolute volumes
were 5.98 (IQR: 4.95–10.76) for experts and 3.85 ml (IQR: 3.03–
5.48) for CNN predictions (p = 0.0039).

External testing on 68Ga tracer at the Dana Farber Cancer Insti-
tute showed a median DSC of 0.80 (IQR: 0.73–0.90) and HD of
9.53 mm (IQR: 4.61–11.79). Median volumes for experts were
7.72 ml (IQR: 2.89–21.77) and for CNN 6.6 ml (IQR: 2.41–13.02)
(p = 0.19).
Fig. 2. Volume comparison Boxplot for comparison of PCa and GTV volumes.
Significance levels of (p = 0.05) were not reached. Volumes do not differ
significantly. Chosen scale doesn’t include two outliers with volumes above
20 ml. Figure including outliers can be found in the supplementary.



Fig. 3. Patient example A) and C) Axial PET image (windowing SUVmin-max: 0–10) of a patient from the internal testing cohort. Contours: orange = prostate contour by
expert based on CT image, red = co-registered PCa in histology, green = CNN prediction, blue = expert contour.B) and C) Corresponding haematoxylin and eosin whole mount
histology slide with marked PCa lesion in blue. Slight deformations resulting from interpolation and co-registration are observable when comparing histology-based PCa (A:
red, B: blue) and (C: red, D: blue) in a side by side comparison.
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Overall for the CNN, creating a single prediction, including read-
ing from storage and writing the resulting file took 3.81 seconds
with a standard deviation (SD) of 1.38 s for the whole training
and testing dataset excluding Boston cohorts. About 95% of this
time was taken up by relocation in the image tensor and writing
the file. For Boston cohorts an average time of 3.65 s (SD: 0.84 s)
was observed. Please see Fig. 4 for the prediction time for the
CNN in the different datasets.
Discussion

Over the past decade, CNNs have shown to be a valuable tool for
automating complex tasks in image recognition. This study aimed
to provide a robust method for automated intraprostatic GTV seg-
mentation. This task is critical for several diagnostic and therapeu-
tic procedures such as PSMA-PET-based targeted biopsies [16],
radiomic feature extraction [17], and focal radiotherapy dose esca-
lation [18].

Our study used a CNN trained on a multicenter dataset of 128
patients. It was validated on internal as well as external datasets,
and across multiple PSMA-targeted tracers. Further validation
was performed using co-registered histopathology information as
a standard of reference. Our results indicate the CNN performance
is comparable to physician experts. While expert contouring can
take approximately 5–10 minutes for each contour, our model
was able to create them in a few seconds. Given the anticipated
use of this method and the likely rise in the clinical volume of
5

PCa patients, such time savings across a clinical workday can be
substantial.

Comparing CNN contours to expert GTVs, a median DSC of 0.71
to 0.82 was measured. Overall DSC values compare well with pre-
vious studies. Draulans et al. [19] reported an interobserver vari-
ability with a DSC of 0.58 and 0.72 respectively, for 18F-PSMA-
and 68Ga-PSMA PET. Spohn et al. [4] reported an interobserver
agreement with a DSC of above 0.87 for 18F-PSMA-1007 by using
a validated contouring technique. Hence the results of our model
lie well in the range of manual inter-observer variability.

The highest performance of the CNN was reached for the inter-
nal testing cohort. This is unsurprising as the biggest portion of
patients in the training dataset were internal patients from the
same center. Interestingly DSC was only slightly lower upon exter-
nal testing on 18F-DCFPyL and 68Ga-PSMA-11, despite the different
PET acquisition technique and overall tracer biodistribution.

18F-DCFPyL has a statistically significant higher uptake in the
urinary bladder [20], resulting in higher local SUVs. The same phe-
nomenon has been described for 68Ga-PSMA-11 [7]. As the net-
work was trained solely on 18F-PSMA-1007 PET images, the
differentiation of bladder and GTV proposes a difficult challenge
to the CNN as it introduces a distributional shift for training and
testing data. To partially mitigate this issue, we implemented a
cutoff SUV above 15, resulting in 106 out of 180 patients (58%) hav-
ing a GTV exceeding this threshold.

