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1. Motivation

Manufacturing planning and control comprises all activities 
associated with ordering and allocating tasks in industrial value 
creation processes to available resources and acquiring and 
configuring those resources. To manage the complexity of 
manufacturing planning and control, companies have created 
different functional departments concentrated on specific tasks 
like logistics planning and control, production network 
planning, layout planning and order scheduling. In past 
decades, digital models have increasingly been used to make 
decisions in these complex tasks [1, 2]. More recently, these 

models are being connected to live data sources, to provide 
faster planning and address the volatility of today's world [3]. 
These models that are continuously synchronised with the 
system they represent and used for decision-making in those 
systems are called digital twins [4]. While developing digital 
twins in manufacturing planning and control is promising, two 
main challenges are not yet fully addressed. First, even though 
stochastic and scenario-based models exist, the uncertainty 
regarding future developments in real life scenarios is 
challenging to capture [5]. Second, many tasks are ambiguous 
and can be understood differently depending on the perspective
[6]. While different functional departments in producing 
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companies allow the consideration of several perspectives, the 
interaction between those perspectives is often limited to the 
exchange of singular agreed-upon decisions and not the full 
scope of possibilities considered in the planning tasks.

To overcome these issues, this contribution proposes the 
concept of the daydreaming engine, which enables the 
intelligent interaction of multiple model-based decision-
making processes. The concept of the daydreaming factory, 
defined as "using […] a digitised representation of a system 
based on engineering models, conducting reveries by 
generating multiple scenarios and gathering insights from the 
potential outcomes", is incorporated to address planning and 
learning in uncertain situations [7]. A system of interconnected 
models must acknowledge different interactions between 
organisational functions. Additionally, it must be compatible 
with a continuously developing landscape of decision support 
tools. Therefore, this contribution seeks to answer the 
following research questions:

1) How can multiple models owned by different parts of 
an organisation be integrated to enable cross-functional 
information exchange?

2) How can such models interact flexibly to reflect the 
nature of interactions between different parts of 
organisations throughout their process landscape?

3) How can a system of models be implemented in large 
organisations while prioritising utility?

The rest of this contribution is structured as follows. Section 
2 provides an overview of relevant related work. Section 3 
details the daydreaming engine concept. Section 4 provides an 
overview of an ongoing industrial application and discusses
specific use cases. Finally, section 5 provides a conclusion and 
an outlook to future research.

2. Related Work

Quantitative models already have a long history of 
application in industrial production. Such models are always a 
simplification of a specific system designed for a defined 
purpose. According to the expressivity of their results, they can 
be categorised as descriptive, analytical, predictive and 
prescriptive models [8]. For planning and control of production 
systems, descriptive models are used to structure information, 
for example, as dashboards or data models [9]. Analytical 
models link system behaviour to external influences and 
educate the decision-maker [10, 11]. There are many 
applications for predictive models. Such models are used to 
plan factory layouts, determine bottlenecks, test control 
algorithms, and guide investment decisions in new lines [1]. On 
a network level, they can assess risks, forecast demands and 
plan networks. The most common implementation techniques 
are discrete event simulation and agent-based simulation, but 
many other specific techniques exist. Prescriptive models 
predict future behaviour and provide a preferred decision 
alternative. They are used for problems where the decision 
situation can be entirely formalised, such as scheduling
decisions, route planning within and between plants, allocation 
of production orders, and even investments [2].

The issue of enabling more intelligent decision-making 
using models has been at the forefront of several research 

streams. The cyber-physical production system describes a 
sensor-equipped system that interacts continuously with a 
range of software systems and, for example, supports 
scheduling [10]. Digital twins have received much attention 
and describe the comprehensive model-based representation of 
systems synchronised with their physical counterparts [4, 12]. 
In some research, the term digital twin is also extended into 
model-based control systems, i.e., systems where the makeup 
of the physical counterpart is automatically shaped by the 
digital model [3]. Such systems have been realised mostly on a 
machine or line-specific level, though concepts for use in entire 
supply chains exist [13]. In research on managerial decision-
making, a focus has been on providing collaborative and 
distributed decision-making [14]. Different decision support 
systems have been proposed, even with a modular structure, 
that allow the implementation of multiple different models [8, 
15]. Finally, the term daydreaming factories was introduced to 
refer to intelligent multi-model systems that continuously use 
dormant computing capabilities to improve production systems 
[7]. Previous research has studied the interaction between 
different models [16, 17], though that research has been 
primarily descriptive, focused on specific types of models, and 
not on the realisation of such interconnected systems. Overall, 
while several approaches to improve decision making in 
manufacturing planning and control exist, a methodology to 
connect multiple different models intelligently is still missing.

