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Referent: Prof. Dr. Christof Weinhardt

Korreferentin: Prof. Dr. Ute Karl

Karlsruhe, 2023





ACKNOWLEDGEMENTS

This dissertation would not have been possible without many wonderful people who
helped me along the way. First, I would like to thank Prof. Dr. Christof Weinhardt
for his support and the opportunity to pursue my doctorate. My heartfelt gratitude
goes to my post-doc and mentor Prof. Dr. Philipp Staudt for his ideas, his motivation
and his continuous support.
A deep thanks goes to the people who started as colleagues and became friends over
the past years. In particular, I would like to thank Jona and Bent for sparking my
interest in sector coupling, Frederik, Marc, Sarah and Patrick for the mental support
and all the fun activities that made me look forward to seeing you every day at work.
Thanks to Julian for inspiring food creations, Malin for climbing sessions, Jingyi for
sharing our interest in skiing, Leo for fun hiking trips and Kim and Christina for
keeping the Energy Hydra going! Another big thank you goes to Saskia and Joshua
for working with me on the SMaaS project. Outside the university I would like to
thank my friends, especially Seppi, Lisa, Malte & Annika for taking my mind off the
dissertation when I needed a break. Thank you to Tim and Jenny for being there
from start to finish.
Finally, a special thanks to my family. To my parents, Christian and Silvia, and my
grandparents for supporting me in every way possible. To my brother, Simon, for
always making me laugh. And to Maxi, who started this adventure with me and was
always there to help me back up when I thought I could not go further.

3





CONTENTS

List of Figures 11

List of Tables 15

I. Fundamentals 1

1. Introduction 3

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3. Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. Integrated Energy Systems 17

2.1. Coupling of the Heat and Electricity Sector . . . . . . . . . . . . . . 17
2.2. Coupling of the Mobility and Electricity Sector . . . . . . . . . . . . 20
2.3. Citizen Energy Communities . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1. Development of CECs . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2. Sector Coupling in CECs . . . . . . . . . . . . . . . . . . . . . 24

3. Information Systems for Integrated Energy Systems 27

3.1. The Development of Green IS . . . . . . . . . . . . . . . . . . . . . . 27
3.2. A Market Platform for Coupled Local Heat and Electricity Markets . 28

3.2.1. Economic and Legal Environment . . . . . . . . . . . . . . . . 29
3.2.2. Transaction Object . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3. Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4. IT-Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5. Business Structure . . . . . . . . . . . . . . . . . . . . . . . . 33

5



6 Contents

3.2.6. Agent Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.7. Market Outcome . . . . . . . . . . . . . . . . . . . . . . . . . 34

II. Household Preferences in Energy Communities 37

4. Scaling the Concept of Decision Support in CECs 41

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1. IS and Sustainability . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2. DSSs for CECs . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3. Scalability of CECs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4. Platform Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1. Components of CECs . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2. Decision-Support Platform for CECs . . . . . . . . . . . . . . 47
4.4.3. Platform Initialization . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4. Deriving an Optimal Solution . . . . . . . . . . . . . . . . . . 52
4.4.5. Recommendation Cycle . . . . . . . . . . . . . . . . . . . . . . 54

4.5. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5. Experimental Evaluation of DSS for Energy Technology Invest-

ments 61

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3. Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1. Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2. Determination of Individual Preferences . . . . . . . . . . . . 66
5.3.3. Investment Decision . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.4. Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents 7

5.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1. Conjoint Analysis Evaluation . . . . . . . . . . . . . . . . . . 72
5.4.2. Recommendation Acceptance . . . . . . . . . . . . . . . . . . 74
5.4.3. Investment Outcome . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.4. Perceived usefulness of the recommendation . . . . . . . . . . 78

5.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

III.Residential Energy Technology Investment 83

6. DPS for Multi-objective Optimization of the Sizing and Opera-

tion of CECs 87

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2. Sector Coupling and Evolutionary Algorithms in Microgrid Implemen-

tations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.1. Microgrid Sizing and Operation . . . . . . . . . . . . . . . . . 89
6.2.2. Sector Coupling in Microgrids . . . . . . . . . . . . . . . . . . 90
6.2.3. Evolutionary Algorithms in Microgrid Optimization . . . . . . 91

6.3. Enhancing CEC Development with EMODPS . . . . . . . . . . . . . 91
6.3.1. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2. Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.3. Policy Formulation . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.4. Simulation and Implementation . . . . . . . . . . . . . . . . . 97

6.4. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4.1. Results of the EMODPS . . . . . . . . . . . . . . . . . . . . . 101
6.4.2. Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5. Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7. Evaluating the Impact of Regulation in CECs with Prosumer In-

vestment 109

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2. Microgrid Operation and Investment Decisions . . . . . . . . . . . . . 114



8 Contents

7.3. Multi-periodic Evaluation of Energy Technology Investment Behavior 118
7.3.1. Energy System Simulation . . . . . . . . . . . . . . . . . . . . 119
7.3.2. Preference-based Optimization of Investment Decision Alter-

natives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.4. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5. Discussion and Policy Implications . . . . . . . . . . . . . . . . . . . 138
7.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

IV.Operation Strategies for Sector Coupling 141

8. Combining PVT Generation and Air Conditioning 145

8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2.1. Photovoltaic/Thermal Power . . . . . . . . . . . . . . . . . . . 147
8.2.2. Absorption Chiller . . . . . . . . . . . . . . . . . . . . . . . . 148

8.3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.4. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.4.1. Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.4.2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9. An Operational Strategy for DHNs 157

9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.1.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.1.2. Contributions and Organization . . . . . . . . . . . . . . . . . 159

9.2. Forecasting Heat Load . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2.1. ANN Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.2.2. Forecast Comparison . . . . . . . . . . . . . . . . . . . . . . . 161

9.3. A Control Strategy for DHNs . . . . . . . . . . . . . . . . . . . . . . 163
9.3.1. Demonstration of the Control Strategy . . . . . . . . . . . . . 165
9.3.2. Offshore Wind Generation . . . . . . . . . . . . . . . . . . . . 166



Contents 9

9.3.3. Cost Minimization . . . . . . . . . . . . . . . . . . . . . . . . 167
9.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

V. Finale 171

10.Contributions and Implications 173

11.Outlook 181

Appendices 185

Bibliography 193





LIST OF FIGURES

1.1. German renewable generation by sector, based on (AGEE-Stat, 2022). 5
1.2. Annual installations of residential energy technologies. Own represen-

tation based on data from (Bundesnetzagentur, 2022; Figgener et al.,
2022; Tepe et al., 2021; BWP, 2022; AEE, 2020). . . . . . . . . . . . 6

1.3. The structure of this thesis. . . . . . . . . . . . . . . . . . . . . . . . 15

2.1. A sustainable multi-energy system, own depiction, based on (Mancar-
ella, 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2. Generations of district heating (Lund et al., 2014). . . . . . . . . . . 19

3.1. Green IS research area classification (Singh and Sahu, 2020). . . . . . 28
3.2. House of Market Engineering (Weinhardt and Gimpel, 2007). . . . . . 29

4.1. Conceptual design of a CEC platform. . . . . . . . . . . . . . . . . . 48
4.2. Cash flow and amortization time with varying numbers of participants. 57

5.1. Chronological structure of the online experiment. . . . . . . . . . . . 66
5.2. Appearance of the rank-based conjoint analysis in the online experi-

ment. Translated from original German. . . . . . . . . . . . . . . . . 67
5.3. Appearance of the recommendation (blue background) and the first

five of 20 investment alternatives in the “preference” treatment with
uncertainty. Translated from original German. . . . . . . . . . . . . 70

5.4. Overview on the remaining cost (a) and emission (b) budgets in the
preference groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5. Overview on the remaining cost (a) and emission (b) budgets after
the investment decision. . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1. Flowchart of the simulation. . . . . . . . . . . . . . . . . . . . . . . . 98

11



12 List of Figures

6.2. Interaction between the simulation and the Borg MOEA for the
EMODPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3. The pareto front for the summer scenario. . . . . . . . . . . . . . . . 101
6.4. Application sizing decisions for the summer scenario. . . . . . . . . . 101
6.5. The pareto front for the mid-season scenario. . . . . . . . . . . . . . . 102
6.6. Application sizing decisions for the mid-season scenario. . . . . . . . . 102
6.7. The pareto front for the winter scenario. . . . . . . . . . . . . . . . . 103
6.8. Application sizing decisions for the winter scenario. . . . . . . . . . . 103
6.9. Sensitivity analysis of the cost objective with regard to different sys-

tem sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.10. Sensitivity analysis of the emission objective with regard to different

system sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1. Multi-periodic development of a community with and without a CEC. 113
7.2. Energy hub from the household’s perspective. . . . . . . . . . . . . . 120
7.3. Derivation of a household decision. . . . . . . . . . . . . . . . . . . . 129
7.4. Exemplary results of the simulation of a single day in 2025. . . . . . . 132
7.5. Community infrastructure development of CEC and residential mi-

crogrid (RM) in the different scenarios. . . . . . . . . . . . . . . . . . 133
7.6. Community cost development of CEC and residential microgrid (RM)

in the different scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.7. Community emission development of CEC and residential microgrid

(RM) in the different scenarios. . . . . . . . . . . . . . . . . . . . . . 135
7.8. Comparison of community cost and emission reduction after 10 peri-

ods with and without decision inertia. . . . . . . . . . . . . . . . . . . 137

8.1. Model structure of a household with PVT generation. . . . . . . . . . 150
8.2. Heat demand, cooling demand and PV generation hours. . . . . . . . 153
8.3. Heat, cooling and electricity demand hours. . . . . . . . . . . . . . . 154
8.4. Daily feed-in costs(-) and revenue(+) of PV, PVT and without renew-

able generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.1. ANN forecast in the heating period for the Flensburg DHN. . . . . . 163
9.2. HP operation, TSS load and TSS status for the online control strategy.167



List of Figures 13

9.3. Comparison of the HP operation for the naive approach, 24-hour fore-
cast and global optimization. . . . . . . . . . . . . . . . . . . . . . . . 168





LIST OF TABLES

2.1. Classification of energy community concepts. . . . . . . . . . . . . . . 22

4.1. Research on DSS in Green IS in the context of the design of an energy
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2. Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3. Economic calculation of HP & BSS scenario including heating costs. . 56

5.1. Rank-based conjoint analysis components (3× 3 design). . . . . . . . 67
5.2. Overview on the six experimental treatments. . . . . . . . . . . . . . 69
5.3. Demographics of the sample and results of the conjoint analysis. . . . 72
5.4. Comparison of the cost and emission importance in the preference

groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5. Comparison of the recommendation acceptance rates with regard to

the preference groups. . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6. Perceived usefulness of the recommendation (P4) in each treatment

combination, measured on a 5-point Likert scale. . . . . . . . . . . . . 79

6.1. Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2. Investment costs, CO2 emissions and lifetime for specific technologies. 100

7.1. Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2. Dimensions of the case study. . . . . . . . . . . . . . . . . . . . . . . 129
7.3. Community energy technology cost and emission parameters. . . . . . 131
7.4. Results of the case study scenarios with a CEC implementation and

a residential microgrid (RM). . . . . . . . . . . . . . . . . . . . . . . 136

8.1. Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2. Cooling supply comparison of PV and PVT. . . . . . . . . . . . . . . 153

15



16 List of Tables

8.3. Cost Comparison of PV and PVT. . . . . . . . . . . . . . . . . . . . 154

9.1. Hyperparameters and corresponding values that are tested during the
random search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2. 24h forecast results for the Flensburg DHN. . . . . . . . . . . . . . . 162
9.3. 24h forecast results for the NREL in Golden, Colorado and the

Sønderborg DHN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.4. Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.5. Comparison of results for the operation strategy with regard to grid

integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.6. Comparison of results for the operation strategy with regard to cost

minimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.1. Participant instructions. . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.2. Pre-experimental questionnaire, answers are given on a five-point Lik-

ert scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.3. Post-experimental questionnaire, answers are given on a five-point

Likert scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.4. Comparison of items in the post-experimental questionnaire in the

cost treatments on a five-point Likert scale (1-5). Items P1-P11 can
be found in Table A3. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.5. Comparison of items in the post-experimental questionnaire in the
emission treatments on a five-point Likert scale (1-5). Items P1-P11
can be found in Table A3. . . . . . . . . . . . . . . . . . . . . . . . . 191

A.6. Comparison of items in the post-experimental questionnaire in the
preference treatments on a five-point Likert scale (1-5). Items P1-P11
can be found in Table A3. . . . . . . . . . . . . . . . . . . . . . . . . 192



LIST OF ABBREVIATIONS

AC air conditioner

ANN artificial neural network

ANOVA analysis of variance

BEV battery electric vehicle

BSS battery storage system

CEC citizen energy community

CHP combined heat and power plant

CNN convolutional neural network

COP coefficient of performance

DHN district heating network

DPS direct policy search

DSS decision support system

EMODPS evolutionary multi-objective direct policy search

EU emission units

FFN feed-forward neural network

GRU gated recurrent unit

HP heat pump

17



18 List of Tables

IS information systems

IT information technology

LSTM long-short term memory

MAPE mean absolute percentage error

MOEA multi-objecitve evolutionary algorithm

MU monetary units

NREL National Renewable Energy Laboratory

PV photovoltaic

PVT photovoltaic/thermal

RBF radial basis function

RMSE root-mean-square error

SD standard deviation

TSS thermal storage system



Part I.

Fundamentals





CHAPTER 1

INTRODUCTION

The mitigation of climate change caused by carbon emissions is becoming the great-
est challenge of the 21st century. Energy-related emissions are responsible for 84% of
the carbon emissions in Germany (Umweltbundesamt, 2022b) and households play
an important role in this context, as they account for 28.3% of the total energy
demand (Umweltbundesamt, 2023). Citizens are already significantly contributing
to investments for the decarbonization of electricity supply, currently owning 30.2%
of the renewable generation capacity and 68% of the installed storage capacity for
battery storage systems (BSSs) (AEE, 2020; Figgener et al., 2021). However, the
majority of residential energy consumption is related to heat demand that is pri-
marily covered by fossil fuels (Umweltbundesamt, 2023). One way to decarbonize
residential heat supply is by deploying sector-coupling technologies, for example heat
pumps (HPs). The expansion of sector coupling technologies requires further invest-
ments in renewable electricity generation to cope with the rising electricity demand.
As calculated in (Weniger et al., 2018), every second single-family home needs to
be equipped with a solar photovoltaic (PV) and BSS by 2050 to reach the German
emission reduction targets.

In addition to high investment costs (Figgener et al., 2022), the complexity of
the decision-making process can inhibit residential energy technology investment
decisions (Maciosek et al., 2022). One way to support citizens in the investment
decision process is through the development and application of information systems
(IS). However, existing IS solutions often lack application relevance in the fight
against climate change (Gholami et al., 2016; Watson et al., 2010).

A regulatory element to support household investments in residential energy tech-
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4 Introduction

nologies is the implementation of a citizen energy community (CEC) concept in
Germany. The concept and term CEC was introduced by the European Union in
2019 as a “cooperation of citizens and local actors” that engages in energy genera-
tion, distribution, storage or efficiency services to provide “environmental, economic
or social community benefits to its members” (European Parliament and Council
of the European Union, 2019). In this thesis, CECs are viewed as a community
where participants can buy electricity from their neighbors or sell excess electricity,
for example, if they own a rooftop PV system (Mengelkamp et al., 2018). CECs
offer financial benefits for participants and can increase incentives for investments
in residential energy technologies (Coelho et al., 2017). However, the exact effects
of CEC regulation on residential energy technology investments have not yet been
quantified.

Increased investments in renewable generation can lower carbon emissions in the
residential sector. Given the volatile nature of renewable generation and consumer
demand, operation strategies are needed to harness the potential of renewables in
energy communities. In combination with operation and control strategies, sector
coupling technologies can support the mitigation of volatile generation and help
to promote decarbonization in all sectors of the energy community. To address
the challenges mentioned above, this thesis presents IS for the support of citizen
investments in residential energy technologies and the operation of such technologies
with a focus on sector coupling.

1.1 Motivation
Despite a 39% reduction of greenhouse gas emissions compared to 1990, Germany

has a long way to go to reach the goal of net-zero emissions by 2045 (Deutsches Bun-
desamt für Justiz, 2021). As a milestone, the German government has proclaimed
to achieve an 80% share of renewable electricity generation by 2030 (Deutscher
Bundestag, 2022). Germany aims to increase the PV expansion rate to 22GW per
year and the onshore wind power expansion rate to 10GW per year (BMWK, 2022).
This translates to a tripling of the current expansion rate. However, renewable
expansion is not distributed evenly across the three energy sectors electricity,
heat and mobility. As displayed in Figure 1.1, the share of renewable electricity
generation has almost doubled since 2010, despite a small reduction in 2021. At the
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Figure 1.1.: German renewable generation by sector, based on (AGEE-Stat, 2022).

same time, the share of renewable heat generation has increased by only 18%. In
an energy system with a coupled heat and electricity sector, renewable electricity
could be used in sector coupling technologies to increase the share of renewable heat
supply. This leads to an integrated view of the energy system that can support its
decarbonization (Mancarella, 2014). In this context, the term “integrated energy
system” refers to a connection of the energy sectors heat, electricity and mobility
into a holistic energy system (Bründlinger et al., 2018). Sector coupling technologies
are technologies that enable the purposeful connection and interaction of energy
sectors (Fridgen et al., 2020), for example, conversion technologies like HPs or
hybrid generation devices, such as photovoltaic/thermal (PVT). An expansion of
sector coupling technology can help to reach the German emission reduction goals.
This potential has been recognized by policymakers in Germany (Bundesregierung,
2021). The first steps toward an increased expansion of sector coupling between the
heat and electricity sectors are visible. For example, 154,000 heat pumps for space
heating were installed in Germany in 2021, an increase of 28% compared to 2020
(BWP, 2022).

By both consuming and producing energy, for example, through the installation
of residential PV systems, households become prosumers, actively participating in
the energy transition (Ritzer et al., 2012). A successful energy transition will have
a positive impact on living quality for citizens due to better living conditions, i.e.,
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Figure 1.2.: Annual installations of residential energy technologies. Own representation
based on data from (Bundesnetzagentur, 2022; Figgener et al., 2022; Tepe
et al., 2021; BWP, 2022; AEE, 2020).

a reduced impact of climate change or less air pollution (Mathiesen et al., 2011).
To reduce emissions, a change in individual lifestyle and behavior is necessary (Nisa
et al., 2019).

In the residential energy sector, investment decisions for residential energy
technologies such as PV and BSSs have a high impact on the annual energy bill of
households (Al Khafaf et al., 2022). In this thesis, residential energy technologies
are understood as energy technologies that can be installed as part of a household
or CEC and used for the generation, conversion and storage of (renewable) energy.
These technologies include, for example, PV and PVT systems, HPs, BSSs and
thermal storage systems (TSSs). Private individuals already significantly contribute
to investments in residential energy technologies, as displayed in Figure 1.2. In
2020, 30.2% of the installed PV capacity was owned by private individuals (AEE,
2020) and residential BSSs accounted for about two thirds of the total installed
battery storage capacity in Germany (Figgener et al., 2022; Tepe et al., 2021).
Weniger et al. (2018) state that 8 million coupled residential PV and BSS need to be
installed by 2050 to support climate protection. This means, that despite previous ef-
forts, much more citizens need to become active participants in the energy transition.

However, there is a gap between people wanting to contribute to the energy
transition and practical action (Blake, 1999). Aside from high investment costs for
residential energy technologies (Weniger et al., 2014), different studies indicate a lack
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of energy literacy among residential households (Brounen et al., 2013; Blasch et al.,
2018), or a lack of action despite reasonable knowledge (Sovacool and Blyth, 2015).
Energy literacy is defined in (DeWaters and Powers, 2011) as the domain of basic
energy-related knowledge, linked with an understanding of the impacts of energy
production and consumption on the environment. While other definitions exist and
there is no consensus on a common definition (Martins et al., 2020), the definition
in (DeWaters and Powers, 2011) is used in this thesis due to its broad focus on
energy-related knowledge. Greenleaf and Lehmann (1995) name lack of information
as one of eight main reasons to delay consumption decisions. Other reasons in
this context are lack of time, lack of enjoyment, risk exposure, requirement to
obtain third-party advice, procedural uncertainty, the expectation of falling prices
and expected improvements of the decision quality. This leads to situations of
uncertainty regarding investment decisions. In such situations, individuals tend to
make sub-optimal decisions, as probable outcomes are underweighted compared to
certain outcomes, leading to higher risk aversion (Kahneman and Tversky, 1979).
As a result, individuals tend to delay environmental actions such as investments
in residential energy technologies (Blake, 1999). In a survey among 1,721 Dutch
households, 40% of the participants did not appropriately evaluate investments in
energy efficiency equipment (Brounen et al., 2013).

Decision support systems (DSSs) have the ability to overcome some of these short-
comings. As a sub-field of IS, DSSs support and improve decision-making (Arnott
and Pervan, 2014). Through provision of knowledge, DSSs can overcome the lack
of information (Arnott and Pervan, 2005). Furthermore, DSSs can provide recom-
mendations based on optimization or forecasting (Arnott and Pervan, 2014), thus
mitigating risk exposure and expectations regarding falling prices or expected im-
provements. DSSs have the potential to improve decision quality (Arnott and Pervan,
2014), that is the deviation of the decision from a normative solution that maximizes
value or utility (Todd and Benbasat, 1992).

In the context of citizen participation in the energy transition, DSSs can be
used to support household investment decisions. The attitude of citizens towards
investments in residential energy technologies is influenced by their preferences, for
example, with regard to their financial and environmental impact. In the context
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of home BSSs in Germany, various purchasing motivations representing household
preferences are presented in (Kairies et al., 2019). The authors identify motives
with environmental (e.g., contribution to the energy transition), financial (e.g.,
hedging electricity costs), or other background (e.g., interest in technology). In
a broader context of green energy, (Hojnik et al., 2021) find that the willingness
to pay for green energy is positively influenced by the acceptance and knowledge
of green energy, social norms and moral obligations. As described in (Bergmann
et al., 2008), individual preferences are heterogeneous and can also vary for differing
socio-economic settings, such as rural and urban living areas. To provide residential
energy technology investment recommendations for citizens, DSSs must be able to
evaluate and reflect these preferences.

For the determination of investment recommendations, these preferences can
be translated into multiple objectives that are optimized. To consider a trade-off
between different objectives, for example, with regard to costs and emissions in the
investment decision, multi-objective optimization can be used for the determination
of investment alternatives in households and CECs (Ahmad Khan et al., 2016; Zia
et al., 2018). In integrated energy communities, the availability and size of energy
generation, conversion and storage technologies has a significant impact on the
resulting feasible energy flows (Zhao et al., 2014). This motivates the design of
integrated approaches that regard both energy technology investments and system
simulation. The solutions from these methods can in turn be used to provide
decision support for households in preference-based DSSs, as described above.

The development of preference-based decision support alone is not enough to
incentivize households to actively participate in the energy transition. Stern (2020)
argues that a combination of behavioral and other incentives, e.g., subsidies or ben-
eficial regulation, is most effective. Gatzert and Kosub (2017) agree that increasing
investments in renewable energy requires further policy support. Such support is
typically granted through subsidy payments encompassing the lifetime of the energy
technology, e.g., through feed-in tariffs, net metering or tax incentives (Lee and
Zhong, 2014; REN21, 2022). Another approach is the establishment and regulatory
promotion of energy communities. As mentioned above, these communities might
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enable consumers and prosumers in close proximity to trade or share energy with
each other (Mengelkamp et al., 2018). Energy communities further enable and
incentivize investments in renewable generation and foster the development of
self-sustained neighborhoods (Coelho et al., 2017; Mengelkamp et al., 2018). The
potential of CECs has been investigated in a number of pilot projects, for example,
the “Quartierstrom” Project in the Swiss city of Walenstadt (Ableitner et al., 2020)
or the “Landau Microgrid Project” in the German city of Landau (Richter et al.,
2021). However, the integration of sectors has been neglected in CEC projects so
far, as most pilot projects of local energy communities in Germany, Austria and
Switzerland focus on electricity only (Weinhardt et al., 2019). Furthermore, the
impact of CEC regulation on residential energy technology investments has not yet
been quantified. This motivates an evaluation of the financial and environmental
benefits of integrated CECs for households and neighborhoods.

Investments in renewable generation technologies foster a transition of energy sup-
ply. However, increasing the generation capacity through investments is not enough.
Renewable generation, especially wind and solar power fluctuates and often does not
align with household demand profiles (Hansen et al., 2019). The discrepancies hap-
pen during the day, when electricity demand is highest in the morning and evening,
while solar generation is higher during daytime (Marszal-Pomianowska et al., 2016;
Muenzel et al., 2015). Supply and demand further vary across seasons, for example,
when more heat is required in the winter season, but solar generation is higher in the
summer (Fischer et al., 2016; Phinikarides et al., 2015). The application of sector
coupling technologies can integrate volatile supply and increase the utilization of
renewable generation (Su et al., 2014; Liu et al., 2018). Using HPs or PVT systems,
sector coupling can contribute to the decarbonization of the heat sector in residential
areas. This complicates the energy supply of CECs and requires the development of
operation strategies that go beyond simple heuristics (Su and Wang, 2012). Hansen
et al. (2019) stress the need for the development of cross-sectoral approaches for the
operation of energy systems.

In CECs, the operation of sector coupling technologies can contribute to the
decarbonization of the heat sector, for example, through the electrification of heat
demand through HP deployment (Backe et al., 2022). Through the development
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of district heating networks (DHNs) towards lower temperatures (Lund et al.,
2014), residential HP or PVT systems can be connected to such networks and
supply heat to other households in the CEC. The developed operational strategies
can further be used in integrated approaches for the determination of investment
recommendations, as described above. By deploying technologies more efficiently
during operation, the required generation capacity can be reduced, thus lowering
investment costs and capacity-related emissions (Urbanucci and Testi, 2018).

This thesis presents a contribution to the decarbonization of integrated energy
communities through the development of preference-based investment recommen-
dations and operation strategies for CECs. The results include implications for
the design of preference-based IS for municipalities and policymakers and support
citizens to take an active role in the energy transition through investment in
residential energy technologies. The presented operation strategies for sector
coupling technologies can be applied by municipal utilities and system operators as
part of integrated CECs. In summary, the concepts can be used to promote the
decarbonization of the heat and electricity sector in CECs and thereby contribute
to the goal of limiting global warming to 1.5◦C. The case studies described in this
thesis use load and generation data from Germany, Denmark, the UK and the US
and are applicable to energy systems worldwide. The contributions are structured
in three parts, which are presented in Part II, Part III and Part IV of this thesis.
These parts are described in the following.

Part II investigates the influence of household preferences on energy technology
investment decisions. As mentioned above, individuals often lack information and the
means to propose and implement joint infrastructure projects like shared investments
in energy-related technologies. In this part, the elements of a platform-based DSS
that supports residential energy technology investments in CECs are determined.
The information that is required to configure local energy infrastructure is described
and a coordination mechanism is conceptualized that merges diverging preferences
of participants. The functionality of the tool is demonstrated in a case study using
data from a microgrid in Landau, Germany. The results show that an application of
the residential energy technologies suggested by the decision support tool can reduce
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community costs and emissions.
As the performance benefits of IS depend on individual willingness to accept and

use a system (Venkatesh et al., 2003), the acceptance factors of preference-based
DSSs for individual energy technology investments are assessed in an online
experiment with 324 participants. The results show, that preference-based recom-
mendations increase the recommendation acceptance rate by 22 percentage points.

Part III of this thesis focuses on the determination of investment recommen-
dations for residential energy technologies and the impact of CEC regulation on
their adoption and potential cost savings and emission reductions in a community.
First, a multi-objective optimization for the integrated sizing and simulation of
residential energy technologies in a CECs is developed with regard to the preferences
addressed in Part II. The optimization provides a set of non-dominated investment
alternatives from which one can be selected as DSS recommendation based on the
user preferences. The model is then applied to a community with 30 households,
where the implementation of residential investment decisions is simulated based on
preference-based recommendations and their impact on energy-related costs and
emissions in the community. In a comparison of scenarios with and without CEC
regulation, the results show that CEC regulation increases the speed and amount
of decarbonization and is especially beneficial in communities with a heterogeneous
preference distribution regarding costs and emissions.

Finally, the operation of different sector coupling technologies for heating and
cooling in CECs is evaluated in Part IV. Operation strategies for sector coupling
technologies in CECs can help to mitigate the effects of volatile renewable genera-
tion and uncertain demand (Hansen et al., 2019; Liu et al., 2018). Such operation
strategies can, for example, use load forecasts to increase the integration of renew-
ables or decrease operational costs. The effects of global warming are expected to
increase the distribution of residential cooling systems in Europe (Day et al., 2009).
In a first use case, I therefore develop and evaluate an approach to satisfy heat and
cooling demand in buildings through hybrid PVT generation and absorption cooling.
The results of a case study for a large research facility in Colorado show that the
approach can save 74% of operational costs when compared to a system with PV
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and conventional cooling.
In the second use case, I assess the application of an adaptable rolling-horizon

online optimization for the operation of an HP and a TSS in a DHN. The online
optimization of the HP operation uses a 24-hour heat load forecast based on a
convolutional neural network (CNN). The performance of the operation strategy
is evaluated in two case studies using data from the Flensburg DHN. In the first
case study (maximization of the share of renewables), a share of renewable offshore
generation of 10.90% is achieved (lower benchmark: 9.05%; upper benchmark:
10.93%). In the second case study (minimization of electricity costs), an average
electricity price of 20.93e /MWh is achieved (lower benchmark: 24.00e /MWh;
upper benchmark: 20.91e /MWh).

1.2 Research Questions
The ability to install residential energy technologies enables citizens to play an

active role in the energy transition by becoming prosumers. However, participants
of CECs often lack the additional information or the means to propose and imple-
ment joint infrastructure projects like shared electricity consumption and generation
technologies. Therefore, Research Question 1 addresses the required information for
a platform-based DSS to support the decision-making process of households with
regard to residential energy technologies in CECs.

Research Question 1 What are the required elements to provide investment rec-
ommendations to CECs through a platform-based decision support system in order
to coordinate financial and ecological interests of participants?

The benefit of such a platform depends on the acceptance of the recommendations by
its users. To investigate acceptance factors for preference-based recommendations in
DSSs and answer Research Questions 2 and 3, an online experiment with 324 partici-
pants is conducted. In the experiment, participants are asked to make an investment
decision in the context of energy technologies. They are provided with an investment
recommendation that points out the alternative with the lowest costs or emissions or
an alternative based on the individual participant’s preferences to answer Research
Question 2. When making investments in residential energy technologies, households
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face uncertainty, for example regarding future energy prices and volatile renewable
generation or energy demand. Therefore, the experiment is conducted in treatments
with and without uncertainty to answer Research Question 3.

Research Question 2 To what extent does providing recommendations that take
into account the trade-off between individual cost and emission preferences in a DSS
for residential energy technology investments increase the recommendation accep-
tance compared to recommendations that consider either costs or emissions?

Research Question 3 What is the effect of uncertainty on recommendation accep-
tance and the perceived usefulness of the DSS?

To provide such preference-based investment recommendations for residential en-
ergy technologies to households, it is necessary to identify possible investment alter-
natives with respect to the trade-off between participant’s preferences, for example,
costs and emissions. Furthermore, energy technology sizing and operation in a CEC
influence each other and should therefore be regarded simultaneously to derive pro-
found recommendations. Based on the work by Gupta et al. (2020), a direct policy
search algorithm is adapted and developed further to address these challenges. The
model combines a multi-objective evolutionary algorithm and an energy system sim-
ulation to determine a set of non-dominated recommendations for the integrated
sizing and operation of residential energy technologies in a CEC. The model is
compared to an optimization with perfect foresight as an upper benchmark that re-
gards each of the two objectives costs and emissions individually to answer Research
Question 4.

Research Question 4 What is the financial (cost) and environmental (emission)
performance of a multi-objective evolutionary optimization of the integrated sizing
and operation of energy technologies in a CEC relative to an upper benchmark opti-
mization with perfect foresight that optimizes the objectives individually?

As residential energy technology investments in a CEC usually do not happen all
at once but depend on household decisions, a period of several years needs to be
regarded when evaluating the impact of such investments on cost and emission re-
duction. The ability to buy or sell excess energy generation within the community



14 Introduction

affects the ability of neighborhoods to benefit from CECs. Policymakers need to
develop corresponding CEC regulation, while municipal utilities have to implement
CEC concepts in suitable neighborhoods. The influence of such regulation on long-
term cost and emission reductions through residential energy technology investments
in an exemplary community with 30 households is evaluated over a period of 10 years
with and without CEC regulation to answer Research Question 5. The case study is
conducted in scenarios with strong, weak and heterogeneous cost and emission pref-
erence distributions among the households in the community to answer Research
Question 6.

Research Question 5 What are the long-term financial (cost) and environmental
(emission) effects of CEC regulation on the development of a community with respect
to electrification and the investment in residential energy technologies?

Research Question 6 To what extent does the spread of individual household pref-
erences in a community impact the potential of CEC regulation for a faster decar-
bonization?

For the operation of residential energy technologies, efficient strategies for sector-
coupled systems are necessary to integrate volatile renewable generation and foster
the decarbonization of heat and electricity supply in CECs. This thesis demon-
strates the potential of sector coupling by presenting two use cases in Part III. The
presented operation strategies can be implemented as part of a CEC energy manage-
ment system, for example. While the presented case studies evaluate the adoption
in a building complex and on a city level, an implementation on a community level
is possible, as well. The first use case regards the operation of a hybrid PVT plant in
combination with absorption cooling to provide both heating and cooling. Using the
example of powering a research facility in Colorado, Research Question 7 examines
the economic benefits of this model compared to a system using a PV plant and
conventional cooling over a period of one year.

Research Question 7 What are the financial benefits of a sector-coupled PVT in-
stallation in combination with absorption cooling compared to conventional compres-
sion cooling with a PV installation?
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As future supply from renewable generation and household energy demand in a CEC
are subject to uncertainty, the second use case focuses on the real-time operation of
an HP and a TSS that is connected to a DHN. An online operation optimization is
developed that uses a 24-hour rolling horizon heat load forecast to derive an operation
strategy for the HP. The strategy optimizes the HP operation with respect to the
objectives “integration of renewables” and “minimization of operational costs” and is
compared to a global optimization with perfect foresight to answer Research Question
8.