Although data from Dresden used 18F-1007 as tracer, the CNN
performed worst on this part of the testing dataset. A potential rea-
son for this might be the underlying reconstruction kernel. Nearly
all other PET images were reconstructed using a variation of a soft



Fig. 4. Time comparison Boxplot for time measurements for creating a single
prediction, including reading from storage and writing the resulting file. Training
dataset was added to testing cohorts for this specific task. Measurements were
taken on a different computer system without GPU acceleration for Massachusetts
General Hospital (MGH) and Dana-Farber Cancer Institute (DFCI) cohorts.

Deep learning based automated delineation of the intraprostatic gross tumour volume in PSMA-PET for patients with primary prostate cancer
gaussian kernel, but this part of the testing dataset did not use such
an approach. This could also be seen in visual inspection as images
had sharper edges and more noise (see supplementary Fig. 1).
CNNs do not only rely on local intensity values but also feature
maps that take shapes into account. Also, object texture seems to
play a major role in the robustness of CNNs [21]. Hence, this
domain shift might be the reason for decreased performance.

For the external datasets the CNN showed a poorer performance
based on the HD metric (median 3.3–9.5 mm). The discrepancy
between good DSC and moderate HD results might be explained
by the fact that a single outlying voxel heavily affects the HD.
Future studies should assess whether these outliers affect the clin-
ical outcomes after focal dose-escalated radiotherapy on CNN-
generated GTVs. Volumes of histological PCa, CNN predictions
and expert contours did not differ significantly and are in concor-
dance with other studies [22,4] and [19].

Quadrant based comparison between histology reference and
the contours revealed slightly lower specificity for CNN than for
experts, while the CNN had a higher sensitivity than experts. Sig-
nificance levels were only reached for the comparison of the speci-
ficity. This difference in values is probably more of a neglectable
result due to the sensitivity/specificity tradeoff. As the CNN out-
puts probability values in the last layer before binary discretiza-
tion, a custom threshold could be used for further fine tuning the
model’s classification decision, allowing additional flexibility in
adjusting the model’s sensitivity and specificity based on specific
application requirements or performance trade-offs. By setting a
custom probability threshold, the user can define the minimum
probability value that the output of the CNN must surpass to be
classified as positive.

In the past several studies for 18F-PSMA-1007 PET analyzed sen-
sitivity and specificity with co-registered wholemount histology as
reference [23 24 4]. Kuten et al. [23] observed a sensitivity of 100%
and a specificity of 90.9%. Kesch et al. [24] reported a lower sensi-
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tivity of 71% and specificity of 81%. Spohn et al. [4] presented a sen-
sitivity of 87% and specificity of 96%. In this study experts
performed with a specificity of 88% and sensitivity of 85%. In an
intra-individual comparison to experts, the CNN yielded a speci-
ficity of 83% and a sensitivity of 88%. One explanation for the differ-
ence in values might be the different approaches for co-registration
and sensitivity/specificity calculations [15]. Also, differences in
patient cohorts as well as observer variability seem to play a role
as Spohn et al. [4] used the same in-house co-registration and anal-
ysis protocol as used for this study. Partial volume effects also
make the detection of very small tumor lesions (around 2 mm)
technically challenging since they can obscure small lesions [25
26]. Furthermore, the presence of visually undetectable lesions
(due to low PSMA expression or small volume) introduces a certain
level of uncertainty, resulting in lower sensitivity. In challenging
cases where the specificity is below 50%, the lower values can pri-
marily be attributed to two factors: overestimation of the GTV or
the detection of PET positive regions that do not have a corre-
sponding histopathological PCa correlate. As this work also
included patients with small lesions, higher sensitivities of nearly
100%, as previously suggested [23], seem out of reach. Overall,
our values for sensitivity and specificity based on co-registered
wholemount histology lie well in the range of previously published
results.

Bettermann et al. demonstrated that PSMA-PET and mpMRI
offer complementary information when it comes to expert-driven
manual delineation of prostate GTVs [34] Future studies should
investigate whether this also holds true for GTVs generated using
CNN-based methods.