3. A Daydreaming Engine Concept

The daydreaming engine is a system to coordinate the 
interaction between different decision-support tools within an 
organisation. It interacts with multiple models described in 
section 3.1 and consists of a database detailed in section 3.2 and
multiple modules, as shown in Figure 1. It allows for different 
model interaction types discussed in section 3.3. This 
daydreaming engine is not a monolithic multipurpose solution;
thus, implementation will likely occur in a brownfield scenario. 
Section 3.4 lays out the implementation procedure, depending 
on the starting point of a particular organisation.

The first module is a database containing data from the 
production network characterising the system's current state 
and modelling results characterising different possible 
scenarios. It is described in more detail in section 3.2.

The engine controller represents the centre of the 
daydreaming engine. It monitors changes in the database and 
interacts with the models through the pub/sub-event handler 
and the request-response handler. It also interacts with the 
meta-modelling module and the calibration engine. The main 
task of the controller is to prioritise and schedule different 
model experiments based on the available computational 
capacity as well as the urgency of the task.

The pub/sub-event handler facilitates model interaction
using the publish/subscribe principle by raising change events
and notifying the subscribed models. The request-response 
handler allows calling specific model instances in specific 
settings to gather cross-functional knowledge. Both modules 
are discussed in more detail in section 3.3.

Metamodelling, or surrogate modelling, describes using
simplified, computationally efficient models to approximate 
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the results of more complex models [18]. Those models can 
allow for the timely provision of results for specific inputs and 
the creation of efficient prescriptive models from predictive 
models [18]. In the Daydreaming Engine, the meta-modelling 
module coordinates the training of metamodels based on 
specific optimisation or simulation models. 

The calibration and validation of models is crucial for 
effective model-based decision-making. In the daydreaming 
engine, this task is managed by the calibration engine, which 
ensures that modelling results match reality as closely as 
possible. The calibration engine monitors whether the model 
results match the results of the real system or other more 
detailed models. It uses specific interfaces for different models 
and types of calibration data to provide on-demand calibration 
services. When specific validity thresholds are defined, it may
demand calibration of specific models, thus separating the 
responsibility for model use and validity checking.

Figure 1: Architecture of the Daydreaming Engine

3.1. Models & Perspectives

The models considered in this architecture are predictive 
and prescriptive. A predictive model 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 transforms a set of 
parameters, describing the configuration 𝑃𝑃𝐶𝐶,𝑠𝑠, of the system 𝑠𝑠
the state of the environment 𝑃𝑃𝐸𝐸,𝑠𝑠 and model parameters 𝑃𝑃𝑀𝑀,𝑠𝑠
into the predicted system behaviour, which consists of the 
system's predicted state 𝑧𝑧𝑠𝑠 and relevant outputs 𝑦𝑦𝑠𝑠:

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑃𝑃𝐶𝐶,𝑠𝑠, 𝑃𝑃𝐸𝐸,𝑠𝑠, 𝑃𝑃𝑀𝑀,𝑠𝑠) = (𝑧𝑧𝑠𝑠, 𝑦𝑦𝑠𝑠) (1)

A prescriptive model performs a transformation 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝 on 
the set of fixed system parameters 𝑃𝑃𝐶𝐶,𝑠𝑠′ , the state of the 
environment 𝑃𝑃𝐸𝐸,𝑠𝑠 , model parameters 𝑃𝑃𝑀𝑀,𝑠𝑠 and desired 
outcomes 𝑑𝑑(𝑌𝑌) , returning the selected set of system state 
parameters 𝑃𝑃𝐶𝐶,𝑠𝑠∗ and the associated system behaviour (𝑧𝑧𝑠𝑠∗, 𝑦𝑦𝑠𝑠∗):

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝(𝑃𝑃𝐶𝐶,𝑠𝑠′ , 𝑃𝑃𝐸𝐸,𝑠𝑠, 𝑃𝑃𝑀𝑀,𝑠𝑠, 𝑑𝑑(𝑌𝑌)) = (𝑃𝑃𝐶𝐶,𝑠𝑠∗ , 𝑧𝑧𝑠𝑠∗, 𝑦𝑦𝑠𝑠∗) (2)