Research Question 8 What is the performance of an online operation strategy for
a district heating system with an HP and a TSS that uses a 24-hours rolling horizon
heat load forecast compared to (i) a naive approach and (ii) benchmarked against the
global optimum with respect to the integration of renewables and cost minimization?

1.3 Thesis Structure
As depicted in Figure 1.3, this thesis is structured in five parts along the research

questions described above. Following the introduction, the fundamentals of inte-
grated energy systems are introduced in Chapter 2. Chapter 3 introduces the fun-
damentals of IS in the context of CECs and presents an exemplary implementation
of a CEC structured along the house of market engineering framework (Weinhardt
and Gimpel, 2007). This constitutes Part I.

The three main parts of the thesis follow: Part II focuses on citizens in CECs and
investigates the impact of individual preferences on energy technology investments.

Figure 1.3.: The structure of this thesis.
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In Chapter 4, I determine the necessary elements to provide preference-based decision
support for citizens and develop a decision support tool for CECs. To evaluate the
acceptance of such a preference-based DSSs, the results of an online experiment with
324 participants are presented in Chapter 5.

The generation of optimal investment recommendations with regard to individual
preferences and the effects of their implementation are addressed in Part III. First,
I evaluate the generation of optimal sizing solutions in a CEC with regard to the
objectives cost decrease and emission reduction in a multi-objective optimization in
Chapter 6. In Chapter 7, the recommendation of investment alternatives and the
effects of their implementation are investigated. I analyze the development of cost
and emission reductions through household investments in a CEC with 30 households
over a period of 10 years and compare the results to a community without CEC
regulation.

Part IV of this thesis introduces two use cases for sector coupling applications be-
tween the heat and electricity sector. First, the operation of coupled electricity, heat
and cooling systems is investigated in Chapter 8. Second, an operational strategy
for HP scheduling in a DHN with a TSS that uses a rolling-horizon forecast and can
integrate different objectives is presented in Chapter 9.

Finally, Part V summarizes the key findings of the research presented in this
thesis in Chapter 10. In Chapter 11, an outlook for further research is provided.

Chapters 4 and 6 to 9 rely on or comprise published articles. In all cases, I disclaim
this clearly at the beginning of the respective chapter. Within those chapters, I
consistently refer to the authors as “we”, since I collaborated with fellow researchers
for these articles.



CHAPTER 2

INTEGRATED ENERGY SYSTEMS

In integrated energy systems, different energy sectors (electricity, heat and mobility)
interact with each other on the household, community and city level and beyond
(Mancarella, 2014). The operation of integrated energy systems is necessary to
distribute renewable generation between sectors and thereby utilize the full potential
of renewable generation. Compared to the other sectors, the electricity sector has
the highest share of renewables (IEA, 2021). Renewable electricity technologies like
wind power plants, PV or hydropower have already been integrated in the energy
system and electricity is expected to be the first sector to be decarbonized (Papadis
and Tsatsaronis, 2020). Deploying sector coupling technologies for electrification of
the heat and mobility sector can help to support the decarbonization in the entire
energy system (Baruah et al., 2014). In this chapter, sector coupling applications
between different components of a multi-energy system are described, as shown in
Figure 2.1. The focus is on applications that can be used in the context of CECs.

2.1 Coupling of the Heat and Electricity Sector
On the way to decarbonize the energy system, the residential heat sector is a

decisive factor, as described in Chapter 1.
Aside from building better insulation, the transformation of heat supply through

DHNs is expected to play a large role in the decarbonization of the heat sector, as
they provide an efficient way to supply heat (Connolly et al., 2014). Due to im-
provements in heat pipe and building insulation and an effort to increase the energy
efficiency of DHNs, the flow and return temperatures have gradually been decreased
since the introduction of the first generation of district heating (Lund et al., 2014).

17
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Figure 2.1.: A sustainable multi-energy system, own depiction, based on (Mancarella, 2014).

The decrease of flow and return temperatures in DHNs also allows low caloric heat
providers such as geothermal plants or HPs to contribute to the heat supply of
communities and cities. In the 4th generation of district heating, according to the
taxonomy in (Lund et al., 2014), the integration of renewable energy systems and
both short-term and long-term or seasonal TSSs facilitates the utilization of volatile
energy generation of solar thermal, PV and wind power plants. An overview on the
taxonomy is presented in Figure 2.2. Through the addition of sector coupling tech-
nologies, both heat and electricity storage are important for the electrification of the
heat sector. While BSSs are becoming more popular in combination with residential
PV systems, TSSs in residential areas exist but are not yet widely employed (Alva
et al., 2018). The most prominently applied BSS technology in residential areas is
the lithium-ion battery (Bundesnetzagentur, 2019). In comparison to BSS, TSSs
are based on water or gravel storage systems and therefore less expensive (Mangold,
2007).

The distribution of sector coupling technologies plays an important role in the
decarbonization of the heat sector. For this purpose, HPs are a promising technology
that is already used in many residential areas (Buffa et al., 2019).

In CECs, combining electricity and heat generation has the potential to increase
the degree of self-sufficiency as well as to allow for load-shifting between different
energy sectors. PVT systems produce heat and electricity in one integrated system
(Chow, 2010). Similarly, combined heat and power plants fueled with gas can supply
residential areas at much higher efficiency rates than decoupled electricity and heat
generation (Rolfsman, 2004).
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Figure 2.2.: Generations of district heating (Lund et al., 2014).

In recent years and as a consequence of global warming and the thus growing
need for residential cooling, district cooling has emerged in the district heating con-
cept (Lund et al., 2014). An overview of district cooling technology and possible
enhancements is given in (Rezaie and Rosen, 2012). The authors classify district
energy systems by different characteristics such as the circulating fluid, thermal
applications and network size. Lake et al. (2017) provide a review on the imple-
mentation of district heating and district cooling systems in various case studies.
Kato et al. (2008) propose a new heat load prediction model for district heating and
district cooling systems using recurrent neural networks. A specific application of
district heating and cooling systems with seawater in the city of Daian is evaluated in
(Zhen et al., 2007). Especially in the last decade, more work on cooling and district
cooling systems has been published. An exergoeconomic concept designed specifi-
cally for district cooling systems is applied in (Čož et al., 2017). The performance
of a district cooling system in the city of Hong Kong is evaluated in (Gang et al.,
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2015). The authors compare a district cooling system to conventional in-building
cooling. In (Hanif et al., 2014), the correlation of radiative cooling power and the
temperature difference between environment and sky is investigated. The authors
also evaluate the potential for a radiative cooling system in Malaysia and find that
radiative cooling can save up to 11% of the power consumption required for cooling.

2.2 Coupling of the Mobility and Electricity Sector
Transportation is one of the largest carbon-emitting sectors in Germany, account-

ing for 19% of the total emissions (Umweltbundesamt, 2022a). Between 1990 and
2021, carbon emissions in the transportation sector have been reduced by only 9.4%
(Umweltbundesamt, 2022a) A rapid transformation of the transportation sector is
necessary, if the 40% emission reduction target should be within reach by 2030. One
approach to this challenge is the distribution of battery electric vehicles (BEVs).
BEVs are becoming more popular due to several factors, including the price re-
duction of lithium-ion batteries, popularity of BEV brands and a public increase
of climate and environmental awareness (Sanguesa et al., 2021). As mentioned in
Chapter 1, this is also the case in Germany, where BEVs made up 13.6% of annual
car sales in 2021, an 83.3% increase to 2020 (KBA, 2022). Hybrid BEVs make up a
share of 28.8% and it is reasonable to believe that soon the majority of newly sold
cars in Germany will be hybrid or full BEVs.

As they use and store electricity, BEVs can be used as coupling technologies
between the sectors electricity and mobility. A number of studies investigate the
integration of smart charging strategies to provide flexibility in sector-coupled energy
systems. Three exemplary studies are presented in the following.

Heinisch et al. (2021) evaluate the integration of the mobility, electricity and heat
sector in a city energy system with a focus on BEV charging. The authors evaluate
different charging strategies of BEVs for private use and public transport and find
that 85% of the private BEV electricity demand is flexible. Using smart charging
strategies, this flexibility can be used to increase the utilization of PV generation
and reduce the need for investments in stationary BSSs.

A similar approach is considered in (Sterchele et al., 2020). The authors investigate
the representation of BEVs in a large-scale simulation of a near-emission-free German
energy system. The findings suggest that the integration of BEVs increases energy
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system costs due to simultaneous vehicle charging. The energy system costs can be
lowered through the application of controlled charging strategies and vehicle-to-grid
technology.

The provision of flexibility through BEVs in energy communities is investigated in
(Backe et al., 2021). The authors investigate energy exchange between local commu-
nities and the central power system while considering heat supply and BEV charging
in Norway. In a case study addressing the expansion of BEV charging capacity and
building heat supply in Norway between 2020 and 2060 they find that building heat
flexibility is able to partly substitute a need for BEV charging flexibility.

The decarbonization of the mobility sector is an important task for the energy tran-
sition. The adoption of BEVs influences the consumption profile of households when
being charged at home. As BEVs are not part of the residential energy technologies
as determined in Chapter 2, they are not explicitly considered in the remainder of
this thesis. The developed DSSs for investments in residential energy technology and
the subsequent operation strategies focus on a coupling of the heat and electricity
sector in CECs.

2.3 Citizen Energy Communities
As mentioned in Chapter 1, individuals have the potential to play an important

role in the energy system of the future. According to a recent study by the German
Institute for Ecological Economic Research, 90% of all households in Germany could
be supplied by electricity from energy sharing (Aretz et al., 2022). This potential has
been recognized by the European Union, who promotes decentralized energy com-
munities through the European CEC regulation (European Parliament and Council
of the European Union, 2019).

2.3.1 Development of Citizen Energy Communities

The idea of CECs has already been discussed for some years in various forms and re-
ferred to as ‘local energy communities’ (Orozco et al., 2019), ‘renewable energy com-
munity’ (Soeiro and Ferreira Dias, 2020), ‘sustainable energy community’ (Romero-
Rubio and de Andrés Díaz, 2015), ‘renewable energy cooperative’ (Capellán-Pérez
et al., 2018), ‘citizen energy cooperative’ (REScoop, 2022), or ‘community microgrid’
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Voluntary Energy Energy Physical
participation sharing investment connection

Energy cooperatives x x
Collective energy projects x x
Community microgrids (x) x
Island microgrids x x
Local energy communities x x (x)
Local energy markets x x (x)
Citizen energy communities x x x x

Table 2.1.: Classification of energy community concepts.

(Warneryd et al., 2020). Walker and Devine-Wright (2008) investigate the variations
of CECs and identify two key concepts to describe them. The authors find that com-
munities must provide a high level of participation and community benefits must be
distributed among its participants to qualify as a CEC. Gui and MacGill (2018)
provide a typology that distinguishes between centralized, distributed and decen-
tralized communities. The authors define energy communities as a social structure
fostering a sustainable energy supply. They also extend the community focus to
other commodities like heat, transportation, water, or waste management, in line
with (Romero-Rubio and de Andrés Díaz, 2015). Participation in these communities
should be voluntary and the generated benefits are not required to be monetary.
The common ground for all concepts mentioned above is the focus on connecting
individuals in a neighborhood or community within the context of energy genera-
tion and consumption, but the concepts may vary in characteristics and priorities.
An overview on the classification of concepts related to CECs is presented in Table
4.1. Walker and Devine-Wright (2008) describe the concept of ‘energy cooperatives’,
that focuses exclusively on financing renewable generation capacity in a community
without the aspect of energy exchange. The authors distinguish between invest-
ments in commercial power plants or joint financing of residential facilities. In line
with communities that do not necessarily require a physical connection, ‘collective
and politically motivated renewable energy projects’ are described in (Kunze and
Becker, 2015). The authors stress the political purpose of these communities where
participation should generate benefits for each member. The concept of ‘community
microgrids’ is described as a group of interconnected load and generation sources
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acting as a single entity towards the larger grid in (Warneryd et al., 2020). This is in
line with (Cornélusse et al., 2019), who mention the concept as a community where
all members are connected to the external electricity network through the same bus.
The members of the community are able to exchange electricity among each other.
’Community microgrids’ are described in (Gui et al., 2017) as self-contained systems
that are connected to a central grid or are independent, also referred to as ‘island
microgrids’. All connection points in the microgrid, e.g., households, small busi-
nesses, prosumers are part of the community. Participation is not voluntary and
tied to the grid topology (Perger et al., 2021). The application of community or
island microgrids focus on a physical interconnection of its participants.

In the ‘local energy community’ concept, one key point is the aspect of voluntary
participation, thus linking them closely to CECs. Orozco et al. (2019) describe local
energy communities as a set of residential and industrial actors connected to the same
distribution network to form a community on a voluntary basis. Romero-Rubio and
de Andrés Díaz (2015) emphasize the sustainability aspect of energy communities
through the installation of private renewable generation capacity. While most other
ideas focus solely on electricity, their concept of ‘sustainable energy communities’
also regards heat and expands to other sectors such as water. ’Local energy markets’
are a sub-concept of local energy communities and focus on electricity trading on
peer-to-peer platforms. This concept has been implemented in pilot projects, for
example, in the city of Walenstadt, Austria (Ableitner et al., 2020) or Landau,
Germany (Richter et al., 2021).

The concepts mentioned above are based on a more detailed description that can
be found in (Richter, 2022). While these concepts all contribute to the general
idea of energy sharing and energy communities, their definitions are ambiguous and
there is a general lack of a definition that summarizes the different concepts into a
comprehensive model. As it provides a clear guideline for energy communities and is
the current standard established by the European Union, the CEC concept defined
by the European Union as described in Chapter 1 is used in this thesis. Germany
was obliged to transform the European CEC regulation guidelines into national law
by June 6th, 2021. As of now, the measures taken by the German government to
comply with these guidelines remain inadequate (Aretz et al., 2022; Boos, 2021).
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2.3.2 Sector Coupling in Citizen Energy Communities

Some work has been published on the operation of microgrids with multi-energy sys-
tems from a technical perspective and with a focus on distributed energy generation.
For an overview, see (Mancarella, 2014), for example. In examples for more recent
studies, the influence of sector coupling in microgrids on residual electricity demand
is investigated in (Kida et al., 2022). Li and Roche (2020) investigate the schedul-
ing of multiple microgrids with sector coupling. An energy management system for
multi-microgrid networks with sector coupling is presented in (Zhong et al., 2022).
However, only a few studies address the topic of sector coupling in CECs with a
focus on energy sharing among the participants. Existing studies often focus on the
benefits of added flexibility in the CEC through the application of sector coupling
that helps to increase the utilization of local renewable generation and reduce load
peaks from the external grid.

An overview of existing trends and key issues in sector-coupled energy communities
is presented in (Koirala et al., 2016). The authors present a concept for an ‘integrated
community energy system’ that is used for balancing supply and demand within the
community but can also provide services to the external grid. The model regards
technologies on a household level, e.g., PV, PVT, HPs and BEVs, and technologies
on the community level, e.g., community BSS or community PV. Local generation,
consumption and collective purchasing of residential energy technologies is mentioned
among the key activities in the integrated community energy system.

Regarding applications of sector coupling in CECs, a market mechanism for peer-
to-peer trading in sector-coupled energy systems is proposed in (Wang et al., 2022).
The market mechanism allows participants to trade both heat and electricity. Fur-
thermore, trading coalitions are introduced. Participants can trade with each other
within their coalition and the coalitions as a whole interact with the external grid
and heat network. The authors conduct a case study based on a neighborhood in
the Netherlands. The results show that peer-to-peer trading increases the overall
benefits for the participants and almost all participants benefit individually, as well.

The effects of electricity trading in sector-coupled CECs is investigated in (Wanap-
init et al., 2022). The authors evaluate the interaction of market participants and
price developments using a mixed complementary problem formulation. A simulated
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case study for a CEC with twelve participants is conducted. The findings show that
the sector coupling technologies in combination with TSSs provide additional flex-
ibility to the community and thereby increase the consumption of local renewable
generation.

The integration of storage systems and sector coupling technologies in CECs
with high shares of renewable generation is evaluated in (Bartolini et al., 2020).
The authors apply a mixed integer linear programming optimization model that
minimizes installation and operation costs to determine the optimal residential
energy technology size and dispatch strategy. Based on a case study with a
real-world residential district they find that sector coupling in combination with
storage systems can help to increase the utilization of local electricity generation
and mitigate demand ramps on the electricity grid.

In summary, the applications of a coupling between the energy sectors heat, elec-
tricity and mobility show their potential to distribute renewable generation between
sectors. The electrification of the heat and mobility sector supports decarbonization
by increasing the use of renewable electricity resources like wind or PV power plants.
As described in Chapter 1, IS can help individuals to apply sector coupling in their
households through investments in renewable energy technologies. An introduction
to IS is provided in the following chapter.





CHAPTER 3

INFORMATION SYSTEMS FOR INTEGRATED
ENERGY SYSTEMS

The development and application of IS presents one way to support citizens in the
investment decision process for renewable energy technologies. IS comprise the or-
ganized combination of people, hardware, software, communications, networks, data
resources, policies and procedures that store, retrieve, transform and disseminate
information (O’Brien and Marakas, 2009). IS are primarily used to guide processes
and support decision-making within companies (Al-Mamary et al., 2014).

3.1 The Development of Green Information Systems
In this section, a brief outline of the relevant literature with regard to Green IS

is presented. The first section sheds light on the contribution of the IS community
to sustainability movements in general. In the following, an overview of existing
work on DSS in Green IS in the context of (multi-)energy systems and CECs is given.

Green IS represents a subdivision of IS concentrated on the sustainable develop-
ment of organizations and society with the aim of reducing carbon emission (Watson
et al., 2010). Cho et al. (2014) identify three dimensions of environmental sustain-
ability: 1) the economics of energy efficiency; 2) total cost of ownership, and 3)
social imperatives. Based on these dimensions, Singh and Sahu (2020) identify five
Green IS research areas. An overview of these research areas is presented in Figure
3.1. Understanding of Green IS comprises an introduction to the topic and is split
in three subcategories: Evolution of Green IS, definitions and concepts of Green
IS and dimensions of Green IS. Green IS adoption focuses on the acceptance of

27



28 Information Systems for Integrated Energy Systems

Figure 3.1.: Green IS research area classification (Singh and Sahu, 2020).

Green IS, critical success factors and the required hardware and software. Impact of
Green IS initiatives investigates the introduction of Green IS concepts in industry,
government and society. Green IS measures and policies focuses on performance
measures, policies and regulatory compliance of Green IS. Studies located in the
global context research area investigate Green IS for developed, underdeveloped and
developing countries. Following this classification, the concepts presented in this
thesis are located in fields Green IS adoption and Green IS measures and policies.

3.2 A Market Platform for Coupled Local Heat and

Electricity Markets
As discussed in Section 2.3, different approaches for local energy markets, a sub-

group of CECs, where participants can buy or sell electricity directly from their
neighbors or residential power plants, have been discussed in previous studies (Ableit-
ner et al., 2020; Richter et al., 2021). Existing approaches focus on buying and selling
electricity, only. In an integrated CEC with sector coupling technologies such as HPs
or PVT, both heat and electricity could be traded on the market platform, for exam-
ple, as proposed in (Wang et al., 2022). Based on the market design and its outcome,
the implementation of such a market can increase incentives for participants to in-
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Figure 3.2.: House of Market Engineering (Weinhardt and Gimpel, 2007).

vest in residential energy technologies In this Chapter, I explain the principles of
a market for heat and electricity trading in a CEC along the Market Engineering
framework by Weinhardt and Gimpel (2007) consisting of five components: The eco-
nomic and legal environment, the transaction object, the market structure consisting
of microstructure, (IT-) infrastructure, and business structure, the agent behavior
and the market outcome. The components are illustrated in Figure 3.2.

3.2.1 Economic and Legal Environment

With regard to electricity markets, the framework for CEC platforms in the European
Union is the “Directive on Common Rules for the Internal Market for Electricity”
(European Commission. Directorate General for Energy., 2019) that is described in
Section 2.3. Since its introduction in 2019, the European member states were obliged
to implement the regulation into national law. The German government has passed
this deadline and has not yet introduced sufficient changes to the regulatory frame-
work for forming CECs (Wiesenthal et al., 2022). Currently, there is a possibility
to implement CECs under the regulatory system of a customer system (“Kundenan-
lage”) for households that are in close proximity to each other and are insignificant
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for market competition on the electricity or gas market (§3 No. 24a EnWG). Fol-
lowing a court decision, an area can be declared as a customer system if the number
of households does not exceed a few hundred, the area covers 10,000 m2 or less, the
transmitted energy is below 1,000 MWh and the local network is connected to the
external grid through a singular point (Gabler and Pennekamp-Jost, 2020).

In comparison to electricity markets, the regulatory and legal environment for
district heating markets varies strongly across European countries (Bacquet et al.,
2022). DHN systems are natural monopolies (Bacquet et al., 2022) and therefore
require some kind of regulation. As there is currently no uniform regulation within
the European Union, the application of sector coupling services for district heating
has to be evaluated for each country individually. Focusing on Germany, the current
regulation favors heat network operators, allowing them to enforce a compulsory
connection to the district heating network, effectively cutting off alternative heat
sources that are not part of a DHN. Additionally, prices are liberalized and there is
currently no third-party access regulation in place (Bacquet et al., 2022).

3.2.2 Transaction Object

The transaction objects on the market platform are heat and electricity. In general,
the amount of consumption [kWh] is the relevant measurement unit. Electricity and
heat power [kW] are regarded if network congestion could be an issue or capacity-
based market mechanisms are implemented, e.g., a critical peak pricing tariff. The
DHN flow supply and return temperatures can be measured for monitoring purposes.
While heat itself is a homogeneous good, it can be priced differently based on a
number of criteria, for example, its carrier medium (steam or water), temperature
and carbon footprint. In contrast to electricity networks, the distribution of heat
is rather slow. The transport of heat from one point of the DHN to another thus
may take several hours. In addition to congestion, this must be accounted for in
the market design. Electricity is a homogeneous good as well. Price differences may
occur if customers value factors like renewable or local generation. The pricing of
each good, necessary infrastructure, product properties and risk parameters can be
specified in the contracts between retailer and consumer (Salah et al., 2017).
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3.2.3 Microstructure

The microstructure comprises the design of a coordination mechanism for the allo-
cation of the transaction object. The objective of mechanism design is to find and
implement a mechanism that is compatible with individual incentives. These should
simultaneously result in efficient decisions maximizing the total welfare, voluntary
participation of individuals and balanced transfers across the agents (Jackson, 2014).
Thereby, mechanism design aims to provide a system-wide solution to a decentral-
ized optimization problem that provides self-interested agents with incentives to
truthfully reveal private information about their preferences for different outcomes
(Parkes, 2001). In a local electricity and heating market this is especially impor-
tant, as the tendency towards a natural monopoly needs to be accounted for in
the designed mechanism. The currently dominant microstructure in district heating
systems and electricity networks are tariffs. These tariffs are usually flat with an
invariant price per kWh. However, the decentralization of energy supply and the in-
tegration of intermittent renewable energy generation encourage the use of different
mechanisms, such as time-varying tariffs or auction mechanisms. Tariffs with time-
varying prices are time-of-use tariffs, real-time pricing tariffs and critical peak pricing
tariffs that already exist in the electricity sector. An advantage of tariff systems is
that they do not require active participation by the users. Another opportunity is
the use of an auction system to coordinate supply and demand. According to the
auction classification in (Parsons et al., 2011), auctions can be classified along several
independent properties: single-dimensional or multi-dimensional, one-sided or two-
sided, open outcry or sealed bid, first price or kth price, single-unit or multi-unit and
single-item or multi-item. Heat and electricity auction mechanisms generally com-
prise single-dimensional, single-item, multi-unit auctions, while the other parameters
can be determined according to circumstances. Possible auction formats are first-
price-sealed-bid, Vickrey, Dutch, English call auction or a continuous double auction.
The long-term analysis of an application of auction formats shows that participant
activity that is necessary in the bidding process decreases over time (Richter et al.,
2022). The automation of the bidding process, e.g., by the application of bidding
agents can help to overcome this issue.

In the context of local energy markets, different market mechanisms have been
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applied for trading electricity. One popular approach is the application of a double-
call auction (Block et al., 2008; Da Goncalves Silva et al., 2014; Ampatzis et al.,
2014; Mengelkamp et al., 2018). Mengelkamp et al. (2019) provide an overview on
existing market designs for local electricity markets. Another aspect in the design of
the coordination mechanism are the differing preferences of participants in a CEC
that may influence their willingness to pay (Perger et al., 2021). These preferences
can be regarded in the auction design. Zade et al. (2022) propose an auction-based
approach to satisfy participant’s preferences in the CEC through the introduction of
a price premium.

In a local heat and electricity market, both transaction objects can be regarded
separately or in an integrated approach. Especially when sector coupling technolo-
gies, e.g., an HP are installed in the CEC, heat and electricity demand influence each
other and require an integrated coordination. An example for coordination of heat
and electricity allocation using a merit order is presented in (Maurer et al., 2021).
When coupled with other services, e.g., the provision of a heat pump, the auctions
become multi-dimensional, which could be addressed using a complex service auction
(Blau et al., 2010).

The choice of the coordination mechanism should depend on the market environ-
ment, for example, the risk aversion of participants, available information, computa-
tional capabilities and communication costs (McAfee and McMillan, 1987). Due to
its simplicity and behavioral incentives for participants, the application time-of-use
tariffs or a real-time-pricing tariff, as implemented in the research project “Smart
Microgrids as a Service” (SMaaS)1 would be recommended in this Section.

3.2.4 IT-Infrastructure

The required software and technical components for the market platform are de-
scribed in the IT-infrastructure. The digitization of energy supply increases the
importance of this element. In Germany, the ongoing large-scale distribution of
intelligent metering systems, the Smart-Meter Rollout, creates an important ba-
sis for the distribution and scalability of local energy market concepts. Intelligent
metering hardware is required for the coordination of supply and demand accord-

1smaas.iism.kit.edu

https://smaas.iism.kit.edu
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ing to the implemented market or tariff mechanisms. The smart meter hardware
records application and household load and generation data and is thus part of the
data transmission system (Richter et al., 2021). Furthermore, secure communication
protocols, encryption and firewall mechanisms that preserve data privacy and data
preparation services are required to ensure a smooth and reliable platform opera-
tion. The user interface of the market platform is directed towards households and
involved in user identification and verification, request and visualization of individ-
ual load data and interaction or feedback by the users to the platform operator,
e.g., through the submission of bids (Richter et al., 2021). A database is required
to store and deploy the preprocessed data generated in the community where the
market platform is implemented. This comprises load and generation data but can
be expanded to include data from additional services through sensors, e.g., using
the LoRaWAN (Long-Range Wide-Area Network) technology. The database further
integrates market and allocation data within the market platform.

3.2.5 Business Structure

The business structure refers to the business model of the platform operator. In case
of the local heat and electricity market platform, the platform operator is usually
the operator of the local electricity grid and gas network or the DHN. This could,
for example, be the municipal utility or an external contractor. The business model
includes pricing and transaction costs which in this case comprise the compensation
for the provision of heat and electricity through a carrier medium. Aside from
generation costs, this compensation may also include network charges and rent for
the used technology, e.g., if an HP or a combined heat and power plant (CHP)
plant is installed by the municipal utility. For the municipal utility, the lease of
sector coupling technologies like an HP or a CHP plant can help to mitigate risk and
decrease capital commitment.

In a sector-coupled market with prosumer participation, the business model be-
comes more complex. Other participants can now purchase the required electricity
directly from the prosumers. If the prosumers own multi-sector generation plants,
e.g., PVT modules, they can also supply heat directly to the community. Market par-
ticipants may also share power plants within the community. The market operator
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is responsible for the organization of this process and the allocation of energy within
the community. Furthermore, the market operator can offer additional services to
the CEC, e.g., by providing a platform for shared investments in renewable gener-
ation and storage infrastructure. For a market platform with a sector-coupled heat
and electricity market, a combination of services could represent the most promising
approach.

3.2.6 Agent Behavior

As the market platform relies on the interaction of individuals, the agent behavior is
a central part of its design. Three types of agents, namely professional agents, non-
professional agents and automated agents could exist on the platform. Professional
agents, i.e., the market operator will try to increase their revenue on the platform. On
the other hand, non-professional agents, i.e., residents within a CEC have varying
interests ranging from economic benefits to ecologic considerations. Furthermore,
residential agents are not necessarily intrinsically motivated to actively participate in
the market and have time restrictions regarding their availability. Previous analyses
show that residential customers are reluctant to actively participate in the energy
transaction process and bidding activity decreases rapidly over time (Richter et al.,
2022). This puts non-professional agents in a disadvantage compared to professional
agents. One way to overcome this imbalance is the application of automated agents
that take over active bidding for the participants. In an empirical study, Richter
(2022) shows, that such agents are able to exploit static bidding prices by other
non-professional participants, but that the advantages are negated when all non-
professional participants employ automated agents. It is also possible to employ
strategies that require only limited active participation of the non-professional agents
in the market, e.g., through the application of time-varying tariffs.

3.2.7 Market Outcome

The market outcome or performance is based on its economic and legal environment,
the market structure and agent behavior. It can be measured based on a variety of
indicators with different backgrounds, e.g., from an economic, ecological or societal
perspective. In the context of a local electricity and heat market in a CEC, the
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market outcome can be evaluated with regard to revenue (economic), emission
reduction or dependency on fossil fuels (ecological) and total participant utility
(societal).

The principles described in this section represent one possible implementation of
a market platform for a local coupled heat and electricity market. The remain-
der of this thesis focuses on supporting citizens in investing in renewable energy
technologies and operation strategies for sector-coupled systems. In addition, the
proposed market platform could support the coordination of energy supply and de-
mand in integrated energy communities. As mentioned in the introduction of this
section, such a market can be designed so that the market outcome can increase the
incentives for participants to invest in residential energy technologies and thereby
become prosumers. The support of participants in such investment decisions through
preference-based DSSs is addressed in Part II of this thesis.





Part II.

Household Preferences in Energy

Communities





INTRODUCTION TO PART II

As outlined in Part I, household investments in residential energy technologies are
important for the success of the energy transition in Germany. However, citizens
often lack the means or information to make such investment decisions. They can be
supported through the development of preference-based DSSs for citizens in CECs.

The design of these DSSs can enable citizens to take an active role in the energy
transition and thereby contribute to the mitigation of climate change. In Part II, I
first determine the elements of a preference-based decision support tool for residen-
tial energy technology investments in CECs (Chapter 4). Furthermore, I evaluate
acceptance factors of preference-based recommendations in a DSS for energy tech-
nology investments in comparison to naive recommendations in an online experiment
(Chapter 5).
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CHAPTER 4

SCALING THE CONCEPT OF DECISION SUP-
PORT IN CITIZEN ENERGY COMMUNITIES

This chapter introduces a platform-based DSS that enables residential consumers and
prosumers to create CECs. The necessary information is determined to configure a
local energy infrastructure and conceptualize a coordination mechanism that merges
diverging preferences of participants. The application of the proposed framework is
demonstrated using empirical data from the Landau Microgrid Project to provide a
proof of concept. The developed platform facilitates the transition of citizen energy
communities from a niche phenomenon to a large-scale concept. It is therefore an
implementable solution from the IS domain toward the mitigation of climate change.

This chapter comprises the published article: Golla, Armin; Henni, Sarah; Staudt,
Philipp (2020b): Scaling the Concept of Citizen Energy Communities through a
Platform-based Decision Support System. In: European Conference on Information
Systems (ECIS) 28, p. 1–16.

4.1 Introduction
The shift towards a renewable energy sector causes a change of paradigm in energy

systems across the globe. The widespread installation of renewable generation plants
is leading to a decentralization of energy supply (Brauner, 2016). As a result of this
development, local and individual decision-makers have the potential to play an im-
portant role in the energy system of the future. As mentioned in Part I, this potential
has been recognized by the European Union through the introduction of the concept
of CECs (European Parliament and Council of the European Union, 2019). This is
not solely limited to electricity. To achieve the emission reduction goals of the Eu-
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ropean Union, all sectors responsible for emissions have to be further decarbonized.
In residential areas, this includes electricity consumption, but also heat demand of
buildings and mobility of residents (Brauner, 2016; Bründlinger et al., 2018). Until
now, these sectors have usually been considered as separate systems, but research
suggests that the desired emission reductions can be better achieved through an inte-
grated approach (Bründlinger et al., 2018). In this chapter, we therefore emphasize
the importance of a multi-energy approach in the context of CECs. The authors
of this chapter conclude that the scaling of CECs from an experimental state to
a mainstream movement is an important driver of sustainability developments. In
the spirit of (Gholami et al., 2016), we therefore propose a communication-driven
DSS as a solution to support the development and implementation of decentralized
energy systems. We emphasize the requirement of i) a platform that offers the pos-
sibility for agents (local consumers, prosumers or investors) to find each other and
to cooperate, ii) a coordination mechanism that aligns diverging preferences and iii)
a support mechanism that provides recommendations in terms of technology invest-
ment and supply systems as well as their economic and environmental implications.
We therefore answer the following research question:

RQ 1: What are the required elements to provide investment recommendations
to CECs through a platform-based DSS in order to coordinate financial and
ecological interests of participants?

To answer the research question, we provide a framework for a DSS in a CEC.
To contribute to the scalability of CECs, we create a system that integrates partici-
pant preferences through the formulation of a corresponding optimization problem.
We demonstrate the functionality of the proposed framework through a case study
presented in Section 4.5. The case study shows potential local financial savings and
potential carbon emission reductions caused by a concrete implementation of the
platform.

4.2 Related Work
In this section, we briefly outline the relevant literature. In the first section, we

shed light on the contribution of the IS community to sustainability movements in
general. We then give an overview of existing work on DSS in Green IS in the context
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of (multi-)energy systems and CECs.

