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Abstract
An EPICS-based control system typically consists of

many individual IOCs, which can be distributed across many
computers in a network. Managing hundreds of deployed
IOCs, keeping track of where they are running, and provid-
ing operators with basic interaction capabilities can easily
become a maintenance nightmare.

At the Institute for Beam Physics and Technology (IBPT)
of the Karlsruhe Institute of Technology (KIT), we operate
separate networks for our accelerators KARA and FLUTE
and use the Salt Project to manage the IT infrastructure.
Custom Salt states take care of deploying our IOCs across
multiple servers directly from the code repositories, inte-
grating them into the host operating system and monitoring
infrastructure. In addition, this allows the integration into
our GUI in order to enable operators to monitor and con-
trol the process for each IOC without requiring any specific
knowledge of where and how that IOC is deployed. There-
fore, we can maintain and scale to any number of IOCs on
any numbers of hosts nearly effortlessly.

This paper presents the design of this system, discusses the
tools and overall setup required to make it work, and shows
off the integration into our GUI and monitoring systems.

ENVIRONMENT
The two accelerators KARA (Karlsruhe Research Accel-

erator) [1] and FLUTE (Far-infrared linac and test experi-
ment) [2] each operate in separate, self-sufficient network
environments, including DNS, DHCP, NTP and similar ser-
vices. Most hosts are virtual machines running Ubuntu LTS
versions for the operating system, managed via a Proxmox
VE cluster [3]. Dedicated computer hardware is only in use
if required. Examples are operator terminals in the control
rooms, our data archiving cluster and time synchronization
servers.

Most EPICS IOCs run on Ubuntu based virtual machines,
as we try to avoid using dedicated hardware, such as VME
crates. This requires most hardware being able to commu-
nicate via TCP or UDP, with serial communication being
managed via serial-to-ethernet hardware gateways. The ex-
ception here are IOCs running directly on commercially
available hardware, which in most cases is hardware for ac-
celerator beam diagnostics, but recently also includes some
power supplies.

For personal or machine protection-critical systems, PLCs
are in use, which are also interfaced using EPICS IOCs via
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TCP. For data archiving of EPICS process variables (PVs) a
Cassandra [4] NoSQL cluster is in use. The default graphical
user interface is Control System Studio (CSS). Table 1 shows
an overview over the numbers of server-side components.

Table 1: Control System Components in Numbers

KARA FLUTE

Virtual Machines 23 11
Physical Server 8 9
Registered IP Devices 707 341
PLCs 31 11

EPICS SOURCE CODE
Most EPICS related source code is managed via a site-

specific GitLab instance [5]. While most of our EPICS
related projects are not publicly visible at the moment, we are
working on publishing more of the ones that are not closely
tied to our infrastructure. Some custom EPICS modules are
already available via our GitHub organisation KIT-IBPT [6].

EPICS Distribution
As we are almost exclusively running Ubuntu Linux inside

our accelerator network server infrastructure, we build and
distribute our own EPICS Debian Packages (.deb). We are
running EPICS 7 and only compile, build and distribute
EPICS modules which are used by at least one IOC. The
most important modules are asyn, StreamDevice, autosave,
motor, areaDetector, s7nodave, MRF, and Open62541. We
make use of GitLab Continuous Integration (CI) for applying
custom patches, building each component and distributing
the resulting Debian packages via an internal APT repository.
The EPICS version and the available modules are exactly
the same across all EPICS servers.

IOC Structure
Typically, each IOC is represented by a repository in our

GitLab instance. While we make use of the makeBaseApp.pl
script, we also add an executable to the iocBoot/iocLinux
folder. By default, the executable is just called run.

The IOCs are grouped into accelerator-specific GitLab
groups. For devices which are used across both accelerators,
such as certain power supplies, a group for shared IOCs
exists. To simplify the IOC maintenance tasks in such cases,
two different start-up files and two different executables
run_flute and run_kara are stored, so that all other parts of
the IOC code are shared. A similar approach is taken in
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case multiple instances of one IOC are required, with each
instance getting a corresponding executable run_*.

This allows starting the IOC directly after being cloned
without any additional setup steps being required other than
building the IOC using make. In addition, it allows defining
certain run-time variables which can be used to simplify the
start-up files in case of multi-instance or multi-accelerator
IOCs. A README.md in the top directory typically covers
the overall mission of the IOC as well as technical details
regarding the record and start-up files, the relevant PVs and
information regarding the hardware interface, if one exists.

Recently we started making use of Python softIOC [7].
These Python-based IOCs follow a completely different and
less pre-defined structure, but we established the run_ioc.py
as the default executable script to run the IOC similar to
iocBoot/iocLinux/run for a regular C-based IOC.