Each of the models is assumed to be a partial digital twin, 
i.e. a subset of the configuration parameters 𝑃𝑃𝐶𝐶,𝐴𝐴,𝑠𝑠 ⊂ 𝑃𝑃𝐶𝐶,𝑠𝑠 and a 
subset of environment parameters 𝑃𝑃𝐸𝐸,𝐴𝐴,𝑠𝑠 ⊂ 𝑃𝑃𝐸𝐸,𝑠𝑠 is determined 
automatically absent input from the user. The parameter sets
provided manually by the users are 𝑃𝑃𝐶𝐶,𝑀𝑀,𝑠𝑠 ⊂ 𝑃𝑃𝐶𝐶,𝑠𝑠 and 𝑃𝑃𝐸𝐸,𝑀𝑀,𝑠𝑠 ⊂
𝑃𝑃𝐸𝐸,𝑠𝑠 respectively. The considered models are 'owned' by one 
department or function 𝜒𝜒 of an organisation. For example,
logistics optimisation models may be owned by the logistics 
department. That department is the primary user of the model. 

Any type of model 𝜇𝜇 may have multiple instances 𝑚𝑚 for each 
system 𝑠𝑠 and time-dependent versions 𝑣𝑣𝑠𝑠 of that system.

The proposed concept concentrates on models used for 
planning purposes in production systems. Relevant 
departments comprise all organisational functions concerned 
with configuring production lines, systems and networks and 
allocating production volumes to those systems. Different 
planning tasks can occur within those system levels, which 
consider different system aspects at various levels of 
abstraction and are measured using a range of KPIs [19, 20]. 
Depending on the organisation using the concept, the tasks may 
be concentrated in a few or split among multiple departments.

3.2. Database

One of the challenges of digital twins of production systems 
is the connection of relevant data sources within the 
organisation [8]. In contrast to digital twins of single products 
or resources, where sensors can be more or less directly 
integrated with a digital model, this approach is impractical for 
production systems, as the necessary update frequency of the 
models is much lower, and the number of different direct data 
sources that would have to be connected is prohibitive. Instead, 
data can be acquired from information systems such as MES, 
ERP, CRM and SCM. Often additional data sources for master 
data are necessary. Furthermore, data may be preprocessed for 
use in models and stored as files. Model results and plans often 
only exist as files accessible to specific users.

A shared data model for planning tasks in production 
systems is used to overcome this problem, as proposed in [8]. 
The data model represents production networks and their 
characteristics in an object-oriented form. 

This generic model can be adapted to fit the specific 
requirements of an employing organisation. In the 
daydreaming engine, the data model is instantiated by defining 
one or multiple data sources providing information for each 
object type 𝜔𝜔 . Each model type 𝜇𝜇 defines which data it 
accesses automatically as part of the automatic data set for a 
model 𝑃𝑃𝐴𝐴,𝑚𝑚 using an allocation function 𝑎𝑎𝜇𝜇 that also lets the 
users define the examines system 𝑠𝑠 , the considered starting 
time 𝑡𝑡0 and the scenario 𝛾𝛾.

𝑃𝑃𝐴𝐴,𝑚𝑚 = 𝑎𝑎𝜇𝜇(𝑠𝑠𝑚𝑚, 𝑡𝑡0,𝑚𝑚, 𝛾𝛾𝑚𝑚) (3)

In the database, each object 𝑜𝑜 may be different based on the 
considered time and scenario. This allows the database to store 
information regarding past system states that the models can 
use for calibration.

Each property value 𝑣𝑣𝑎𝑎𝑜𝑜,𝑡𝑡,𝛾𝛾,𝑢𝑢 in the database is thus specific 
to the property 𝜙𝜙𝑜𝑜 of the object it belongs to, the time 𝑡𝑡 it is 
valid at, the scenario 𝛾𝛾, and the update 𝑢𝑢 it was set by. With 
any update 𝑢𝑢, the updating time 𝑡𝑡𝑢𝑢 and the information source 
𝑖𝑖𝑢𝑢 are saved. Data preprocessing is done during updating and
can be defined individually for any information source. The 
information sources can be classic information systems and 
results from models. The database thus includes a results 
library for the different models.