4.2.1 Information Systems and Sustainability

Watson et al. (2010) address the need for the IS community to be more involved
in the development of IS that support a transition towards a more sustainable so-
ciety. The authors introduce energy informatics as a sub-field of Green IS that “is
concerned with analyzing, designing, and implementing systems to increase the effi-
ciency of energy demand and supply systems” (Watson et al., 2010, p.24). Gholami
et al. (2016) add that not enough feasible solutions for the challenges of the global
climate change crisis are proposed by the IS community, in spite of the fact that it
offers great potential. The authors state that “a major research gap seems to exist
between what is needed to solve problems associated with climate change and what
IS scholars have done despite the huge potential contribution of IS knowledge and
skills” (Gholami et al., 2016, p.524). The positive influence of Green IS on environ-
mental orientation and behavior has been demonstrated by several authors both on
an individual and organizational level (Henkel and Kranz, 2018). The effects of IS-
supported green initiatives in municipalities are studied in (Bengtsson and Ågerfalk,
2011), concluding that IS can optimize processes through the provision of informa-
tion and thus influence the sustainability performance of a municipality. Jenkin et al.
(2011) find that Green IS has the most positive impact when it provides feedback
on environmental effects, reduces barriers to participate in actions and contains en-
gaging features such as an entertaining interface. Seidel et al. (2018) identify the
most significant design principles for Green IS as provision of novel information, the
possibility to store and categorize ideas, interactive communication and the provi-
sion of action alternatives. In a review of the role of DSS in Green IS Research,
Klör (2016) identifies research contributions along five theoretical concepts, namely
the type of DSS (e.g., data-driven, knowledge-driven, communication-driven), the
information technology (IT) artifact (e.g., constructs, models, instantiations), IS re-
search method (e.g., conceptual research, empirical research), supported life cycle
(first-, second- and end-of-life) and Green IS paradigm (green by IS versus green
in IS). The author finds that communication-driven DSSs as well as conceptual re-
search are underrepresented. While models are the most often found IT artifact,
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less than half also provide an instantiation and thus the intended implementation
remains questionable.

4.2.2 Decision Support Systems for Citizen Energy Communities

As previously defined, a CEC is an association of local consumers and prosumers
who cooperate in generating, storing and consuming distributed energy resources.
While a certain degree of self-sufficiency is sometimes aspired, a CEC might still
have access to external energy sources. One hurdle for CECs is bringing together
several individuals on a local scale so that they can enhance local energy structures
by taking joint investment decisions and by combining their energy infrastructures
(Soshinskaya et al., 2014). This is made more difficult by the complexity of the
decisions that have to be reached before any investment is made, including the choice
and scale of renewable energy sources, infrastructures and the environmental impact
that results from these choices. A further obstacle is the regulation of CECs that
is changing rapidly and differs by country (Soshinskaya et al., 2014). The design
of a DSS for the technological and infrastructural coordination of a multi-energy
system, specifically aiming at residential neighborhoods targets a sub-task of DSS
in Green IS that can be categorized along two dimensions. The first dimension
is the target group of the DSS in terms of expertise in the energy domain. We
divide this dimension into “experts” (i.e., utilities, project planners, service providers,
policymakers) and “non-experts” (i.e., residents or private investors without expertise
in the energy domain). The second dimension is the research perspective which can
be either a “specific technology” or a holistic “system view”. The transition between
these two approaches can be somewhat blurred. In general, researchers either target
the in-depth configuration of a particular technology using a unique method, or
the integration and interaction of several technologies and infrastructures on a more
superficial level. Table 4.1 shows a selection of DSS research on energy system design
categorized into the two dimensions and helps in describing the identified research
gap. In a technology-specific approach, Hopf et al. (2017) estimate the potential for
PV. Wang et al. (2017) develop strategies for the installation and operation of CHPs
in district heating networks. Rickenberg et al. (2013) evaluate optimal locations
for car-sharing stations. Using a holistic approach, Liang et al. (2006) investigate
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Experts Non-experts

Specific
technology

(Hopf et al., 2017)
(Wang et al., 2017), (Azzopardi et al., 2013)

(Rickenberg et al., 2013)

(Liang et al., 2006), (Brandt et al., 2013),
(Cherni et al., 2007)System view (Eickenjäger and Breitner, 2013),

(Rager et al., 2013)

Table 4.1.: Research on DSS in Green IS in the context of the design of an energy system.

optimal choices for electricity generation projects. Eickenjäger and Breitner (2013)
consider the interaction of various exogenous and endogenous factors for political
decisions regarding the replacement of fossil fuels in the mobility sector. Rager et al.
(2013) describe a web-based DSS for multi-energy utilities.

In line with (Brauer et al., 2015) who find that smart city research is primarily
directed at city planners, both the technology-specific and system perspective are
mainly addressed at the expert level, i.e., project planning in the government or in-
dustry. One research that targets non-experts for a specific technology is presented
by Azzopardi et al. (2013) who design a DSS for ranking PV technologies for house-
holds. A multi-criteria DSS to support the selection of an appropriate set of energy
options for remote rural areas in Colombia is introduced in (Cherni et al., 2007). In
an effort to address individual needs, the developed tool considers resources that are
available to the community as well as group priorities. However, individual prefer-
ences of residents as well as the corresponding communicative coordination process
are not included. The objective of designing a remote rural energy system in a
developing country also differs substantially in terms of available technologies and
prerequisites that weigh into the decision process. In conclusion, most hands-on re-
search related to CECs either considers only a single energy sector or investigates
a very specific use case with a fixed choice of technologies and limited parameter
variability, which is in line with the findings presented in (Mancarella, 2014). Since
the transition towards a more sustainable energy system is driven by local actors
who become actively involved in energy generation and consumption, this is a short-
coming in existing research. Given the provided literature, a lack of research exists
in regards to DSS for “non-expert” decision makers with a “system view”.
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4.3 Scalability of Citizen Energy Communities
As described in the first part of this chapter, CECs hold the potential to propel

the movement towards a sustainable energy system. Combined with the abilities
of Green IS to promote participation, to provide access to information and to en-
hance pro-environmental behavior, this potential motivates our research proposal:
We propose a DSS that unites potential participants, coordinates preferences of lo-
cal consumers and prosumers and provides recommendations of energy investments
that meet these preferences. Through this platform, the concept of CECs can be
extended to other locations more easily. Scalability of CECs can be measured in two
dimensions (Seyfang and Haxeltine, 2012; Ruggiero et al., 2018). First, a concept
should have the potential to be replicated in other locations, that is, effective IS
enable the concept of CECs to be easily adapted by others. This issue is addressed
in our research through the consideration of local infrastructure characteristics, ex-
isting technologies and assets. Our model thus has the potential of disseminating
CECs regardless of location and facilitates the emergence of CECs by uniting local
decision-makers and enabling informed decisions. Second, the scalability of an ex-
isting CEC in a given location can be measured by the extent of participation from
local individuals. A successful model therefore should be able to extend the size
of a community by facilitating the coordination of large groups and the addition of
new participants. In this respect, participation in CECs is investigated in (Seyfang
and Haxeltine, 2012). The authors find that scaling up community projects beyond
“committed environmentalists” is a problem for the majority of investigated projects.
This issue is addressed in the proposed DSS through the incorporation of economic
and environmental preferences, targeting a wide circle of potential users. By demon-
strating economic advantages, the system addresses potential participants who are
not driven by ecological motives. Additionally, a mechanism that coordinates di-
verging preferences further advances extended participation in CECs. The potential
of transferring the concept of CECs to a global scale is high. For example, the po-
tential of renewable energy-based systems on small islands is analyzed in (Blechinger
et al., 2016). In spite of good conditions for the implementation of renewable energy
technologies, many of these isolated energy systems still mainly use diesel generators
today. Such systems especially exist in third-world countries and emerging markets.
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The primary concern for isolated systems is to increase the autonomy of the sys-
tem and from a socially conscious point of view, to raise the standard of living for
the inhabitants of an isolated system. Nonetheless, the same incentives and market
models as for CECs apply as well. Blechinger et al. (2016) conclude that missing
knowledge is a significant problem that hinders a more widespread application.

4.4 Platform Design
To address the research gap derived in Section 4.2, we describe the design of a

platform-based group DSS for CECs. First, we define the possible components of
CECs that are taken into account for the recommendations of our proposed plat-
form. Subsequently, we introduce the platform, its coordination mechanism and the
resulting recommendation cycle in detail.

4.4.1 Components of Citizen Energy Communities

In the first part of this research, we emphasize the importance of an integrated
approach in the deployment of CECs. The components of a residential integrated
energy system include renewable generation, combined electricity and heat genera-
tion and energy storage systems. An overview of the components can be found in
Chapter 2. The components and their connections are displayed in Figure 2.1.

4.4.2 Decision-Support Platform for Citizen Energy Communities

The overview on IS for CECs presented in Section 4.2 shows that while there are
many examinations and optimizations of specific cases of CECs or its components,
existing (IS) research does not include a holistic approach that considers individual
preferences and existing resources of local residents in the design of CECs. We ad-
dress the need of IS that enable the participation and coordination of agents in a
local multi-energy community. In the following, we therefore design a user-centric
platform that considers the preferences and characteristics of individuals participat-
ing in a CEC to support joint decisions, e.g., by giving recommendations. We define
the required information as well as the coordination mechanism that merges individ-
ual preferences. Figure 4.1 shows the framework of the proposed DSS, which is based
on the four design principles for sensemaking support systems derived from (Seidel
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Figure 4.1.: Conceptual design of a CEC platform.

et al., 2018): We provide environmental facts in the form of possible CO2 emission
reductions (design principle 1). Our platform registers structural, regulatory and
user-centric elements to support the decision making process (design principle 2).
Merged and individual preferences are visible to all users during the recommenda-
tion cycles, providing a feature for communication (design principles 3a and 3b).
Through the recommendation of applicable technologies, we provide action alter-
natives for the CEC (design principle 4). In the following, we describe the steps
that lead to a recommendation for a CEC, starting with the initial input of the
participants’ data, preferences and assets, followed by the determination of feasible
solutions through an optimization. Finally, we describe the recommendation cycle
consisting of one or more recommendations that are given to the participants as
feedback whereupon preferences can be adjusted gradually until a joint decision is
reached.

4.4.3 Platform Initialization

Potential participants on the platform include consumers, prosumers and potential
investors that do not have to be part of the local residents of a CEC. Each participant
registers on the platform and receives an account. In the first step, she enters all
relevant data on Structural Elements for a CEC:

• Geographic location: To join participants that live in geographic proximity,
users need to enter their location of residence.

• Existing technologies: This includes all previously installed energy-related
technologies that can be incorporated in a CEC, including but not limited
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to renewable generation sources, CHP or storage units, HPs and BEVs.

• Existing infrastructure in the district: Structural restrictions must be taken
into account when selecting alternatives. It is crucial that participants provide
information on this infrastructure such as district heating or gas networks that
require participation of residents.

The second input are the User-Centric Elements that disclose personal prefer-
ences and characteristics:

• Heat and electricity load profiles (if known) or consumption patterns: The
issue of missing real historic load profiles can be overcome by including a syn-
thetic load profile based on consumption patterns. When no real data is avail-
able, participants enter consumption characteristics, including household size
(number of residents and living space), daily work routines (e.g. part-time vs.
full-time employment, shift work vs. “9 to 5”) and energy intensive appliances
(e.g. BEVs or HPs). Based on this information, synthetic load profiles can be
generated as shown in (Pflugradt et al., 2013).

• Weighting of economic vs. ecological preferences: In some cases, citizens are
willing to pay a surplus on their energy consumption if this has a benefi-
cial environmental effect (e.g. for electricity from renewable energy sources)
(Mengelkamp et al., 2017b). However, economic considerations are the most
prominent concern for most consumers. We introduce a weighting parameter α
that can be adjusted from 0 (only environmental concern) to 1 (only economic
concern) on a continuous scale. Environmental costs are expressed as costs of
additional carbon emissions in Euro per ton and can therefore be compared to
the economic impact of CEC solutions.

• Preferred degree of minimum self-sufficiency: This value can be adjusted on a
continuous scale from 0 to 100% by each participant. It reflects a minimum
aspired level of self-sufficiency and is integrated into the optimization problem
as a constraint.

• Investment costs: The financial possibilities of residents may be limited. There-
fore, participants may enter their maximum willingness to invest which is added
to the optimization as a constraint.
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• Preferences regarding preferred technologies: Here, a participant can select
technologies from a multi-choice selection that she wants to see considered
in the analysis. This does not mean that the selected technology has to be
installed but it rather serves as a benchmark for participants who are interested
in certain specific technologies.

• Intentions regarding planned technologies: Similarly to the previous point,
participants can pick technologies from a multi-choice selection. However, this
differs in the respect that there is already a pronounced intention to make
the said investment in the foreseeable future. Thus, the planned time before
installation is also required for this aspect to be included in the optimal rec-
ommendation. One example would be the planned purchase of a BEV.

These are the required elements to coordinate the financial and ecological inter-
ests of participants. From here on we determine how these elements can be used
to provide investment recommendations to CECs through a platform-based DSS.
For a specific intended CEC, multiple participants can join a project on the plat-
form. Suitable projects for interested participants can be recommended based on
geographic location. A project can either be initiated by an existing CEC or by in-
dividuals (consumers, prosumers or investors) with the objective of creating a CEC.
The initiator of a project can make several choices during the set-up. She can se-
lect whether external investments are desired, thus making the project accessible for
potential investors. A project can be created “open”, i.e., granting access to all in-
terested individuals or “closed” in case a physical community exists and wants to use
the application for recommendations only. However, even in open projects, the ini-
tiator may decide, whether an interested agent is allowed to join the project. For the
adoption of CEC projects, regulation plays a major role. Even though the European
Union has issued a directive for the promotion of CECs (European Parliament and
Council of the European Union, 2019), the regulation is still inconsistent between
most countries and the implementation is only underway. For instance, the German
regulator has established the use of so called customer systems in which local trading
of energy is possible under certain circumstances and with certain financial benefits
(Bundesministerium für Justiz, 2011). Another approach is to link customers and
appliances ’behind’ the meter to allow for shared generation and consumption in-
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Variable Unit Description

ACO2 kg Overall amount of CO2 produced by an appliance
bel, bht Battery status
cCO2 e /t Specific CO2 costs
Cel, Cht e Investment and operating costs for a electricity

or heat technology
cel, cht e /kWh Electricity / heat costs
cg,el, cg,ht e /kWh Grid electricity / heat costs
del, dht kWh Electricity / heat demand
dbel, dbht kWh Storage electricity / heat demand
f g,el, f g,ht kWh Electricity / heat fed into the grid
F c,el, F c,ht Cost function electricity / heat
F c,env Environmental cost function
F r,el, F r,ht Revenue function electricity / heat
i Appliance index
j Participant index
K Set of available technology specifications
M Number of appliances
N Number of participants
rf,el, rf,ht e Feed-in revenue electricity / heat
sel, sht kWh Electricity / heat supplied by an appliance
sg,el, sg,ht Electricity / heat supplied by the grid
t h Time step index
T Time series
X kW,kWh Matrix of applied technology specifications
Xi kW,kWh Vector of specifications for technology i

α % Weighting factor
αm % Merged weighting factor
β % Degree of self-sufficiency
βm % Merged degree of self-sufficiency
ϕ % Percentage of self-sufficiency

Table 4.2.: Nomenclature.
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dependently of the energy network as self-consumption (Mengelkamp et al., 2017a).
A uniform regulation approach would nonetheless help to improve the scalability of
CECs on a European and global stage as business models could be exported and
transferred more easily.

4.4.4 Deriving an Optimal Solution

From the user-centric preferences and the structural and regulatory input, we derive
an optimal solution for the development of a CEC. In a new project, the participants’
preferences are merged to generate one set of preferences. As explained in Section
4.4, the individual tendency towards an economic or environmental optimization of
the community project is expressed by α. The merged αm includes the mean of all
set preferences αj and is given by:

αm =
1

N

N∑
j=1

αj (4.1)

Here, N is the number of participants. The full nomenclature is given in Table 4.2.
The time step index t is omitted in the table. Whenever it is added in a formula, the
variable changes over time. The merged minimum self-sufficiency βm is also derived
as a mean of all individual self-sufficiency preferences βj and given by:

βm =
1

N

N∑
j=1

βj (4.2)

The revenue F r,el
t,i , F r,ht

t,i and costs F c,el
t,i , F c,ht

t,i in the electricity and heat sector are
calculated for every time step t in Equations (4.3) to (4.6). The revenue and cost
functions are given by:

F r,el
t,i (Xi) = selt,i(Xi) · cel + f g,el

t,i (Xi) · rf,el ∀ (t, i) ∈ (T ×M) (4.3)

F r,ht
t,i (Xi) = shtt,i(Xi) · cht + f g,ht

t,i (Xi) · rf,ht ∀ (t, i) ∈ (T ×M) (4.4)

F c,el
t,i (Xi) = delt,i + dbelt,i(Xi) · cel + sg,elt,i · cg,el + Cel

t,i(Xi) ∀ (t, i) ∈ (T ×M) (4.5)

F c,ht
t,i (Xi) = dhtt,i + dbhtt,i(Xi) · cht + sg,htt,i · cg,ht + Cht

t,i(Xi) ∀ (t, i) ∈ (T ×M) (4.6)
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Here, Xi denotes a vector where every entry contains information about the applica-
ble technology i ∈ M such as power, storage capacity and cycle efficiency. Equation
(4.7) denotes the environmental costs F c,env, measured in CO2 equivalents, which
are given by:

F c,env
t,i (Xi) = cCO2 · ACO2(Xi, s

el
t,i, s

ht
t,i) ∀ (t, i) ∈ (T ×M) (4.7)

For each technology that is available in the project, the optimization given in Equa-
tion (4.8) returns an optimal value. Thus, the project owners have the ability to
implement the recommended system. The optimization constraints consist of two
functions for balanced supply and demand in the heat and electricity sector, two
equations for storage system updates, the calculation of the self-sufficiency ratio over
the entire time series, the technology restrictions and a limitation for the minimum
self-sufficiency. The entire optimization is given by:

min
X

−

[
αm

(
M∑
i=1

T∑
t=1

F r,el
t,i (Xi) + F r,ht

t,i (Xi)− F c,el
t,i (Xi)

−F c,ht
t,i (Xi)

)
− (1− αm)

(
M∑
i=1

T∑
t=1

F c,env
t,i (Xi)

)]
w.r.t.

sg,elt,i +
M∑
i=1

selt,i(Xi)− f g,el
t,i − delt,i − dbelt,i(Xi) = 0 ∀ (t, i) ∈ (T ×M)

sg,htt,i +
M∑
i=1

shtt,i(Xi)− f g,ht
t,i − dhtt,i − dbhtt,i(Xi) = 0 ∀ (t, i) ∈ (T ×M)

belt−1(Xi) + selt,i(Xi)− dbelt,i(Xi)− belt,i(Xi) = 0 ∀ (t, i) ∈ (T ×M)

bhtt−1(Xi) + shtt,i(Xi)− dbhtt,i(Xi)− bhtt,i(Xi) = 0 ∀ (t, i) ∈ (T ×M)

M∑
i=1

T∑
t=1

selt,i(Xi)− f g,el
t,i + shtt,i(Xi)− f g,ht

t,i

sg,elt,i + selt,i(Xi)− f g,el
t,i + sg,htt,i + shtt,i(Xi)− f g,ht

t,i

− ϕ = 0

Xi ∈ Ki ∀ i ∈ M

βm < ϕ (4.8)

The optimal solution is not to be understood in such a way that on a continuous
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scale all possible alternatives (e.g., arbitrarily large storage units, an HP etc.) are
calculated. Instead, a predefined set of alternatives, which is based on the described
possible components, available sizes (e.g., commercially available BSS size) and the
preferences and restrictions are analyzed and lead to a mixed integer linear program-
ming formulation. From this set, the optimal possibility is then recommended to the
participants.

4.4.5 Recommendation Cycle

When a group of participants initiates a community project, they may choose to re-
ceive a recommendation based on their entered preferences, assets and restrictions.
To derive the optimal solution, the platform analyzes a predefined set of alterna-
tives as described in Section 4.4.4. For each alternative, the platform calculates the
CEC’s benefits in terms of financial and environmental impact. An optimal technol-
ogy set is then recommended based on the target function. The recommendation is
displayed with all relevant information such as investment costs, duration of amorti-
zation and emission reductions. Along with the recommendation, this information is
displayed for all considered alternatives to ensure the adherence to the design prin-
ciples established by Seidel et al. (2018). It may happen that the constraints (e.g.,
degree of self-sufficiency) are not achievable within the given parameters or only at
unreasonable costs. This is the case if the issued recommendation exceeds invest-
ment costs or a minimum threshold for the rate of utility of a technology. Then,
participants receive recommendations on how a change in preferences might result in
a more favorable outcome. It is encouraged to adjust the user-centric elements grad-
ually to receive alternative optimal scenarios and improve the coordination between
participants who may interact during the process.

4.5 Case Study
To demonstrate the functionality of the proposed platform, we present a case

study based on data of the Landau Microgrid Project (LAMP) (Richter et al., 2021).
For the case study, we use consumption data of eight households from September
to October 2019 and a 23 kW PV plant that is already installed at the location.
The eight participants form a CEC that utilizes the power generated by the PV
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panel. The main objectives are to reduce energy costs and increase the revenues
generated by the PV panel. The reduction of local carbon emissions and a degree
of self-sufficiency are not of major concern. We show that for a rising number of
participants, the overall cash flow increases and the amortization time decreases, thus
giving the incentive to scale up the system and include more members. This speaks
to the spirit of the proposed solution that is intended to increase local engagement
in CECs.

4.5.1 Implementation

For the case study, we assume that the PV panel is owned by the eight participants
and feed-in revenues are split equally between all parties. To extend the CEC, the
community has the option to install a BSS and an HP that is connected to the local
DHN. For the optimization, consumer data and preferences are derived from the
IS platform. The CEC participants submit individual consumption profiles and the
PV generation profile. Since there are no actual heat load profiles available for the
CEC, we use data generated with a load profile generator (Pflugradt et al., 2013).
The optimization is carried out with three available batteries and two HP sizes.
The rated capacity of the BSS is 4.6 kW, the load efficiency is 96% and the storage
efficiency is 98% for all models. The usable capacities are 16 kWh, 18 kWh and 20
kWh and the corresponding investment costs are 23,790e , 26,360e and 28,930e .
The HP that can be installed has a coefficient of performance (COP) of 3.5 and is
available in two sizes (10 and 15 kWp) and resulting investment costs of 16,500e and
18,400e . All participants agree to pay the same amount for the installed appliances
and share costs and revenues equally. The electricity purchasing costs are set to
0.30e per kWh, heat purchasing costs at 0.08e per kWh and the PV feed-in tariff
is set according to German feed-in regulation for 2019 at 0.0959e per kWh.

4.5.2 Results

The different scenarios are compared with regard to cash flow and amortization time.
The results show that a solution can be found where the investments are amortized
within the lifetime of the installed objects. For the case study, the installation of
both a BSS and an HP is considered. The scenarios are benchmarked against a
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Cash flow base BSS BSS BSS
case: -1,725.14e 16 kWh 18 kWh 20 kWh

HP 10 kWp 528.88 (12.70) 551.85 (12.94) 574.83 (13.17)
HP 15 kWp 564.90 (12.45) 587.87 (12.69) 610.61 (12.92)

∆ Cash flow [e ] (Amortization [years])

Table 4.3.: Economic calculation of HP & BSS scenario including heating costs.

base case without further additions. In the base case, the entire cash flow of the
CEC amounts to -1,725.14e of operating costs for heat and electricity demand.
An overview of the case study results is presented in Table 4.3. In a combined
scenario, a larger HP is favorable both with regard to the cash flow difference and
the amortization time. For the BSS, the recommendation differs depending on the
optimization goal. A 16 kWh BSS is favored when only considering the amortization
time. The recommendation for a project with focus on a low amortization time would
be the combination of a 16kWh BSS together with a 15kWp HP. The investment
per participant is 5,273.75e and the return on investments per year is 8.0% or
423.68e . With the implementation of both HP and the PV plant, the CEC can
save 1.30 tonnes of CO2 emissions in the regarded period (Considering 510g/kWhel

as estimated for the German electricity mix (Icha and Kuhs, 2019)) and achieve
a degree of self-sufficiency of 31%. For a project with focus on large cash flow
generation, the recommendation is the installation of a 20kWh BSS and a 15kWp
HP. Here, the investment per participant rises to 5,916.25e and the return on
investments decreases to 7.7% or 457.96e per year. The implementation can save
1.42 tonnes of CO2 in the regarded period and achieves a degree of self-sufficiency
of 34%. A main objective of this work is to create incentives for a decentrally
organized participation in the energy transition through CECs. To show the overall
improvement that can be achieved with a higher participation rate in a project, we
vary the number of agents participating in the energy community for the combined
scenario with a 16kWh BSS and a 15kWp HP. By calculating the amortization time
and yearly cash flow difference, we demonstrate the effects of different participation
rates. An overview is presented in Figure 4.2. The results show that a higher
number of participants has a strictly positive effect on both the amortization time
and yearly difference in cash flow. This indicates, that our proposed model creates an
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Figure 4.2.: Amortization time and cash flow with varying numbers of participants.

incentive for households to participate in CEC projects and also for existing projects
to motivate new participants.

4.5.3 Discussion

In the previous sections, we define the basic components, requirements and mech-
anisms for IS that enable the formation of CECs. However, some aspects remain
that would need to be taken into account before implementing the proposed plat-
form. One point is the application design. We suggest an easy-to-access application,
that is web-based or distributed through a mobile application. An important aspect
would be, for example, the “engaging features” proposed by Jenkin et al. (2011). Fur-
ther, the possible roles of the participants, their rights, obligations and restrictions
must be defined in detail. An investor, for example, is a special type of participant
who does not have to live in proximity to a potential CEC but is willing to provide
financial resources. We do not go into further detail about the possibilities and im-
plications of investors but note that this is an important participant that should be
included and needs to be further elaborated in future work. In addition, it should be
investigated how joint revenues are divided among participants. This is especially
important when an external investor participates in the CEC, but it is also relevant
for residents who may jointly invest in technologies (e.g., a BSS). Then the question
arises as to whether the revenue should be divided solely according to the share of
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the investment or whether it should also be rewarded if one behaves economically
beneficial, for example by providing flexible demand. Furthermore, questions regard-
ing the ownership and responsibility for the technology, e.g., if repairs are necessary,
need to be settled. Another interesting consideration could be a reward scheme for
bringing in new participants. As additional consumption might have a similar effect
to a storage system, this can save investment costs. A further point of consideration
are amount and quality of available consumer data. In our use case, we rely on real
consumption data instead of synthetic generated load profiles over a longer period
of time. The use of sparse data to give recommendations regarding optimal electric-
ity tariffs is investigated in (vom Scheidt et al., 2019), suggesting that even small
samples of real data are suitable for this task. Further research could be done on a
comparison between real and synthetic data sets for different use cases. While the
overall design of the proposed DSS is finalized, the specification of detailed platform
components is beyond the scope of this chapter and remains subject to future re-
search. The proposed DSS can be further enhanced using the design science research
cycle presented in (Hevner et al., 2004). As proposed in (Staudt et al., 2019), behav-
ioral research is required within the design cycle to assess participant preferences and
requirements. Besides the context of CECs, the proposed DSS can also be applied
by decision makers in companies that want to establish more sustainable energy
practices. The requirements of such applications are subject to further research.

4.6 Conclusion
In this chapter, we develop a platform-based DSS for CECs and show its principal

functionality in a case study for a microgrid in Landau, Germany. The necessity of
the developed DSS arises from the high potential of Green IS to contribute to sus-
tainable development and to promote environmentally beneficial behavior. CECs in
particular offer a solution to integrate renewable energy sources in a decentralized en-
ergy system. To overcome obstacles to the emergence of CECs, we design a generally
applicable platform that considers individual and diverging preferences and supports
complex group decision making. We thus answer the research question introduced
in the first section: To coordinate financial and ecological interests of participants,
a combination of structural elements (geographic location, existing technologies, ex-
isting infrastructure), user-centric elements (load profiles, weighting of preferences,
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preferred degree of self-sufficiency, investment costs, technology preferences, inten-
tions regarding planned technologies) and regulatory elements is required. With an
optimization that regards these elements we provide investment recommendations to
CECs through a platform-based DSS. We define the information required within a
platform-based DSS to initiate a project and generate a recommendation, consisting
of structural elements and participant’s consumption patterns and preferences. We
introduce a coordination mechanism that takes into account economic and ecologi-
cal preferences through a weighting parameter in the target function of the optimal
technology assessment. For the case study, we show that a 15 kW HP and 16 kWh
BSS generate the highest cash flow, leading to an investment amortization within
less than 13 years and carbon emission reductions of 1.4 tons over a period of two
months. The proposed platform has the potential to positively influence the scaling
of CECs by facilitating participation and supporting interaction, providing compre-
hensible information on environmental impact and by presenting different paths of
actions and their economic and ecological consequences. With the help of the use
case, we show how the model is applied and its potential effects. We provide a system
that integrates participant preferences through an optimization formulation. Our re-
search is thus a tangible contribution of the IS community towards a decarbonized
energy system. The acceptance of preference-based DSSs as proposed in this chapter
is evaluated in Chapter 5.





CHAPTER 5

EXPERIMENTAL EVALUATION OF DECISION
SUPPORT FOR RESIDENTIAL ENERGY TECH-
NOLOGY INVESTMENTS

The results of the previous chapter support the development of preference-based
DSSs that provide recommendations for citizens regarding investments in residen-
tial energy technologies. The success of such IS depends on the acceptance of the
recommendations by the users. To evaluate the acceptance factors for preference-
based recommendations in DSSs, the results of an online experiment (n = 324) are
presented in this chapter. In three treatment groups with a total of six treatments
and a between-subject, one-shot design, participants choose from 20 investment al-
ternatives for residential energy technologies with or without uncertainty about the
outcome. For comparison, the first two groups are presented with a naive recom-
mendation indicating the lowest cost or the lowest emission alternative. In a third
treatment group, participants receive a preference-based recommendation based on
their individual cost or emission preference as determined in a rank-based conjoint
analysis. According to the results of the experiment, the acceptance rate of the
recommendation is on average 22 percentage points higher in the treatments with
preference-based recommendations.

5.1 Introduction
Scaling up renewable energy generation, storage and sector coupling technologies

supports the transformation of the energy system on the pathway towards decar-
bonization (Hansen et al., 2019). As argued in Chapter 1, individuals play a large
role in this transformation through investments in these technologies (Yildiz, 2014).
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These investments need to be further increased to reach the German emission re-
duction targets (Weniger et al., 2018). However, citizens often lack energy-related
knowledge (Martins et al., 2020). In a general context, such a lack of knowledge in
combination with competing interests, for example with regard to costs and emissions
and uncertainty regarding future payoffs can lead to a delay in individual investment
decisions (Blake, 1999; Morwitz and Schmittlein, 1992).

Households therefore need assistance in making decisions about residential energy
technology investments. While other studies follow the approach of educating cit-
izens by increasing energy literacy (Martins et al., 2020), this chapter focuses on
directly assisting citizens by means of a DSS with preference-based recommenda-
tions. As argued in Chapter 1, DSSs aim to support and improve decision making
(Arnott and Pervan, 2014) and thus can help to overcome some of the problems
with regard to investment in residential energy technologies. Such a concept of a
platform-based DSS for citizens is presented in Chapter 4.

Venkatesh et al. (2003) state that the performance benefits of IS often depend on
the individual willingness to accept and use an available system. One example, where
support systems for residential energy investments have been implemented with a
focus on energy efficiency are “residential energy audits” in the US. Residential energy
audits are professional home assessments to identify energy efficiency investments
and provide estimates of the expected monthly savings (Gillingham and Tsvetanov,
2018). Similar to the investments in residential energy technologies, households
face uncertainty regarding future payoff due to imperfect information about energy
costs and product-specific attributes (Gillingham and Palmer, 2014; Allcott, 2016).
Participation in energy audits remains at a low level and only 4% of households in
the US have participated in an energy audit (Palmer et al., 2015).

A similar support system using preference-based recommendations for residential
energy technology investments could be implemented based on the findings presented
in Chapter 4. The impact of such a system on the reduction of carbon emissions in a
household or a CEC depends on the acceptance of the proposed investment recom-
mendations by its users. Acceptance factors for preference-based recommendations
in DSSs in the context of energy technology investments are, therefore, evaluated in
this chapter. The experiment further investigates the perceived usefulness of the rec-
ommendation, as it is a fundamental determinant of user acceptance (Davis, 1989).
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When making investment decisions for residential energy technologies, households
are faced with uncertainty, for example regarding the development of energy prices
or future generation and consumption patterns. Phillips-Wren and Adya (2020)
identify uncertainty as one stressor of the decision-making process in general which
can be mitigated through the application of DSSs. Therefore, the impact of uncer-
tainty on acceptance and the perceived usefulness of the DSS recommendation is
investigated. Thereby, the following research questions are answered:

RQ 2: To what extent does providing recommendations that take into account the
trade-off between individual cost and emission preferences in a DSS for resi-
dential energy technology investments increase the recommendation acceptance
compared to recommendations that consider either costs or emissions?

RQ 3: What is the effect of uncertainty on recommendation acceptance and the
perceived usefulness of the DSS?

The research questions are addressed by means of an online experiment (n = 324).
Participants take the role of residential investors and decide between 20 different
investment alternatives for residential energy technologies. The investment alter-
natives differ in investment and operation costs and carbon emissions. To support
the investment decision of the participants, they are presented with an investment
recommendation. Depending on the treatment, the recommendation indicates the
alternative with the lowest costs or emissions or an investment alternative based on
the participant’s preferences. These preferences are determined using a rank-based
conjoint analysis. To evaluate the impact of uncertainty on the acceptance and per-
ceived usefulness of the recommendation, the experiment is conducted both with and
without uncertainty regarding operation costs and emissions.

The remainder of this chapter is structured as follows: First, an overview of related
work in the context of DSSs for energy investments is provided in Section 5.2. The
structure of the online experiment as well as the derivation of participant preferences
and determination of the investment recommendations are presented in Section 5.3.
The results of the online experiment are described in Section 5.4. The findings are
discussed in Section 5.5 and summarized in Section 5.6.
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5.2 Related Work
A general overview on DSS applications in the context of CECs is presented in

Section 4.2.2. In this section, further applications of DSSs for decision-making in the
context of energy consumption and energy investments are introduced with a focus
on the acceptance of these tools.