Limitations of this study should be noted. A first limitation of
our study can be seen in the size of the dataset used for testing
(n = 52). Second, non-linear shrinkage of the prostate after prosta-
tectomy can present alignment challenges between imaging and
histopathology. To counteract this bias, evaluation was performed
slice-wise and not for each individual voxel.

During volumetric analysis we also discovered that our testing
dataset contained two very large intraprostatic GTVs (>20 ml).
Although the model demonstrated satisfactory performance on
those particular cases (DSC > 0.9, its overall accuracy when con-
fronted with out-of-distribution cases remains unpredictable.
Thus, we strongly suggest implementing the CNN model in a more
supportive clinical use case rather than for fully autonomous
decision-making. Despite efforts to maintain consistency in the
training and testing cohorts, it is important to acknowledge that
differences in clinical characteristics, particularly PSA and ISUP
grades existed in our study. This highlights the generalizable per-
formance of our CNN model given the known variability in SUV
values of tumours among patients with varying PSA values and
ISUP grades.

Although DSC is considered one of the most common scores for
image segmentation, some pitfalls must be taken into considera-
tion [27 28]. Especially small volumes relative to voxel size can
be an issue. DSC is slightly biased toward single-object detection.
Additionally, in silico segmentation metrics might not necessarily
correlate with the clinical utility of the models as experts affect
model performance [8]. Therefore, secondary metrics were consid-
ered and co-registered whole mount histopathology was used to
evaluate sensitivity and specificity.
Conclusion

In this work, a CNN for automated PCa segmentation was
trained on 18F-1007-PSMA PET images and tested on 18F-1007-,
18F-DCFPyL- and 68Ga-PSMA-11-PET as well as histopathology ref-
erence. The CNN performed much faster (seconds versus minutes)
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compared to expected physician contouring for all tracers and pre-
dicted the GTVs with a comparable performance across all tracers
considered. Future studies will seek to validate our CNN to guide
PSMA-PET based diagnostic and therapeutic procedures. The
trained CNN will be publicly available.

Funding

This work was funded by the German Federal Ministry of Edu-
cation and Research and (ERA PerMed – PersoRad).

Author contributions

All authors read and approved the final manuscript.
Project idea: CZ, JH.
Project management: JH, CZ.
Image annotations: CZ, JH, IM, SS, TN, PH, SC.
CNN development, training and testing: JH, AK, DK, TF, RG.
Providing patient collectives: TH, JK, AV, HI, PB, CG, JR, PD, AG.
Data analysis, data interpretation: JH, CZ, MM.
Drafting of manuscript: JH, CZ.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.radonc.2023.109774.

References

[1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49.

[2] Kerkmeijer LGW, Groen VH, Pos FJ, Haustermans K, Monninkhof EM, Smeenk
RJ, et al. Focal boost to the intraprostatic tumor in external beam radiotherapy
for patients with localized prostate cancer: Results from the FLAME
randomized phase III trial. J Clin Oncol March 2021;39:787–96.

[3] Zamboglou C, Spohn SKB, Ruf J, Benndorf M, Gainey M, Kamps M, Jilg C,
Gratzke C, Adebahr S, Schmidtmayer-Zamboglou B, und others. PSMA-PET–and
MRI–Based Focal Dose Escalated Radiation Therapy of Primary Prostate
Cancer: Planned Safety Analysis of a Nonrandomized 2-Armed Phase 2 Trial
(ARO2020-01),‘‘ International Journal of Radiation Oncology* Biology* Physics,
2022.

[4] Spohn SKB, Kramer M, Kiefer S, Bronsert P, Sigle A, Schultze-Seemann W, Jilg
CA, Sprave T, Ceci L, Fassbender TF, und others. Comparison of manual and
semi-automatic [18F] PSMA-1007 PET based contouring techniques for
intraprostatic tumor delineation in patients with primary prostate cancer
and validation with histopathology as standard of reference,‘‘ Frontiers in
oncology 2020; Bd. 10:600690.

[5] Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al.
Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of
primary prostate cancer. Eur Urol 2016;70:829–36.

