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Abstract 

End-of-Life (EOL) products in remanufacturing are prone to a high degree of uncertainty in terms of product 
quantity and quality. Therefore, the industrial shift towards a circular economy emphasizes the need for agile 
and hybrid disassembly systems. These systems feature a dynamic material flow. Besides that, they combine 
the endurance of robots with the dexterity of human operators for an effective and economically reasonable 
EOL-product treatment. Moreover, being reconfigurable, agile disassembly systems allow an alignment of 
their functional and quantitative capacity to volatile production programs. However, changes in both the 
system configuration and the production program to be processed call for adaptive approaches to production 
control. This paper proposes a multi-priority rule heuristic combined with an optimization tool for adaptive 
re-parameterization. First, domain-specific priority rules are introduced and incorporated into a weighted 
priority function for disassembly task allocation. Besides that, a novel metaheuristic parameter optimizer is 
devised to facilitate the adaption of weights in response to evolving requirements in a reasonable timeframe. 
Different metaheuristics such as simulated annealing or particle swarm optimization are incorporated as 
black-box optimizers. Subsequently, the performance of these metaheuristics is meticulously evaluated 
across six distinct test cases, employing discrete event simulation for evaluation, with a primary focus on 
measuring both speed and solution quality. To gauge the efficacy of the approach, a robust set of weights is 
employed as a benchmark. Encouragingly, the results of the experimentation reveal that the metaheuristics 
exhibit a notable proficiency in rapidly identifying high-quality solutions. The results are promising in that 
the metaheuristics can quickly find reasonable solutions, thus illustrating the compelling potential in 
enhancing the efficiency of agile disassembly systems.  

Keywords 

Adaptive Production Control; Metaheuristics; Disassembly; Agile System; Priority Rules 

1. Introduction

Remanufacturing is a vital method to close the loop in circular supply chains by increasing material 
efficiency and optimizing resource consumption [1]. In this process, End-Of-Life (EOL) products undergo 
disassembly into individual components, which are subsequently recovered and reassembled to create a 
product with restored quality and functionality, resembling a "like-new" state [2]. However, the 
implementation of efficient remanufacturing systems comes with many domain-specific challenges that 
make the planning and operation of such systems more complex than in most conventional production 
systems [3] [4]. Especially the disassembly processes are of complex matter [5], as there is a high degree of 
uncertainty regarding the type, quantity and quality of incoming EOL products [6]. Therefore, disassembly 
processes are merely conducted manually in remanufacturing, which limits its economic feasibility, 
especially in high-wage countries [7].   
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The distinctive features of product disassembly impose specific requirements on the design of efficient 
disassembly systems. Especially the synergetic integration of manual and automated workstations is of 
essence for an economical disassembly [7]. High flexibility in all components of the system is required 
including a modular structure, hybrid workstations, flexible material flow and flexible tools [7]. Agile 
disassembly systems  realize these attributes by focussing on the integration of flexibly automated resources 
in a hybrid factory to deal with varying product specifications [8]. The concept is based on the idea of 
combining learning robots with human operators to increase productivity and reduce operative costs while 
maintaining enough flexibility to deal with inherent uncertainties. Robots with cognitive abilities and 
problem-solving competencies take over suitable disassembly tasks from human operators but are backed 
up manually in case of operational failures. A modular system structure with loosely linked disassembly 
stations allows for a flexible material flow to realize product instance-specific routings. Besides that, the 
system can adjust its capacity to volatile production programs by adding, removing or substituting stations. 
This enables the system to reconfigure and adapt to changing events throughout multiple production periods 
[8]. While the hybrid system architecture poses a prerequisite for efficient disassembly, a suitable planning 
and control system is vital to exploit the additional degrees of freedom.  

To overcome the challenges in agile disassembly systems, a control system must aim to resolve the following 
requirements: The control system must (A) manage a highly flexible and dynamic material flow, as the 
redundancies in the system allow many routing alternatives while coping with complex system and order 
states. Besides that, the control system must (B) adapt to different system configurations and loads to ensure 
good allocation decisions in a continuously changing system environment due to frequent system 
reconfigurations. As the high degree of uncertainty in remanufacturing leads to ineffective production plans 
[9], this paper neglects predictive schedules and focuses on reactive order allocation.  