A number of studies have investigated factors and measures that impact individ-
ual decisions for residential energy investments. Colasante et al. (2021) conduct
an online survey to investigate the willingness of individuals to shift their intraday
energy use to maximize self-consumption and reduce energy consumption. While
most study participants (95%) did not own residential PV systems, 85% expressed
a positive opinion about a potential installation. According to the survey results,
monetary incentives are the main driver for the installation of a residential PV sys-
tem. For participants with an awareness of the emission reduction through PV
compared to fossil fuels, the authors reported a higher willingness to increase self-
consumption. Furthermore, individuals who were oriented on reducing their own
carbon footprint were less influenced by monetary subsidies. The authors, therefore,
suggest a combination of monetary and non-monetary incentives to support invest-
ments in residential energy technologies. While the study focuses on the motivations
of individuals to invest in residential PV, the authors did not consider a combination
of residential energy technologies or recommendations regarding the optimal deci-
sion for the participants. Gillingham and Tsvetanov (2018) investigate the effect of
information provision as a nudge to influence the acceptance of residential energy
audits in a randomized field experiment. The authors examine the effectiveness of
information provided during the audit uptake process when the households face the
decision of whether or not to complete an already scheduled audit visit. The results
show that an information notecard containing individual information can increase
the acceptance rate by 1.1 percentage points. The experiment in (Gillingham and
Tsvetanov, 2018) focuses on the general use of recommendation systems, in this case
efficiency audits, and not on the outcomes of such audits.

The investment recommendations presented to the participants in the online ex-
periment in this chapter could also be viewed as a form of nudging, as the outcome
of the investment decision is not influenced by the recommendation, only by the



Experimental Study 65

participant investment decision itself. Nudging represents the implementation of
measures to alter individual behavior in a predictable way without explicitly exclud-
ing any options or changing economic incentives significantly (Thaler and Sunstein,
2009). For a general overview of nudging applications, please refer to (Hummel and
Maedche, 2019).

Actual investment decisions resulting from such an energy audit are investigated
in (Holladay et al., 2019). The authors compare the effects of monetary incentives,
randomly varied subsidies and information nudges through a comparison of monthly
consumption, expenditures and carbon emissions on the likelihood of a household
participating in an energy audit and subsequently making an investment in energy-
efficient appliances. Comparing point estimates, the authors estimate the worth of
nudges at 50$ to 70$. The authors consider individual household data but do not
include household preferences in their recommendations. According to the results of
the study, price subsidies and nudges increase participation in audits, but have no
significant effect on subsequent energy efficiency investments.

To further contribute to the understanding of acceptance factors for DSSs, the
study presented in this chapter investigates the provision of preference-based recom-
mendations in the context of residential energy technology investments. The results
can be used to support the design of application-oriented DSSs. In the following
section, the design of the online experiment is presented.

5.3 Experimental Study
In this section, the experimental procedure and the treatment design, the deter-

mination of participant preferences and the derivation of the investment recommen-
dations are presented. Furthermore, the sample characteristics are introduced.

5.3.1 Procedure

The experimental procedure is displayed in Figure 5.1. There are six treatments.
These are differentiated by the type of recommendation during the investment and
the application of uncertainty regarding future costs and emissions of the investment
alternatives. The treatments are explained in more detail in Section 5.3.3. The study
is designed as an online experiment using a between-subject design and consists of
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five parts that took participants approximately 20 minutes to complete. In Part
I, participants are given information on the overall structure of the experiment (for
details see Appendix Table A.1). Part II consists of a pre-experimental survey, where
participants are asked to state their individual cost and emission importance in a
general behavioral context and in the context of energy consumption decisions on a 5-
point Likert scale (e.g.: What role do costs play in connection with decisions affecting
your energy consumption? For details, see Appendix Table A.2). The results of this
pre-experimental survey are used in the analysis to validate the results of the conjoint
analysis and investigate the impact of cost and emission preferences on investment
decisions.

5.3.2 Determination of Individual Preferences

In Part III of the experiment, a rank-based conjoint analysis is used to quantify
the trade-off between the cost and emission preferences of each participant. This
information is later used for the recommendation in the “preference” treatment in the
investment decision. The conjoint analysis is widely used in marketing research for
analyzing consumer trade-offs (Green et al., 2001). As one of the established conjoint
analysis methods besides rating-based conjoint analysis, rank-based conjoint analyses
can be generally applied in contexts where individuals need to make decisions with
regard to multi-attributive objects (Eggers et al., 2022; Homburg et al., 2022). In the
experiment, participants are tasked with ranking nine electricity tariffs (see Appendix
Table A.1). The tariffs are presented to them all at once in a randomized order and
differ with regard to costs and emissions that are caused by the generation technology.
The conjoint alternatives are presented in Table 5.1. Figure 5.2 shows the appearance

Figure 5.1.: Chronological structure of the online experiment.
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Figure 5.2.: Appearance of the rank-based conjoint analysis in the online experiment.
Translated from original German.

of the conjoint alternatives in the experiment. The participants are then instructed
to rank the nine electricity tariffs according to their preferences. They can change the
order of the presented tariffs using a drag-and-drop mechanism and have to change
at least one rank (that they can then change back) to continue the experiment. Using
an ordinary least squares regression, the part-worth utilities for costs and emissions
are calculated based on the ranking of the alternatives. These are used to calculate
the cost and emission weights. The weights are normalized, so that weight emission
+ weight cost = 1.0 to reflect the trade-off between costs and emissions. A higher cost
weight represents a stronger valuation for changes in economic costs while a higher
emission weight represents a stronger emission valuation. Please refer to (Homburg
et al., 2022) for a detailed description of the conjoint analysis.

Element Unit Dimensions
Cost e /kWh 0.25, 0.30, 0.35
Emission Costs e /kWh 0.25, 0.30, 0.35

Table 5.1.: Rank-based conjoint analysis components (3× 3 design).
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5.3.3 Investment Decision

In Part IV, each participant is assigned to one of the six treatment groups. Partici-
pants are unaware of the other treatment groups. After an introduction to the topic
and an explanation of the investment procedure, which differs between treatments
with and without uncertainty, the participants are asked to make an investment in a
residential energy technology. The investment options themselves only differ in costs
and emissions to avoid a technology-preference bias. However, participants are being
told that such an investment could be, for example, the installation of a rooftop PV
plant or a residential heating system. For their investment, all participants have a
cost budget of 500 monetary units (MU) and an emission budget of 500 emission
units (EU). Each of the 20 investment alternatives consists of an initial monetary in-
vestment and yearly costs (i.e., operation and maintenance). Additionally, there are
emissions that occur every year and reduce the carbon emission budget as a result of
the chosen investment. The considered period is five years. The values for cost and
emission of each investment alternative are drawn randomly and independent from
each other. The initial monetary investment is between 0 and 100 MU, the yearly
costs are between 0 and 80 MU and the yearly CO2 emissions are between 0 and 100
EU.

In the treatments with uncertainty, an uncertainty level µ for each participant is
determined through random selection from a normal distribution (∅ = 10, standard
deviation (SD) = 5). Using this uncertainty level, the annual cost and annual emis-
sion interval is determined by:

Ic,on = (con − µ, con + µ) ∀ n ∈ (1, .., N) (5.1)

Ie,on = (eon − µ, eon + µ) ∀ n ∈ (1, .., N) (5.2)

Here, Ic,on is the interval for the annual costs, Ie,on is the interval for the annual
emissions, con is the basic annual cost value and eon is the basic annual emission
value determined in the same way as for the treatments without uncertainty for
investment alternative n and N is the set of investment alternatives. From each
interval, one value is randomly selected each year as annual cost or emission.
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Treatment Recommendation Uncertainty

1: Pref-A Preference-based no
2: Pref-U Preference-based yes
3: Co-A Cost no
4: Co-U Cost yes
5: Em-A Emission no
6: Em-U Emission yes

Table 5.2.: Overview on the six experimental treatments.

In the non-preference treatments (Co-A, Co-U, Em-A, Em-U, see Table 5.2), the
recommendation is not based on individual preferences. The recommendation in the
“cost” treatments (Co-A, Co-U) points out the alternative with the lowest overall
(expected) costs (Alternative X has the lowest (expected) financial cost.). In the
“emission” treatments (Em-A, Em-U), the recommendation points out the lowest
overall (expected) emissions (Alternative X leads to the lowest (expected) CO2 emis-
sions per year.) In the “preference” treatments (Pref-A, Pref-U), the alternative with
the highest individual decision quality is recommended to the participant (An opti-
mization software has calculated a recommendation for you based on the information
you provided in Part 1. According to your preferences, you are advised to choose
alternative X to invest.).

The quality of a decision can be characterized by two dimensions in general: The
decision-making process (how was the decision derived) and the outcome (decision
goals) (Phillips-Wren et al., 2009). Todd and Benbasat define decision quality as
the deviation of the decision from a solution “provided by a normative strategy,
such as expected value maximization or utility maximization” (Todd and Benbasat,
1992, p. 375). Following this definition, decision quality is measured as the relative
and rank-based deviation from the optimal decision alternative available for each
participant. The highest utility among the investment alternatives is derived by
using the following formulation:

u′ = max(u1, .., uN) (5.3)

un = wc · (bc − cin − p · con) + we · (be − p · eon) ∀ n ∈ (1, .., N) (5.4)

Here, u′ is the utility of the alternative that is recommended to the participant, un
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is the utility of one investment alternative, N is the number of alternatives. The
cost weight is given by wc, the emission weight by we, bc is the monetary budget of
a participant and be is the emission budget of a participant, ci are the initial and
co the annual investment costs, eo are the annual emissions and p is the number of
years considered in the evaluation.

In the experiment, 100 MU are equal to 1e of monetary payout and 100 EU are
equal to 1e of carbon emission compensation via the carbon offsetting company
“atmosfair”2. While this allows for an integration of monetary and emission budget
into one utility value, it has to be noted that the substitution between monetary and
emission budget is not perfect and remains subject to further discussion.

Participants see the recommendation at the top of the investment page and
directly above the input field where they have to submit their investment decision.
The recommendation at the top is highlighted in blue as displayed in Figure 5.3 and
participants are required to confirm that they have seen the presented recommen-
dation before proceeding. In treatments with uncertainty, the recommendations are
based on the expected values for costs and emissions.

As mentioned in the introduction, individuals tend to delay investment decisions
due to a lack of knowledge or uncertainty regarding the investment outcome (Blake,

2atmosfair gGmbH: www.atmosfair.de

Figure 5.3.: Appearance of the recommendation (blue background) and the first five of 20
investment alternatives in the “preference” treatment with uncertainty. Trans-
lated from original German.
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1999). To evaluate this behavior, participants are given the option to decide against
an investment after seeing the investment alternatives and the recommendation. If
the participants do not want to make an investment decision, they can leave the
investment page and go directly to the post-experimental questionnaire. In such a
case, they receive a monetary compensation of 2.50e as a participation bonus. If
the participants choose to make an investment decision, they are presented with
the results of their decision regarding cost and emission. The initial investment
costs and the annual costs and emissions are then deducted from their budget. The
payoff and emission compensation are calculated based on the remaining cost and
emission budget.

The final Part V consists of a demographic evaluation and a post-experimental sur-
vey using a 5-point Likert scale (see Appendix Table A.3). In the post-experimental
survey, the general self-perceived knowledge of the participants with regard to re-
newable energy is assessed (i.e., I am very well acquainted with the subject “renewable
energy”), as well as the perceived information load (i.e., The number of choices on
the investment page overwhelmed me) and perceived usefulness of the investment
recommendation (i.e., The recommendation on the investment page helped me make
my decision). Furthermore, the participant is asked to evaluate, whether the deci-
sion resembles their behavior in a real-world investment decision (i.e., The decisions
within the experiment reflect my actual investment behavior) and about the trust
in the company “atmosfair” to compensate the emission savings in a sensible way
(i.e., I trust that my emission savings will be sensibly compensated via atmosfair).
The survey also includes an attention check, where participants are asked to mark a
specific answer in the survey.

5.3.4 Sample

Participants were recruited from the student pool at a large German university us-
ing the software hroot (Bock et al., 2014). The monetary reward amounted to 3.44e
per person on average. The greenhouse gas compensation via atmosfair amounted
to 3.90e , equivalent to 167kg CO2 per person on average. The experiment was
conducted in German, all quotes from experimental descriptions in this chapter are
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Mean
(SD)

All Pref-A Pref-U Co-A Co-U Em-A Em-U

Female 0.343 0.339 0.327 0.308 0.234 0.333 0.456

Age 25.3
(5.2)

24.8
(4.8)

25.7
(5.2)

26.0
(7.4)

25.2
(3.9)

24.7
(3.6)

25.4
(5.6)

Weight
Cost

0.58
(0.20)

0.58
(0.20)

0.56
(0.20)

0.59
(0.20)

0.60
(0.21)

0.58
(0.20)

0.56
(0.20)

Table 5.3.: Demographics of the sample and results of the conjoint analysis.

translated from German. The experiment was fully completed including the suc-
cessful passing of an attention check by 324 participants. The sample characteristics
are summarized in Table 5.3. About one third of all participants (34.3%) are female
(one non-binary participant) and the average age is 25.3 years (SD=5.16). Accord-
ing to the conjoint analysis, participants have a higher valuation for costs than for
emissions (0.58, SD=0.20). Only a small number of participants (n = 6) chose not
to make an investment decision across all treatments. Reasons for that could be
the low financial reward if participants did not make an investment and the overall
low monetary value compared to real-world investments. Due to the low number of
dropouts, these were not further investigated.

5.4 Results
This section provides a closer insight into the findings of the online experiment to

answer the research questions presented in Section 5.1. Before evaluating the results
of the investment recommendations, the cost and emission weights obtained in the
conjoint analysis are analyzed to assess whether this method is suitable for capturing
individual preferences in the experimental context.

5.4.1 Conjoint Analysis Evaluation

To analyze the results of the conjoint analysis, the participants are divided into
three groups based on the determined cost and emission weights. Participants with
a cost weight above 0.66 are assigned to the “price-sensitive” group, participants
with a cost weight below 0.33 are assigned to the “emission-sensitive” group and
participants with a cost weight between 0.33 and 0.66 are assigned to the “neutral”
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Item Overall Price- Neutral Emission- ANOVA
Mean (SD) sensitive sensitive

General importance 4.38 4.54 4.32 4.11 F=7.94
cost (C1) (0.72) (0.54) (0.81) (0.77) p<0.001***
Energy importance 4.19 4.38 4.13 3.81 F=8.49
cost (C2) (0.89) (0.81) (0.84) (1.03) p<0.001***
General importance 3.37 2.91 3.60 4.00 F=34.21
emission (E1) (0.99) (1.08) (0.78) (0.61) p<0.001***
Energy importance 3.71 3.16 3.99 4.43 F=47.74
emission (E2) (1.03) (1.05) (0.81) (0.62) p<0.001***

Table 5.4.: Comparison of the cost and emission importance in the preference groups.

group. Across all treatments, 43% of the participants belong to the “price-sensitive”
group, 17% belong to the “emission-sensitive” group and 39% belong to the “neutral”
group.

Table 5.4 shows the answers from the preliminary questionnaire that was con-
ducted in Part II of the experiment, before the conjoint analysis (For details see
Appendix Table A.2). Responses are measured on a 5-point Likert scale from not
at all important to very important. The importance of costs is highest in the
“price-sensitive” group, while the importance of emissions is highest in the “emission-
sensitive” group. The analysis of variance (ANOVA) between the three groups con-
firms significant differences for each item. This indicates that the weights determined
in the rank-based conjoint analysis are an adequate representation of the partici-
pant preferences. Overall, the importance of costs is higher than the importance of
emissions, which matches the average cost weight from the conjoint analysis (0.58,
SD=0.20). The importance of costs decreases in the energy context, while the impor-
tance of emissions increases. A reason for this phenomenon could be the impact of
the ongoing political and public debate regarding the decarbonization of the energy
sector on the individual valuations of emissions in this context. Notably, the spread
between the “price-sensitive” and “emission-sensitive” groups is much higher in the
emission importance items (E1, E2) than in the cost importance items (C1, C2).
The median of the “emission sensitive” group still values costs as rather important,
while the median of the “price-sensitive” group values emissions as neither important
nor unimportant. These results indicate that costs play a role for the participants
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regardless of their emission preferences, but that this is not the case for emissions.
As the “neutral” and “price-sensitive” groups are also considerably larger than the
“emission-sensitive” group, this indicates that costs are still a dominant factor for
most individuals in the decision for energy technology investments.

5.4.2 Recommendation Acceptance

This section describes the factors affecting the acceptance of the recommendation in
each of the treatment groups “cost”, “emission” and “preference”.

In the cost treatments, 47% of the participants accept the recommendation (with
uncertainty: 43%, without uncertainty: 52%). The results of the post-experimental
questionnaire are presented in Table A.4. The items can be found in the Appendix in
Table A.3. The perceived usefulness of the recommendation is higher for individuals
who accepted the recommendation (P5, t-test=5.34, p<0.001***).

Like in the cost treatments, 47% of the participants accepted the recommenda-
tion in the emission treatments (with uncertainty: 51%, without uncertainty: 42%).
The results of the post-experimental questionnaire are presented in Table A.5. The
perceived usefulness of the recommendation is rated lower if participants accept the
recommendation (P4, t-test=0.08, p=0.027*). Participants seem to find the emission
recommendation less useful than the recommendation in the cost treatments and the
results of the conjoint analysis indicate that costs are on average more important to
the participants than emissions. Even though the participants have a higher valua-
tion of costs as described in Section 5.4.1, the recommendation acceptance rate is the
same in both treatment groups. This could indicate, that emission recommendations
can be useful in the design of DSSs as a nudge to support investments in low-emission
technologies. However, this phenomenon needs to be further investigated, for exam-
ple, with regards to the accuracy of the cost and emission weight determined in the
conjoint analysis. Furthermore, a field experiment would be necessary to investigate
the external validity of this assumption.

In the “preference” treatments with a recommendation based on the cost and
emission weights determined in the conjoint analysis, the acceptance rate is almost
50% higher than in the other treatment groups. In total, 69% of the participants ac-
cepted the recommendation (uncertainty treatment: 70%, no uncertainty treatment:
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Treat- Preference With ANOVA Without ANOVAment group uncertainty uncertainty

Cost
c 0.61 (0.24) F=4.16,

p=0.02*

0.71 (0.21) F=4.52,
p=0.02*n 0.17 (0.15) 0.28 (0.20)

e 0.43 (0.24) 0.57 (0.24)

Emission
c 0.50 (0.25) F=0.85,

p=0.43

0.44 (0.25) F=0.27,
p=0.76n 0.43 (0.24) 0.44 (0.25)

e 0.66 (0.22) 0.28 (0.20)

Preference
c 0.70 (0.21) F=0.01

p=0.98

0.73 (0.19) F=0.72,
p=0.49n 0.69 (0.21) 0.58(0.24)

e 0.72 (0.19) 0.75(0.19)

c: “price-sensitive”, n: “neutral”, e: “emission-sensitive”

Table 5.5.: Comparison of the recommendation acceptance rates with regard to the prefer-
ence groups.

67%). The cost weight determined in the conjoint analysis is lower for participants
accepting the preference-based recommendation (t-test=-2.05, p=0.045*). The
results of the post-experimental questionnaire are presented in Table A.6. The
perceived usefulness of the recommendation is rated higher if participants accept
the recommendation (P4, t-test=5.79, p<0.001***).

To provide a deeper understanding of the recommendation acceptance factors, the
acceptance rates in the preference groups derived in Section 5.4.1 are compared. The
results are presented in Table 5.5. The number of participants for each subsample
is between 16 and 26 for the “price-sensitive” and “neutral” groups and between 7
and 12 for the “emission-sensitive” groups. Across all samples, there are no signif-
icant differences between the acceptance rate in the treatments with and without
uncertainty. The ANOVA displayed in the table shows the analysis between the
“price-sensitive”, “neutral” and “emission-sensitive” participants.

In both cost treatments, the acceptance rates differ significantly between the treat-
ment groups. As to be expected, “price-sensitive” participants have the highest rec-
ommendation acceptance rate, both with and without uncertainty. Participants with
“neutral” sensitivity have the lowest acceptance rate overall. This could indicate that
individuals with a balanced cost and emission weight make a more conscious effort
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to balance out costs and emissions in their investment decision compared to partic-
ipants with less heterogeneous preferences. However, such an assumption is difficult
to make due to the low number of “emission-sensitive” participants in all treatments
and requires further evaluation.

In both emission treatments, the acceptance rates do not show a significant differ-
ence in the preference groups. A larger number of participants would be necessary
in this group to create more robust results. Notably, almost half of the “price-
sensitive” and “neutral” participants accept the emission recommendation despite
different preferences. Displaying emission recommendations might therefore be an
effective nudge, if the aim of the DSS is the reduction of emissions. Furthermore, the
acceptance rate for “neutral” participants is about twice as high as in the treatments
with cost recommendation.

In the treatments with preference-based recommendations, the acceptance rates
are distributed evenly across the preference groups. The acceptance rates are higher
in all preference groups, meaning that participants benefit from preference-based
recommendations regardless of their cost and emission sensitivity. On the other
hand, preference-based recommendations might be less useful, if the goal of the DSS
is to maximize the emission reduction. In the case of investments in residential en-
ergy technologies, emission reduction is the priority from a governmental perspective
to achieve the carbon emission reduction goals. As almost any form of residential
energy technology will help to achieve that goal, the challenge is to persuade house-
holds to make an investment. Due to the higher acceptance rates, preference-based
recommendations can be an important tool in this process.

5.4.3 Investment Outcome

Regarding the preference groups introduced above, Figure 5.4 gives an overview on
the remaining cost and emission budgets. The remaining cost budget is highest in
the “price-sensitive” group (Mean=355.56, SD=37.85) and lowest in the “emission-
sensitive” group (Mean=323.55, SD=39.57), while the remaining budget of the “neu-
tral” group are between the other two (Mean=345.72, SD=41.59). The results are
reversed for the remaining emission where the participants in the “price-sensitive”
group have the lowest remaining emission budget (Mean=373.01, SD=87.48) and
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Figure 5.4.: Overview on the remaining cost (a) and emission (b) budgets in the preference
groups.

participants in the “emission-sensitive” group have the highest remaining emission
budget (Mean=402.55, SD=111.91). The remaining emission budget in the “neutral”
group is again between the other groups (Mean=384.38, SD=88.59). An ANOVA
between the three preference groups reveals a significant difference between the re-
maining cost budgets (F=12.26, p<0.001***) but no significant difference between
the remaining emission budgets (F=1.95, p=0.14). The lack of significance between
the remaining emission budgets despite larger differences in the mean values can be
explained through the larger standard deviations that are more than twice the size
of the standard deviations for the remaining cost budgets.

Regarding the experiment treatments, an overview of the remaining carbon and
emission budgets in the different treatments after the investment decisions is dis-
played in Figure 5.5. An ANOVA between the treatments preference, cost and
emission reveals a significant effect for the differences in the remaining cost budget
(F=5.84, p=0.003**), but no significant effect for the difference in the remaining
emission budget (F=0.03, p=0.97). There is no significant difference between the
results in the treatments with uncertainty and without uncertainty regarding the
remaining cost and emission budget. This could mean that the level of uncertainty
or the monetary value of the investment decision was not large enough to impact the
investment decision of the participants.
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Figure 5.5.: Overview on the remaining cost (a) and emission (b) budgets after the invest-
ment decision.

5.4.4 Perceived usefulness of the recommendation

The individual perceived usefulness of the recommendation in the “cost”, “emission”
and “preference” treatments is measured through P4 (The recommendation on the
investment page helped me make my decision). The results are displayed in Table
5.6. Overall, the perceived usefulness is highest in the “preference” treatments. An
ANOVA reveals a significant difference between the treatments (F=4.050, p=0.019*).
The effect is higher in the treatments with uncertainty (F=4.335, p=0.014*) than in
the treatments without uncertainty (F=3.224, p=0.04*). This could indicate that
individuals benefit more from preference-based recommendations in situations with
uncertainty. Overall, the perceived usefulness is on average 0.34 points higher in
treatments with uncertainty (t-test=2.190, p=0.029*).

In the “emission” treatments, the perceived usefulness is lower than in the “cost”
treatments (t-test=2.31, p=0.022*). In the cost treatment, there is a positive corre-
lation between the cost weight and the perceived usefulness of the recommendation
(t-test=0.437, p<0.001***). As expected, the correlation between cost weight and
perceived usefulness of the recommendation is negative in the “emission” treatments
(t-test=-0.222, p=0.027*). Based on these results, a recommendation regarding costs
is more beneficial for individuals in the energy investment context if these individuals
have stronger monetary preferences, as is the case in the experiment sample.

The results are in line with the findings of section 5.4.2. Preference-based rec-
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DSS Cost Emission
Mean (SD) treatment treatment treatment
Overall 3.82 (1.38) 3.67 (1.39) 3.21 (1.37)
With uncertainty 3.93 (1.23) 3.83 (1.24) 3.42 (1.31)
No uncertainty 3.72 (1.50) 3.51 (1.48) 2.93 (1.38)

Table 5.6.: Perceived usefulness of the recommendation (P4) in each treatment combina-
tion, measured on a 5-point Likert scale.

ommendations offer increased usefulness for the participants, which strengthens the
argument of developing and implementing DSSs for residential energy technology in-
vestments that regard preferences of individuals. If the goal of the DSS is to reduce
emissions, the recommendation could be supplemented by potential cost savings to
increase the usefulness of the recommendation to the users of the DSS.

5.5 Discussion
The experiment presented in this chapter aims to investigate acceptance factors

for preference-based recommendations in DSSs. While the analysis of the experi-
ment results provides some indicators regarding the acceptance of preference-based
recommendations and their usefulness to participants, further research is necessary
to explain these effects. While online experiments can have external validity (Horton
et al., 2011), there are significant differences between the investment decision in the
experiment and a real-world investment in residential energy technologies. These
differences include, for example, actual investment costs and the time between in-
vestment and payoff. Therefore, the external validity of the identified indicators for
the acceptance of preference-based recommendations is currently low. To determine,
how well the observed behavior translates to real-world investment decisions, obser-
vation in a field experiment is necessary. In cooperation with a municipal utility, such
an experiment could accompany actual investment decisions for residential energy
technologies, for example.

As determined in Section 5.4.4, participants view the recommendation as more
useful in the treatments with uncertainty compared to treatments without uncer-
tainty. While this gives an indication that the support of citizen investment decisions
through recommendations is more important in scenarios with uncertainty, further
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evaluation of perceived usefulness along the construct presented in (Davis, 1989) is
necessary to explain this effect. Furthermore, this indication should be tested in a
field experiment as described above, to improve its external validity.

The results of the online experiment indicate that a ranking-based conjoint analysis
is a suitable solution to assess the trade-off between the cost and emission preferences
of individuals in this context. For validation, the results of the conjoint analysis are
compared to the self-reported importance of costs and emissions in Section 5.4.1.
The self-reported importance of costs and emissions match the results of the conjoint
analysis. The experiment did not control for any form of stereotype consistency bias,
i.e., the tendency to convey stereotype-consistent information (Clark and Kashima,
2007). In the proposed experiment, participants might, for example, deliberately
choose investment alternatives to confirm their answers in the conjoint analysis.
This might be addressed by a longer gap between the conjoint analysis and the
investment decision in future research. The occurrence of social desirability bias
in an environmental context such as the one used in the experiment is low, but
cannot be completely disregarded (Vesely and Klöckner, 2020). Previous studies have
shown, that a fully randomized conjoint design can reduce the social desirability bias
(Horiuchi et al., 2022), which supports the use of conjoint analyses in the context of
this experiment.

5.6 Conclusion
This chapter presents the results of an online experiment (n=324) to assess the

acceptance of preference-based recommendations in decision support systems in the
context of energy-related investments. In six treatment groups [(“cost”, “emission”,
“preference”) × (”no uncertainty”, “uncertainty”)], participants were asked to choose
between 20 investment alternatives. With regard to Research Question 2, the accep-
tance rate of preference-based recommendations in the experiment is 22 percentage
points higher than in treatments without preference-based recommendations that
regard only costs or emissions.

Regarding Research Question 3, the treatments with uncertainty had no significant
effect on the recommendation acceptance rates and experiment outcome, i.e., the
monetary payoff and emission compensation for the participants. This is contrary to
the findings of other studies, for example, (Kahneman and Tversky, 1979) and may
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be explained by the relatively low monetary value compared to a real-world scenario
and the experimental setting, where the participants could not lose money. The
perceived usefulness of the recommendation is 0.34 points higher in the treatments
with uncertainty (t-test=2.190, p=0.029*).

Overall, this chapter contributes to the understanding of acceptance factors for
preference-based recommendations in decision support systems. The results can be
used in the development of application-oriented information systems to support the
decarbonization of the energy system.

The determination of optimal investment alternatives for residential energy tech-
nologies that can be recommended to users of the decision support system is also a
challenge. The optimal sizing of a residential energy technology is influenced by the
consumption patterns and existing technologies in the citizen energy community in
addition to the preferences of a household. This challenge is addressed in Part III of
this thesis.





Part III.

Residential Energy Technology

Investment





INTRODUCTION TO PART III

As demonstrated in Part II, preference-based DSSs can support citizens in invest-
ments in residential energy technologies. To provide recommendations to citizens, it
is first necessary to determine the optimal energy technology sizing decisions with
regard to a reduction of costs and emissions. Aside from personal preferences, the
optimal investment decision depends on the individual energy consumption patterns
of a household, existing residential energy technologies and the possibility to sell
or buy energy to or from neighbors in a CEC. In addition, interactions between
the sectors electricity and heat must be considered when building sector coupling
technologies.

In Part III, the generation of optimal sizing solutions of residential energy tech-
nologies in a CEC with regard to the objectives cost and emission are investigated
(Chapter 6). The solution space of sizing alternatives for residential energy tech-
nologies can be used to determine individual recommendations based on household
preferences towards costs and emissions. I evaluate the implementation of these
recommendations in a community and their impact on household investments in
residential energy technologies with and without the application of CEC regulation
(Chapter 7).
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CHAPTER 6

DIRECT POLICY SEARCH FOR MULTI-
OBJECTIVE OPTIMIZATION OF THE SIZING
AND OPERATION OF CITIZEN ENERGY COM-
MUNITIES

The first step to providing preference-based investment recommendations to citizens
is the determination of a solution space of possible and non-dominated investment
alternatives. This chapter presents an evolutionary algorithm that has previously
been used for a multi-objective operation of microgrids. We extend this model by
including the perspective of heat provision and investment decisions. This way, the
developed tool can be used by CEC planners to integrate conflicting objectives of
residents in the installation phase. The algorithm formulation and a demonstration
of its functionality on a case study for different ambient conditions is introduced
in the following sections. The results show the opportunities to size and operate
CECs using the presented algorithm. The solution space can be used to determine
investment recommendations based on individual preferences.

This chapter comprises the published article: Golla, Armin; Meinke, Robin-
Joshua; Liu, M. Vivienne; Staudt, Philipp; Anderson, C. Lindsay; Weinhardt,
Christof (2021): Direct Policy Search for multi-objective Optimization of the Sizing
and Operation of Citizen Energy Communities. In: Hawaii International Conference
on System Sciences (HICSS) 54, p. 3263–3272.

6.1 Introduction
The international transition to more renewable energy sources and the associated

subsidy schemes as well as the cost degradation of household-sized renewable gener-
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ation capacity, especially PV, lead to an increased power generation on a household
level (Barzegkar-Ntovom et al., 2020). Such small scale generation was originally
a solution for microgrids that would sustain service in case of an outage for small
communities or serve remote or island communities (Olivares et al., 2014). The in-
creasing electrification of the transport and heat sector as well as the availability
of residential battery solutions provides the flexibility to compensate volatile renew-
able generation. This increases the ability of such microgrid communities to supply
themselves with electricity and allows them to become increasingly independent of
the transmission grid (Baldinelli et al., 2020).

As mentioned in Part II, operating such microgrids is a challenge as multiple,
sometimes conflicting objectives of the microgrid community need to be considered
(Gupta et al., 2020). Furthermore, the optimal operation of BSSs given uncertain
generation and demand is a constant subject of research (Nguyen and Crow, 2016).
First approaches to the operation of microgrids have been published (Karimi and
Jadid, 2019). The authors are mostly focusing on an optimization of the available
resources subject to one objective function. Recently, a study emerged that focuses
on multiple objectives in a microgrid using evolutionary algorithms, presenting only
non-dominated strategies (Gupta et al., 2020). However, with an increasing interest
in microgrid communities, specifically in the European Union under the term CECs
(European Parliament and Council of the European Union, 2019), it becomes more
important to not only focus on the operation but also the installation of such mi-
crogrids and to take different objectives and individual preferences such as financial
considerations or local carbon emissions into account. Therefore, in this chapter, we
apply the Borg multi-objecitve evolutionary algorithm (MOEA) (Hadka and Reed,
2013) that is used to co-optimize conflicting objectives, to integrate the decisions
on the installation of resources and the decisions within the operation strategy with
regards to multiple objectives into one problem. As a result, we are able to provide
microgrid stakeholders with multiple courses of action based on non-dominant strate-
gies. In doing so, we contribute to the advancement of applications of evolutionary
algorithms and provide a practical tool for planners and residents to design micro-
grids in their neighborhoods. With this chapter, we answer the following research
question:

RQ 4: What is the financial (cost) and environmental (emission) performance of
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a multi-objective evolutionary optimization of the integrated sizing and oper-
ation of energy technologies in a CEC relative to an upper benchmark opti-
mization with perfect foresight that optimizes the objectives individually?

We begin by reviewing relevant literature and then move on to the model and a
corresponding case study.

6.2 Sector Coupling and Evolutionary Algorithms

in Microgrid Implementations
The existing related literature can be classified into three different streams: (1)

microgrid sizing and operation, (2) sector coupling in microgrids and (3) evolutionary
algorithms in microgrid optimization.

6.2.1 Microgrid Sizing and Operation

The concept of microgrids has become an active field of research in recent years as it
enables the connection and integration of the rising share of decentralized energy re-
sources. Olivares et al. (2014) analyze the operational challenges that these complex
energy systems create. They point out that advanced control strategies are necessary
to coordinate the supply and demand in those decentralized systems, especially if
several energy carriers are involved. Zhao et al. (2014) see the design and operation
of a microgrid as a joint-optimization problem and apply their theory to islanded
microgrids in remote geographic areas. To solve their multi-objective sizing and
operation problem, Zhao et al. (2014) use a method based on a genetic algorithm
to find an optimal solution for electricity generation devices in microgrids. This
chapter extends the microgrid optimization to the provision of heat for residential
households in CECs. Like other studies, (Gupta et al., 2020) and (Berendes et al.,
2018) acknowledge that the objectives of a community when operating a microgrid
are multidimensional and they therefore perform a multi-objective analysis that in-
cludes a minimization of emissions and a maximization of self-consumption. Due to
the computational complexity, the use of heuristics are proposed in (Berendes et al.,
2018) for microgrid optimization. In their study, the authors design a software-based
tool for sizing and operation of microgrid systems. The open source software tool mi-
crOgridS provides a set of optimal solutions for the configuration and the control of
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decentralized electricity systems from a multi-objective perspective. In this chapter,
we follow this direction and use an evolutionary algorithm to solve this problem.

