

Institute for Beam Physics and Technology

Karlsruhe Institute of Technology

Management of EPICS IOCs in a distributed network environment using Salt

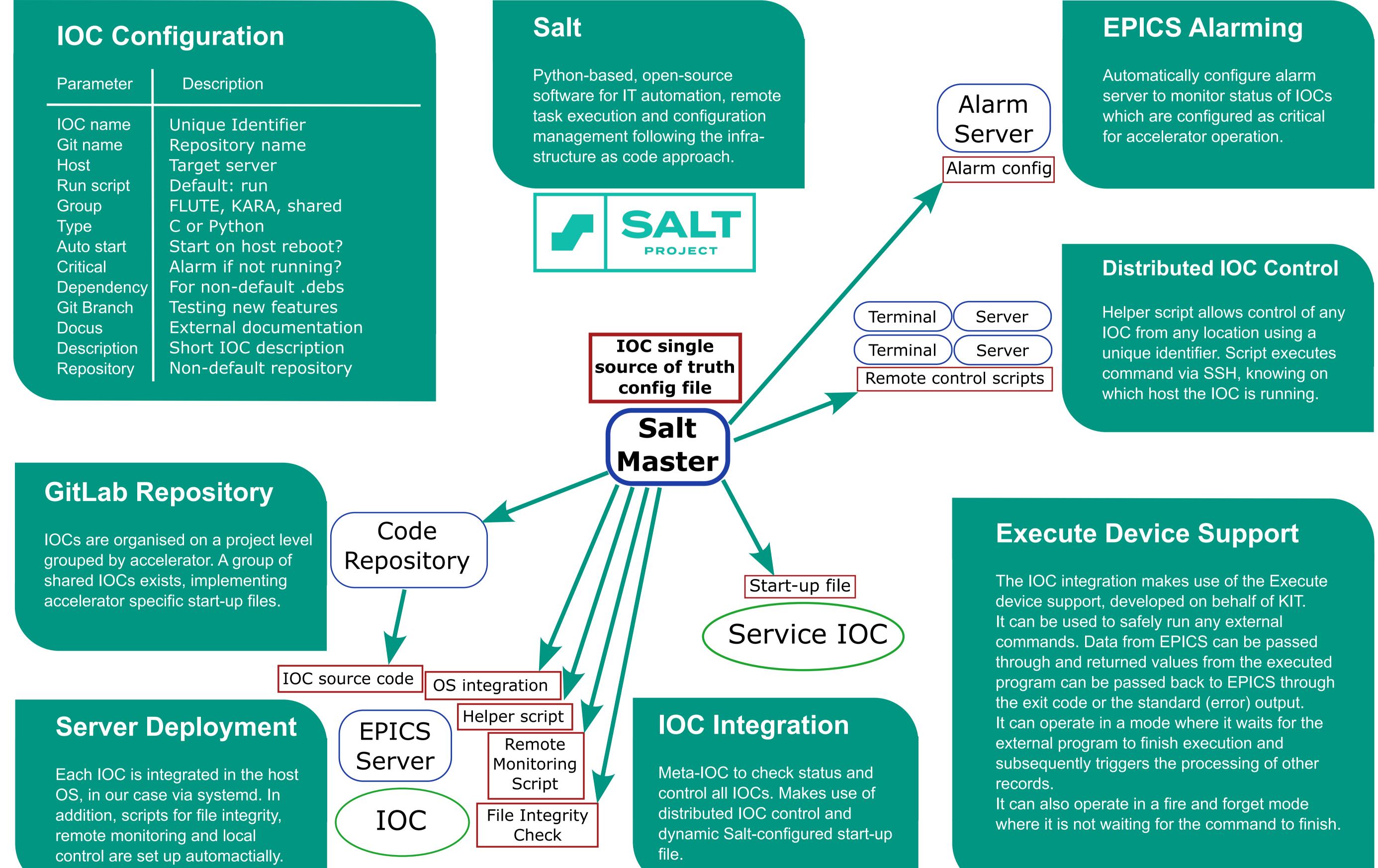
E. Blomley*, J. Gethmann, M. Schuh, A.-S. Müller, KIT

S. Marsching, aquenos GmbH

Motivation

An EPICS-based control system typically consists of many individual IOCs, which can be distributed across many computers in a network. Managing hundreds of deployed IOCs, keeping track of

Environment


The two accelerators FLUTE und KARA each operate in separate, self-sufficient network environments. Most EPICS IOCs run on virtual machines using Ubuntu LTS. This requires most hardware being able to communicate via TCP or UDP, with serial communication being managed via serial-to-ethernet hardware gateways. For critical systems, EPICS integrated PLCs are used.

Control System in Numbers

Number of	KARA	FLUTE
EPICS VMs	4	2
EPICS Server	1	2
IP Devices	707	341
PLCs	31	11
Deployed IOCs	94	42
Deployed Services	11	10
Process Variables	~80,000	~12,000

where they are running, and providing operators with basic interaction capabilities can easily become a maintenance nightmare.

Implementation: Use Salt and one single source of truth file to deploy, maintain and monitor EPICS IOC across distributed hosts.

GUI

IOC: Operation Status

Future Plans

References

			Status & Control	
Global			▶ 3 ■	•
Auto Pilot	● 0 ▶ 2 ■		Status:	•
Beam Info	●▲ ► 2 ■		Message:	IOC director but was on
Beam Logger	● ● ► 2 ■			
E-Gun	● ● ► 2 ■			• A
Function Generators	ះ•▲ ► こ ■		Service Inform	ation
Ion Pumps	ಿ•▲ ► ೭ ■		Service Name:	:
Microtron Modulator	● ● ► 2 ■		Description:	Fill numbe
Operation Status	● ● ► 2 ■		Script Name:	i
RF Generator (500 MHz)	● ● ► 2 ■		Host:	acc-pc
RF Generator (3 GHz)	● ● ► 2 ■			Autos
Vacuum Gauges	ಿ•▲ ► ೫ ■		Source Code In	nformation
Vacuum System	●▲ ▶ 2 ■		Branch	
			Service Type:	c
DE				🤟 Code I
verview pa	anel exce	erpt	IOC	Deta

Running Needs restar ry is on Git commit 'f89461 ommit '434d64a' when the DC was started. pdate Sources & Rebuild Operation Status r; machine status; operators c-operation-status start 😑 Critical GitLab Group: kara ails Panel

Future plans involve automation of the initial IOC creation, continuous integration for IOC code integrity, automated GUI creation, support for device-embedded IOCs and potential steps towards fully containerized deployment, as the general structure would allow for a drop-in replacement of the current EPICS server integration.

Salt Project: https://saltproject.io/

Execture Device Support: https://github.com/KIT-IBPT/epics-execute

KIT GitLab Repository: https://gitlab.kit.edu/kit/ibpt/epics

Summary: Consistent and scalable fully automated IOC deployment & integration without any required IOC adjustments, making it also usable for non-IOC services.

KIT – The Research University in the Helmholtz Association

E-mail: edmund.blomley@kit.edu