2. Related Work

Disassembly planning and control is a broad research field with a rising interest in the last decades [10]. 
Nevertheless, there is limited research available on appropriate methods that address the specific challenges 
in agile disassembly systems. Available approaches are either too rigid for reactive control tasks, neglect 
hybrid systems or do not focus the organizational level and don’t scale for disassembly systems with multiple 
stations. Tang et al. propose a promising solution to simultaneously control the disassembly sequence and 
the allocation of operations and stations [11]. The approach is dynamic in a way that it doesn’t rely on an 
initial disassembly plan. However, tasks are not distributed among different stations, as all stations have the 
functional capacity to fully disassemble a discarded product. Concerning the allocation of operations to 
specific disassembly stations, Kim et al. state as well that predefined disassembly plans are rarely effective 
as actual system states mostly diverge from the planned system states [12,13]. Therefore, they propose an 
approach where the initial disassembly plan is rerouted in case of occupied stations or machine failures. In 
contrast, Hrdina and Zülch state that merely rescheduling a predefined disassembly schedule isn’t sufficient 
to cope with the high degree of uncertainty in a disassembly system, as often systematic changes have to be 
implemented for further scheduling. Instead, decisions should be made dynamically and individually for 
each operation [14]. They introduce a dynamic control system for a manual disassembly line which enables 
a simulation-based optimization of operations. Stations can adjust disassembly operations or methods and 
operations can be shifted to subsequent stations. Paschko et al. identify that static measures for material 
release control such as ConWIP result in efficiency losses when applied in highly uncertain environments of 
disassembly systems [15]. Instead, they propose an adaptive control logic based-on reinforcement learning, 
which takes system information into account. In [16] a dynamic control logic is proposed for agile hybrid 
disassembly systems. It balances the allocation of disassembly tasks between a flexible robot and a human 
operator considering different quality conditions of discarded products. The approach is based on Deep Q-
Learning which shows promising results in reducing operational failures and reducing operational costs and 
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system makespan when compared with a priority rule heuristic. The investigated system and the control 
problem are close to the setting at hand. However, the deployed reinforcement learning agent requires 
retraining and tuning after the disassembly system is reconfigured, limiting its adaptivity and applicability 
in practice.  

Heuristic priority rules (PR) are often used as a simple means to control the material flow in conventional 
production systems [17]. Using priority rules to make individual, self-organized and robust routing decisions 
(see [18]) can be suitable for agile disassembly systems. However, no singular priority rule optimizes the 
material flow over all possible system configurations [17]. Hence, multiple rules can be combined through 
a parametrization to depict a more diverse control mechanism and allow adjustments of the control via 
reparameterization.  Typically, priority rules are applied to sequencing problems, with only a few relevant 
approaches explicitly exploring them for order-to-station allocation problems in flexible job shops.  In 
[19] and [20] stations are enabled to select the next order they process from a set of pending orders. The
selection is based on priority rules. Stecke et al. conclude that the effectiveness of priority rules is highly
dependent on the system configuration while Xanthoplous et al. emphasize that a combination of rules yields
favourable results [19,20]. In [21] and [18] an operation selects the next station it is being processed on. In
these cases, the usage of priority rules leads to an increased system performance compared to a random
station allocation. In the scope of product disassembly, Guide et al. present an approach, that uses priority
rules for disassembly sequence planning to determine the processing order in the input buffer of a
disassembly station [22]. In general, however, the usage of priority rules is very limited.

Even though disassembly control is a vibrant research topic, to the best of the authors’ knowledge, only a 
few existing approaches are suitable to control agile disassembly systems. Priority rules on the other hand 
are a well-established means in flexible job shops, but, despite their promising potential, they haven’t been 
applied to flexible disassembly shops yet. Following this research deficit, a novel adaptive control logic for 
agile disassembly systems based on heuristic priority rules is proposed in this work. First, domain-specific 
priority rules are presented, which are fused in a weighted sum to result in a joint priority score. Weights are 
optimized according to the target criteria, urging for near-optimal foresighted order allocation decisions in a 
complex disassembly environment (A). To account for adaptivity, the logic is furthermore extended by a 
metaheuristic optimization module to re-parameterize the control system after changes in system 
configuration (B). 

The remainder of this paper is structured as follows: Section 3 presents the agile control approach, 
comprising the system architecture, the rule-based control module and the module for system re-
parameterization with five different optimization algorithms. In section 4, the different algorithms are 
validated and compared by efficiency and solution quality. Eventually, section 5 concludes the paper with a 
summary and outlook on future work.  