[6] Matkovic LA, Wang T, Lei Y, Akin-Akintayo OO, Ojo OAA, Akintayo AA, Roper J,
Bradley JD, Liu T, Schuster DM, und others. Prostate and dominant
intraprostatic lesion segmentation on PET/CT using cascaded regional-net,‘‘
Physics in Medicine & Biology 2021; Bd. 66:245006.

[7] Kostyszyn D, Fechter T, Bartl N, Grosu AL, Gratzke C, Sigle A, Mix M, Ruf J,
Fassbender TF, Kiefer S, und others. Intraprostatic tumor segmentation on
PSMA PET images in patients with primary prostate cancer with a
convolutional neural network,‘‘ Journal of Nuclear Medicine 2021; Bd.
62:823–828.

[8] Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A next-generation
hyperparameter optimization framework. in Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, 2019.

[9] Zamboglou C, Fassbender TF, Steffan L, Schiller F, Fechter T, Carles M, et al.
Validation of different PSMA-PET/CT-based contouring techniques for
7

intraprostatic tumor definition using histopathology as standard of
reference. Radiother Oncol : J Eur Soc Therap Radiol Oncol December
2019;141:208–13.

[10] Salembier C, Villeirs G, De Bari B, Hoskin P, Pieters BR, Van Vulpen M, Khoo V,
Henry A, Bossi A, De Meerleer G, und others. ESTRO ACROP consensus
guideline on CT-and MRI-based taret volume delineation for primary radiation
therapy of localized prostate cancer,‘‘ Radiotherapy and Oncology 2018; Bd.
127:49–61.

[11] Zamboglou C, Carles M, Fechter T, Kiefer S, Reichel K, Fassbender TF, Bronsert
P, Koeber G, Schilling O, Ruf J, und others. Radiomic features from PSMA PET
for non-invasive intraprostatic tumor discrimination and characterization in
patients with intermediate-and high-risk prostate cancer-a comparison study
with histology reference,‘‘ Theranostics 2019; Bd. 9:2595.

[12] Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, O. Ronneberger. 3D U-Net:
learning dense volumetric segmentation from sparse annotation,‘‘ in
International conference on medical image computing and computer-assisted
intervention, 2016.

[13] Dice LR. Measures of the amount of ecologic association between species.
Ecology 1945;26:297–302.

[14] Huttenlocher DP, Klanderman GA, Rucklidge WJ. Comparing images using the
Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 1993;15:850–63.

[15] Zamboglou C, Kramer M, Kiefer S, Bronsert P, Ceci L, Sigle A, Schultze-Seemann
W, Jilg CA, Sprave T, Fassbender TF, und others. The impact of the co-
registration technique and analysis methodology in comparison studies
between advanced imaging modalities and whole-mount-histology reference
in primary prostate cancer,‘‘ Scientific reports 2021; Bd. 11:1–10.

[16] Zhang L-L, Li W-C, Xu Z, Jiang N, Zang S-M, Xu L-W, et al. (68)Ga-PSMA PET/CT
targeted biopsy for the diagnosis of clinically significant prostate cancer
compared with transrectal ultrasound guided biopsy: a prospective
randomized single-centre study. Eur J Nucl Med Mol Imaging February
2021;48:483–92.

[17] Spohn SKB, Bettermann AS, Bamberg F, Benndorf M, Mix M, Nicolay NH,
Fechter T, Hölscher T, Grosu R, Chiti A, und others. Radiomics in prostate
cancer imaging for a personalized treatment approach-current aspects of
methodology and a systematic review on validated studies,‘‘ Theranostics
2021; Bd. 11:8027.

[18] Zamboglou C, Spohn SKB, Adebahr S, Huber M, Kirste S, Sprave T, Gratzke C,
Chen RC, Carl EG, Weber WA, und others. PSMA-PET/MRI-based focal dose
escalation in patients with primary prostate Cancer treated with stereotactic
body radiation therapy (HypoFocal-SBRT): study protocol of a randomized,
multicentric phase III trial,‘‘ Cancers 2021; Bd. 13:5795.