6.2.2 Sector Coupling in Microgrids

In this chapter, we consider a sector-coupled microgrid sometimes also referred to as
multi-energy microgrid. Zhao et al. (2014), Gupta et al. (2020) and Berendes et al.
(2018) are optimizing the design and operation of microgrids but are solely focusing
on electricity, neglecting the demand for heat in their analysis. Zhang et al. (2015)
introduce micro CHP applications as an effective technology to couple electricity and
heat generation on a local level. Gu et al. (2014) state that the implementation of
cogeneration technologies (e.g., micro CHPs) through single applications has several
benefits to fulfill energy carrier demands (such as cooling, heating and power). These
applications act as reliable sources of electricity generation in microgrids with a high
penetration of fluctuating renewable energy from, e.g., PV systems, which stabilize
the supply and increase the overall system efficiency. This chapter considers two
cogeneration technologies, CHP and PVT applications, to fully enable the poten-
tial of synergies in parallel heat and power generation. Besides parallel generation,
power-to-x technologies play a major role in the development of CECs. In Chapter
3 of this thesis, HPs are used to configure optimal CEC setups in which electricity
can be used as a resource for heat generation. Alongside BSSs, HPs can be an effi-
cient application for the utilization of excess electricity either for fulfilling the heat
demand directly or using a thermal storage system, as presented in Chapter 9. Li
and Xu (2018) provide a comprehensive analysis of microgrid operation with multi-
energy systems. The implementation of several forms of energy storage (TSS, ice
storage tank and BSS) allows for high flexibility and efficient coordination between
the energy carriers. In this chapter, we exploit the full potential of sector coupling
in microgrids through the combined implementation of cogeneration and power-to-x
technologies as well as energy storage systems for both heat and power. In line with
(Gu et al., 2014) and the findings presented in Chapter 3, this chapter takes a com-
prehensive approach and optimizes the sizing and operation of sector-coupled CECs.
The chapter extends existing research on sector-coupled operation in microgrids by
using an evolutionary algorithm to approximate multi-objective optimization.
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6.2.3 Evolutionary Algorithms in Microgrid Optimization

Using the principle of combining mutation and recombination, evolutionary algo-
rithms provide a process of approximating the solution to global optimization prob-
lems (Bäck, 1996). As outlined in the previous two sections, microgrid operation
and sizing can be seen as such a problem with multidimensional objectives. Fadaee
and Radzi (2012) review research that uses evolutionary algorithms to solve multi-
objective optimizations for the control and sizing of microgrids. The authors con-
clude that heuristic evolutionary algorithms are the most suitable for microgrid op-
timization. Gupta et al. (2020) address the multidimensional objectives of microgrid
energy management with a simulation-based optimization to identify efficient control
strategies that are non-dominated by other strategies. The authors are using the evo-
lutionary computing framework Borg MOEA, which is designed for the optimization
of multi-objective, multidimensional problems. The Borg MOEA uses auto-adaptive
operators which provide several advantages compared to other MOEAs: identifica-
tion of search stagnation, avoidance of local optima through randomized restarts and
efficient recombination of dominant operators (Hadka and Reed, 2013).

This chapter is based on this approach and uses the Borg MOEA framework for
an evolutionary multi-objective direct policy search (EMODPS) to determine the
optimal application sizing and operation parameters that can be presented to CEC
planners and participants.

6.3 Enhancing Citizen Energy Community Develop-

ment with EMODPS
In the following section, the methodology of the proposed EMODPS is introduced.

Direct policy search (DPS) is used as a control strategy that searches directly in the
solution space (Heidrich-Meisner and Igel, 2009). The DPS method parametrizes the
policies and reduces the computational complexity when using a simulation-based
optimization method. The strategy is particularly suited for problems including mul-
tiple objectives because they can be coupled with true MOEAs such as Borg. DPS
can be directly coupled with the simulation model and does not add new constraints
to the overall structure (Giuliani et al., 2016). The structure of the EMODPS pre-
sentation used in this chapter is based on the approach proposed in (Gupta et al.,
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Variable Unit Description

Oi Objective
Θ Set of applications θ

(BSS, TSS, PV, PVT, CHP, HP)
a1, a2 Phase shifts on [0,2π]
bs kWh/kW Normalized PV generation
cel,g e/ kWh Grid electricity costs
cht,CHP e/ kWh CHP heat costs
ci, ci,θ e/ kW, e/ kWh Investment costs (for θ)
copHP Coefficient of performance HP
eθ kg CO2 emission factor for application θ

Del, Dht kWh Total electricity/heat demand
del,HH kWh Household electricity demand
del,HP kWh HP electricity demand
dht,HH kWh Household heat demand
f el,r kWh Renewable electricity fed into the grid
f el,c kWh Conventional electricity fed into the grid
F (O1, O2) Objective function
gel kWh Electricity supplied by the grid
i, j Counting variables
kht kWh Heat released into the environment
lθ years Lifetime of application θ

nRBF,α,β Number of RBFs
rel,c e/ kWh Feed-in tariff for CHP electricity
rel,r e/ kWh Feed-in tariff for PVT and PV electricity
sθ kW,kWh Size of application θ

sθ,max kW,kWh Maximum size of application θ

t Current time step
T Number of time steps
Xel, Xht kWh Total electricity/heat supply
xel,θ kWh Electricity generation of θ
xht,θ kWh Heat generation of θ
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αBSS, αTS kWh Storage load for BSS / TSS
ηBSS Cyclic efficiency of BSS
ηTS Calendaric efficiency of TSS
λBSS, λTS kWh Storage level of BSS / TSS
ϕθ Electricity to heat ratio for θ ∈ (CHP,PVT)

w, c, r, p Borg MOEA Parameters

Table 6.1.: Nomenclature.

2020). First, the conflicting objectives and the general optimization model are ex-
plained. Afterwards, we introduce the radial basis functions (RBFs) used to model
the operational decisions as well as the variables used to model the sizing of the avail-
able technologies. In the last step, the simulation used to model the policy effects
and its interaction with the Borg MOEA is explained. For the system structure,
different generation, storage and sector coupling technologies are considered. The
system is connected to the grid to draw or feed in electricity. Besides PV generation,
a hybrid PVT plant is considered for both renewable heat and electricity generation.
As described in Chapter 8, the technology has the potential to reduce operational
costs in sector-coupled scenarios. Besides, a CHP is integrated in the system. An
HP possibly enables sector coupling between both the electricity and the heat sec-
tor. The option to install a BSS or a TSS is given. For more information on the
functionality of the Borg MOEA, please see (Hadka and Reed, 2013).

6.3.1 Objectives

To enable a successful energy transition, public acceptance is a key factor (Staudt
et al., 2019). Therefore, it is necessary to include varying CEC participant prefer-
ences in the decision making process when determining the system structure and
operational strategy of CECs. For the CEC participants, those preferences can be
the reduction of carbon emissions, revenue maximization or a high degree of self-
sufficiency, among others. In the course of this chapter, we focus on two objectives:
Costs and carbon emissions. The cost objective is given by:
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O1 =ci +
T∑
t=1

(gelt · cel,g + xht,CHP
t · cht,CHP

− f el,r
t · rel,r − f el,c · rel,c) (6.1)

ci =
N∑
θ=1

ci,θ · sθ

lθ
(6.2)

The objective is the sum of the installation costs for the different appliances as well
as the operating costs for electricity and heat supply. For the calculation of CO2

emissions, both emissions from energy generation, manufacturing and installation
are considered. In the case study, emissions of each appliance are approximated
through an emission factor. For CHP, PV, PVT and grid electricity, the emissions
are calculated with regard to the amount of energy produced. For the devices used
to store or convert energy within the system, BSS, TSS and HP, the emissions are
calculated with regard to the application size. The emission objective for the entire
simulation is measured in kg of CO2 and is given by:

O2 =
(
sHP · eHP + sBSS · eBSS + sTSS · eTSS

)
· T

+
T∑
t=1

(gelt · eg + xht,CHP
t eCHP + xel,PV

t · ePV

+ xel,PV T
t · ePV T ) (6.3)

In our case study, the only operational parameter is the HP operation. All other
operating decisions are deterministic due to corresponding regulation and are fixed
within the simulation. However, the system sizing is subject to optimization as well.
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6.3.2 Optimization

For the EMODPS search, both objectives derived in Section 6.3.1 are optimized.
The corresponding optimization problem is formulated below. Both objectives are
minimized simultaneously in the objective function:

min
xht,HP ,sθ

F (O1, O2) (6.4)

The objective function is minimized with regard to Equations (6.5) to (6.14). The
first two Equations, (6.5) and (6.6), represent the balance constraints for the elec-
tricity and heat sector:

nHH∑
i=1

del,HH
i,t =xel,PV

t + xel,PV T
t + xel,CHP

t − del,HP
t

+ gelt − f el,r
t − f el,c

t + αBSS
t ∀ t ∈ T (6.5)

nHH∑
i=1

dht,HH
i,t =xht,PV T

t + xht,CHP
t + xht,HP

t − kht
t

+ αTSS
t ∀ t ∈ T (6.6)

The operation and status of the BSS and TSS are modeled in Equations (6.7) and
(6.8):

λBSS
t =λBSS

t−1 −

αBSS
t ηBSS, αBSS

t ≤ 0

αBSS
t , αBSS

t > 0
∀ t ∈ T (6.7)

λTSS
t =λTSS

t−1 η
TSS − αTSS

t ∀ t ∈ T (6.8)

Equations (6.9) and (6.10) represent the COP for the HP operation and the heat to
power ratio for the PVT system and the CHP. The electricity generation of both
PV and PVT with regard to the system size is expressed in Equation (6.11). The
limitation of the HP load with regard to the system size is stated in Equation (6.12),
the CHP system size is restricted through Equation (6.13), the storage levels for
BSS and TSS are limited to the respective system size in Equation (6.14) and the
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maximum system sizes of BSS, HP, PV, PVT and TSS are determined in Equation
(6.15):

xht,HP
t =copHP · del,HP

t ∀ t ∈ T (6.9)

xht,θ
t =ϕθ

t · xel,θ ∀ θ ∈ (PV T,CHP ), t ∈ T (6.10)

xel,θ =bs · sθ ∀ θ ∈ (PV, PV T ) (6.11)

0 ≤del,HP
t ≤ sHP ∀ t ∈ T (6.12)

0 ≤sht,CHP ≤ max
(
xht,CHP
t

)
∀ t ∈ T (6.13)

0 ≤λθ
t ≤ sθ ∀ θ ∈ (BSS, TSS), t ∈ T (6.14)

0 ≤sθ ≤ sθ,max ∀ θ ∈ (BSS,HP, PV, PV T, TSS) (6.15)

6.3.3 Policy Formulation

In the proposed scenario, policies for the HP operation and sizing parameters for
different system applications are implemented. The sizes of the TSS and BSS are set
with regard to the maximum storage capacity. The size of the PV and PVT plant
is set with regard to the installed peak capacity. The size of CHP plant and HP
are set with regard to the maximum heat capacity. While the other appliances are
set through policy parameters, the CHP size is determined by the maximum heat
demand in the period that persists after the remaining sizing decisions have been
taken. This is done to ensure that heat demand can be covered at all times, because
otherwise, an oversizing of the CHP would always be beneficial due to feed-in tariffs.
The capacity sizing policies are given by:

sθ = pθ · sθ,max ∀ θ ∈ (PV, PV T,BSS, TSS,HP ) (6.16)

As proposed in (Gupta et al., 2020), cubic RBFs are implemented for the HP oper-
ation decisions. Two different types of RBFs are implemented, one with regard to
the BSS level and one with regard to the TSS level.
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The RBFs are given by:

RBFα
i =wi

(∣∣∣∣λBSS
t − ci

ri

∣∣∣∣+x2
t + y2t

)3

∀ t ∈ T, i ∈ RBFα (6.17)

RBF β
j =wj

(∣∣∣∣λTS
t − cj
rj

∣∣∣∣+x2
t + y2t

)3

∀ t ∈ T, j ∈ RBF β (6.18)

xHP,ht =
nRBF,α∑
i=1

RBFα
i +

nRBF,β∑
j=1

RBF β
j (6.19)

Here, x and y are the cyclic representations of the time of the day with xt =

sin(2πt/24 − a1) and yt = cos(2πt/24 − a2), where a1 and a2 are the phase
shifts on [0,2π]. A total of four RBFs is used, two considering the BSS storage
load λBSS and two considering the TSS storage load λTSS

t with parameter limits
wi ∈ [−2, 2], ci ∈ [−2, 2], ri ∈ [−2, 2]. As defined in (Gupta et al., 2020), the goal of
the EMODPS is to present a non-dominated set of parameters that minimizes the
system objectives. In this chapter, the weights, centers and radii of the RBFs are
used to model the HP operation decisions. The inclusion of both the TSS and BSS
storage levels as two different system states enhances previous studies by providing
the opportunity to determine operation policies in sector coupled scenarios. Addi-
tionally, the sizing parameters offer the ability for local communities to enhance their
microgrid by adding new appliances. The sizing parameters are directly included in
the objective function and therefore can be set without the use of explicitly modeled
RBFs.

6.3.4 Simulation and Implementation

Based on the inputs derived from the policy formulation in Section 6.3.3, the simula-
tion calculates the objective values and thereby enables an evaluation of the policy.
The simulation structure is depicted in Figure 6.1. The system loads and device
operations are calculated in each time step, while the application size is set once for
the entire time horizon. The heat and electricity demand of all households are used
as input. Based on the application size, the PV plant supplies a given amount of
electricity while the PVT plant supplies both heat and electricity. The HP operation
is determined through policy parameters. TSS and BSS are operated based on the
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Figure 6.1.: Flowchart of the simulation.

demand or supply in the respective sector. The CHP is used to cover the remaining
heat demand, after heat generation of the HP, PVT and the TSS are used. Excess
heat cannot be sold, but is instead released into the environment. Electricity pro-
duced by the CHP while satisfying the heat demand is consumed locally or fed into
the grid if demand is lower than generation. Here, the connected grid is both able
to supply electricity in times of high demand or absorb electricity from PV, PVT
and CHP in times of excess generation. A renewable energy feed-in tariff is paid for
fed-in electricity from the PV and PVT panels, a slightly lower feed-in tariff is paid
for electricity from the CHP, following current German regulation.

The general structure of the interaction between simulation and the Borg MOEA
is displayed in Figure 6.2. The parameters initially generated by the Borg MOEA
are fed into the simulation that returns a set of results for the different objectives
that are then reported back to the Borg MOEA. The Borg MOEA uses the infor-
mation to determine new parameters for the next evaluation using an auto-adaptive
multi-operator recombination that is suited for a broad range of problem domains
(Hadka and Reed, 2012). The algorithm uses an adaptive configuration of simulated
binary crossover, differential evolution, parent-centric crossover, unimodal normal
distribution crossover, simplex crossover and uniform mutation to determine new
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Figure 6.2.: Interaction between the simulation and the Borg MOEA for the EMODPS.

parameters for the next evaluation. Aside from uniform mutation, the offspring pro-
duced by the other operators is mutated using polynomial mutation. The results
of the recombination are then evaluated and considered for inclusion in the archive
(Hadka and Reed, 2013). All dominated policies, i.e., policies that are outperformed
by another policy in all objectives considered are discarded. After the final round of
evaluation, the DPS system returns a set of non-dominated policies.

The system is able to determine both the application size of the considered tech-
nologies and parameters for a corresponding operation policy. The returned set of
non-dominated solutions can be used to enable the decision-making process of local
community participants based on individual preferences3.

6.4 Case Study
To demonstrate the functionality of the EMODPS, we apply the Borg MOEA

and the simulation model described in Section 7.3.1 to one year of data including
residential heat and electricity consumption in hourly resolution of ten households
with an average electricity demand of 3,286 kWh and an average heat demand of
15,237 kWh per year. The individual load profiles are created using the load profile
generator (Pflugradt et al., 2013). The solar generation data is simulated for a CEC

3The entire simulation code is available at:
https://github.com/ArminGo/HICSSBorg

https://github.com/ArminGo/HICSSBorg
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Application Investment Lifetime CO2

costs emissions
[e/ kWh] [years] [kg/kWh]

CHP (Falkenberg et al., 2019) 1700 20 0.207*
PV (Wirth, 2021) 1400 20 0.050*
PVT (Wirth, 2021; Lauf et al., 2019) 1800 20 0.055*
BSS (Figgener et al., 2018) 1700 20 83.5**
TSS (Thess et al., 2015) 40 20 12**
(Samweber and Schifflechner, 2016)
HP (Johnson, 2011) 1450 17 1060**

* kg CO2/kWh production, ** kg CO2/kWh system size

Tariff Costs CO2 emissions

gel(Icha and Kuhs, 2019) 0.30 0.401
xht,CHP (Falkenberg et al., 2019) 0.10 0.207
f el,r 0.10 -
f el,c 0.08 -

Table 6.2.: Investment costs, CO2 emissions and lifetime for specific technologies.

located in southern Germany. To show the algorithm performance with regard to
different seasons, we evaluate three scenarios: “summer”, “winter” and “mid-season”.
For the summer scenario, the household load and solar generation data between May
and August is aggregated to an average week to reduce the necessary computation
time. For the winter scenario, we aggregate the data for the months from Novem-
ber to February and the mid-season scenario includes March, April, September and
October. The system configuration for investment costs and CO2-emissions is based
on the situation in the German energy market. An overview of the technology pa-
rameters for the case study is given in Table 6.2. Energy generation costs, grid
charges and feed-in tariffs are based on German regulation and are also shown in
Table 6.2. For the analysis, each scenario is run with 30 initial sets of randomly
chosen parameters over 200,000 evaluation rounds by the Borg MOEA (Version 1.9).
The simulation is carried out over the average week for each scenario. For compari-
son, each scenario is also analyzed with linear optimization models that regard each
objective individually.
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Figure 6.3.: The pareto front for the summer scenario.

6.4.1 Results of the EMODPS

The results indicate a wide range of non-dominated policies that can be used for the
sizing and operation of the considered system. Figure 6.3 shows the non-dominated
policies for each initial seed for the summer scenario. Each point represents one non-
dominated result for a sizing and operation policy. As to be expected, the DPS for
the summer scenario returns policies with the lowest overall costs compared to other
scenarios. That can be explained by the high PV and PVT generation potential
compared to low heating costs in that period. The gap in the pareto front exists
due to a change between two general strategies in the application sizing decisions
for the summer scenario. In Figure 6.4, each line represents the sizing decisions
of one DPS solution with regard to the application sizes relative to their maximum

Figure 6.4.: Application sizing decisions for the summer scenario.
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Figure 6.5.: The pareto front for the mid-season scenario.

installation sizes. The two strategies mentioned mainly differ in the sizing of the BSS
and the TSS. The DPS solutions that achieve better results for the cost objective
favor both large PV and PVT systems, indicating that the current feed-in tariff
policy in Germany incentivizes the installation of residential solar PV. The linear
optimizations for the summer scenario return costs of 26e for O1 and 43 kg CO2

emissions for O2 as optimal individual solutions.
The DPS solutions for the mid-season scenario presented in Figure 6.5 result in

both higher costs and emissions for a mixed strategy than the summer scenario.
Figure 6.6 shows that the policies mainly differ in the sizing of the PV plant, while
all other parameters remain similar. The larger TSS system in comparison to both
the summer scenario and the winter scenario indicates a higher volatility in the heat
demand, as the mid-season scenario already includes days with higher heating de-

Figure 6.6.: Application sizing decisions for the mid-season scenario.



Case Study 103

Figure 6.7.: The pareto front for the winter scenario.

mand. For renewable generation, the PVT plant is favored over the PV system with
regard to ecological interests. The linear optimization for the mid-season scenario
returns costs of 117.5e for O1 and 111.7 kg CO2 emissions for O2 in the individual
optimization.

The results for the EMODPS in the winter scenario return the highest costs and
emissions, as depicted in Figure 6.7. Recommendations for the HP size implemen-
tation in the winter scenario are distinctly larger then in the other scenarios, but do
not exhaust the maximum application size available, as can be seen in Figure 6.8.
The PVT plant is again built to the maximum size for all DPS solutions, while the
size of the PV plant correlates with the policy emissions. The linear optimization
for the winter scenario returns costs of 285e for O1 and 371 kg CO2 emissions for
O2 as individual optima.

Figure 6.8.: Application sizing decisions for the winter scenario.



104 DPS for Multi-objective Optimization of the Sizing and Operation of CECs

Figure 6.9.: Sensitivity analysis of the cost objective with regard to different system sizes.

The insights provided by the EMODPS on an individual level for each scenario
show the different policies that can be used to plan and operate a CEC. Depending
on the season in focus, the DPS recommends different strategies and sizing deci-
sions, although some parameters, like a large PVT plant, are recommended through
all scenarios. The following section provides further evaluation of the results with
variable parameters.

6.4.2 Sensitivity Analysis

Besides the HP operation parameters, the simulation results are very dependent on
the application sizing decisions determined by the Borg MOEA. In the in-between
scenario, PVT and BSS are built to the maximum size for all policies, resulting in a
25 kW PVT plant and a 30 kWh BSS. To demonstrate the effect of these two system
components on the overall outcome for the energy community, the input sizes for
the simulation configurations are varied for one exemplary policy in the mid-season
scenario with costs of 156e and CO2 emissions of 127 kg for the one week period.
The operation parameters for the HP and all sizing decisions, except for BSS and
PVT remain constant. The BSS size is then varied between one and 60 kWh. The
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Figure 6.10.: Sensitivity analysis of the emission objective with regard to different system
sizes.

PVT size is varied between one and 60 kW. The results for the cost objective are
displayed in Figure 6.9. While an increased size of the PVT plant generally leads to
reduced costs, the effect of the BSS size depends on the size of the PVT. For a small
PVT, a high BSS size increases overall costs, while a smaller BSS is able to utilize
excess energy generated by the PVT plant. Figure 6.10 shows the same variations
with regard to the emission objective. Here, the turquoise section shows the positive
network effects of a simultaneous increase of BSS and PVT. A larger BSS enables
the use of generated renewable electricity instead of using electricity from the grid
with a higher emission factor.

6.5 Discussion and Outlook
The results of the case study indicate the potential of EMODPS for the opera-

tion and sizing of sector-coupled CECs. With DPS, the interested parties can see
the effects of different preference selections before needing to specifically state these
preferences. Future work needs to investigate group decision processes to select one
individual policy based on individual preferences of participants, investors and op-
erators in a CEC. While a general setup for a decision support system has already
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been provided in Chapter 4, the exact specifications of this system remain subject
to further research. With regard to the emission objective, this work focuses on CO2

emissions that arise through investment and generation within the community and
through generation supplied by the grid that is used in the community, represented
through the grid emission factor in the case study. The potential emission benefits
of feeding in low emission electricity generation from PV, PVT and CHP into the
grid and the associated system emission reductions are not considered. As a whole,
CECs with renewable generation have the ability to lower emissions system-wide and
a system perspective is therefore an important next step. The constrained applica-
tion sizes in the case study are given as fixed values, as larger appliances require
more space and the application size is therefore limited. While some applications
are used with the maximum size available in each scenario, namely the PV and PVT
panel, other applications like the HP are only used at a fraction of the maximum size
available. In reality, technologies like PV and PVT often have competing maximum
application sizes for example due to limited roof space. Future research should incor-
porate joint sizing options for all available applications as interdependent decisions.

6.6 Conclusion
The model for evolutionary, multi-objective, direct policy search in the context of

the development and operation of Citizen Energy Communities (CECs) presented in
this chapter enables the integrated assessment of operation and application sizing de-
cisions with regard to competing objectives. The model integrates both the demand
for heat and electricity on a community level. The policies regard both the thermal
storage level and the battery storage level to model the heat pump operation. For
the emission objective in all scenarios and the cost objective in the winter scenario,
the results are within 0.5% to 4.5% of the linear optimization benchmark. The larger
gap of 24.1% and 27.7% for the cost objective in the summer and mid-season sce-
narios indicates that the solution space must be more thoroughly searched in these
settings. The model results might be further improved through a longer evaluation
period, e.g., an entire year.

The set of solutions can be used to enable local decision-makers in energy com-
munities to develop their community based on individual preferences. Participants,
investors and local operators are able to see the effects of their installation decisions
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and the energy costs and emissions for the community. The model proposed in this
chapter can be integrated into a decision support system that helps residents to par-
ticipate in CECs and build their own renewable generation technologies. We aim to
bridge the interest gap between investors, local residents and energy suppliers and
thereby contribute to a successful, decentralized energy transition.





CHAPTER 7

EVALUATING THE IMPACT OF REGULATION
ON THE PATH OF ELECTRIFICATION IN CIT-
IZEN ENERGY COMMUNITIES WITH PRO-
SUMER INVESTMENT

Based on the investment alternatives in the solution space determined in Chapter
6, it is possible to provide preference-based residential energy technology recom-
mendations for citizens in CECs. However, the success of such DSSs depends on
the willingness of individual households to actively participate in the energy tran-
sition by investing in electrification and by becoming prosumers. This willingness
is influenced by the return on investments in electrification and preferences towards
environmental sustainability. Returns on investment can be supported by a prefer-
ential regulation of CECs, i.e., the ability to sell excess electricity directly within the
community. However, the exact effect of such regulation is debated and therefore
analyzed in this chapter.

A multi-periodic community development model is proposed that determines
household investment decisions over a long time horizon, with heterogeneous individ-
ual preferences regarding sustainability and heterogeneous energy consumption pro-
files. The model considers that investment decisions which increase individual utility
might be delayed due to inertia in the decision process. Decisions are determined in
the model based on personal preferences using a multi-objective evolutionary algo-
rithm embedded in an energy system simulation. In a case study, the development
of a neighborhood in Germany consisting of 30 households is investigated in regards
to community costs and community emissions with and without CEC regulation as
proposed by the European Union. The results show that CEC regulation always

109
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reduces overall community costs and emissions, while heterogeneous distributions
of economic and ecologic preferences within the community are beneficial in terms
of cost and emissions. Furthermore, decision inertia considerably slows down the
transformation process. This indicates that policymakers should carefully consider
who to target with CEC regulation and that subsidies should be designed such that
they counterbalance delayed private investment decisions.

This chapter comprises the published article: Golla, Armin; Röhrig, Nicole;
Staudt, Philipp; Weinhardt, Christof (2022): Evaluating the impact of regulation
on the path of electrification in Citizen Energy Communities with prosumer invest-
ment. In: Applied Energy 319, p. 119241.

7.1 Introduction
The worldwide transition towards clean energy supply through renewable gener-

ation leads to a decentralization of energy generation (Alstone et al., 2015). This
puts part of the momentum of the energy transition into the hands of individual
households. To reach the ambitious climate targets of the Paris agreement (United
Nations, 2015), more private investment into sustainable energy technology and elec-
trified energy consumption is required. By installing low emission energy infrastruc-
ture in their households, individuals can be part of a successful energy transition.
However, such private actions towards a more environmentally friendly energy con-
sumption sometimes stand in contrast to individual preferences, are unattractive due
to a lack of financial incentives, or are simply delayed because of inertia in decision-
making. This could be improved by allowing neighborhoods to generate and consume
electricity as a community and by jointly promoting clean energy investment. For
example, prosumers might be able to achieve a higher revenue by selling excess solar
generation to their neighbors instead of receiving fixed feed-in tariffs. At the same
time, consumers of local electricity from PV panels will benefit from lower emissions
compared to grid electricity in such a scenario (Mengelkamp et al., 2018). Studies
further suggest peer effects in certain communities in regards to investment in PV
panels (Busic-Sontic and Fuerst, 2018). In this scenario, peers are the neighbors
living in the community. Due to a growing interest in energy communities that
produce and share energy on a local level, the European Union has promoted the
concept of CECs, as described in Chapter 1. While other concepts such as smart
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energy systems as proposed by (Mathiesen et al., 2015) or the energy hub model by
(Geidl et al., 2007) are ambiguous, the CEC concept is clearly defined in European
regulation. The aim is to provide “an enabling framework, fair treatment, a level
playing field and a well-defined catalog of rights and obligations” for CECs, where
households are required to be able to choose to participate voluntarily (European
Parliament and Council of the European Union, 2019).

The ability to share locally generated electricity on a peer-to-peer basis can in-
crease the sustainability of an energy neighborhood (Mengelkamp et al., 2018), while
individual households receive cost and revenue benefits. An implementation of CEC
regulation could thereby improve both the acceptance and financial value of private
energy generation, conversion and energy storage capacity. This makes it necessary
to evaluate the benefits of CECs for communities and individual households. As CEC
projects are still primarily in a demonstration phase, simulations are an adequate
tool to assess the potential benefits of CEC regulation.

When considering the energy consumption of a community, both heat and elec-
tricity sector must be taken into account. While the share of renewable electricity
generation is continuing to rise worldwide, the amount of renewable heat remains
low (IEA, 2021). Therefore, hybrid PVT systems and HPs are considered in this
chapter as electrification technologies linking power generation to sustainable heat
provision.

Replacing the energetic equipment of an entire community with renewable energy
technologies is typically not performed at once. The capacity in the community over
all individual households develops over time. While some inhabitants install solar
panels and battery systems right away, others follow later as is the case with many
innovations (Beal and Bohlen, 1956). The decision to invest in technology strongly
depends on the individual household’s financial endowment, the financial environ-
ment and personal preferences. These preferences can sometimes contradict each
other, for example, when the most cost-effective decision is not the one with the
smallest carbon emissions while both dimensions are important to the household.
Even the intent to invest in an energy application does not necessarily mean that
the decision is implemented right away. Different factors such as high installation
costs, possible alternatives, or simply decision inertia, i.e., the tendency to stick to
previous choices regardless of the outcome (Alós-Ferrer et al., 2016), cause a delay in
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private investment decisions (Greenleaf and Lehmann, 1995; Morwitz and Schmit-
tlein, 1992).
Therefore, managers in municipal utilities and policymakers face a complex policy de-
sign problem: The transformation of a residential microgrid into a CEC and changes
in the corresponding regulation influence the community’s long-term development.
In turn, individual investment decisions affect both the environmental footprint and
the community’s heat and electricity load profiles. These decisions can be steered us-
ing corresponding incentives and regulation. This leads us to the following research
questions that we intend to answer in this chapter.

RQ 5: What are the long-term financial (cost) and environmental (emission) ef-
fects of CEC regulation on the development of a community with respect to
electrification and the investment in residential energy technologies?

RQ 6 To what extent does the spread of individual household preferences in a
community impact the potential of CEC regulation for a faster decarboniza-
tion?

To answer these questions, we develop a multi-periodic investment decision model
that features decentralized energy generation, conversion and storage technology
covering the heat and electricity sector and apply it to a case study. In particular,
we evaluate the benefits of CEC regulation to support policymakers and municipal
utilities. Moreover, we consider the effects of diverging individual preferences
between cost savings and sustainable energy consumption on the effectiveness of
CEC regulation. Furthermore, we model decision inertia to simulate delays in
investment decisions. Figure 7.1 is a schematic representation of the development of
investments in a community over time, based on individual decisions without CEC
regulation as a residential microgrid and as a CEC. The figure shows how CECs
affect energy flows with respect to technology adoption. To identify investment
strategies, we use the Borg MOEA that was proposed by (Hadka and Reed, 2013)
and has already been implemented in the context of direct policy search for energy
communities by (Gupta et al., 2020) and in Chapter 5. The evolutionary algorithm
is embedded in a local energy system simulation. The algorithm can be used to pro-
vide decision support for individual households with multiple investment objectives
and heterogeneous preferences and we apply it to determine an investment plan for
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Figure 7.1.: Multi-periodic development of a community with and without a CEC.

sustainable energy technologies from all possible non-dominated investment plans
for each household individually.

To demonstrate our approach, we evaluate the development of a community with
30 households between the years 2020 and 2030 in three preference scenarios in Sec-
tion 7.4. The first scenario considers a neighborhood that is primarily interested
in the economic dimension when investing in electrified energy technology, i.e., cost
savings and has weak sustainability preferences. This might, for example, be true
for low-income neighborhoods and other neighborhoods with little environmental
concern. The second scenario assumes a more substantial ecological concern of the
individual households, i.e., the local reduction of carbon emissions. This may apply
to residential suburban areas with high-income families, for example. As these pref-
erences might be heterogeneous within a neighborhood in many cases, we consider
completely heterogeneous preferences in our last scenario. For all three scenarios,
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we evaluate the effects on the development of sustainable energy investments in the
community with and without CEC regulation. Each household can invest in energy
generation, conversion and storage technologies at the end of each period in accor-
dance with the individual cost and emission preferences. The technologies covered
in this chapter include PV and PVT systems, BSS and HPs. This then alters the
household’s heat and electricity load patterns for the subsequent periods. Further-
more, we simulate the effect of decision inertia on the development of the community
energy systems by implementing a lag factor. The results of our case study show
that a community consisting of households with heterogeneous preferences regarding
cost and sustainability objectives profits most from the implementation of a CEC
and should be targeted by policy makers. In summary, our approach is the first to
consider heterogeneous preferences of individual households through multi-objective
optimization in conjunction with realistic inert investment behavior and different
regulatory environments.

In the following, we first introduce related literature in Section 7.2. Then, we de-
scribe the proposed model in Section 7.3. Next, the model evaluation based on a case
study community of 30 households in Germany is described in Section 7.4. Finally,
the overall findings of this chapter as well as policy implications are discussed in Sec-
tion 7.5. The term CEC is used for communities where shared energy consumption
is allowed. Communities without such regulation are referred to as residential micro-
grids. The term community is used to refer to both CECs and residential microgrids
at the same time.

7.2 Microgrid Operation and Investment Decisions
This section presents related studies on microgrid operation and approaches for

preference-based community investments. For an introduction of the CEC concept
and corresponding regulation please see Section 2.3.