For past system states one "real" scenario 𝛾𝛾0 exists, but for 
future states, many different scenarios can occur. The different 
models can create new scenarios. Each new scenario is 
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characterised by a parent scenario 𝜓𝜓𝛾𝛾, a time of deviation 𝑡𝑡𝐷𝐷,𝛾𝛾, 
and a likelihood of occurrence 𝑙𝑙𝛾𝛾, with

𝑙𝑙�̂�𝛾 ≥ ∑ (𝑙𝑙𝛾𝛾)
𝛾𝛾∈𝑅𝑅,𝜓𝜓𝛾𝛾=�̂�𝛾

(4)

where 𝑅𝑅 denotes a consistent scenario space owned by a 
particular department or function 𝜒𝜒. The creation of different 
scenario spaces allows the departments to plan confidentially 
and ensures the viability of planning on very different time 
horizons. Scenario spaces can start at present or from a point 
within an existing scenario and diverge from there. Users can 
specify the likelihood of occurrence for scenarios or set it to 0. 
Any scenario 𝛾𝛾 defined by a specific model 𝑚𝑚 is typically only 
partial, i.e., information on objects and associated properties is 
missing. Thus, the engine controller seeks to increase the 
scenario's completeness, prioritising scenarios with a high 
temporal relevance 𝜌𝜌𝛾𝛾 expressed as 

𝜌𝜌𝛾𝛾 =
𝑙𝑙𝛾𝛾

𝑡𝑡𝐷𝐷,𝛾𝛾 − 𝑡𝑡 (5)
As indicated before, the database is also used for calibration. 

Calibration describes the adjustment of inner model parameters 
𝑝𝑝𝑀𝑀,𝑠𝑠,𝑚𝑚 to more closely resemble the behaviour of the system 𝑠𝑠. 
For each type of parameter, different methods can be used. 
Thus, a calibration interface defining a calibration function 
𝑐𝑐((𝑧𝑧𝑠𝑠, 𝑦𝑦𝑠𝑠)𝜇𝜇, (𝑧𝑧𝑠𝑠, 𝑦𝑦𝑠𝑠)𝑐𝑐𝑐𝑐𝑐𝑐) can be designed for each parameter. 
The calibration engine can then either provide historic result 
data (𝑧𝑧𝑠𝑠, 𝑦𝑦𝑠𝑠)𝑐𝑐𝑐𝑐𝑐𝑐 or call other models or expert inputs as a 
reference. It does so by using the capacity-based model 
initialisation presented in section 3.3.

Finally, the database contains sensitive information that is 
confidential only to parts of an organisation. Therefore, the data 
model is implemented with access management. Access 
management is included at several levels. Specific scenario 
spaces, scenarios, object types, objects, and even properties can 
require access rights from either models or users so that 
sensitive information is only passed to users with permission. 

3.3. Model Initialisation

A core aspect of the interaction between different models is 
the initialisation of model-based experiments. Conventionally,
experiments are triggered by the model user, either as a single 
run or for a specified parameter range. If the models are partial
digital twins. However, in digital twins, where the models are 
synchronised with the represented system, users specify 
parameters not defined by the synchronisation and overwrite 
parameters defined by synchronisation to explore alternative
actions. This is the usual model initialisation mode for planning
production systems. Within a daydreaming engine, however, 
other modes of initialisation are possible. These modes are 
request, event, or capacity based, as shown in Figure 2.

In model request-response initialisation, whenever a 
property value is requested where a model 𝑚𝑚 is registered as a 
data source, and the value does not yet exist for the required 
scenario 𝛾𝛾 or the current update 𝑢𝑢 , the request-response 
handler queries the registered model to provide it. The model 
𝑚𝑚 may also specify parameters sets [𝑃𝑃𝐶𝐶, 𝑃𝑃𝐸𝐸, 𝑃𝑃𝑀𝑀]𝑚𝑚,𝛾𝛾 necessary 
for the desired result. In the case of fully automatic provision,
the entire information necessary for the experiments must be 
provided to the model either by the requesting entity or the 

database. In consensual data provision, a request is put forward 
to the model owner, who must approve the request before the 
model is executed. Semiautomatic requests require additional 
data input from the model owner before data can be provided.

Figure 2: Model Initialisation Modes

Building on the previously described data model, models 
can also be initiated based on change events 𝜖𝜖 raised by the 
pub/sub event handler:

𝜖𝜖 = (𝑜𝑜, 𝛿𝛿, 𝛾𝛾, 𝑃𝑃𝛿𝛿,𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜, 𝑃𝑃𝛿𝛿,𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛) (6)

where 𝑜𝑜 is the changed object, 𝛿𝛿 the type of change, 𝛾𝛾 the 
scenario which has changed, and 𝑃𝑃𝛿𝛿,𝑜𝑜𝑜𝑜𝑐𝑐𝑜𝑜 and 𝑃𝑃𝛿𝛿,𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛 the set of 
parameter values before and after the change. Models may 
subscribe to events using a subscription rule 𝜎𝜎

