
Management of EPICS IOCs in a distributed
network environment using Salt

Institute for Beam Physics and Technology

E. Blomley*, J. Gethmann, M. Schuh, A.-S. Müller, KIT
S. Marsching, aquenos GmbH

E-mail: edmund.blomley@kit.edu

Implementation: Use Salt and one single source of truth file to deploy, maintain and monitor EPICS IOC across distributed hosts.

EPICS Alarming

Automatically configure alarm
server to monitor status of IOCs
which are configured as critical
for accelerator operation.

Extend Waveform Generation

Motivation

An EPICS-based control system typically consists
of many individual IOCs, which can be distributed
across many computers in a network. Managing
hundreds of deployed IOCs, keeping track of
where they are running, and providing operators
with basic interaction capabilities can easily
become a maintenance nightmare.

Environment

The two accelerators FLUTE und KARA each
operate in separate, self-sufficient network
environments. Most EPICS IOCs run on virtual
machines using Ubuntu LTS. This requires most
hardware being able to communicate via TCP or
UDP, with serial communication being managed
via serial-to-ethernet hardware gateways. For
critical systems, EPICS integrated PLCs are used.

IOC single
source of truth

config file

Salt
Master

EPICS
Server

OS integration

Helper script

IOC source code

File Integrity
Check

Remote
Monitoring

Script

Service IOC

IOC

Alarm
Server

Alarm config

Start-up file

Terminal

Terminal

Server

Server

Remote control scripts

Code
Repository

^

Control System in Numbers

Number of KARA FLUTE

EPICS VMs
EPICS Server
IP Devices
PLCs
Deployed IOCs
Deployed Services
Process Variables

Distributed IOC Control

Helper script allows control of any
IOC from any location using a
unique identifier. Script executes
command via SSH, knowing on
which host the IOC is running.

Salt

Python-based, open-source
software for IT automation, remote
task execution and configuration
management following the infra-
structure as code approach.

IOC Configuration

Parameter Description

IOC name
Git name
Host
Run script
Group
Type
Auto start
Critical
Dependency
Git Branch
Docus
Description
Repository

IOC Integration

Meta-IOC to check status and
control all IOCs. Makes use of
distributed IOC control and
dynamic Salt-configured start-up
file.

Execute Device Support

The IOC integration makes use of the Execute
device support, developed on behalf of KIT.
It can be used to safely run any external
commands. Data from EPICS can be passed
through and returned values from the executed
program can be passed back to EPICS through
the exit code or the standard (error) output.
It can operate in a mode where it waits for the
external program to finish execution and
subsequently triggers the processing of other
records.
It can also operate in a fire and forget mode
where it is not waiting for the command to finish.

GitLab Repository

IOCs are organised on a project level
grouped by accelerator. A group of
shared IOCs exists, implementing
accelerator specific start-up files.

Server Deployment

Each IOC is integrated in the host
OS, in our case via systemd. In
addition, scripts for file integrity,
remote monitoring and local
control are set up automactially.

Future Plans

Future plans involve automation of the initial IOC
creation, continuous integration for IOC code
integrity, automated GUI creation, support for
device-embedded IOCs and potential steps
towards fully containerized deployment, as the
general structure would allow for a drop-in
replacement of the current EPICS server
integration.

References

Salt Project:
https://saltproject.io/

Execture Device Support:
https://github.com/KIT-IBPT/epics-execute

KIT GitLab Repository:
https://gitlab.kit.edu/kit/ibpt/epics

Summary: Consistent and scalable fully automated IOC deployment & integration without any required IOC adjustments, making it also usable for non-IOC services.

GUI

IOC Details PanelOverview panel excerpt

 4 2
 1 2
 707 341
 31 11
 94 42
 11 10
~80,000 ~12,000

Unique Identifier
Repository name
Target server
Default: run
FLUTE, KARA, shared
C or Python
Start on host reboot?
Alarm if not running?
For non-default .debs
Testing new features
External documentation
Short IOC description
Non-default repository