Repository Features
With only a small number of people actively contributing

to IOC development, no strict rules and workflows are estab-
lished and it is left in the responsibility of the developer to
make sure that any code change is correctly working. At the
same time, especially for larger changes, using a Git branch
and a merge request review workflow can be leveraged. The
project specific issue tracker is used to track feature requests
and bug reports. For the future, an IOC project specific
automated CI pipeline is also foreseen to at least make sure
that the IOC builds without errors and the executable run
file(s) exists.

SALT INTEGRATION
To manage the IT infrastructure, the Salt project [8] has

been used for some years now. Salt is a Python-based, open-
source software for IT automation, remote task execution
and configuration management following the infrastructure
as code approach.

Salt State Files
The concept is based around the Salt master, a dedicated

server storing the so-called Salt state files (SLS). Each state
file can consist of multiple states, while each state describes
some configuration which can be applied to a target. Ex-
amples for such states are the installation of OS software
packages, managing configuration files for specific services
or executing remote commands. But also more complex fea-
tures, such as cloning code repositories, running web servers
or deploying containers are supported. Overall around 620
individual states are defined, distributed across around 200
SLS files.

The syntax of the state files leverages YAML, making it
human readable. In the Top state file, individual hosts or
groups can be targeted, defining which states will be applied
to which hosts. With the ability to include or require state
files in other state files, flexible targeting mechanisms, and a
templating engine for dynamic file handling, close to zero
manual interaction or maintenance is required across all

physical and virtual host systems. At the same time, scaling
up the number of hosts for already existing groups can be
done nearly effortlessly.

EPICS Server Configuration
An EPICS virtual machine server consists of around 500

individual states. Some of these states take care of the default
configurations, such as account management, SSH keys,
network mounts and software package roll out.

The EPICS specific states handle installation of our EPICS
distribution, environment settings, PV bash completion
scripts and a set of custom accelerator and site related Python
modules [9].

IOC Configuration
The IOC configuration consists of one file for each accel-

erator representing the single-source-of-truth for the IOC
deployment scheme.

Each entry in this file represents one IOC and must in-
clude a unique identifier for the IOC, the GitLab project
name and the target EPICS server in form of the hostname.
While these three parameters are enough for the full deploy-
ment, additional configuration parameters exist, which are
either pre-defined with sensible default values or are only of
informational character and therefore fully optional.

As most IOCs actually only run one instance, additional
parameters need to be configured for multi-instance IOCs.
Some parameters also dynamically change their default val-
ues based on other configuration parameters. For example,
if the type parameter is set to python, the default run-script
automatically changes to run_ioc.py. The group parameter
behaves similarly. For the KARA IOC list, kara is the de-
fault group, but if shared is used, the run-scripts defaults to
iocBoot/iocLinux/run_kara.

Table 2 shows the overview of the available IOC configu-
ration parameters.

Table 2: Possible Parameters of the IOC Salt Configuration.
m: Mandatory Parameter, d: Default Value for Most Cases,
o: Optional

Parameter Type Description

IOC name m
Git name m Repository name
Host m Target server
Run script d Default: run
Group d FLUTE, KARA, shared
Type d C or Python
Auto start d Start on host reboot?
Critical d Trigger alarm if not running?
Dependencies o For non-default .debs
Git Branch o For test periods of features
Documentation o External documentation
Description o Short IOC description
Repository o For non-default repository
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Figure 1: Workflow of the IOC deployment via Salt. Each arrow represents one component of the IOC environment
discussed in more details in the text.

SERVER DEPLOYMENT
While all EPICS servers have exactly the same EPICS

Base version, modules and extensions available, other rea-
sons exist to distribute the IOCs on multiple servers. One
reason is that direct communication with hardware, for ex-
ample via USB, may be required. Another reason lies in the
network layout, as only a specific host might have access to
a special sub-network, acting as a gateway. One example are
our digital cameras, which are all set up in a separate net-
work, with only the dedicated camera EPICS server having
access to this network. Table 3 shows an overview of the
EPICS environment in numbers.

Table 3: EPICS Environment in Numbers

KARA FLUTE

EPICS VM Servers 4 2
EPICS Physical Servers 1 2
Deployed IOCs 94 42
Deployed Services 11 10
PVs 80,000 12,000

OS Integration
For each IOC, around nine Salt states are applied, taking

care of the full deployment and integration of the IOC. While
Salt is crucial in rolling out the IOCs, once deployed, the
EPICS server and all IOCs are not relying on any external
connection or online management link. Rolling out an IOC
involves:

• Clone & build from code repository

• OS integration into systemd

• Create helper script

• Configure file integrity checks

• Setup remote monitoring script

Locally on the server, the IOC is registered in Ubuntu’s
service manager systemd. In addition, a helper script with
a name, which is unique across all IOCs, is set up in the
format ioc-<unique-ioc-name>. This system-agnostic script
allows the basic interaction with the IOC, without requiring
knowledge of any details of systemd and allows exchanging
the actual OS integration transparently, if required in the
future. Figure 1 shows the full deployment scheme.