[19] Draulans C, Pos F, Smeenk RJ, Kerkmeijer L, Vogel WV, Nagarajah J, Janssen M,
Mai C, Heijmink S, van der Leest M, und others. 68Ga-PSMA-11 PET, 18F-
PSMA-1007 PET, and MRI for gross tumor volume delineation in primary
prostate cancer: intermodality and intertracer variability,‘‘ Practical Radiation
Oncology 2021; Bd. 11:202–211.

[20] Giesel FL, Will L, Lawal I, Lengana T, Kratochwil C, Vorster M, Neels O, Reyneke
F, Haberkon U, Kopka K, und others. Intraindividual comparison of 18F-PSMA-
1007 and 18F-DCFPyL PET/CT in the prospective evaluation of patients with
newly diagnosed prostate carcinoma: a pilot study,‘‘ Journal of Nuclear
Medicine 2018; Bd. 59:1076–1080.

[21] Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W.
ImageNet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness,‘‘ arXiv preprint arXiv:1811.12231, 2018.

[22] Marinescu IM, Spohn SKB, Kiefer S, Bronsert P, Ceci L, Holzschuh J, Sigle A, Jilg
CA, Rühle A, Sprave T, und others. Intraindividual Comparison Between [18F]
PSMA-1007 PET/CT and Multiparametric MRI for Radiotherapy Planning in
Primary Prostate Cancer Patients,‘‘ Frontiers in Oncology 2022; Bd. 12.

[23] Kuten J, Fahoum I, Savin Z, Shamni O, Gitstein G, Hershkovitz D, et al. Head-to-
head comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in staging
prostate cancer using histopathology and immunohistochemical analysis as a
reference standard. J Nucl Med 2020;61:527–32.

[24] Kesch C, Vinsensia M, Radtke JP, Schlemmer HP, Heller M, Ellert E, Holland-
Letz T, Duensing S, Grabe N, Afshar-Oromieh A, und others. Intraindividual
comparison of 18F-PSMA-1007 PET/CT, multiparametric MRI, and radical
prostatectomy specimens in patients with primary prostate cancer: a
retrospective, proof-of-concept study,‘‘ Journal of Nuclear Medicine 2017; Bd.
58:1805–1810.

[25] Zamboglou C, Bettermann AS, Gratzke C, Mix M, Ruf J, Kiefer S, et al.
Uncovering the invisible-prevalence, characteristics, and radiomics feature-
based detection of visually undetectable intraprostatic tumor lesions in (68)
GaPSMA-11 PET images of patients with primary prostate cancer. Eur J Nucl
Med Mol Imaging June 2021;48:1987–97.

[26] Trägårdh E, Simoulis A, Bjartell A, Jögi J. Tumor detection of 18F-PSMA-1007 in
the prostate gland in patients with prostate cancer using prostatectomy
specimens as reference method. J Nucl Med 2021;62:1735–40.

[27] Reinke A, Eisenmann M, Tizabi MD, Sudre CH, Rädsch T, Antonelli M, Arbel T,
Bakas S, Cardoso MJ, Cheplygina V, und others. Common limitations of image
processing metrics: A picture story,‘‘ arXiv preprint arXiv:2104.05642, 2021.

[28] Maier-Hein L, Reinke A, Christodoulou E, Glocker B, Godau P, Isensee F,
Kleesiek J, Kozubek M, Reyes M, Riegler MA, und others. Metrics reloaded:
Pitfalls and recommendations for image analysis validation,‘‘ arXiv preprint
arXiv:2206.01653, 2022.

https://doi.org/10.1016/j.radonc.2023.109774
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0005
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0005
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0005
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0010
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0010
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0010
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0010
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0025
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0025
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0025
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0040
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0040
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0040
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0045
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0045
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0045
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0045
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0045
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0065
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0065
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0070
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0070
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0080
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0080
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0080
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0080
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0080
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0115
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0115
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0115
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0115
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0125
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0125
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0125
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0125
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0125
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0130
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0130
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0130


Deep learning based automated delineation of the intraprostatic gross tumour volume in PSMA-PET for patients with primary prostate cancer
[29] Cardinale J, Martin R, Remde Y, Schäfer M, Hienzsch A, Hübner S, Zerges AM,
Marx H, Hesse R, Weber K, und others. Procedures for the GMP-compliant
production and quality control of [18F] PSMA-1007: a next generation
radiofluorinated tracer for the detection of prostate cancer,‘‘ Pharmaceuticals
2017; Bd. 10:77.