𝜎𝜎 = (𝑤𝑤𝑂𝑂, Δ, Γ) (7)

where 𝑤𝑤𝑂𝑂 is a function to determine the set of considered 
objects 𝑂𝑂, Δ is the set of considered changes and Γ the set of 
scenarios. The model may then be executed with a 
predetermined set of parameters. This way, models can react to 
changes in the configuration of the production system, changes 
in the system's environment, or even changes to future 
configurations 𝛾𝛾 based on new results from other models. 
Different subscription types are possible depending on the 
users' preferences and the model's availability outside of active 
usage. A fully automated subscription starts model runs 
immediately upon the published event and returns the results to 
the database while merely notifying the user. Consentuable 
automation automatically performs specified experiments but 
requires authorisation to publish the results to the database. 
Suggestive automation proposes experiments to users but 
requires additional data input or agreement to run experiments.

Lastly, capacity-based initialisation operationalises the 
concept of daydreaming to use the dormant computational
capacity to expand the organisation's knowledge. This is only 
possible with models that can be queried on demand, running 
on a server. Knowledge can be expanded through a more 
comprehensive database or the improvement of models. The 
engine controller pursues the former, directly expanding and 
completing the space of examined scenarios described in 
section 3.2. Furthermore, the engine controller can even expand 
the number of considered scenarios. An owner may specify a 
part Π𝐸𝐸,�̆�𝜇 of the models parameterspace Π𝐸𝐸,𝜇𝜇 as open for 
experiments and define limits and likely distributions for each 
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parameter 𝑝𝑝𝐸𝐸 in Π𝐸𝐸,�̆�𝜇. The distributions are then used to either 
explore likely scenarios or examine unlikely extremes using the 
domain randomisation method described in [7]. The engine 
controller can also schedule model runs to support the creation 
of specific metamodels, following a fitting experimental design 
approach within the parameter space [18]. Finally, additional 
capacity may be used to better calibrate models.

3.4. Implementation

The devised daydreaming engine interfaces many models 
and users, making implementation in one step challenging. 
Instead, an iterative implementation is proposed, utilising the 
modularity of the concept. Thus, benefits for the company can 
be realised at every implementation step. The implementation 
process encompasses three general streams (i) application 
development, (ii) data integration, and (iii) support 
functionality development. The first stream to start is 
application development, as they provide value even without 
the daydreaming engine and help integrate enthusiastic users 
into the development [21]. Subsequently, the second stream is 
started, implementing the database and connecting the 
application models. This turns models into digital twins and 
reduces the effort for model use, making more use cases for the 
application model desirable. Finally, the modules of the 
daydreaming engine are implemented as support functionality. 

4. Industrial Application & Use Cases

The daydreaming engine is currently being implemented at 
an automotive supplier. At the time of writing, three 
applications have been developed, a discrete event simulation
(DES) model of the localised production system described in 
[12], a mixed integer optimisation model for order allocation 
and investment planning [22], and a capacity coordination tool 
managing investments for the sites. Additionally, a commercial 
logistics tool has been connected to the other models.

The simulation model has been developed into a digital twin 
by integrating multiple live data sources, for example, the 
company's MES systems. The model contains several 
production lines producing a common family of products. The 
model is used for weekly production planning, optimising 
worker allocation, order scheduling, and bottleneck detection.

The optimisation model is employed in the yearly planning 
cycle for each product family. It determines the cost-optimal 
allocation of orders and decisions on line purchases, upgrades 
for production capacity and capability, production releases, and 
shift models. The model requires data input from planners, such 
as the forecasted demand, product features, line properties and 
capabilities, transport relations, and contractual site-specific 
allocation premises. Finally, estimates for line purchase, 
upgrade, and release costs must be given.

The capacity coordination tool is used to monitor capacity 
at the sites of the overall network, combining planning results 
from multiple product-family-specific production networks. It 
tracks cumulated space, employee, and investment 
requirements and matches them with the existing and planned 
capacity to coordinate the planning across the networks.

The commercial logistics tool determines ideal delivery 
routes for both inbound and outbound transport of goods. It 
integrates warehouses, multiple modes of transport and 
customs and duties into a heuristic cost optimisation.

Several use cases were developed to demonstrate the utility 
of the proposed daydreaming engine that take advantage of the 
opportunities only available by intelligently connecting 
multiple tools from different perspectives. These use cases 
were designed in the context of the previously described 
industrial application and use models presented there. 