3. Approach

The proposed approach builds on the system architecture depicted in Figure 1. It encompasses a model of 
the agile disassembly system including an executable discrete-event simulation. Combined with the control 
system module determining the material flow, the Operation perspective is marked. Additionally, to 
accommodate reconfiguration capabilities, a Reconfiguration perspective is introduced, featuring a system 
configurator and a control optimizer for the control system. Unlike the control system, both modules 
strategically adjust the system at designated time points without direct interference during system operations. 
Given a production program comprising multiple subsequent production periods, the system is typically 
adapted between these periods in two steps. First, a new system configuration is generated by a system 
configurator with functionalities like capacity and layout planning, enabling structural adaption. Second, the 
control optimizer adapts the control system for a logical adaption using an image of the new system 
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configuration. In the following, the focus is on the system model, the control system and the control 
optimizer, which will be described in detail. Due to limited scope, the system configurator will not be 
extensively covered in this paper. However, a compatible approach can be found in [23]. 

3.1 System Model  

In its basic features, the agile disassembly system is based on the model established in [16]. However, the 
model is slightly extended, hence, modifications will be specifically highlighted in the following. 

The agile disassembly system pursues to disassemble a set of orders 𝑂 = (𝑜1, 𝑜2, … ), predefined by a given
production program and released to the system. The overall aim of the disassembly system is to maximize 
the number of fully disassembled orders given a defined amount of resources. To fully disassemble an order, 
product-specific disassembly tasks must be processed. The set 𝑇𝑠𝑘𝑠𝑖 = (𝑡𝑠𝑘𝑖,1, 𝑡𝑠𝑘𝑖,2, … ) denotes the sum
of all possible disassembly tasks throughout the entire disassembly process of order 𝑜𝑖. However, it is not
always necessary to process all tasks in 𝑇𝑠𝑘𝑠𝑖 , as alternative disassembly sequences are possible. Let
𝑇𝑠𝑘𝑠𝑖,𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = (𝑡𝑠𝑘𝑖,1, 𝑡𝑠𝑘𝑖,2, … ) be the set of all disassembly tasks of order 𝑜𝑖 that can be processed at the
current time. The orders are processed by a set of stations 𝑆 = (𝑠1, 𝑠2, … ) which can be adjusted between
production periods. Each station has a different set of capabilities so that the disassembly system can adjust 
its functional and operational capacities to new requirements by reconfiguring itself. The capabilities of 
station 𝑠𝑗 can be denoted as 𝐶𝑎𝑝𝑗 = (𝑡𝑠𝑘1, 𝑡𝑠𝑘2, … ). Meanwhile, the set of stations that are capable of
processing task 𝑡𝑠𝑘𝑖  is noted as 𝐸𝑛𝑎𝑏𝑖 = ( 𝑠1, 𝑠2, … ). A specific instance of a task, when executed on a
station, marks an operation 𝑜𝑝𝑖.

The simulation includes order-specific processing times and failure rates. The product structures and 
corresponding disassembly tasks are modelled and organized by disassembly Petri nets, similar as proposed 
in [11,24]. As the state of EOL products can strongly differ when entering a disassembly system, quality 
classes are introduced to better depict reality. The quality class influences the processing times, operation 
failure rates and the capability of a station to perform a task.  

To account for the hybrid nature of the disassembly system, three distinct station types with varying 
capabilities and attributes are introduced. The first type are Manual Stations (MS), which rely on human 
operators and possess the ability to perform all disassembly operations. Although they offer the highest level 
of flexibility, operating these stations can be costly. The second type, Automatic Stations (AS), stand out 
due to their rapid and nearly deterministic operation times. However, their capabilities are limited to routine 
tasks and disassembling products that are in good condition. Conversely, Robotic (Learning) Stations (RS) 
gradually extend the scope of automatic resources. Equipped with flexible tools and cognitive abilities, RS 
are capable of assuming a broader variety of tasks. Moreover, they can effectively solve minor problems and 

Figure 1: Overview of the system architecture 
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autonomously deal with anomalies which is prerequisite for many disassembly tasks. In addition to the 
individual station instances, an integral part of the system is the employment of automated guided vehicles 
(AGV), which facilitate the transportation of orders between the stations [25]. 

Overall, the introduction of these three station types, namely MS, AS and RS, along with the use of AGV, 
enables an effective and efficient operation of the disassembly system. 