Optimization of energy systems and energy infrastructure within buildings and
communities has been investigated in detail from a system’s point of view, for
example, in (Maroufmashat et al., 2016) and (Fina et al., 2019). Liu et al. evaluate
the operation of coupled heat and electricity systems in general (Liu et al., 2016)
and of BSS and power-to-heat devices in an energy community (Liu et al., 2019a).
The authors further address the optimal design of PV and BSS in a multi-energy
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system with HPs (Liu et al., 2019b). The results indicate that the use of HPs leads
to a decrease in the required BSS capacity. Only a few studies consider the effects
of individual preferences in the decision process. One example is a multi-criteria
decision analysis regarding local preferences proposed by (McKenna et al., 2018) for
rural communities. The authors combine energy system analysis with multi-criteria
decision analysis to evaluate eight different energy application plans for a municipal-
ity in South-Western Germany considering CO2-emissions and community energy
imports. Another example for a multi-criteria decision support system for the instal-
lation and operation of combined heat and power plants is presented in (Wang et al.,
2017). The study focuses on centralized decision-making and presents a weighting
mechanism for different decision criteria. The authors evaluate the implementation
of CHP plants for heat and power generation in Daqing, China. The implementation
and operation of energy generation, conversion and storage technologies within a
CEC are investigated with a focus on decision support in Chapter 4 and direct
policy search in Chapter 6. While both studies consider individual household pref-
erences, they cover neither the implementation of a CEC nor do they consider the
development of investments in sustainable technology over time. Therefore, decision
inertia of households that intend to invest in energy appliances is also not considered.

Aside from the energy sector, many studies have investigated the role of investment
decision inertia and investment decision delay. From a game-theoretic perspective,
Chamley and Gale (1994) argue that the occurrence of delay is dependent on the
reaction time and the number of players in an investment game. In their study, they
investigate an n-player game, where each player can either reveal his or her private
information or wait to see what other players do. Xiao and Yue (2018) investigate
investor decision inertia on crowdfunding platforms. Their findings support the
existence of decision inertia for investors with regard to investment timing and reward
tier selection. Decision inertia as a form of holding on to sub-optimal investments
for too long is reported in (Sandri et al., 2010). In an experimental study, the
authors compare divestment choices of entrepreneurs and non-entrepreneurs. They
identify two forms of inertia: ’Options-based’ inertia based on possible real-option
alternatives and behavior-based ’psychological’ inertia. They conclude that even
though divestment decisions should only be subject to ’options-based’ inertia from
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a rational standpoint, ’psychological’ inertia plays a central role in the conducted
experiments.

To the best of our knowledge, no study evaluates the value of implementing CEC
projects for the sustainable electrification of energy consumption given various sce-
narios of consumer preferences. Therefore, this chapter is one of the first to inform
policymakers and municipal utilities on the value of designing incentive systems for
this regulatory concept. In the following, we describe our approach to addressing
this research gap.

Index Description Index Description

θ Technology index Θ Set of technologies
a, b Node indices N Set of nodes
i Household index I Set of households
p Period index P Set of periods
t Time step index T Time horizon
Technologies Θ: PV, PVT, BSS, HP

Variable Unit Description

A m2 Available roof space
cI , cM , cO e Investment, maintenance, operation costs
ĉI,θ e /(kWp, kWh) Investment costs per unit for technology θ

ĉM,θ e /(kWp, kWh) Maintenance costs per unit for technology
θ

ĉg,c,th e /kWh Cost parameter for grid, community elec-
tricity, centralized heat

del kWh Electricity demand
dth kWh Thermal demand
eθ kg CO2 Total emissions of technology θ

êθ kg CO2 / kWh Emissions of technology θ w.r.t. genera-
tion quantity

êI,θ kg CO2 / kWh Emissions of technology θ w.r.t. applica-
tion size
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eg,c,th kg CO2 Emissions of grid, community electricity,
centralized heat

êg,c,th kg CO2/kWh Emission parameters for grid, community
electricity, centralized heat

el
i,bss(c)
p,t , el

i,bss(d)
p,t kWh Electricity charge and discharge of the

BSS for household i in p,t
eli,dp,t kWh Electricity demand for household i in p,t
eli,fp,t , el

i,f(c)
p,t kWh Electricity feed-in into the grid and the

community for household i in p,t
eli,gp,t, el

i,g(c)
p,t kWh Electricity supply from the grid and the

community for household i in p,t
eli,hpp,t kWh Electricity demand of the HP for house-

hold i in p,t
eli,pvp,t , el

i,pvt
p,t kWh Electricity supply from PV and PVT for

household i in p,t
lθ years Lifetime of technology θ

r̂f e /kWh Feed-in tariff (grid)
r̂c e /kWh Feed-in tariff (community)
thi,d

p,t kWh Thermal demand for household i in p,t
thi,e

p,t kWh Thermal heat released into the environ-
ment, for household i in p,t

thi,g
p,t kWh Thermal supply from the gas network, for

household i in p,t
thi,pvt

p,t , thi,hp
p,t kWh Thermal supply from PVT and HP for

household i in p,t
Oc, Oe e , kg CO2 Cost and emission objective
W θ,el/th m2/kWp Nominal power for technology θ ∈

(PV, PV T )

Xp kWp, kWh Matrix of installed applications in all
Households in period p

x⃗i
p kWp, kWh Vector of installed applications in house-

hold i in period p
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xi,θ
max kWp, kWh Maximum application size for each house-

hold i

∆x⃗i
p kWp, kWh Investment decisions of household i in pe-

riod p

α Fixed parameter representing the decision
inertia

γ̃ kW/m2 Solar radiation
µi
p % Decision probability of household i in pe-

riod p

ηθ % (Inverter) efficiency for technology θ ∈
(PV, PV T,BSS,HP )

κ % Round trip efficiency for BSS
λ % State of charge for BSS
δ % Depth of discharge for BSS
ξ % Self-discharge-rate of BSS
ρi,c, ρi,e % Cost, emission preference of household i

Table 7.1.: Nomenclature.

7.3 A Multi-periodic Evaluation of Sustainable En-

ergy Technology Investment Behavior
In this section, we describe the composition and functionalities of the proposed

model. We develop a community energy hub model that can simulate the heat
and electricity balance within a community considering different energy infrastruc-
tures. In this chapter, we consider PV panels, PVT panels, BSS and HPs, as well
as centralized heat generation and electricity provision from the public grid. The
individual households’ energy balance is embedded in a simulation within the Borg
MOEA. Using the output of this simulation, the individual decision to invest in
sustainable energy technologies with regard to individual household preferences is
determined. The Borg MOEA developed by Hadka and Reed is a highly effective
evolutionary algorithm for problems with two to eight objectives (Hadka and Reed,
2013). A detailed outline of the technical features of the Borg MOEA can be found
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in (Hadka and Reed, 2013) and (Hadka and Reed, 2015). An overview on the indices
and variables used in this section is displayed in Table 7.1.

7.3.1 Energy System Simulation

To show the effects of implementing CEC regulation in a community, we propose
a community development tool that models individual investment decisions over a
multi-periodic horizon. The energy simulation required to determine investment
alternatives in each period through the Borg MOEA is described in this section.
First, we outline the necessary model components, then we describe the energy
balance within each household. Finally, the community energy balance for the
implementation of CECs is modeled.

Community configuration: To provide a useful contribution for policymakers
and managers in municipal utilities, the community development model must be
adaptable to various community architectures and configurations. Four types of
models are used to specify the system parameters. (i) General settings, which
include the simulation periods and the optimization objectives are set in the
configuration model. (ii) The technology model summarizes the technical data
of all included devices. The investment and maintenance costs, system lifetime,
system efficiency and CO2-manufacturing emissions are specified for all appliances.
In addition, the self-discharge rate and maximum depth of discharge are included
for BSS and an additional feed-in tariff for locally generated electricity can be
determined. (iii) The geographic location is specified in the microgrid model. (iv)
For each building in the community, the year of construction, building size, the roof
size, tilt and azimuth angle that influence the potential for PV and PVT systems
are specified in the household model.

One major objective of this chapter is to include individual household preferences
in the simulation. As described in Chapter 4, individual preferences concerning cost
and sustainability objectives can influence household investment decisions when
considering renewable energy technologies. These decisions influence the individual
heat and electricity consumption patterns and the community overall, which usually
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Figure 7.2.: Energy hub from the household’s perspective.

does not include more than a few dozen households (Weinhardt et al., 2019). The
individual preferences of each household in the microgrid are specified as part of the
household model.

Household energy balance: Building on the energy hub model (Geidl et al.,
2007), the energy supply and demand in each household of the community is simu-
lated through a set of balance equations. An overview is given in Figure 7.2.

For every household i, prior knowledge of two input types is assumed: (i) The solar
radiation and thereby the PV and PVT generation profiles and (ii) the electricity
and heat load profiles. The electrical power output of solar PV and the electrical
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and thermal power output of PVT is given by:

eli,pvp,t = xi,pv
p ·W pv,el · ηpv · γp,t ∀ (i, p, t) ∈ I × P × T

eli,pvtp,t = xi,pvt
p ·W pvt,el · ηpvt · γp,t ∀ (i, p, t) ∈ I × P × T

thi,pvt
p,t = xi,pvt

p ·W pvt,th · ηpvt · γp,t ∀ (i, p, t) ∈ I × P × T

(7.1)

Here, eli,pvp,t is the electricity supply of the PV plant, eli,pvtp,t is the electric and thi,pvt
p,t

is the thermal power supply of the PVT plant for household i in period p and
time step t, xi,pv

p and xi,pvt
p are the application sizes for the PV and PVT plant,

W pv,el,W pvt,el and W pvt,th are the nominal electric power of the PV and PVT plant
and the nominal thermal power of the PVT plant, ηpv and ηpvt are the inverter
efficiencies for PV and PVT and γp,t is the solar radiation in period p at time step t.
The allocation of energy within the households follows a simple four-step heuristic
described below.

Step 1: If possible, the thermal and electric outputs of PV and PVT are used
for self-consumption within the household.

Step 2: If an HP is installed, PV and PVT electricity left from Step 1 is used
for HP operation for immediate heat demand. The HP conversion from electricity
to heat is given by:

eli,hpp,t =
thi,hp

p,t

ηi,hpt

, eli,hpp,t ≤ xi,hp
p ∀ (i, p, t) ∈ I × P × T (7.2)

Here, eli,hpp,t is the electricity consumption and thi,hp
p,t is the thermal output of the HP

for household i in period p and time step t, ηi,hpt is the power-to-heat ratio of the
HP with regard to the ambient temperature and xi,hp

p is the size of the HP in period p.

Step 3: The remaining solar electricity generation from the previous two steps is
used to charge the BSS. Later, the BSS can be discharged to satisfy the remaining
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electrical demand. The state of charge of the BSS in every time step is given by:

λi
p,t = κ · eli,bss(c)p,t + ξ · λi

p,t−1 − el
i,bss(d)
p,t

∀ i, p ∈ I × P, t ∈ {2, ...T}, λi
p,1 = 0

with (1− δbss) ≤ λi
p,t ≤ xi,bss

p

(7.3)

Here, eli,bss(c)p,t and el
i,bss(d)
p,t represent the electricity used to charge and discharge the

BSS for household i in period p and time step t, κ is the round-trip-efficiency, ξ is
the self-discharge rate and δbss is the depth-of-discharge. The initial state of charge
λi
p,0 is set to (1 − δbss) in every period. The operational model does not consider

a transfer of the state of charge between two periods p and p + 1 but of course,
it does so between time steps. A simple operation heuristic controls the battery
operation. If there is remaining solar electricity and the current state-of-charge does
not exceed the upper threshold of λ, the BSS is charged. Discharge is triggered
when a household has remaining demand and the BSS state-of-charge does not fall
below the maximum depth-of-discharge (1 − δbss). The BSS can also be discharged
for the HP operation to satisfy thermal demand.

Step 4: In case any electricity generated by the PV or PVT system is not con-
sumed in the previous steps, it can be fed into the local grid if the community is a
CEC. Otherwise, it is fed directly into the public grid. Energy stored in the BSS
cannot be used for feed-in. If additional electricity is required, it is obtained from
the community in the case of a CEC or the public grid, otherwise. The electricity
balance for the entire simulation is given by:

eli,pvp,t + eli,pvtp,t − eli,dp,t − eli,hpp,t − el
i,bss(c)
p,t

+ el
i,bss(d)
p,t − eli,fp,t − el

i,f(c)
p,t + eli,gp,t + el

i,g(c)
p,t = 0 ∀ (i, p, t) ∈ I × P × T

(7.4)

Here, eli,dp,t is the electricity demand, eli,fp,t is the grid feed-in, eli,f(c)p,t is the electricity
fed into the community, eli,gp,t is the grid supply and el

i,g(c)
p,t is the electricity supplied by

the community for household i in period p and time step t. If the thermal generation
of the PVT plant is larger than the thermal demand of a household, excess thermal
heat thi,e

p,t is released into the environment. Additional heat is supplied using the gas
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distribution network. The heat balance is given by:

thi,pvt
p,t + thi,hp

p,t − thi,d
p,t − thi,e

p,t + thi,g
p,t = 0 ∀ (i, p, t) ∈ I × P × T (7.5)

Here, thi,d
p,t is the thermal energy demand, thi,e

p,t is the excess energy released into the
environment, thi,g

p,t is the external energy supplied by the gas network for household
i in period p and time step t.

CEC simulation: In a CEC, surplus energy from households is locally distributed
before it is fed into the public grid. The evaluation of a community both as a CEC
and as a residential microgrid allows community planners and policymakers to assess
the potential benefits of a CEC implementation. Community trading is prioritized
before electricity from the public grid is used, if energy sharing is enabled. After
the model is initialized, it is possible to compute the optimal investment decision
alternatives over the following years. In the optimization, the simulation model is
used to determine the objective outputs for community costs and emissions with
regard to the technology application sizes.

7.3.2 Preference-based Optimization of Investment Decision Alterna-

tives

The previous section covers the first operational module, which executes the
simulation step and provides an energy balance for each household and within the
community. This section describes the optimization module. Based on the simula-
tion results in a period p, the model determines the actions of every household in
the microgrid. The action is selected from a set of pareto-optimal options calculated
using the Borg MOEA. First, we describe the different objective functions that
reflect the individual preferences of the households.

Objective functions: The simulation model proposed in Section 7.3.1 can be
used to derive an investment proposition for each household. The proposition is
determined based on the household’s preferences that are used to weigh the cor-
responding objectives. In this chapter, we focus on the two objectives community
costs and emissions. The cost objective comprises investment costs cI(x⃗, p, i), annual
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maintenance costs cM(x⃗, p, i) and operation costs cO(x⃗, p, i):

Oc(x⃗, p, i) = cI(x⃗, p, i) + cM(x⃗, p, i) + cO(x⃗, p, i) (7.6)

The investment costs associated with a variable combination x⃗ represent the sum of
yearly equipment depreciation until the end of the considered time horizon:

cI(x⃗, p, i) =
Θ∑

θ=1

xi,θ
p

ĉI,θ

lθ
∀ (i, p) ∈ I × P (7.7)

ĉI,θ are the investment costs per unit of installation and lθ is the lifetime of technology
θ. Maintenance costs summarize the annual costs for service and maintenance of all
installed technologies:

cM(x⃗, p, i) =
Θ∑

θ=1

xi,θ
p · ĉM,θ ∀ (i, p) ∈ I × P (7.8)

ĉMθ are the maintenance costs of technology θ per unit of installation. The operation
costs cO are derived from the energy consumption costs and the expected feed-in
revenues for electricity with the installed energy infrastructure:

cO(x⃗, p, i) =
T∑
t=1

eli,gp,t · ĉg + el
i,g(c)
p,t · ĉc + thi,g

p,t · ĉth

−eli,fp,t · r̂f − el
i,f(c)
p,t · r̂c ∀ (i, p) ∈ I × P

(7.9)

ĉg is the cost parameter for external electricity, ĉth is the cost parameter for external
heat, r̂f is the feed-in tariff for power supplied to the grid and r̂c is the feed-in
tariff for power supplied to the CEC. The emissions objective is measured in kg
CO2 equivalents for the infrastructure combination x⃗i of each household. The total
emissions are the sum of all emissions associated with each consumed unit of an
energy carrier and the manufacturing emissions of the energy infrastructure. The
overall emissions of generation technologies are mapped to the generated kWh for
each technology θ:

Oe(x⃗, p, i) =
Θ∑

θ=1

eθ(x⃗, p, i) (7.10)



Multi-periodic Evaluation of Energy Technology Investment Behavior 125

eθ are the emissions of technology θ. The manufacturing emissions from PV and
PVT are mapped to emissions per kWh of generation, based on the yearly gener-
ation and lifetime. The emissions are distributed proportionally between heat and
electricity generation for the PVT system. Regarding the electricity sector, only the
self-consumed amount of electricity is considered for the household’s CO2 balance:

ei,pv(x⃗, p, i) = (eli,pvp − eli,f,pvp − eli,f(c,pv)p )êpv ∀ (i, p) ∈ I × P

ei,el,pvt(x⃗, p, i) = (eli,pvtp − eli,f,pvtp − eli,f(c,pvt)p )êel,pvt ∀ (i, p) ∈ I × P

ei,th,pvt = thi,pvt
p · êth,pvt ∀ (i, p) ∈ I × P

(7.11)

ei,pv are the PV emissions, ei,el,pvt and ei,th,pvt are the PVT emissions for household i,
êpv is the specific PV emission factor, êel,pvt and êth,pvt are the specific PVT emission
factors. This chapter does not consider a possible CO2-bonus for the feed-in of re-
newable electricity into the public grid. Emissions from HPs and BSSs are measured
based on the manufacturing emissions:

ei,bss(x⃗, p, i) =
êI,bssxi,bss

p

lbss
∀ (i, p) ∈ I × P

ei,hp(x⃗, p, i) =
êI,hpxi,hp

p

lhp
∀ (i, p) ∈ I × P

(7.12)

ei,bss and ei,hp are the emissions, xi,bss and xi,HP are the sizes of the BSS and HP
for household i, êI,bss and êI,hp are the specific emission factors, lbss and lhp are the
lifetime of the BSS and HP. Emissions of external heat supply and grid electricity
are measured in kg CO2 per consumed kWh of each household and are given by:

ei,g(x⃗, p, i) = eli,gp,t · êelg ∀ (i, p) ∈ I × P

ei,g(c)(x⃗, p, i) = el
i,g(c)
p,t · êelc ∀ (i, p) ∈ I × P

ei,th(x⃗, p, i) = thi,g
p,t · êthg ∀ (i, p) ∈ I × P

(7.13)

ei,g, ei,g(c) and ei,th are the emissions of grid electricity, community electricity and
centralized heat for household i, êelg , êelc and êthg are the specific emission factors of
grid, community electricity and centralized heat.
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Application of the Borg MOEA: Having defined the variables and objectives,
the mathematical form for the multi-objective investment problem to minimize costs
and emissions of household i in a period p has the following form:

min
x⃗,p,i

F (Oc(x⃗, p, i), Oe(x⃗, p, i))

subject to the constraints stated in Equations 7.1 to 7.13

with xi,θ
p ≤ xi,θ

max ∀ (i, p, θ) ∈ I × P

(7.14)

In the problem formulation, Oc(x⃗, p, i) and Oe(x⃗, p, i) are the objective functions
providing the mapping mechanism between a variable set and the objective values.
xi,θ
max is the maximum application size for each household i. Using this two-

dimensional objective function and the simulation described above, the Borg MOEA
returns a set of non-dominated investment policies. Non-dominated implies that no
solution within the solution space performs worse than any other solution in the
solution space in both objectives at the same time. This gives us an approximated
pareto front.

Modeling the inertia of energy investment decisions: The gap between
the environmental intentions and environmental actions of an individual has been
first introduced in (Blake, 1999). This gap can also be described as a delay in
action. Even though one feels that a specific problem should be addressed, it is not
done right away. Such delay or inertia in decision making especially occurs in the
context of investment decisions (Morwitz and Schmittlein, 1992). Greenleaf and
Lehmann (1995) propose eight main reasons for individuals to delay consumption
decisions: Lack of time, lack of enjoyment, risk exposure, the requirement to obtain
third-party advice, procedural uncertainty, lack of information, the expectation of
falling prices and expected improvements of product quality. For an overview of
existing experimental evaluations of decision-making in the context of household
energy investments, we refer to (Kastner and Stern, 2015).

As the policy model proposed in this chapter aims to reflect individual preference-
based decision-making over a time horizon of several years, we must account for
the possibility of a time delay between intention and actual decision. We argue
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that customers with clear preferences for one dimension (for instance, preferring the
ecological dimension clearly over the economic dimension) are more likely to invest
as their investment goals are less ambivalent. Secondly, customers also evaluate
whether a specific option among all available non-dominated options reflects their
preference. An option that more strongly reflects their preferences is chosen with
a higher likelihood than if an option was presented that is far away from their
preferences. The likelihood for investment is correspondingly calculated in Equation
7.15.

µi
p = α · (Oe,n(x⃗, p, i)ρi,e +Oc,n(x⃗, p, i)ρi,c) ∀ (i, p) ∈ I × P

Oe,n(x⃗, p, i) =
Oe,hi(x⃗, p, i)−Oe(x⃗, p, i)

Oe,hi(x⃗, p, i)−Oe,lo(x⃗, p, i)
∀ (i, p) ∈ I × P

Oc,n(x⃗, p, i) =
Oc,hi(x⃗, p, i)−Oc(x⃗, p, i)

Oc,hi(x⃗, p, i)−Oc,lo(x⃗, p, i)
∀ (i, p) ∈ I × P

(7.15)

Here, ρi,c and ρi,e are the cost and emission preferences of household i. Oc,n

and Oe,n are the normalized cost and emission objectives, Oc,hi and Oe,hi are
the highest possible costs and emissions and Oc,lo and Oe,lo are the lowest possi-
ble costs and emissions with regard to the application of investment decisions for
household i in period p. The factor α is a fixed value representing the decision inertia.

According to the equation above, the intention to invest in a combination
of energy technologies is higher for an individual with either strong or weak
sustainability preferences and lower for an individual with balanced preferences
for cost and sustainability. Furthermore, investment intentions are reduced based
on the deviation from the best possible outcome for an individual given his or
her preference settings and the available investment alternatives. This intent is
then subject to the decision inertia α. Previous studies on decision inertia in
investment situations state a gap between intention and action of 0.25 (Morwitz
and Schmittlein, 1992), meaning that only 25% of the study participants with the
intent to buy an application did so within the next 12 months. Following this
line of argument, α is set to 0.25 for the case study presented in Section 7.4. For
each household, the investment decision ∆x⃗i

p in p is implemented with probability µi
p.
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Derivation of the investment proposition: For each household within the
community, an investment decision problem is solved in each period based on the
possible decision alternatives derived above. Each private household i improves its
energy infrastructure during a multi-periodic simulation run by repeatedly evaluating
different investment options and deciding whether to make an investment. The best
investment from the approximated pareto front is determined at the end of each
period p. The application vector for the next period is given by:

x⃗i
p+1 =

x⃗i
p +∆x⃗i

p with probability µi
p

x⃗i
p with probability 1− µi

p

∀ (i, p) ∈ I × P (7.16)

The decision of a household represented by ∆x⃗i
p is determined based on the re-

spective individual cost and emission preferences. The set of non-dominated decision
alternatives returned by the Borg MOEA contains both cost and emission values for
all decision alternatives available to the household. The objective function values
for all decision alternatives are normalized from zero to one as displayed in Figure
7.3 to form a decision. The household preferences are modeled by drawing a line
with the starting point (0,0) and a slope of ρi,e/ρi,c. Investment decisions along this
line represent a balanced consideration of a household’s cost and emission prefer-
ences. The decision alternative with the closest distance to the line is selected as
∆x⃗i

p. Using this method, households with a high ecologic preference will settle for
an investment decision with low overall emissions compared to the other alternatives
and vice versa. We argue that this method can be used to effectively determine the
household investment decision that best reflects the household preference trade-off
between costs and emissions.

7.4 Case Study
As argued above, individual preferences can greatly influence household decisions

regarding the investment in sustainable energy generation, conversion and storage
applications. Furthermore, the implementation of CECs influences the development
of a community as it changes its economics. To demonstrate the functionality of the
model described in Section 7.3, to evaluate the effects of individual preferences and to
compare CEC regulation to a residential microgrid, we introduce six different scenar-
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Figure 7.3.: Derivation of a household decision.

ios for a community with 30 households located in Germany. As displayed in Table
7.2, three preference scenarios are used: A strong sustainability preference scenario,
where the sustainability preferences of each household are randomly drawn from the
interval between 50% and 100%, a weak sustainability preference scenario, where the
sustainability preferences are drawn from the interval between 0% and 50% and a
heterogeneous scenario, where the ecologic sustainability preferences are drawn from
the entire preferences space between 0% and 100%. A sustainability preference of
100% means that a household considers only emission reductions when making an
investment decision. The economic preference of each household are relative to the
sustainability preferences and are given by ρi,c = 100% − ρi,e. Correspondingly, a

Parameter Dimensions

Regulation: CEC Residential Microgrid

Sustainablity Strong Weak Heterogeneous
preferences: 50%-100% 0%-50% 0%-100%

Table 7.2.: Dimensions of the case study.
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household with 0% sustainability preference and therefore 100% economic preference
considers only cost reductions when making an investment decision. The three pref-
erence scenarios are calculated in two settings each, first with an implemented CEC
regulation and in the setting of a residential microgrid. As a result, six scenarios are
examined. To evaluate the effects of the decision inertia parameter modeled in this
chapter, we conduct a second simulation without decision inertia that has otherwise
the same parameters.

7.4.1 Implementation

The simulated community investigated in this section is located in Germany. This
is important, as weather patterns are considered for solar PV generation and the
heat demand. The electricity load profiles of the 30 households used in this chap-
ter are derived from a data set containing actual load profiles from single-family
buildings located in Germany in close proximity to each other (Tjaden et al., 2015).
The community size is chosen within range of existing energy community projects in
Germany, Austria and Switzerland that include between 7 and 41 households (Wein-
hardt et al., 2019). The annual electricity consumption of the considered households
lies between 1,289 kWh and 7,374 kWh, with an average of 4,095 kWh and a standard
deviation of 1,408 kWh. The electricity consumption profiles are repeated every year
during the simulation period. The households’ heat demand profiles are calculated
based on the heating degree days method. As a reference, we use weather data and
solar radiation profiles from 2009 to 2019 from the renewables.ninja tool (Pfenninger
and Staffell, 2016). For the simulation, the time resolution is 15 minutes. The build-
ing size is set to 130m2 for each building, which is the average household size in
Germany (Gude, 2019). The roof tilt angle is set to 35◦ and the roof azimuth is
set to 180◦ so that one side of the household roof faces south. A roof size of 32m2

is available for building PV and PVT panels on each household (Mainzer et al.,
2014). The appliances’ lifetime, investment and maintenance costs and manufactur-
ing emissions are provided in Table 7.3. The values for the expected lifetimes of the
energy infrastructure are taken from (Mayer et al., 2015) and (Popovski et al., 2018).
The investment cost parameters are based on (Krampe et al., 2016), (Herrando and
Markides, 2016) and (Weidner et al., 2014). The values for maintenance cost are
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Parameter PV PVT BSS HP

Lifetime lθ 25 years 20 years 10 years 20 years
Investment
costs

ĉIp=0 1052
e

kWp
2144

e

kWp
452

e

kWh
800

e

kW

Operating
costs

eO 500
kgCO2

m2
500

kgCO2

m2
190

kgCO2

kWh
193

kgCO2

kW

Maintenance
costs

ĉM 0.01 ∗ ĉI,pv 0.01 ∗ ĉI,pvt 0.015 ∗ ĉI,bss 0.01 ∗ ĉI,hp

Table 7.3.: Community energy technology cost and emission parameters.

taken from (Fürstenwerth, 2013), (Mailach and Oschatz, 2021) and (Naumann et al.,
2015). The values for manufacturing emissions are based on (Ekins-Daukes, 2009)
and (Romare and Dahlhöf, 2017). Beyond the values listed in Table 7.3, we need to
define the nominal power values for PV and PVT. These are set to 0.18 kWp/m2

for PV, 0.15 kWp/m2 for PVT electricity and 0.475 kWp/m2 for PVT heat. They
are based on (Wirth, 2021) and (Abdul-Ganiyu et al., 2020). The HP COP depends
on the ambient temperature in the community with a coefficient of 3.5 for 0◦C. For
very low temperatures, a heater is integrated into the HP (Megan Quentin-Baxter
et al., 2011). The price for electricity from the public grid is set to ĉg = 0.30e /kWh

(Schwencke and Bantle, 2021), the feed-in tariff is set to r̂f = 0.094e /kWh, which
corresponds to German feed-in regulation in 2020. The price for community elec-
tricity is set to the mid-value between ĉg and r̂f which is ĉc = 0, 197e /kWh. The
community feed-in revenue is set to r̂c = 0, 152e /kWh as a compromise between all
possible values that profits from the German tax regulation for local energy sharing
(German Federal Ministry of Finance, 2019). Emissions for grid electricity are set to
êg = 0.401kgCO2/kWh (Icha and Kuhs, 2019). External heat is supplied through a
natural gas distribution grid. The price for external heat is set to ĉth = 0.1e /kWh,
which is within range of European gas prices in early 2021 (Eurostat, 2021), emissions
for natural gas are set to êth = 0.215kgCO2/kWh (Giegrich et al., 2015). Additional
costs that might arise if a municipal utility decides to implement a CEC are not
considered. Such costs could, for instance, include the installation of smart meters
or intelligent communication gateways. We consider the community development
over a time span of 10 years from 2020 to 2030.
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(a) Community load in the CEC. (b) Household 5: Heat load.

(c) Household 5: Electricity loads and genera-
tion for PV, PVT, grid and feed-in.

(d) Household 5: Electricity loads for BSS and
HP.

Figure 7.4.: Exemplary results of the simulation of a single day in February 2025. The
figures show the community electricity generation and loads and the energy
generation and load of an exemplary household in the heterogeneous preference
scenario with CEC regulation.

7.4.2 Results

In each period, the energy consumption of all 30 households and the community
electricity consumption are simulated in an hourly resolution based on the installed
appliances. To give an impression, Figure 7.4 shows the electricity loads and gen-
eration within the community and the electricity and heat load for an exemplary
household in the heterogeneous preference scenario with CEC regulation. As the
household has invested in PV generation capacity, it does not require any electricity
from the community but instead uses the battery and HP to cover most of its energy
demand. It also feeds electricity to the community and the grid.

In the first year of the simulation (2020), households in all scenarios start with-



Case Study 133

(a) Strong sustainability preferences with CEC. (b) Strong sustainability preferences with RM.

(c) Weak sustainability preferences with CEC. (d) Weak sustainability preferences with RM.

(e) Heterogeneous preferences with CEC. (f) Heterogeneous preferences with RM.

Figure 7.5.: Community infrastructure development of CEC and residential microgrid (RM)
in the different scenarios.

out any of the considered residential energy technologies installed. All costs are
operational costs from buying electricity from the grid and natural gas to cover the
thermal heat demand. In the starting period, the total annual costs within the com-
munity amount to around 57,900e . Likewise, the total annual community emissions
of 92,400 kg CO2 originate from energy consumption and are not attributed to the
manufacturing of appliances. A comparison of the community infrastructure devel-
opment is presented in Figure 7.5. Figure 7.6 shows the cost development and Figure
7.7 shows the emission development for all scenarios. Before describing the results
in detail, we highlight the most important findings:

• CEC regulation has a positive influence on community cost and emission re-
duction in all analyzed scenarios.

• CEC regulation shows the largest impact on community costs and emis-
sions when households have heterogeneous economic and ecologic preferences.
Therefore, heterogeneous neighborhoods should be targeted by specific regula-
tion on CECs, for instance, by targeting urban areas with more heterogeneous
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(a) Strong sustainability preferences with CEC. (b) Strong sustainability preferences with RM.

(c) Weak sustainability preferences with CEC. (d) Weak sustainability preferences with RM.

(e) Heterogeneous preferences with CEC. (f) Heterogeneous preferences with RM.

Figure 7.6.: Community cost development of CEC and residential microgrid (RM) in the
different scenarios.

population.

• Decision inertia leads to a slower reduction of community costs and emissions.
Due to its impact on household investment decisions, decision inertia should
be considered by policymakers in the context of private energy infrastructure
development and specifically addressed through policy instruments such as
temporally decreasing subsidies.

In the strong sustainability preference scenario, the gap between CEC and
residential microgrid is the smallest over all three preference scenarios and originates
mainly from a slightly higher self-consumption in the CEC. In both scenarios, BSSs
are installed from 2022 onwards to more than two-thirds of its maximum capacity.
Households invest in HPs, leading to low emissions caused by the centralized gas
system. The local emissions, both in the CEC and the residential microgrid scenario
are reduced by around 50% in 2030 with an additional small benefit of 584kg
CO2 through the implementation of a CEC. With a 15.12% cost reduction in the
CEC scenario compared to only 12.78% cost reduction in the residential microgrid
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(a) Strong sustainability preferences with CEC. (b) Strong sustainability preferences with RM.

(c) Weak sustainability preferences with CEC. (d) Weak sustainability preferences with RM.

(e) Heterogeneous preferences with CEC. (f) Heterogeneous preferences with RM.

Figure 7.7.: Community emission development of CEC and residential microgrid (RM) in
the different scenarios.

scenario, the gap is slightly larger when looking at the community costs. The
difference translates to 45e of additional savings per household and year. However,
these savings are caused by subsidies which in this case do not lead to significantly
increasing ecological sustainability.

In the scenario with weak sustainability preferences, where households focus more
on financial benefits, the installed BSS capacity is less than half of the capacity
from the previous strong sustainability scenario. PVT investments also decrease,
while the overall solar PV electricity capacity is similar to the first scenario. This
indicates a larger tendency to use PV systems instead of PVT and to utilize the
slightly higher electrical efficiency to increase feed-in revenues. In the CEC scenario,
the overall local emissions are reduced by 34.82% in 2030 compared to 2020 and
by 33.27% in the residential microgrid scenario. The largest overall cost reduction
is achieved in the CEC scenario, with a total annual reduction of 27.70% by
2030, compared to a 24.34% reduction in the residential microgrid scenario in 2030.
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Sustainability preferences: Strong Weak Heterogeneous

With CEC: Costs 2030 49,147e 41,865e 43,572e
Emissions 2030 48.5 tCO2 63.5 tCO2 54.1 tCO2

With RM: Costs 2030 50,499e 43,811e 46,844e
Emissions 2030 49.0 tCO2 65.0 tCO2 58.1 tCO2

Costs 2020: 57,902e Emissions 2020: 97.5 tCO2

Table 7.4.: Results of the case study scenarios with a CEC implementation and a residential
microgrid (RM).

This translates to 65e less energy costs in the CEC scenario per household and year.