Screen Session
The actual IOC runs inside a named screen session follow-

ing the same naming scheme as the helper script. Connecting
to the screen session is made possible with this helper script,
allowing access to the IOC’s terminal, if required.

File Integrity Checks
Typically, no manual adjustments to the deployed IOC

files are needed. But in the process of investigating bugs,
fixing issues or rolling out new features, it might happen that
local modifications are applied to the IOC source and might
be forgotten. Therefore, we also roll out local checks, which
periodically scan all IOC directories. They look for local
modifications, check that the Git branch is correct, compare
the build time to the last start time of the IOC, and query the
remote repository to see if the source code is up to date.

DISTRIBUTED IOC CONTROL
In addition to the helper script created for each IOC, we

use Salt to create and distribute another helper script, which
internally has the full list of IOC names and corresponding
EPICS servers stored. This helper script is distributed across
all EPICS servers and all operator terminals. It allows us-
ing commands such as ioc-manage ioc-<unique-ioc-name>
<command> from any server or terminal to interact with
the IOCs in the same way as if locally connected to the cor-
rect host. This script executes the given command via SSH,
knowing on which server the IOC is running. To reduce
latency and overhead for repeated usage of this script, SSH
connection pooling is used.
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IOC INTEGRATION
Leveraging the option to interact and check the status of

all IOCs from any EPICS server, we set up a meta-IOC,
which we named the Service Manager IOC. This IOC makes
use of the ioc-manage script to query the status and allows
starting and stopping each IOC.

A section of this IOC’s start-up file is automatically gen-
erated via Salt, with one call to dbLoadRecords() for each
configured IOC, providing all relevant information via macro
substitutions. After a new start-up file has been pushed to
the IOC, it is automatically restarted to pick up the changes
immediately.

Execute Device Support
The integration of the ioc-manage script into the Ser-

vice Manager IOC happens through the Execute device sup-
port [10], which was developed by aquenos GmbH on behalf
of KIT.

This development was motivated by the observation that
users often wanted to trigger actions outside the EPICS con-
trol system (e.g. send e-mails). Before this device support
was available, this was often done through the sub or aSub
record. Compared to the execute device support, this ap-
proach has two significant downsides: First, it requires at
least some basic knowledge of the C programming language.
Second, if not done properly, there is the risk of locking up
the whole IOC due to performing asynchronous actions (like
launching external programs) from the record’s processing
routine.

The Execute device support, in contrast, can easily be used
by any user who if familiar with running programs from the
shell. Data from EPICS can be passed through command-
line arguments, environment variables, or on the standard
input. Data from the executed program can be passed back
to EPICS through the exit code or the standard output or
standard error output.

Due to only relying on the operating system’s infrastruc-
ture for executing programs, this approach is completely
language-agnostic, so the user can use the programming
language that they prefer and with which they are already
familiar (e.g. shell scripts, Python, Perl, etc.). This is an ad-
vantage over language-specific solutions which run the user
code inside the EPICS IOC like pyDevSup [11] or asyn [12],
which both simplify the integration of custom code into
EPICS IOCs but still require some knowledge about the in-
ternal structure of EPICS and are tied to the Python or C
programming languages.

On a technical level, the device support provides output
records for passing data to the execute program and input
records for collecting data from the executed program, once
it has finished execution. In addition to that, execution of
the program can be triggered through a bo record.

The device support can operate in a mode where it waits
for the external program to finish execution and subsequently
triggers the processing of other records. This mode of opera-
tion is implemented trough asynchronous record processing,

so that the IOC is not locked up while waiting for the pro-
gram to finish execution.

The device support can also operate in a fire and forget
mode, where it starts execution of the external program, but
does not wait for this program to finish execution. In this
mode, the program’s exit status and output are not available,
so this is typically used when an external action shall be
triggered, but there is no need to pass any data back into
EPICS (e.g. when sending notification e-mails).

GUI
For the operator of the accelerator the most interesting

information is whether the IOC is actually running or not.
We therefore have an overview panel, where all 100+ IOCs
(at KARA) are displayed, including their status, buttons to
stop and start the IOC, and direct links to the source code
or documentation. In addition, the result of the file integrity
checks is reported and graphical hints indicating whether an
IOC is running on a development branch are shown, giving
both the operators and IOC maintainers quick access to a full
status overview of all IOCs. More information is displayed
in each tooltip, for example on which host the IOC is running.
Figure 2 shows an excerpt of the overview panel for KARA.