3.2 Control Logic 

Released disassembly orders are initially vacant and require an allocation decision including both the next 
disassembly task and the next station for the next disassembly operation. In most cases, multiple disassembly 
tasks ∀𝑡𝑠𝑘𝑖 ∈ 𝑇𝑠𝑘𝑠𝑖,𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒  can be processed by several stations ∀𝑠𝑗 ∈ 𝐸𝑛𝑎𝑏𝑖, making the decision very 
complex. Each allocation option can be described as a tuple (𝑡𝑠𝑘𝑖, 𝑠𝑗) corresponding to a specific operation 
denoted 𝑂𝑝𝑖,j. To select the optimal operation, multiple priority rules Π are used to calculate individual rule-
specific scores 𝑣𝑘 ∈ ℝ, 𝑣𝑘 ∈ [0,1]. Thereby, each π ∈ Π = [π1, π2, … , π𝐾] is given a weight 𝑤𝑘 for scaling 
and to foster the rule-specific importance, while ∑ 𝑤𝑘 = 1 needs to be respected for a convex combination 
of the individual weights. Eventually, for each operation, a total score 𝑣Total(𝑂𝑝𝑖,𝑗) can be facilitated by a 
weighted sum to identify the most suitable operation:  

𝑣𝑇𝑜𝑡𝑎𝑙(𝑂𝑝𝑖,𝑗) = ∑ 𝑤𝑘𝑣𝑘

𝐾

𝑘=1

 (1) 

The main goal of the agile disassembly system is to unburden human operators and effectively integrate 
automated resources while increasing the productivity of the system. Therefore, the main performance 
indicators for the agile disassembly system are throughput - if time is limited - or makespan - if the order 
backlog is limited. Appropriate priority criteria need to balance operational and tactical preferences to 
improve said performance indicators. Thus, the following three rules are presented:  

Lowest Buffer Utilization (LBU) scores stations by the number of orders that are in the input- and output 
buffer of a station. This is done by calculating the relative proportion of buffer spaces occupied. Hereby 
𝑐𝑎𝑝𝑗 denotes the maximal buffer capacity of station 𝑠𝑗 and 𝑜𝑐𝑢𝑝𝑗,𝑖𝑛/𝑜𝑢𝑡 the occupied input and output buffer.  

𝑣𝐿𝐵𝑈(𝑂𝑝𝑖,𝑗) =
𝑐𝑎𝑝𝑗 − (𝑜𝑐𝑢𝑝𝑗,𝑖𝑛 + 𝑜𝑐𝑢𝑝𝑗,𝑜𝑢𝑡)

𝑐𝑎𝑝𝑗
 (2) 

Lowest Station Cost (LSC) prioritises stations based on their costs. These can be hourly costs or simply 
relative cost rates. The station costs of station 𝑠𝑗 are denoted as 𝑐𝑗. For scaling, it is set into relation with 
the highest station costs 𝑐𝑚𝑎𝑥 and the lowest station cost stations 𝑐𝑚𝑖𝑛 of all deployed stations (min-max 
normalization).  

𝑣𝑆𝐶𝑅(𝑂𝑝𝑖,𝑗) =
𝑐𝑚𝑎𝑥 − 𝑐𝑗

𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛
 (3) 

Finally, Shortest Processing Time (SPT) calculates the mean processing times of certain disassembly tasks 
on specific stations. Stations with shorter processing times are preferred. Unlike the previous two, SPT is a 
common priority rule, well-known in the scheduling literature [26]. However, while conventional 
approaches usually consider deterministic processing times, this approach builds on historic data to 
account for uncertainty. Thus, a rolling window of the last operations is used to calculate 𝑡𝑖,𝑗

𝑎𝑣𝑔, the mean 
and expected processing time of 𝑡𝑠𝑘𝑖  processed on stations of the same type as 𝑠𝑗. For a normalized score 
𝑣SPT, 𝑡𝑖,𝑗

𝑚𝑒𝑎𝑛 is compared with the maximum 𝑡𝑖,max
𝑚𝑒𝑎𝑛 and minimum 𝑡𝑖,min

𝑚𝑒𝑎𝑛  mean processing times for tski of 
all capable stations:  
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𝑣𝑆𝑃𝑇(𝑂𝑝𝑖,𝑗) =
𝑡𝑖,𝑗

𝑚𝑒𝑎𝑛

𝑡 𝑖,𝑚𝑎𝑥
𝑚𝑒𝑎𝑛 − 𝑡𝑖,𝑚𝑖𝑛

𝑚𝑒𝑎𝑛 (4) 

The given priority rules have broad applicability, suitable not only for remanufacturing but also for agile 
production systems. However, the control system is not limited to them but can also incorporate other rules 
that are common in linear production. The given ones are chosen as examples due to their ability to balance 
system utilization and cost-effectiveness-to-throughput ratio under uncertainty, an emerging challenge 
closely associated with the proliferation of  hybrid disassembly systems. 