[30] Hoberück S, Löck S, Borkowetz A, Sommer U, Winzer R, Zöphel K, et al.
Intraindividual comparison of [(68) Ga]-Ga-PSMA-11 and [(18)F]-F-PSMA-
1007 in prostate cancer patients: a retrospective single-center analysis.
EJNMMI Res October 2021;11:109.

[31] Vrachimis A, Ferentinos K, Demetriou E, Ioannides C, Zamboglou N. PET/CT
imaging of prostate cancer in the era of small molecule prostate specific
membrane antigen targeted tracers. Hell J Nucl Med September
2020;23:339–45.

[32] Tsechelidis I, Vrachimis A. PSMA PET in Imaging Prostate Cancer. Front Oncol
2022;12:831429.

[34] Bettermann AS, Zamboglou C, Kiefer S, Jilg CA, Spohn S, Kranz-Rudolph J,
Fassbender TF, Bronsert P, Nicolay NH, Gratzke C, und others. [68Ga-] PSMA-
11 PET/CT and multiparametric MRI for gross tumor volume delineation in a
slice by slice analysis with whole mount histopathology as a reference
standard–Implications for focal radiotherapy planning in primary prostate
cancer‘‘, Radiotherapy and Oncology 2019; Bd. 141:214–219.
8

Further Reading

[33] Wang T, Yang L, Schreibmann E, Roper J, Schuster DM, Bradley JD, Liu T, Jani
AB, Yang X. Deep-learning-based extraprostatic nodal lesion segmentation on
18F-fluciclovine PET,‘‘ in Medical Imaging 2022: Biomedical Applications in
Molecular, Structural, and Functional Imaging, 2022.

[35] Hosny A, Bitterman DS, Guthier CV, Qian JM, Roberts H, Perni S, Saraf A, Peng
LC, Pashtan I, Ye Z, und others. Clinical validation of deep learning algorithms
for radiotherapy targeting of non-small-cell lung cancer: an observational
study,‘‘ The Lancet Digital Health 2022; Bd. 4:e657–e666.

[36] Leung K, Ashrafinia S, Salehi Sadaghiani M, Dalaie P, Tulbah R, Yin Y,
VanDenBerg R, Leal J, Gorin M, Du Y, Pomper M, Rowe S, Rahmim A. A fully
automated deep-learning based method for lesion segmentation in 18F-
DCFPyL PSMA PET images of patients with prostate cancer,‘‘ Journal of Nuclear
Medicine 2019; Bd. 60:399–399.

[37] Mortensen MA, Borrelli P, Poulsen MH, Gerke O, Enqvist O, Ulén J, Trägårdh E,
Constantinescu C, Edenbrandt L, Lund L, und others. Artificial intelligence-
based versus manual assessment of prostate cancer in the prostate gland: a
method comparison study,‘‘ Clinical physiology and functional imaging 2019;
Bd. 39:399–406.

http://refhub.elsevier.com/S0167-8140(23)00312-2/h0150
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0150
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0150
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0150
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0155
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0155
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0155
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0155
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0160
http://refhub.elsevier.com/S0167-8140(23)00312-2/h0160

	Deep learning based automated delineation of the intraprostatic gross tumour volume in PSMA-PET for patients with primary prostate cancerA CNN was trained to predict the intraprostatic tumor volume in primary prostate cancer--
	Materials and methods
	Patients
	Imaging (PET/CT)
	Contouring of PSMA PET/CT
	Histopathology co-registration
	Preprocessing
	CNN
	Evaluation
	External validation
	Statistical analysis

	Results
	Discussion
	Conclusion
	Funding
	Author contributions
	Declaration of Competing Interest
	Appendix A Supplementary material
	References
	bibl21
	Further Reading