In a detailed panel for each IOC, all configuration and
run-time parameters are provided (see Table 2). Figure 3
shows one example.

We currently still use Control System Studio (CSS), and
therefore decided that adding new or removing obsolete
IOCs from the GUI integration has to be done manually,
which makes this the only manual step in the whole deploy-
ment. The automation effort on that level would be quite
high compared to the benefit, especially in the context that
IOCs are not added or removed on a daily basis and we are
planning a switch to the successor of CSS anyway.

Figure 2: Part of IOC overview panel.

MONITORING
As with every component in controls environments, global

monitoring and alarming should be considered.
Each IOC is therefore classified as either critical or non-

critical in terms of importance to the operation of the accel-
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Figure 3: IOC Details panel.

erator. Examples for non-critical IOCs are the ones which
are only used on demand, are still in development, testing or
evaluation phase, or only provide auxiliary information.

EPICS Alarming
As this parameter is also part of the IOC configuration

in Salt, we leverage this to dynamically define the severity
field of the status PV to be either MAJOR or NO_ALARM.
Our alarm server [13] will also get an updated alarm config-
uration via Salt and is restarted, if the service manager IOC
start up file is changed and therefore picks up this change
automatically. Due to how we set up our alarm tree and hier-
archy, a critical IOC which is not running will immediately
propagate to the top and will be very hard to miss for an
operator sitting in the control room.

Remote Monitoring
As our accelerators are in operation regularly without

operators being present in the control rooms, we also wanted
to have a remote monitoring option and external notification.
Our general IT monitoring tool, Checkmk [14], already looks
into CPU, memory and hard-disk space usage as well as
general health of IT hardware. It also provides the option
to include simple local checks which either result in 0 or
1 when executed. It was therefore quite straightforward to
generate an additional script per IOC via Salt during IOC
deployment, providing this information to Checkmk.

The general features of such an IT monitoring tool per-
fectly supplement the local monitoring: e-mail notifications,
if the IOC is in a critical state (not running) after a grace-
period, long-term tracking of uptime, and also monitoring
of the general health of the host system and thus indirectly
of the CPU and memory usage of the IOCs.

SUMMARY & FUTURE PLANS
The overall setup of our IOC management evolved

strongly over time. While running our IOCs in named screen

sessions and using the local helper scripts was already es-
tablished from the very beginning, it was still a manual job
at that time. But only with the introduction of a tool such
as Salt, it became feasible to increase the level of OS inte-
gration and add all the additional features summarized in
this paper. Deployments of IOCs are consistent, it is very
simple to add more IOCs and the status of each running IOC
is easily available to anyone.

With the current iteration is also scalable to any level:
It doesn’t really matter if we manage 50, 100 or 1000s of
IOCs in this way. At the same time, as neither the IOC
nor EPICS need any modifications to run this system it can
be and actually is also used for other services, which share
similar characteristics to the IOC structure. Still, there are
even more features planned:

IOC Creation
Currently, creating a new IOC is a manual process, al-

though the actual steps involved are always the same. The
idea here is to fully automate this process, which includes
applying our few custom modifications to the basic IOC
layout, selecting the desired EPICS modules, and creating
the GitLab project, This way, consistent templates for IOC
documentation and automatic testing can also be provided.

Continuous Integration
At the moment, the individual IOCs do not use CI features.

We want to at least add some build checks and publication
of the local IOC documentation.

Automated GUI Creation
Currently we have to create the CSS GUI integration man-

ually. As we are planning to transition to the successor
Phoebus [15] soon, we plan to re-evaluate the options to also
fully automate the panel creation.

Embedded IOCs
We nowadays run well over 40+ IOCs on embedded hard-

ware. Depending on the manufacturer, a certain level of ex-
ternal control and status checking of the embedded IOCs is
possible, but this is not consistent. With some manufacturer-
specific adjustments, we could very much apply a similar
level of management using the same approach and integra-
tion as with our own IOCs and services.

Containerized IOCs
While to a certain degree our layout can be seen as a light

version of a containerized IOC setup, there of course are
additional benefits to using a true container, such as IOC
specific EPICS environments. Changing to a full container
workflow can easily be done by only adjusting the OS inte-
gration level. At the same time, we do not see a dramatic
benefit of doing so, as the dynamic scalability of processing
capabilities and hosts is not required and our setup actually
is rather static. But it still being considered as a potential
option for the future.
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