Through changes in the system configuration and the production program, a shift in the optimal 
parametrization is observable. Figures 1-3 depict the changes in the system efficiency of individual 
parametrizations that result from changes in the production system. All figures show the exhaustive convex 
solution space for all possible weight combinations, based on an individual system configuration. Each point 
in a figure represents a parametrization 𝑤 which was simulated 20 times to account for stochastic behaviour. 
The colour indicates the number of orders which were disassembled during an eight-hour shift. Additionally, 
the red circle marks parametrizations that yield results within 2.5% of the found optima. Figure 2a 
corresponds to systems with a high proportion of MS in the system configuration. Figure 2b is generated 
from a system with many orders from low-quality classes which must be disassembled. Figure 2c depicts 
the influence of the order release. A ConWIP logic is used in all cases, while in case of Figure 2c, the fixed 
WIP-limit is reduced by half.  

This paper aims to enable the control system to adapt its parametrization and thereby optimize the material 
flow individually for every time period. This way the flexibility of the agile disassembly system can be 
leveraged more optimally.  

To re-optimize the parametric control, four different metaheuristics are implemented and compared against 
a robust parameter set. The metaheuristics can be classified as population-based and local search methods 
[27]. A grid search was applied to all metaheuristics to determine the optimal parameter configuration. 

Simulated Annealing (SA) is a local Search Metaheuristic that is based on the cooling behaviour of metals 
[28]. It distinguishes itself from other local search methods by accepting worse solutions with a defined 
probability influenced by an iteratively changing temperature. By gradually decreasing the temperature, the 
algorithm transitions from exploration to exploitation. Contrarily Particle Swarm Optimization (PSO), 
Evolutionary Algorithms (EA) and Artificial Bee Colony (ABC) are population-based metaheuristics,  

Figure 2: Amount of fully disassembled orders for different system configurations (a) High proportion of MS, b) 
Many low-quality orders, c) Low WIP-limit) depending on parametrization – Red border indicates parametrizations 

that are within 2.5% of the best solution 
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however, all of them utilize different search strategies. PSO mimics the movement of animal groups by 
moving the population throughout the search space [29]. Hereby the movement is influenced by the best 
solution for each entity and the best solution for the population. EA is based on the principle of natural 
selection [30]. Through three basic operations; selection, crossover and mutation, the fitness of the 
population is incrementally increased. Lastly, ABC additionally combines aspects from local search and 
random search as the neighbourhoods of the best solutions are predominantly searched and non-improving 
solutions are periodically reinitialized randomly [31]. 

4. Validation

To evaluate the effectiveness of a dynamic reparameterization of the production control, six use cases were 
defined each simulating an eight-hour shift. The use cases differ in their production program, machine setup 
and release mechanism. Due to the high complexity of fully depicting all modifications and the limited scope 
of the paper, only a qualitative description of the modifications is given in Table A1. All simulations consider 
six different products for disassembly, each with a different number of quality classes (ranging between 3 
and 5), which additionally influence processing times and the capabilities of machines. As mentioned above 
the costs to operate MS (10 cost units) are costlier than RS (7 cost units) and AS (5 cost units). The products 
are also distinguishable through different degrees of complexity as the number of components and alternative 
disassembly sequences can change. To benchmark the effectiveness of the optimizers, the results are 
compared with a robust, however static parametrization. This parametrization corresponds to w = (1

3
, 1

3
, 1

3
) 

and was determined by selecting the best static parametrization throughout the six use cases. The 
hyperparameters for each metaheuristic were optimized through a grid search in an area guided by related 
literature and preliminary experiments. Each optimizer is evaluated through the mean number of fully 
disassembled orders which is calculated by a sample of five simulation replications per use case with varying 
seeds to account for stochasticity. The overall increase in system efficiency is presented in Table 1. 