The largest differences between CEC and residential microgrid occur in the scenar-
ios with heterogeneous preferences. The community emissions are reduced by 40.41%
in the residential microgrid scenario and by 44.50% in the CEC scenario, which is
the equivalent of two additional households in comparison. Looking at the costs, a
24.75% reduction is achieved in the CEC scenario, compared to a 19.10% decrease
in the residential microgrid scenario, which translates to 109e less energy costs in
the CEC scenario per household and year. One reason for the considerable benefit of
CEC regulation for communities with heterogeneous preferences lies in the distribu-
tion of energy infrastructure among the households. In both heterogeneous scenarios,
almost every household builds PV or PVT panels and most households also build a
small BSS. Thereby, it is easier to flexibly share renewable energy within the commu-
nity than, for example, in the weak sustainability scenario, where fewer households
build BSSs. Compared to the strong sustainability preference scenario, where BSSs
are also built by almost every household, the overall BSS capacity is smaller in the
heterogeneous preferences scenario which leads to lower costs. Thereby, households
profit more from flexible energy supply and demand within the CEC without paying
for it excessively.

An overview of the results in all scenarios is presented in Table 7.4. Overall, a no-
table reduction of community costs and emissions is achieved in all scenarios through
the investment in renewable residential energy technologies. The implementation of
CECs positively affects the community costs and leads to local emission reductions
that are largest in the heterogeneous preference scenario.
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Figure 7.8.: Comparison of community cost and emission reduction after 10 periods with
and without decision inertia.

To evaluate the effects of the decision inertia factor proposed in this chapter, we
conduct another simulation without an inertia factor. A comparison of the results
in Figure 7.8 shows that the decision inertia parameter has a strong influence on the
overall results. Without a decision inertia factor, household investment decisions for
HP, PV and PVT are made in the first year, the decision to add BSSs is made within
the first five years. Compared to the original scenarios with decision inertia, these
scenarios result in a greater and faster overall emission reduction. The cost reduction
is larger especially in the weak sustainability and heterogeneous preference scenarios
with residential microgrid. This suggests that the communities do not realize their
entire cost and emission reduction potential in the scenarios with decision inertia
due to delayed decision making. If incentives can be created for households to make
investment decisions for renewable energy technologies earlier, this could reduce
the cumulative household energy costs and carbon emissions, which is especially
important in the efforts to limit global warming.
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7.5 Discussion and Policy Implications
As demonstrated in the case study, implementing CEC regulation positively af-

fects community costs and emissions. However, these effects need to be balanced
against system costs for installing additional hard- and software. When the po-
tential benefits for municipal utilities are not large enough, policymakers need to
consider whether additional advantages of CECs justify further regulatory support.
Our model shows that the implementation of CECs enables individuals to lower their
household carbon footprint and to thereby contribute to the decarbonization of the
energy sector.
The preference selection process and the model of investment delay caused by inertia
allow for a more realistic assumption on household behavior than pure profitability
considerations. According to the German federal environmental agency, an emission
reduction of 40.7% between 2020 and 2030 is necessary to reach the emission reduc-
tion target set in the German climate protection law (Günther and Gniffke, 2021).
Our simulation results for a case study with 30 households show that especially in a
community with heterogeneous preferences, CEC regulation can help to achieve these
targets. This leads to a recommendation for policymakers and managers in municipal
utilities to promote the implementation of CECs in targeted communities. Further-
more, the analysis shows that incentives for individuals with an economic preference
setting should be improved to meet the federal emission targets. Additionally, we
find that decision inertia might delay the benefits for years. Therefore, policymakers
should consider setting high incentives at the beginning that are lowered year by
year. This could additionally incentivize private households to overcome decision
inertia. While this chapter proposes one possible method of modeling the delay in
investment decision-making, further research must focus on evaluating and compar-
ing different decision inertia components. Such research could be further enhanced
by going beyond the modeling perspective towards an evaluation of actual invest-
ment behavior for renewable energy technologies in the field using the framework
proposed in (Staudt et al., 2019).
As the proposed model is applied within the German energy system, the numerical
results might be different for other countries and depend on the local consumption
patterns and regulation, especially regarding feed-in and network charges. Advance-
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ments in technology efficiency or the possibility of disruptive innovations in energy
infrastructure are not considered in the simulation. While the per-year electricity
consumption of the 30 households is within range of the German average and the
average household consumption patterns in the data set are similar to the German
standard load profile (Tjaden et al., 2015), the results might be different for other
communities. In the face of rising energy prices, especially for natural gas, we expect
that the integration of renewable energy systems on a household level and in com-
munities will become even more important. We expect that the emission reduction
effects described in this chapter can be achieved in a shorter time, as households
might choose to install renewable energy generation and storage applications earlier
if conventional energy becomes more expensive. The impact of the neighborhood
size on the community infrastructure and the determination of an optimal CEC size
is beyond the scope of this chapter, but presents a relevant path for further research.
Besides the application on small communities, the methodology presented in this
chapter can be scaled to the context of entire cities or even states. In addition, to
adapt this chapter to the context of other countries, different energy scenarios, such
as those proposed in the Future Energy Scenarios report (National Grid ESO, 2021),
can be included.

7.6 Conclusion
In this chapter, we evaluate the impact of Citizen Energy Community (CEC)

regulation and individual household preferences on private investment in renew-
able energy technologies within a community over a multi-year horizon. Individual
economic and ecologic preferences shape a community’s infrastructure and have an
impact on possible community cost and emission reductions. According to our re-
sults, the implementation of CECs has a positive influence on community costs and
emissions regardless of the households’ preference structure. Compared to 2020, the
household investments lead to a cost reduction of up to 28% and an emission reduc-
tion of up to 50%. However, a community with heterogeneous economic and ecologic
preferences benefits most from a CEC implementation. Here, the cost reduction is
30% higher and the emission reduction is 10% higher in the CEC scenario than in the
scenario with a residential microgrid. This holds important insights for regulators,
as such communities should be specifically targeted with corresponding regulation.
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Furthermore, delayed investments in utility-increasing alternatives caused by house-
hold decision inertia can considerably slow down the energy transformation process
and lead to a smaller reduction of community costs and emissions. This also holds
important insights for regulators who need to tailor subsidy schemes that counteract
this decision inertia. By showing the potential for investments in individual energy
infrastructure, we aim to contribute to a successful energy transition and provide
new perspectives on the potential of CECs for policymakers worldwide. For the real-
time operation of these CECs with residential energy technologies, efficient operation
strategies are necessary to promote the integration of the heat and electricity sector
through sector coupling. Such operation strategies must be able to integrate volatile
renewable generation and uncertainty regarding individual consumption patterns.
These challenges are addressed in Part IV.



Part IV.

Operation Strategies for Sector

Coupling





INTRODUCTION TO PART IV

Once residential energy technologies are deployed in a CEC, they should be oper-
ated optimally considering the needs of the corresponding stakeholders, i.e., the grid
operator or the citizens in the community. Operation strategies for sector coupling
technologies in CECs can help to mitigate the effects of volatile renewable generation
and uncertain demand (Hansen et al., 2019; Liu et al., 2018) and thereby contribute
to a successful decarbonization of CECs.

In Part IV of this thesis, two use cases for sector coupling applications between the
heat and electricity sector are presented. The first use case considers the operation
of a coupled heat, electricity and cooling system (Chapter 8). In the second use case,
an operation strategy for an HP in a DHN with TSS is developed, using a 24 hours
rolling horizon online optimization with a heat load forecast (Chapter 9). While
the evaluated case studies use data from a research facility and a city in northern
Germany, the presented concepts can also be applied in a CEC.
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CHAPTER 8

COMBINING PVT GENERATION AND AIR
CONDITIONING: A COST ANALYSIS OF SUR-
PLUS HEAT UTILIZATION

The average global temperature in Europe will continue to rise over the next years
and extreme weather phenomena such as heat waves are more likely to occur. This
will likely create a higher demand for cooling (Larsen et al., 2020; Day et al., 2009).

In this chapter, a cooling system driven by an absorption chiller that uses the heat
surplus from PVT panels is compared to a conventional cooling system with PV
supply and a base scenario without renewable generation. Hot water from the PVT
panels and cold water from the absorption chiller is distributed among participating
households via a district heating and cooling network. For the case study on the
National Renewable Energy Laboratory in Golden, Colorado, the proposed system
can reduce energy costs by 73% compared to a PV -based system.

This chapter comprises the published article: Golla, Armin; Staudt, Philipp; Wein-
hardt, Christof (2019): Combining PVT Generation and Air Conditioning: A Cost
Analysis of Surplus Heat Utilization. In: International Conference on Smart Energy
Systems and Technologies 2, p. 1–6.

8.1 Introduction
To limit the effects of global climate change, policies are implemented to develop

a more sustainable energy system and reach the objective of keeping global warming
below 2◦C (Council of the European Union, 2005). However, with nonetheless rising
temperature, the cooling demand in many European countries will increase (Larsen
et al., 2020). With the ongoing trend towards renewable energy generation and
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the goal of a 100% renewable energy system in 2050, solar generation may play
a major role in the future and account for approximately 79% of the worldwide
energy generation capacity (Bogdanov et al., 2019). Thus, the utilization of solar
energy might become one of the major tasks in future energy systems. With this
chapter, we contribute to a more efficient approach in the area of cooling demand in
buildings. The following paragraphs introduce the technicalities of PVT technology,
different cooling systems, explain the term surplus heat and address the general
assumptions of the case study.

a) PVT: PVT systems combine photovoltaic and solar thermal components to
produce both electricity and heat at the same time in one integrated system (Chow,
2010). Absorption chillers take heat to produce cold water that can be used for
air conditioning. Utilizing the surplus heat of a PVT panel to run the absorption
chiller could lead to an increase in the overall efficiency of a household energy system.
Moreover, heat surplus from a PVT panel is available particularly in periods of high
solar radiation, when cooling demand is high and heat demand is low. This creates
useful synergies.

b) Air conditioner (AC): ACs used in public and private buildings are the main
technology to provide cooling and the number of installed devices is rising every
year(JRAIA, 2019). This counteracts the objective of increased energy efficiency
and a reduction in energy use. Due to the high energy consumption of ACs, we are
looking for a more efficient method of cooling homes. We evaluate the use of an
AC supplied by an absorption chiller and compare it to conventional compression
cooling ACs. According to literature, the cooling COP of a compression cooling
AC is within the range of 2-5 (Ji et al., 2003; Fahlén et al., 2012). However, fixed-
speed centrifugal chillers with a cooling COP of more than 6 and variable-speed
centrifugal chillers driven by an inverter that reaches a cooling COP of almost 22 in
part-time load are evaluated in (Ueda et al., 2009). Fahlén argues that for a cooling
COP greater than 6, compression cooling ACs can be more efficient than absorption
chilled ACs from an exergy perspective (Fahlén et al., 2012). Since the proposed
model utilizes surplus heat, the absorption-cooled system can nonetheless work both
cost- and emission-effective.

c) Surplus heat: The thermal energy supplied by a PVT system is used to cover
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the heat demand of a system or building. However, the generated heat does not
always fit the demand. In times of low heat production and high demand, heat has
to be bought from an external supply, e.g., a gas generation plant or a DHN. During
low heat demand periods, the heat supply can exceed the demand. Energy that
would have been supplied by the PVT cannot be used, thus lowering the potential
system efficiency. In the context of this chapter, surplus heat is the thermal energy
that would otherwise be released to the environment (Chiu et al., 2016). In a study
from 2008 by the U.S. Department of Energy, it is estimated that 20% to 50% of
the U.S. energy generation was surplus or waste heat (U.S. Department of Energy,
2008). By connecting the PVT to an absorption chiller, surplus heat can be used to
satisfy the demand for cooling.

d) Case study: We conduct a simulative case study that 1) evaluates the use
of conventional ACs for a group of households with installed PV generators and
2) analyses the costs for the same group of households with a central, common
absorption chiller. The absorption chiller uses the heat surplus from PVT panels.
The hot water from the PVT panels and the cold water from the absorption chiller is
distributed via a district heating and cooling network. In the third step, we compare
the operating costs and benefits of both scenarios to answer the following research
question:

RQ 7: What are the financial benefits of a sector-coupled PVT installation in
combination with absorption cooling compared to conventional compression
cooling with a PV installation?

8.2 Related Work
In this section, the related work on PVT and absorption chillers is presented. An

overview on district cooling can be found in Section 2.1 of Chapter 2.

8.2.1 Photovoltaic/Thermal Power

Aside from wind and solar PV or solar thermal power plants, hybrid PVTs are be-
coming more popular in residential areas, as the overall efficiency of solar power in-
creases. A detailed overview of hybrid PV and thermal solar technology can be found
in (Chow, 2010). A classification and evaluation of PVT systems is given in (Joshi
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and Dhoble, 2018). The authors find that for concentrated and non-concentrated
PVT systems, the electrical efficiency is between 8-12% and the thermal efficiency is
between 40-70%. The high thermal efficiency is a major argument for the use of PVT
systems. In comparison to other solar energy systems, PVT has the advantage of a
higher overall efficiency. However, the electrical efficiency of a PVT plant is around
30% lower than a state of the art PV system (Joshi and Dhoble, 2018; Gul et al.,
2016). This also illustrates that PVT is especially efficient when the heat utilization
is high. Another review on the performance of PVT technology and applications
is provided in (Sultan and Ervina Efzan, 2018). In (Othman et al., 2016), a PVT
system with water and air heating is proposed, that reaches an electrical efficiency
of 17% and a thermal efficiency of 76%. Zaite et al. (2020) assess the potential for
night radiative cooling of buildings with a PVT collector. On the example of two
Marrocanian cities, their results indicate that PVT helps to reduce energy required
for air conditioning and heating.

8.2.2 Absorption Chiller

Absorption chillers can use heat to cool a transportation medium, e.g., water. The
cooled fluid can be used in AC systems to satisfy the cooling demand of a house-
hold. Florides et al. (2002) investigate a modeling and simulation approach of an
absorption solar cooling system. A solar absorption cooling and heating system
for building applications is evaluated in (Mateus and Oliveira, 2009). The use of
absorption cooling in a district heating driven AC in comparison to conventional
compression cooling is investigated in (Fahlén et al., 2012). The authors evaluate
potential cost and carbon reductions due to an expansion of such ACs in the city of
Göteborg. An example for the use of solar-powered lithium bromide-water absorp-
tion chillers is given in (Ali et al., 2008), including a field study in the German city
of Oberhausen.

8.3 Methodology
We propose a cooling system that uses surplus heat generated by a PVT to satisfy

the cooling demand of households within a district cooling network. The cold water
is produced by an absorption chiller that is run with thermal energy provided either
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Variable Description Unit

cel Electricity grid tariff e/W
ch DHN tariff e/W
dc Household cooling demand W
del Household electricity demand W
dh Household heating demand W
PDHN Power supplied by or fed into the DHN W
PGrid Power supplied by or fed into the grid W
Psol Solar power W
rPV Revenue of the PV system e
rPV T Revenue of the PVT system e
ηPV Tel

Electric efficiency of the PVT %
ηPV Th

Thermal efficiency of the PVT %

Table 8.1.: Nomenclature.

by the PVT or an external system.
To operate a PVT system on a cost-efficient basis, the capacity utilization of the

heat generated by the PVT should be as high as possible. With the additional heat
utilization through the absorption chilled AC system, the general energy efficiency
can be increased. The additional electric power that is available can be used to satisfy
the electricity demand of the household or be fed into the grid. Heat, cooling and
electricity demand that is not covered by the PVT need to be satisfied from external
sources. Thus, a PVT system is most useful for a household or neighborhood with
high heating and cooling demand that occur during times when the PVT system
is working. For households that have primarily electricity demand, a PV system
remains the best option.

For our model, we assume that all remaining electricity demand is covered by the
grid while the heating and cooling demand is supplied by a DHN. Surplus heat from
the PVT system that cannot be used for heating or cooling is fed back into the DHN.
A schematic overview of the model is given in Figure 8.1. When the PVT system is
working, it generates both heat and electricity. The electricity is first used to satisfy
the in-house demand and a possible surplus is then fed into the grid. Heat is at first
used to satisfy the demand within the building. If the heat supply is higher than the
demand, the heat is converted in the absorption chiller to satisfy the cooling demand.
Surplus heat is fed into a connected DHN. The DHN can also supply heat demand
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Figure 8.1.: Model structure of a household with PVT generation.

beyond the PVT generation. The energy balance for the electricity generation of the
PVT at a specific point in time is described in

del = Psol · ηPV Tel
+ PGrid (8.1)

del is the household electricity demand in Watt [W ], Psol is the solar power, ηPV Tel

is the electric efficiency of the PVT and PGrid is the power supplied by or fed into
the grid. The energy balance for the heat generation of the PVT at a specific point
in time is described in

dh + dc = Psol · ηPV Th
+ PDHN (8.2)

dh and dc are the household heating and cooling demands in Watt [W ], ηPV Th
is

the thermal efficiency of the PVT and PDHN is the heat power supplied from or fed
into the DHN.

The use of a PVT system may lead to a cost reduction or even an increase in
revenue from a prosumer or producer point of view. To evaluate this, Equation
(8.1) and (8.2) must be extended to cost functions. For the proposed model, those
consist of a feed-in tariff for heat and electricity as well as purchasing tariffs for
energy supplied by the grid or the DHN. To compare PV and PVT generation,
the monetary results of both systems need to be measured. With a net metering
approach, as widely used in the U.S. (Darghouth et al., 2011), the feed-in tariff
equals the consumption tariff. For a system with PV generation and an AC with
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compression cooling and heat supplied by a DHN, the revenue is calculated by

rPV = (Psol · ηPV − (dc + del))cel + dh · ch (8.3)

The revenue of the PV system is given by rPV , ηPV is the PV efficiency and cel is
the grid electricity tariff. The result is rPV ≥ 0 when the PV generation is higher
or equal to the overall energy demand and rPV < 0 when the energy demand of the
building is higher than the PV generation.
For a system with PVT generation and an AC with absorption cooling, the revenue
is calculated by

rPV T =(Psol · ηPV Th
− (dh + dc))ch

+ (Psol · ηPV Tel
− del)cel (8.4)

rPV T is the revenue of the PVT system, ch is the DHN tariff and cel is the grid
electricity tariff.

Note that investment and maintenance costs play a huge role in the decision
whether to implement a PVT system or not. According to (Matuska, 2014) the
investment costs for PV systems are at 120 e/m2 for polycrystalline models and 350
e/m2 for high-end spectrally selective solar thermal collectors. Investment costs for
PVT systems are substantially higher and within the range of 290-500 e/m2 for the
selective and nonselective type. Hybrid PVT liquid collectors require even higher
investments of 450-950 e/m2. In this chapter, we abstract from these costs and
purely concentrate on the operational system costs.

8.4 Case Study
To give a motivating example for the utilization of surplus PVT heat in absorption

chilled air conditioners, a case study is performed. The PVT system is compared
to a base case without renewable generation and a system using PV generation and
conventional compression cooling.
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8.4.1 Input Data

The study presented in this section uses generation and consumption data from the
research and support facility of the U.S. National Renewable Energy Laboratory
(NREL) (U.S. Department of Energy, 2011). The facility is located in Golden,
Colorado. With an area of 21,000 square meters, the research and support facility
is a large building complex with around 720kW of installed PV generation capacity
(U.S Department of Energy, 2012). The dataset provides cooling demand, heat
demand, electricity demand and PV generation data in an hourly resolution for the
year 2011.

For this chapter, we assume a PVT system with 12% electrical efficiency and 70%
thermal efficiency. This is within the range of PVT systems as evaluated in Section
8.3. The electrical efficiency of recent commercially available PV technology is in the
range of 13.8%-20.4% (Gul et al., 2016). Since the PVs on the research and support
facility were built around 2008, their efficiency must be lower. However, to compare
recent PV and PVT technology, we assume an electrical efficiency of 17% for the
PV. For the absorption chiller, a lithium-bromide absorption cooler with a cooling
COP of 0.8 is assumed as proposed in (Ali et al., 2008), which is slightly higher
than in other publications (Fahlén et al., 2012). We assume that a cooling COP of
0.8 is within the technological capabilities of an absorption chiller. The compared
compression cooling AC has a cooling COP of 7 which is in line with similar studies
(Fahlén et al., 2012; Ueda et al., 2009).

8.4.2 Analysis

The distribution of heating and cooling demand hours as well as the PV generation
over the year within the NREL is displayed in Figure 8.2. The peak hours for
cooling are between 13:00 and 16:00. This does match the generation times of the
PVT, which is mostly providing electricity between 8:00 and 17:00. Between 9:00
and 16:00, the PV is generating electricity in roughly 91% of the year. Contrary to
that, heat demand mostly occurs during night hours and in the early morning, when
cooling demand is low.

The cooling demand is small in comparison to heat and electricity demand. While
the average heat demand is 87kW for the research and support facility in 2011 and
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Figure 8.2.: Heat demand, cooling demand and PV generation hours.

Hours with cooling demand: 2468 h PV PVT

Partly covered cooling demand 1018 h 1735 h
Completely covered cooling demand 988 h 1617 h

Table 8.2.: Cooling supply comparison of PV and PVT.

the average electricity demand is 179 kW, the average cooling demand is only 3 kW.
More than 50% of the hours when cooling is required have a demand of 10 kW or
less and only 5% have a demand of 20 kW or more. Figure 8.3 provides demand
duration curves for electricity, cooling and heat demand.

Of the 2468 hours with cooling demand within the sample, 1018 can at least
partially be supplied by the PV panel. With a PVT panel, the number of hours
that can at least partially be supplied is increased by around 70%. The number of
hours where the cooling demand is completely satisfied by the PVT is more than
60% higher than with PV. A comparison of the systems is given in Table 8.2.

As proposed in Section 8.3, we assume a net metering approach where the feed-in
tariff equals the purchase price per unit for both the grid and the DHN. The price
for heat and electricity is oriented along German energy market prices for customers
between 2017 and 2019 (BDEW, 2019; Wolf and Schmitz, 2017). We assume an
electricity price of 0.30 e per kWh and a heat price of 0.07 e per kWh.

A revenue comparison of PV, PVT and non-renewable generation is provided in
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No renewables PV PVT

Energy cost per year 525 ke 249 ke 65 ke
Electricity demand 1,565 MWh 1,565 MWh 1,565 MWh
Electricity generation - 919 MWh 648 MWh
Heat and cooling demand 787 MWh 787 MWh 787 MWh
Heat generation - - 3,785 MWh

Table 8.3.: Cost Comparison of PV and PVT.

Table 8.3. In the non-renewable generation scenario, all energy is purchased from the
grid. To perform a long-term comparison of all three systems, a deeper evaluation of
the investment and maintenance costs of each system would be required. The work
within this chapter focuses on the operational costs of the three scenarios.

As displayed in Table 8.3, the use of PVT generation is more efficient from
a cost operating perspective in this case study. The reason for that lies in the
high amount of heat generation by the PVT. In the net metering approach,
we assume that the surplus heat that is not used to cover the heat or cooling
demand of the building is fed directly into the DHN. The revenue from that
feed-in lowers the total energy costs. Over the whole year, the NREL research
and support facility with a PVT system has the potential to generate almost as
much energy as is used within the building. Thus, the system has the ability
to run almost self-sufficient on a cost-term basis. The daily costs and feed-in
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Figure 8.4.: Daily feed-in costs(-) and revenue(+) of PV, PVT and without renewable gen-
eration.

revenues of PV, PVT and no renewable energy generation during the whole
year are displayed in Figure 8.4. The graph shows that the surplus heat which
is responsible for the low energy costs is mainly produced during the summer months.

In summary, the combination of PVT and absorption chilled cooling ACs leads
to an overall energy cost reduction and improves the satisfaction of cooling demand
from renewable energies in this case study.

8.5 Conclusion
To address the challenges of climate change, new ideas are needed to improve the

future energy system. Photovoltaic/thermal (PVT) generation has gained attention
from the scientific community in recent years and provides an alternative to com-
mon photovoltaic (PV) generation. Absorption chillers can become more important
in sector-coupled energy systems and contribute to improved utilization of surplus
and waste heat. In this chapter, the surplus heat of a PVT system is used to oper-
ate an absorption chiller that satisfies the cooling demand of a building. To answer
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Research Question 7, we find that for a group of buildings, the use of absorption
chilled air conditioners (ACs) in combination with PVT leads to a cost reduction
of 74% compared to a system with PV and conventional cooling. The utilization of
heat generated by a PVT system can be improved through the connection of heat
and cooling systems, lowering the amount of waste heat released into the environ-
ment. The findings of this chapter can contribute to an integrated multi-energy
system framework that is optimized for more efficient resource allocation to increase
the overall welfare and energy efficiency. We develop the calculations necessary for
a comparison between PV and PVT generation and the use of absorption chilled
cooling. The necessary circumstances for cost-efficient utilization of surplus heat for
absorption cooling are determined. A study using data from the National Renewable
Energy Laboratory (NREL) research and support facility shows that the combina-
tion of a PVT system and AC supplied by an absorption chiller can deliver more
efficient results than a PV generation plant with compression cooling AC.

In future work, the investment costs for PV and PVT systems should be consid-
ered. The calculations are made on a very isolated basis and further effects like
network restrictions or other forms of satisfying the cooling demand or using the
surplus heat of the PVT system are not within the scope of this chapter. Beyond
that, the proposed methodology should be applied to other case studies in different
geographies. For future projects, this chapter can provide basic calculations and
considerations for the operation and evaluation of greater district cooling networks
within a city or neighborhood. This chapter provides a method that can help to im-
prove the efficiency of sector-coupled energy systems. It contributes to the progress
of a successful energy transition and the efforts to limit global climate change. For
an efficient online operation, the model can be further enhanced to integrate uncer-
tainty regarding future supply and demand. This, could for example, include the
use of forecasts for electricity, heat and cooling load. Such an application of a heat
load forecast for an online operation strategy is presented in Chapter 9.



CHAPTER 9

AN OPERATIONAL STRATEGY FOR DISTRICT
HEATING NETWORKS: APPLICATION OF
DATA-DRIVEN HEAT LOAD FORECASTS

In this chapter, a sector coupling control strategy for an HP and TSS in a DHN is
proposed. The control strategy utilizes hourly heat load forecasts with a 24-hour
rolling horizon. First, supervised forecasting techniques are investigated on three
different heat load data sets. The application of a CNN on data from the DHN in
Flensburg, Germany delivers the most promising outcome. Extending this example,
an online control strategy for an HP and TSS is developed using the 24-hour heat
load forecast from the CNN. The control strategy is demonstrated on two use cases
using different objectives: Improving the utilization of offshore wind generation and
reducing energy costs.

This chapter comprises the published article: Golla, Armin; Geis, Julian; Loy,
Timon; Staudt, Philipp; Weinhardt, Christof (2020a): An operational strategy for
district heating networks: application of data-driven heat load forecasts. In: Energy
Inform 3 (S1), p. 1–11.

9.1 Introduction
Due to higher efficiency and the ability to integrate various generation technologies,

DHNs are a promising approach to replace individual residential gas and oil heating
systems (Lund et al., 2014). Through an efficient operation of generation technologies
like HPs, CHP plants or boilers in a DHN, the required generation capacity can be
reduced, thus lowering investment costs and capacity-related emissions (Urbanucci
and Testi, 2018). In this chapter, we present an online operation strategy for a DHN
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with an HP and TSS that can be implemented with regards to various objective
functions, e.g., with financial or environmental objectives.

The development of DHNs towards lower supply and return flow temperatures
is subject to ongoing research. Buffa et al. (2019) introduced the 5th generation
of DHNs which incorporates low temperature heating and cooling systems. The
authors argue that such systems can utilize renewable energy by using excess heat
and enhance sector coupling through the use of hybrid substations. As described in
(Lund et al., 2014), an increase in the share of renewable energy and in the overall
energy efficiency of DHNs can be achieved through the extension of an integrated
thermal network by inclusion of multiple thermal energy producers. To reach this
goal, DHNs have to be integrated in smart energy systems (i.e., electric, gas and
thermal grids). This can be enabled by the electrification of the heat supply with
electric boilers, HPs and TSSs.

The analysis and forecast of heat consumption patterns are important for the gen-
eral planning of DHNs (Idowu et al., 2016). Heat load forecasts enable the inclusion
of volatile renewable energy generation such as solar and wind (Benonysson et al.,
1995). By implementing demand-side balancing solutions based on heat forecasts,
the share of renewable energy within a DHN can be increased (do Carmo and Chris-
tensen, 2016). The thermal energy storage in the DHN is a key component to enable
a more efficient use of renewable energy in the system. In contrast to BSSs, TSSs
do not typically experience cycle-induced degradation (Alva et al., 2018). For an
overview on thermal energy storage systems, please refer to (Zhang et al., 2016).

9.1.1 Related Work

Accurate heat load forecasting has gained momentum within the scientific community
over the past few years, with both statistical and machine learning driven methods.
Dahl et al. (2017) use an autoregressive forecast model with predicted weather fea-
tures. The authors introduce ensemble weather forecasts in the operation of district
heating systems to create heat load forecasts with dynamic uncertainties. The model
is then used to implement an operational strategy for heat exchanger stations. For
the applied case study of three area substations, their findings show that systems
with smaller capacities benefit most from the use of dynamic uncertainties. In con-
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trast to this chapter, the authors do not consider a TSS in their control strategy,
which adds an important component for the integration of intermittent renewable
generation. Hietaharju et al. (2019) apply two models to forecast heat demand. The
first model presents a dynamic approach that uses past heat demand and heat loss
caused by the temperature difference between indoor and outdoor temperature. In
the second model, an artificial neural network (ANN) uses the heat load in the pre-
vious period, the outdoor temperature, the hour of the day and a weekend dummy
to produce a 48 hours forecast. The models are tested on data of the DHN in
Jyväskylä, Finland, during the heating months of 2013. Both models achieve similar
results on the forecast of the overall heat load for 4061 buildings, with slightly better
performance of the dynamic implementation.

Johansson et al. (2017) test a feed-forward neural network (FFN) with one hid-
den layer against a model with randomized decision trees. Both forecast models
are trained with historical heat load data and weather forecasts. The models are
implemented as online, real-time predictors on the DHN in Rottne, Sweden. They
are run once a day at 2 p.m., using all real-time data that is available until then,
to predict the next 24 hours. The results on the evaluation from January to March
2016 indicate that on average the decision tree model slightly outperforms the ANN
model.

There are more studies on the use of ANNs in the area of short-term heat load
forecasting, which do not consider the city level but are rather developed for indi-
vidual consumption profiles. For example, see (Ciulla et al., 2019) for short-term
load forecasting of non-residential buildings, (Jovanović et al., 2015) for the fore-
cast of heat load of a university campus, (Saloux and Candanedo, 2018) for heat
load forecast of 52 residential houses and (Idowu et al., 2016) for the analysis of ten
residential and commercial buildings.

9.1.2 Contributions and Organization

As presented in Section 9.1.1, some research has already been conducted on the topic
of heat load forecasts. However, only few authors address the challenge of embedding
heat load forecasts in an operational strategy. Aside from that, most studies either
consider only one forecast model or only test it on the dataset of one case study
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application. Therefore, we propose an evaluation of multiple forecasting methods
and use the best-suited method in our operation strategy. It is an important subject
of future work to develop and compare heat demand forecasting methods, which
are benchmarked and validated on a broad range of data sets to demonstrate the
potential generalizability of the approach and avoid overfitting (vom Scheidt et al.,
2020). Thus, we address the following research question in this chapter:

RQ 8: What is the performance of an online operation strategy for a district heat-
ing system with an HP and a TSS that uses a 24-hours rolling horizon heat
load forecast compared to (i) a naive approach and (ii) benchmarked against
the global optimum with respect to the integration of renewables and cost
minimization?

9.2 Forecasting Heat Load
To effectively evaluate the effects on the operation of a DHN, this chapter investi-

gates forecasts with different forms of ANNs. The ANNs are trained based on heat
load and weather input data from three use cases. For the weather data, outdoor
temperature at hourly resolution is considered. The heat load data follows certain
patterns that allow for conclusions about consumer behavior. For instance, there is
a higher level of load on working days than there is on non-working days and the
daily load follows a characteristic pattern (Gao et al., 2018). In a large network with
different types of customers, the daily pattern can be observed more clearly due to
balancing effects (Fang, 2016).

9.2.1 Artificial Neural Network Forecasts

This chapter employs different ANN structures. The selected models have recently
attracted attention in research on load forecasting as presented in Section 9.1.1.
CNNs have the ability to process time series data and achieve good performances in
studies on pattern recognition and forecasting in the context of electricity systems
(vom Scheidt et al., 2020). Beyond that we use an implementation of an FFN
for a heat load forecast. We also compare our results to recurrent neural network
structures that are used to forecast heat load in other studies, namely gated recurrent
units (GRUs) and long-short term memory (LSTM).
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Hyperparameter Tested values

Scaling { None, Z-Score, Min-Max Scaling }
Training algorithm { SGD, AdaGrad, RMSProp, Adam }
Activation function { Sigmoid, ReLU, tanh, linear (in the output layer) }
Hours of input data {24× 3, 24× 5, 24× 7, 24× 9}
Learning rate {lrd × 10−1, lrd, lrd × 101, lrd × 102} with lrd = default

learning rate of the corresponding optimiser
as implemented in the python keras api

Hidden layers {1, 2, 3, 4}
Decay {0, 0.0001, 0.001, 0.01}
Patience of early {10, 20, 30}
stopping
Test split {0.25, 0.3, 0.35}
L2 −Regularisation λ ∈ {0, 0.001, 0.01, 0.1}
Dropout {0.1, 0.2, 0.3}

Table 9.1.: Hyperparameters and corresponding values that are tested during the random
search.

The size of the feature set determines the number of neurons in the input layer.
We use a multiple output strategy to predict the next 24 hours, thus there are 24
neurons in the output layer.

The basic structures of the FFN, LSTM and GRU are evaluated by testing all
combinations of the number of hidden neurons and hidden layers displayed in Table
9.1. The architecture of the CNN is evaluated by testing the combinations of one to
four convolutional layers and pooling layers, with the convolutional layers containing
20, 40, 60 or 80 filters and four, eight and twelve kernels. An overview of the tested
hyperparameters is given in Table 9.1. For the hyperparameter optimization, we use
random search, which has shown to find better models and to require less computa-
tional time than manual or grid search (Bergstra and Bengio, 2012; Larochelle et al.,
2007).