4.1. Requested Information – Line Upgrade

This use case involves two models, the discrete event 
simulation model of local production systems consisting of 
multiple lines and the mixed integer linear optimisation model 
for allocating production orders and investment planning. An 
essential aspect of the optimisation model is the decision to 
upgrade lines depending on demand and required production 
capabilities. The planers typically estimate this data and, thus,
part of the manual configuration parameter set 𝑃𝑃𝐶𝐶,𝑀𝑀′ . By 
utilising the existing DES of a site-specific production system, 
the consequences of the upgrade for the resulting line 
performance can be estimated more accurately. In this case, the 
optimisation model first identifies a need for more detailed 
information as it plans the upgraded line and requests data on 
the new production line, for which the simulation model is 
registered as a source. The optimisation model specifies the 
planned order program, the number of available workers and 
the upgrade. The simulation then provides the resulting 
performance of the lines based on a set of experiments. With 
this updated data, the optimisation model is rerun.

Similar interaction modes are used between the allocation 
optimisation and logistics planning models. For example, the 
allocation model requests logistics costs from the route 
planning tool. On the other hand, the capacity monitoring tool 
requests production costs from the optimisation model.

4.2. External Event – Change in Order Backlog

Various disruptions in global supply chains have shown that 
external events strongly influence the performance of 
production systems, and one core aspect of production systems 
resilience is sensitivity, the ability to replan quickly in the face 
of changes [23]. For example, sudden changes in the order 
backlog can drastically alter the optimal allocation plan. To 
overcome this, the order allocation model is subscribed to the 
data point orders, specifically orders produced within the 
model's production network. Upon changes in these orders, the 
daydreaming engine first checks whether existing scenarios 
anticipate the change. If not, a data change event is thrown, and
the allocation model is executed using the new order backlog. 
Finally, the results are directly forwarded to the particular 
owner of the optimisation model to assess whether the action 
in the real world needs to be taken.

This type of interaction can also be used with different 
models, for example, changes in available employee capacity 
in the simulation model or for different parameters, such as 
changes in energy costs at a particular site.
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4.3. Daydreaming –Unlikely Demand Scenarios

Changes in demand significantly impact production 
planning. The capacity-based daydreaming approach can be 
used to explore such scenarios. For this purpose, the users mark
a selection of the parameter space of the optimisation model 
Π�̆�𝐸 ⊂ Π𝐸𝐸 for daydreaming and define a probability density 
functions for those parameters that encourage edge cases. The 
daydreaming engine controller then creates new parameter sets 
𝑃𝑃�̆�𝐸 ∈ Π�̆�𝐸 and runs experiments on the optimisation model. The 
results are saved as specific scenarios. The capacity-based 
initialisation allows those experiments to be run in model 
downtimes. The results are explored for noteworthy 
characteristics, like unsolvability, sudden changes in 
production costs, or site underutilisation. The limits of the 
current production networks can be found by connecting those 
results to the corresponding areas of the parameter space.

5. Conclusion, Discussion & Outlook

This paper presents an approach to integrate multiple 
functional perspectives through the decentralised interaction of 
model-based decision support systems in manufacturing
planning and control. A systematisation of model interaction 
modes is presented with an iterative implementation process 
involving different parts of the organisation. Finally, the first
steps towards industrial implementation are shown. The 
daydreaming engine may make producing companies more 
resilient by allowing them to quickly plan reactions to changes 
and understand challenges holistically using perspectives from 
the entire organisation.

Although the approach is promising, there remain some 
challenges. This decentralised approach requires large efforts 
to standardise data exchange formats and define interfaces. 
Although knowledge can be shared selectively, its protection is 
a difficult task in such complex systems, and care has to be 
taken to avoid possible model-based access exploits. Other 
challenges may arise due to the availability of plans in the form 
of data that their owner may not contextualise. Furthermore, 
the implementation in large organisations can become 
inefficient as the number of stakeholders in a system such as 
the proposed one grow. Even still, integrating a broad range of 
different users into a shared system is demanding. An 
alternative to the presented approach would be to generate a 
monolithic decision support software that can consider all the 
different tasks. However, that would limit the specialisation of 
models and reduce the plurality of perspectives on planning and 
control problems in manufacturing.

As the presented daydreaming engine is not yet fully 
implemented, future research should investigate under which 
circumstances the concept is most suitable. The most promising 
path to evaluate the concept will be action research. 
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