Firstly, all optimizers outperform static parametrization, which indicates that adaptive control is beneficial. 
The degree of improvement strongly depends on the considered use case. This can be explained by the fact 
that in some cases the robust parameters are close to the optimum and further improvement is simply not 
possible (e.g., use case 1). However, in other cases a change in parametrization results in large improvements 
(e.g., use case 6). Especially in cases where the RS and AS can only execute a small proportion of the overall 
tasks, it is vital to utilize these stations as much as possible. This often requires case specific adjustments to 
the parametrization, hence creating possibilities of improvement through optimization. Focussing on the 
mean improvement, the ABC provides the best results and the EA the smallest amount of improvement. 
Nevertheless, except for the EA, all optimizers are within a span of 2%. This motivates to additionally take 
the convergence speed of each algorithm into account. 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Mean 

Robust Parameters 732.2 1016.8 1474.4 578.6 4243.2 741.4 0.00% 

Simulated Annealing 718.4 
(-1.88%) 

1053.8 
(3.64%) 

1550.2 
(5.14%) 

670.2 
(15.83%) 

4490.0 
(5.82%) 

1029.6 
(38.87%) 11.24% 

Particle Swarm 
Optimization 

739.8 
(1.04%) 

1063.6 
(4.60%) 

1512.4 
(2.58%) 

660.6 
(14.17%) 

4523.4 
(6.60%) 

1013.4 
(36.69%) 10.95% 

Artificial Bee Colony 
Optimization 

729.2 
(-0.41%) 

1087.0 
(6.90%) 

1550.2 
(5.14%) 

664.8 
(14.90%) 

4514.4 
(6.39%) 

1031.6 
(39.14%) 

12.01% 

Evolutionary Algorithm 705.4 
(-3.66%) 

998.8 
(-1.77%) 

1543.6 
(4.69%) 

624.4 
(7.92%) 

4365.2 
(2.88%) 

984.6 
(32.80%) 

7.14% 

Table 1: Mean number of orders fully disassembled by metaheuristic after optimization – Percentual efficiency 
increases compared to robust parameters indicated in brackets  
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Figure 3 exemplary illustrates the development of the current best-found solution throughout the algorithm. 
The fitness value is plotted against the number of performed simulation runs. As each evaluation of a 
parametrization requires one simulation run, this unit of measurement allows comparing the different 
metaheuristics. An analysis based on the number of iterations isn’t possible since population-based 
approaches require multiple function evaluations per iteration compared to local search methods. 

The fitness values of Figure 3 do not strictly mandate the results that are seen in Table 1. As the simulation 
is stochastic, a high fitness during optimization does not inevitably ensure a good outcome in the actual 
production period. The convergence speed is also quantitively analysed in Table A2 by taking the mean 
number of simulation runs required to overcome the threshold of within 2% of the best-found fitness value. 
It can be said that the EA yields the slowest improvement of the optimizers, which confirms the prior findings 
from Table 1. The results of SA, ABC and PSO are comparable. SA seems to converge faster than the 
population-based approaches throughout the use cases 1-5, but the discrepancy in use case 6 is significant. 
This could be interpreted as a statistical outlier or a possible edge case described in use case 6. Nevertheless, 
SA and PSO demonstrate a high convergence speed on average. 

5. Conclusion

This paper comprises a model and control system for agile hybrid disassembly systems in remanufacturing. 
In order to boost the system efficiency, a combined priority rule approach that reactively allocates 
disassembly orders to suitable stations has been proposed. The approach shows promising results while 
posing a suitable method for industrial practitioners due to its intelligible nature and domain-specific 
expandability. Besides that, the combination of multiple priority rules is to be highlighted at this point, as it 
yields better results than conventional uni-criterial approaches in complex environments such as the 
disassembly domain. Besides that, it is shown that logical adaptions must follow structural adaptions in case 
of a system reconfiguration, for which reason, the approach was extended by a simulation-based 
metaheuristic parameter optimizer.  While all reparameterizations outperform the robust parameters, ABC 
produces the best results. However, PSO and SA require less time to achieve a reasonable outcome.  

While preliminary experiments indicated that the selected priority rules (𝐿𝑆𝐶, 𝐿𝐵𝑈, 𝑆𝑃𝑇) yield good results, 
further rules should be incorporated to potentially enhance effectiveness. In particular, a multi-priority rule 
heuristic based on more than three rules should be investigated. Besides that, a comparison with more 
sophisticated generalized control approaches such as RL-based allocation agents could reveal interesting 
findings. Eventually, the approach should be validated on a real scenario to bridge the gap to 
industrialization.  
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