9.2.2 Forecast Comparison

To increase the validity of the forecasts, the methods are applied to three differ-
ent datasets. All ANNs are tested on data of the Flensburg DHN. The two most
promising structures, CNN and FFN are then further evaluated on data from the
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Forecast Naive ARIMAX FFN CNN LSTM GRU2

Method Forecast

RMSE [MWh] 18.55 12.69 10.44 10.43 12.52 12.18
MAPE [%] 12.55 9.25 6.38 6.34 6.91 6.98

Table 9.2.: 24h forecast results for the Flensburg DHN.

U.S. National Renewable Energy Laboratory (NREL) and the Sønderborg DHN.4

Flensburg is a city in Northern Germany. Its DHN supplies 98% of the house-
holds with approximately 600 km of transport pipes. The obtained consumption
data is aggregated over all district heating consumers for the years 2014 to 2016 in
hourly resolution (Stadtwerke Flensburg GmbH, 2019). The network consists of 20%
industrial, 24% trade, commerce and services and 56% household customers. The
dataset of the NREL provides heat demand for the research and support facility in
Golden, Colorado for 2011 in hourly resolution (U.S. Department of Energy, 2011).
The facility is a large building complex with 21,000 square feet. The Sønderborg
dataset from Denmark contains data from 32 industrial and residential buildings.
Individual missing data points of the features or the heat demand are filled with
linear interpolation. In the Flensburg dataset, data from 2014 and 2015 is used as
the training set and 2016 as the test set. Table 9.2 gives an overview on the results
of the ANN forecasts. To benchmark the results, a naive forecast that uses load
data from the previous day as forecast and an ARIMAX model are used. The lowest
mean absolute percentage errors (MAPEs) and root-mean-square errors (RMSEs)
for the Flensburg DHN are achieved with the FFN and the CNN. Exemplary weekly
performances of the ANN forecast algorithms are presented in Figure 9.1 for a week
in the heating period. The CNN and the FFN achieve the best results with one
hidden layer, whereas the LSTM and the GRU network achieve the best results for
network structures with two and three hidden layers.

Table 9.3 shows the 24 hours forecast performances of the NREL research and
support facility and the Sønderborg datasets. Again, the CNN and the FFN produce
nearly the same results, for the NREL, the FFN performs slightly better. As both
datasets contain periods with very small or zero heat demand, the MAPE is not

4The data for the Flensburg DHN can be obtained at (Stadtwerke Flensburg GmbH, 2019). The
NREL data is available at (U.S. Department of Energy, 2011). For the Sønderborg DHN data,
please refer to (Gianniou et al., 2018).
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Figure 9.1.: ANN forecast in the heating period for the Flensburg DHN.

Forecast Method NREL RMSE [MWh] Sønderborg RMSE [MWh]

FFN 0.079 0.051
CNN 0.095 0.051

Table 9.3.: 24h forecast results for the NREL in Golden, Colorado and the Sønderborg
DHN.

suited as a performance measure in this section.

9.3 A Control Strategy for District Heating Net-

works
As discussed in Section 9.1, the key for an increased share of renewable energy in

the heat sector lies in the utilization of renewable electricity generation through sec-
tor coupling technologies. Integrating intermittent renewable electricity generation
into the heat sector requires accurate forecasting and a corresponding heat system
operation strategy. This way, heat generated from electricity in times of low heat
demand and excess electricity supply can be stored and consumed when consump-
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Variable Description

dht Heat demand
F Utility function
gel,w Amount of electricity generation from offshore wind
ls Heat storage load
ls,max Maximum TSS charging or discharging load
lel Amount of electric load
lhp HP load
lhp,max Maximum load of the HP
pel Hourly electricity price
t Current time step
T Time horizon
s Heat storage level
smax Maximum capacity of the TSS
Θ Share of offshore wind
ϕ Hourly storage efficiency

Table 9.4.: Nomenclature.

tion of both heat and electricity increases or the availability of renewable electricity
generation decreases. This requires the development of operational strategies that
exploit forecasting ability and deal with the uncertainty of forecasting errors. In
this section, we propose a strategy for the operation of an HP and a connected TSS
within a DHN. We use an online algorithm with a rolling horizon that is able to
forecast the next 24 hours with the presented algorithms. Subsequently, the optimal
operational decisions for these 24 hours are calculated based on the forecasted de-
mand. The decisions for the present hour t are executed and the process is started
again for t + 1 with an adjusted 24 hours forecast and a changed system state. In
every time step, the control strategy is used to satisfy the given heat demand. The
required heat is either supplied by an HP or from the TSS. The HP can also be used
to charge the TSS. The objective of the control strategy can be adjusted according
to individual preferences. We demonstrate the maximization of the integration of
renewable energy generation and the minimization of generation costs as two pos-
sible objective functions in Section 9.3.1. All variables of the control strategy are
explained in Table 9.4. The objective for the control strategy is to maximize (or
minimize) the objective function F that is subject to optimization. The demand
within the DHN has to be satisfied in any time step. The constraint for demand and



A Control Strategy for DHNs 165

supply balance is given by:

dhtt = lst + lhpt ∀ t ∈ T (9.1)

The TSS level in each time step is determined by:

st = st−1 · ϕ− lst ∀ t ∈ T\{0} (9.2)

Further constraints are added regarding the maximum capacities and loads for the
HP and TSS. Those capacity restrictions are given by:

0 ≤ lhpt ≤ lhp,max ∀ t ∈ T (9.3)

0 ≤ st ≤ smax ∀ t ∈ T (9.4)

−ls,max ≤ lst ≤ ls,max ∀ t ∈ T (9.5)

The proposed control strategy can be applied on a DHN structure with a given set
of HPs and operated with forecast heat demand values as derived in Section 9.2.

9.3.1 Demonstration of the Control Strategy

To achieve our second research objective, the control strategy is evaluated on the
example of the Flensburg DHN for the year 2016 with regard to grid integration in
Section 9.3.2 and economic benefits in Section 9.3.3.

In the given scenario, the entire heat demand of the Flensburg DHN is covered by
an HP and a TSS. The HP is able to cover the entire heat demand, while the TSS has
restrictions with regard to size and load capacity. The maximum storage capacity
is 1, 000MWh, the maximum load is 200MW and it is the same for charging and
discharging. Thus, it is possible to completely fill or empty the TSS within 5 hours.
Larger and smaller ratios of energy to capacity are possible for the TSS. However,
a TSS that could store more heat than is required for 24 hours would require larger
forecast horizons. The hourly efficiency of the TSS is given by Θ = 0.996 resulting
in a 24 hour storage efficiency of around 90%, which is in line with efficiency values
for daily TSS (Sarbu and Sebarchievici, 2018). To benchmark the online control
strategy, it is compared to a naive algorithm and a global optimization. The naive
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algorithm does not use the TSS and instead generates the heat that is required in
every hour using the HP. The global optimization assumes perfect foresight and
optimizes the use of HP and TSS for the entire operation time horizon at once. For
the online operation, we use the 24 hour rolling horizon forecasts generated by the
CNN as presented in Section 9.2.2.

9.3.2 Offshore Wind Generation

In the first demonstration, the control strategy is used to improve the grid integration
of renewable energy. The objective is to maximize the share of offshore wind energy
that is used by the HP. In times of peak offshore generation in the German North
Sea, the German network is often not able to transmit all generated wind power
to the South, where much of the industry is located (Staudt et al., 2018). Thus,
encouraging a use of the offshore wind close to its origin can contribute to both an
increased share of renewables in the heat system and grid integration of wind power.
The objective function that needs to be maximized in this scenario is then given by:

F =
T∑
t=1

(Θt) (9.6)

A high Θt indicates that a larger portion of the electricity used by the HP is consumed
in times when the system is served by offshore wind generation. The wind share is
determined by the ratio of offshore wind generation and the electric load of the
respective transmission system:

Θt =
gel,wt

lelt
∀ t ∈ T (9.7)

The data for offshore wind electricity generation gel,w and amount of electric load in
the system lel is acquired from the German network operator Tennet and represents
generation and load within the network area covered by Tennet (TenneT TSO BV,
2020). The results displayed in Table 9.5 show that the online control strategy is
able to achieve a share of offshore wind utilization in heat generation of 10.90%,
which is nearly 20.5% higher than with a naive approach and only 0.3% worse than
the global optimization with perfect foresight. An exemplary three-day operation
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Naive approach Forecast Global

Average offshore wind share Θt 9.05% 10.90% 10.93%
Performance w.r.t global optimum 82.76% 99.70% 100%

Table 9.5.: Comparison of results for the operation strategy with regard to grid integration.
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Figure 9.2.: HP operation, TSS load and TSS status for the online control strategy.

period in January 2016 for the control strategy is depicted in Figure 9.2. The TSS
is used very regularly to maximize the share of wind generation in the energy mix.
A comparison of the HP operation is shown in Figure 9.3 for the same time period.
The global optimization shows only slight deviations from the online operation using
a 24-hour rolling forecast. It indicates that for such a system, a 24-hour forecast with
a reasonably good accuracy as presented in this chapter can achieve nearly optimal
operation results.

9.3.3 Cost Minimization

In a second evaluation of the control strategy, we examine the online operation of
a DHN with regard to hourly day-ahead prices of the German electricity market
(German Federal Network Agency, 2020). The objective function that needs to be
minimized in this scenario is then given by:

F =
T∑
t=1

(
pelt · lhpt

)
(9.8)
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Figure 9.3.: Comparison of the HP operation for the naive approach, 24-hour forecast and
global optimization.

Naive approach Forecast Global

Average price (EUR/MWh) 24.01 20.93 20.91
Performance w.r.t optimum 114.8% 100.01% 100%

Table 9.6.: Comparison of results for the operation strategy with regard to cost minimiza-
tion.

The results show that the proposed online control strategy achieves results similar
to the global optimization. An overview is given in Table 9.6. With a 24 hours
rolling horizon forecast, our model is able to achieve results that are within 0.1% of
the global optimum with perfect foresight and outperforms the naive approach by
around 15%.

9.4 Discussion
To evaluate the methodology and discuss the results, we first review the presented

heat load forecasts and then discuss the proposed control strategy. Among the
ANNs, the FFNs and the CNNs achieve considerably better results within the test
set. Compared to the benchmarks, all ANNs achieve good results on the test data
with a MAPE in the range of 6.34% to 6.98% for the Flensburg DHN. With an
RMSE of 10.43 MW and 10.44 MW, the CNN and FFN outperform the GRU and
LSTM models, which show RMSEs of 12.18 MW and 12.52 MW. The similar results
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between FFN and CNN also carry over to forecasting results for the NREL and
the Sønderborg DHN. The slightly worse result of the recurrent neural networks
compared to FFN and CNN might originate from several reasons. As the recurrent
neural networks obtain a deep structure due to the unfolding in time, overfitting
becomes a more problematic issue in general. Especially for the LSTM network, this
is also indicated by larger differences between testing and training errors. Gers et al.
(2002) investigate the usage of LSTM networks in time series forecast tasks. They
conclude that the superiority of LSTMs against FFNs does not carry over to certain
simpler time series forecasts. The results are within the range of similar studies
(Geysen et al., 2018; Keçebaş and Yabanova, 2012; Dahl et al., 2017), even though
the quality and form of the dataset plays an important role for such comparisons.
The control strategy can be performed by implementing different objectives of which
we focus on costs and renewable integration in this chapter. We do not consider
investment and maintenance costs for the DHNs, which are subject to further analysis
in the course of implementing the proposed system, for example as part of a local
energy network as introduced in Chapter 4. For the given objectives and dataset,
the proposed control strategy clearly outperforms the naive strategy and is only
slightly inferior to a global optimization with perfect foresight. The offshore wind
generation is based on given data to isolate effects of the heat load forecast. For
a real-world application, the model would need to be provided with wind forecasts
instead of actual generation. However, this is only an issue of setting the right
objectives. Beyond the scope of this chapter, the proposed control strategy offers
potential for further connection of energy sectors. For example, the model could be
used to develop a supply strategy for cooling load as presented in Chapter 8.

9.5 Conclusion
This chapter introduces an online operation strategy for district heating networks

(DHNs) that utilizes hourly heat forecasts with a 24 hours rolling horizon, achieving
two research objectives: (1) The heat load is forecasted with supervised machine
learning algorithms. In a comparison of the results on three different datasets that
include one large facility, a community of buildings and one large DHN, convolutional
neural networks and feed forward networks return the best results overall. (2) The
proposed control strategy for the DHN utilizes heat forecasts for the operation of
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electric heat coupling devices, i.e., a heat pump and a thermal storage system. The
control strategy is applied in two use cases to answer Research Question 8. In the
cost minimization use case, the operation strategy outperforms the naive approach
by 15% and is within 0.1% of the global optimum. In the grid integration use
case, the operation strategy outperforms the naive approach by 20.5% and is within
0.3% of the global optimum. In this chapter, we offer a methodology to include
forecasts for the operation of a DHN with a focus on the integration of renewable
generation or cost minimization. The application of such strategies can lead to a
smart electrification and thereby decarbonization of a DHN. Thus, with our work,
we contribute to a sustainable energy system and a successful energy transition.



Part V.

Finale





CHAPTER 10

CONTRIBUTIONS AND IMPLICATIONS

An increase of investments in renewable residential energy technologies and the
promotion of coupling between the heat and electricity sectors contribute to the
decarbonization of integrated energy systems in residential areas and thus to the
limitation of global warming to 1.5◦C. In this thesis, I contribute to the development
of the citizen energy community (CEC) concept through the determination of
preference-based investment recommendations and corresponding operation strate-
gies for sector coupling. To support individuals in their decision process regarding
these investments, I design preference-based decision support systems (DSSs) for
participants (Chapter 4) and analyze acceptance factors for preference-based rec-
ommendations (Chapter 5). For the determination of investment recommendations
for these DSSs, I develop a multi-objective optimization that is able to reflect the
trade-off between different objectives and integrates sizing and operation in one
model (Chapter 6). Furthermore, I investigate the influence of CEC regulation
on the investment activity of participants (Chapter 7). Based on two use cases, I
show the potential of coupling the heat and electricity sector to integrate the rising
amount of volatile renewable generation (Chapter 8 and Chapter 9). This chapter
summarizes the answers to the research questions presented in Chapter 1.

Part II focuses on the integration of individual preferences in the design of DSSs
for CECs. Regarding Research Question 1 (“What are the required elements to pro-
vide investment recommendations to CECs through a platform-based DSS in order
to coordinate financial and ecological interests of participants?”) the required ele-
ments for investment recommendations for CECs comprise a combination of struc-

173



174 Contributions and Implications

tural elements (geographic location, existing technologies, existing infrastructure),
user-centric elements (load profiles, weighting of preferences, preferred degree of self-
sufficiency, investment costs, technology preferences, intentions regarding planned
technologies) and regulatory elements. The proposed platform has the potential to
positively influence the scaling of CECs by facilitating participation and supporting
interaction, providing comprehensible information on environmental impact and by
presenting different paths of actions and their economic and environmental conse-
quences.

However, the effectiveness of this system depends on the acceptance of the in-
vestment decision proposed by the DSS. To investigate the acceptance factors of
preference-based recommendations in a DSS for residential energy technology in-
vestments, an online experiment with 324 participants was conducted. The partici-
pants had to choose between 20 investments for residential energy technologies and
were provided with a recommendation based on their preferences regarding costs
and emissions that were evaluated using a ranking-based conjoint analysis. To an-
swer Research Question 2 (“To what extent does providing recommendations that
take into account the trade-off between individual cost and emission preferences in
a DSS for residential energy technology investments increase the recommendation
acceptance compared to recommendations that consider either costs or emissions?”),
the acceptance rates of these recommendations are compared to the acceptance rate
of recommendations that indicate either the alternative with the lowest costs or the
lowest emissions. The results show that the provision of preference-based recom-
mendations increases the acceptance rate in the given experiment from 47% to 69%.
Due to the low external validity of the online experiment, these numbers cannot
be translated directly to a real-world application. The findings contribute to the
understanding of acceptance factors for preference-based recommendations in DSSs
and can be used in the development of application-oriented information systems.

When making investments in residential energy technologies, participants face
uncertainty, for example, regarding the development of energy prices, energy con-
sumption, or volatile renewable generation. To evaluate the impact of uncertainty on
preference-based recommendations, the online experiment was conducted in treat-
ments with and without uncertainty to answer Research Question 3 (“What is the
effect of uncertainty on recommendation acceptance and the perceived usefulness of
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the DSS?”). The results show no significant effect of uncertainty on the recom-
mendation acceptance across all treatments. This might also be explained by the
low monetary investment value in the experiment compared to real investments in
residential energy technology.

However, participants reported a higher usefulness of the recommendation in
treatments with uncertainty compared to treatments without uncertainty. The
extent to which the effect is related to the fact that participants are told in the
experiment that the recommendation is based on their preferences requires further
research on that topic.

In summary, the research of Part II addresses the integration of individual
preferences in DSSs for private individuals. The proposed DSS design elements
and the behavioral analysis in the online experiment contribute to the development
of preference-based DSSs for citizen investments in residential energy technolo-
gies. According to the results of the online experiment, preference-based energy
technology investment recommendations increase the perceived usefulness of the
DSS. This should be taken into account by policymakers when considering subsidy
programs for residential energy technologies. The findings encourage municipal
utilities to solicit customer preferences regarding costs and emissions to potentially
increase the acceptance rate of recommendations for investments in residential
energy technologies. An application of the proposed DSS enables citizens to take an
active role in the energy transition by becoming prosumers.

To provide preference-based investment recommendations to citizens, it is nec-
essary to determine the possible investment alternatives with regard to individual
preferences, for example, costs and emissions. This is addressed in Part III. Research
Questions 4 to 6 address the generation of investment recommendations with regard
to individual preferences. Furthermore, they investigate the effects of individual
investment decisions on energy costs and emissions in CECs.

In a CEC, the combination and sizing of different energy technologies have a
direct effect on the community operation and should thus be evaluated in an inte-
grated model. Therefore, a multi-objective evolutionary algorithm is combined with
an energy system simulation to determine a set of non-dominated energy technol-
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ogy investment recommendations considering the objectives costs and emissions. To
answer Research Question 4 (“What is the financial (cost) and environmental (emis-
sion) performance of a multi-objective evolutionary optimization of the integrated
sizing and operation of energy technologies in a CEC relative to an upper benchmark
optimization with perfect foresight that optimizes the objectives individually?”), the
model results are compared to an upper benchmark optimization with perfect fore-
sight that regards each of the objectives individually. In a case study using residential
heat and electricity data from ten households in southern Germany, three scenarios
“summer”, “winter” and “mid-season” are evaluated based on household load and so-
lar generation data aggregated to average weeks. In all three scenarios, the model
achieved good results with regard to emissions. The results are within 0.8% to 4.5%
of the linear optimization benchmark. With regard to the cost objective, the re-
sults in the winter scenario come within 0.5% of the linear optimization benchmark.
However, in the summer and mid-season scenarios, there is a larger gap between the
results of the evolutionary algorithm and the linear optimization, indicating that
the evolutionary algorithm is less suited to these scenarios. To address this issue,
the solution space needs to be searched more thoroughly (i.e., improvement of the
evolutionary algorithm or higher number of iterations).

The proposed multi-objective evolutionary algorithm enables the integrated assess-
ment of energy technology sizing and operation with regard to competing objectives.
The model considers the sectors heat and electricity on a community level. The set of
solutions can be used to provide investment recommendations in a preference-based
DSS for local decision-makers in CECs. For the cost objective in the summer and
mid-season scenarios, the difference between the evolutionary algorithm and linear
optimization indicates that the solution space must be more thoroughly searched
than in the other scenarios. The differences between the scenarios further show the
need to observe larger time periods for the determination of investment alternatives.
This is addressed in the subsequent chapter, where the evaluation period is extended
to one year.

While a set of optimal investments provides useful insights for CECs, in reality,
investments do not happen all at once but depend on the decisions of individuals
over time. To contribute to the understanding of CEC development, Research
Questions 5 and 6 address the development of a CEC on the path to decarbonization
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and coupling of the heat and electricity sector through investments in residential
energy technologies over a period of ten years. The energy technologies considered
in the chapter are residential heat pumps, battery storage systems, photovoltaic
and photovoltaic/thermal panels. To evaluate the long-term influence of CEC
regulation in a community, Research Question 5 (“What are the long-term financial
(cost) and environmental (emission) effects of CEC regulation on the development
of a community with respect to electrification and the investment in residential
energy technologies?”) addresses the impact of such regulation on decarbonization
and energy costs through investments in energy technologies. For a community
with 30 households in close proximity to each other, the community development
is simulated over a period of 10 years, starting in 2020. The development of the
community is simulated with and without CEC regulation, i.e., the possibility to
buy and sell excess renewable electricity generation to and from households in
the community. The results show that CEC regulation is beneficial with regard
to cost and emission reduction in all considered scenarios. In the CEC scenarios,
household investments lead to a cost reduction of up to 28% and an emission
reduction of up to 50% compared to 2020. Addressing Research Question 6 (“To
what extent does the spread of individual household preferences in a community
impact the potential of CEC regulation for a faster decarbonization?”), the case
study results show that CEC regulation is especially beneficial for communities
with heterogeneous environmental and economical preferences, as might be the
case in urban areas. Here, the cost reduction over the ten-year period is 30%
higher in the scenario with CEC regulation than in the scenario without CEC regu-
lation. The emission reduction in this period is also 10% higher in the CEC scenario.

In summary, the research in Part III of this thesis contributes to the derivation of
investment recommendations in CECs. One of its main contributions is the analysis
of CEC regulation. The results of the analysis demonstrate that German policy-
makers can accelerate the decarbonization process in urban areas by implementing a
scalable CEC regulation, as required by the European Union (European Parliament
and Council of the European Union, 2019). This regulation should allow households
to sell excess energy production to their neighbors, thereby increasing the revenue
from residential energy generation and supporting investment in residential energy
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technologies.

Citizen investment in residential energy technologies is necessary to reduce carbon
emissions in CECs. However, this creates new challenges for real-time operation,
as fluctuating generation must be balanced with uncertain demand. The efficient
operation of sector coupling technologies can help to address these challenges and
contribute to the decarbonization of the heat sector in residential areas. Part IV
presents two use cases to show the potential of sector coupling technologies for CECs
during operation.

The first use case focuses on the use of photovoltaic and solar thermal generation
to provide electricity, heating and cooling. Hybrid photovoltaic/thermal systems
present an alternative to regular photovoltaic power by providing both heat and
electricity at the same time. To answer Research Question 7 (“What are the finan-
cial benefits of a sector-coupled photovoltaic/thermal installation in combination with
absorption cooling compared to conventional compression cooling with a photovoltaic
installation?”), the potential financial benefits of using a photovoltaic/thermal power
plant in combination with absorption cooling to supply both heat and cooling are
investigated. In a case study using data from the National Renewable Energy Labo-
ratory (NREL), the combination of absorption cooling with a photovoltaic/thermal
system reduces operation costs by 74% compared to a system with a photovoltaic
system and conventional cooling. As the approach considers net metering, it can-
not be transferred directly to the European landscape, due to regulatory barriers.
However, it is a clear indication towards the benefits of photovoltaic/thermal power
in integrated energy systems and their potential contributions towards a successful
energy transition in CECs.

The second use case addresses the development of an operation strategy for a
heat pump and thermal storage system in combination with heat load forecasts.
The operation strategy is based on an online optimization using a 24 hours rolling
horizon heat load forecast and is designed to consider different objectives, for ex-
ample, cost minimization or the integration of renewable generation. The efficiency
of the operation strategy is compared to a global optimization and a naive lower
benchmark to answer Research Question 8 (“ What is the performance of an online
operation strategy for a district heating system with a heat pump and a thermal
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storage system that uses a 24-hours rolling horizon heat load forecast compared to
(i) a naive approach and (ii) benchmarked against the global optimum with respect
to the integration of renewables and cost minimization?”). To answer the research
question, a heat load forecast is implemented using a convolutional neural network
architecture. The heat load forecast is used as input for the online optimization of
the operation strategy. The designed operation strategy is applied to a large-scale
heat pump in combination with a thermal storage system for the Flensburg district
heating network. The operation strategy is applied in an economic scenario using
day-ahead market prices and in an ecologic scenario using offshore wind generation
data. In the economic scenario, where the objective is to minimize electricity prices,
the operation strategy outperforms a naive approach by 15% and is within 0.1% of
the global optimum. In the ecologic scenario, where the objective is to maximize
the share of offshore wind generation in the electricity mix, the operation strategy
outperforms the naive approach by 20.5% and is within 0.3% of the global optimum.

The research presented in Part IV comprises operational strategies for a coupling
of the heat and electricity sector in integrated energy systems that can support
decarbonization in CECs. The developed approaches contribute to a successful
energy transition in two ways. First, the proposed operation strategies can help
to better utilize available resources and capacities, thereby reducing the system
costs. Second, the proposed mechanisms and the integration of the heat and
electricity sectors improve the utilization of intermittent renewable generation in
CECs, thereby promoting the decarbonization in residential areas. While the case
studies in Chapter 8 and Chapter 9 do not explicitly consider a CEC context, the
presented methodologies can also be applied in CECs. The presented operation
strategies can be applied by municipal utilities and executive decision-makers who
are involved in the energy management of a CEC. For policymakers, this part
presents concepts for the coupling of energy sectors and showcases the potential of
integrated approaches to improve the resilience of an energy system that is based
on intermittent renewable generation.

In summary, this dissertation contributes to the decarbonization of integrated
energy communities, focusing on supporting residential investments in energy gen-
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eration, conversion and storage technologies and the coupling of sectors to develop
integrated energy systems. The findings contribute to the knowledge of preference-
based decision support tools for residential energy technology investments. Further-
more, the dissertation provides a model to determine investment alternatives based
on these preferences with regard to technology size and operation in the heat and
electricity sector. It provides guidance for policymakers and municipal utilities in
their design of incentives and corresponding regulation for energy communities and
the development of efficient operation strategies for sector-coupled energy systems
in residential neighborhoods.



CHAPTER 11

OUTLOOK

Several avenues for further research emerge from the results of this work.

As stated by Gholami et al. (2016) and Watson et al. (2010), there is a need for
further development of information systems that can help to address the challenges
of climate change. With respect to DSSs, three main areas of further research can
be pursued in this context.

The first area comprises the development of DSSs for group investment decisions
in CECs, building on the insights presented in Chapters 4 and 5. As the installation
of technologies such as battery storage systems or renewable generation often affects
multiple households in a CEC or a multi-family house, consensus mechanisms are
necessary to support the decision process. This includes not only the decision for,
e.g., a community photovoltaic system, but also the division of future rights of use,
possible yields and the responsibility for maintenance and operation.

Second, Chapters 6 and 7 present one possible approach to model the implemen-
tation of investment recommendations by individuals. While the proposed approach
focuses on the trade-off between economic and environmental preferences, it does not
consider the overall strength of these preferences or the general interest in investing
in residential energy technologies as a separate measure. The target of 8 million res-
idential solar photovoltaic and battery storage systems proposed by Weniger et al.
(2018) will likely require investments from citizens with low interest in residential
energy technologies. Designing DSSs for these individuals could help accelerate the
energy transition. Such systems would need to focus on minimizing the effort for po-
tential customers and highlighting the monetary benefits while placing less emphasis
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on the environmental aspect of investing in residential energy technologies.
Third, while this thesis focuses on the design and simulative evaluation of DSSs

for residential energy technology investments, the functionality of the proposed
systems needs to be evaluated in the field. Ideally, such an experiment would
accompany actual investments in residential energy technologies to provide more
insights on the acceptance, design and effectiveness of preference-based DSSs. The
determination of residential investment recommendations is, for example, part of
the ongoing research project “Smart Microgrids as a Service” (SMaaS)5.

Increasing investments in residential energy technologies and motivating en-
vironmentally friendly behavior by citizens can be supported through incentive
mechanisms in CECs. In the electricity sector, this includes the implementation
of time-varying tariffs, for example (Burger et al., 2020). When the focus is on
electricity only, the network restrictions can be neglected in the design of incentive
mechanisms in a CEC due to the close proximity of the households. For the
design of market mechanisms for integrated energy systems with sector coupling
technologies, control power restrictions of the heat network need to be considered.
This has already been done in a first study for a static system (Maurer et al., 2021),
but can be further extended to be applicable in the operation of integrated CECs.

With regard to the operation of sector coupling technologies, the application of
long-term thermal storage systems presents an opportunity to further decrease the
dependence on fossil fuels in the residential sector. Large-scale seasonal thermal
storage systems have already been implemented in some regions in Germany
(Mangold, 2007). As system costs decrease with a larger size of the seasonal storage,
households connected to an energy community could benefit from these systems
that often use water or gravel as a storage medium. Given the seasonal differences
in heat demand that are opposite to solar generation potential, seasonal storage
is a key technology to further decarbonize the residential heating sector. As a
seasonal thermal storage system is charged over a period of several months, existing
operation strategies must be adapted to these periods. In operation strategies using
day-ahead forecasts, as proposed in Chapter 9, this could be facilitated by assigning

5smaas.iism.kit.edu

https://smaas.iism.kit.edu
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a value to the stored heat. A first study evaluating the application of seasonal
storage using hydrogen as a storage medium shows the potential to reduce carbon
emissions (Katholnigg et al., 2023). However, the use of hydrogen for seasonal
thermal storage in CECs is not yet economically viable and further research is
necessary to improve the strategies for real-time operation.

Finally, the European energy crisis and the associated increase in energy prices
pose new challenges for the energy sector. On one hand, higher energy prices increase
the incentive to invest in residential energy technologies. On the other hand, this
development may lead to an increased focus on self-sufficient energy systems that
are less dependent on external energy supplies, such as natural gas. The influence of
this development on the attitude towards residential energy technology investments
and the energy consumption behavior of citizens could be measured over a longer
period of time by means of a social sentiment study.

As this thesis demonstrates the importance of sector coupling for the decarboniza-
tion of CECs, it motivates further research toward a more holistic view of the elec-
tricity and heat sector in residential areas.
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Appendix A. Chapter 5: Items and Instructions,

(translated from original German)

Introduction Thank you for participating in the study by the Institute of Infor-
mation Systems and Marketing (IISM). This experiment explores
private investment decisions in the energy sector. Please read the
texts thoroughly, the amount of the payoff depends on your deci-
sions within the experiment. If you are able, preferably go to a place
where you will be undisturbed. The experiment will take about 20
minutes and you will receive an allowance of up to 5 e at the end.
The amount of CO2 saved by your decisions within the experiment
will be compensated by the IISM through the provider ’atmosfair’.
Atmosfair supports projects to mitigate climate change. For ex-
ample, atmosfair promotes the expansion of renewable energies in
developing countries and thus saves CO2. The Ministry for Climate,
Environment and Energy in Baden-Würtemberg and the mobility
provider Flixbus cooperate with atmosfair.

Conjoint
analysis

Imagine you have to decide on a new electricity tariff. Your old
electricity tariff costs 30 cents/kilowatt hour (kWh) and causes CO2

emissions worth 30 cents/kWh. The value of the CO2 emissions
represents the amount of money it would cost to offset the CO2

emissions generated (e.g., via atmosfair). In the table at the bottom
of this page, different electricity tariffs are presented. Please arrange
the electricity tariffs through drag and drop so that the order of the
tariffs corresponds to your preferences. The first tariff is the one
you would most likely choose and the ninth tariff is the one you
would least prefer.
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Investment
decision

In this part of the experiment, you have the opportunity to make
an investment. In principle, the investment is comparable to in-
stalling solar panels on the roof or installing a new heating system
in a residential building. First, a fixed amount must be paid. Then,
over the lifetime of the technology (5 years in this study), costs are
incurred as well as CO2 emissions in each year. On this page, the
investment mechanism is explained with an example. On the fol-
lowing page you will then have the opportunity to make a selection.
Your budget is 500 monetary units (GE) (100 GE = 1e ) and 500
emission units (EE) (100 EE = compensation worth 1e at atmos-
fair (43.5 kg CO2)). The investment is considered over a period of
5 years. If you decide not to invest, you can opt-out and receive a
fixed expense allowance of 2,50e .

Table A.1.: Participant instructions.

Construct Item
General importance cost
(C1)

What role do costs play in your consumer
behavior in general?

General importance
emission (E1)

What role do emissions* play in your consumer
behavior in general?

Energy context
importance cost (C2)

What role do costs play in connection with
decisions affecting your energy consumption?

Energy context
importance emission
(E2)

What role do emissions* play in connection with
decisions affecting your energy consumption?

Clarification *In this experiment we understand emissions as
all forms of climate-damaging gases (e.g., CO2).

Table A.2.: Pre-experimental questionnaire, answers are given on a five-point Likert scale.
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Construct Item

Energy knowledge (P1) I am very well acquainted with the subject
“renewable energy”.

Personal measures (P2) Personal measures to save CO2 are very
important to me.

Individual CO2 saving
(P3)

I would describe my personal behavior to save
CO2 as very committed.

Perceived
recommendation
usefulness (P4)

The recommendation on the investment page
helped me make my decision.

Truthful investment (P5) The decisions within the experiment reflect my
actual investment behavior.

Recommendation notice
(P6)

I consciously noticed the recommendation on the
investment page.

Task understanding (P7) I understood the investment decision task.
Conscious investment
(P8)

I made a conscious choice in my investment
decision.

Emission compensation
trust (P9)

I trust that my emission savings will be sensibly
compensated via atmosfair.

Information overload
(P10)

The number of choices on the investment page
overwhelmed me.

Overload influence (P11) The number of choices on the investment side
influenced my investment decision.

Table A.3.: Post-experimental questionnaire, answers are given on a five-point Likert scale.
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Appendix B. Post-experimental Questionnaire

Accept recom- Deny recom-

Item mendation mendation T-test

Mean (SD) Mean (SD)

Energy knowledge (P1) 3.36 (1.02) 3.67 (0.96) -1.55 (p=0.123)
Individual impact on
emission reduction (P2)

3.19 (1.15) 3.79 (0.76) -2.38 (p=0.019*)

Individual emission
reduction behavior (P3)

2.62 (1.14) 3.13 (0.83) -2.57 (p=0.011*)

Perceived usefulness of
recommendation (P4)

4.36 (1.14) 3.03 (1.29) 5.34 (p<0.001***)

Investment behavior
(P5)

3.74 (1.10) 3.65 (1.10) 0.40 (p=0.687)

Recommendation notice
(P6)

4.87 (0.33) 4.71 (0.66) 1.48 (p=0.139)

Task understanding (P7) 4.76 (0.47) 4.62 (0.84) 1.08 (p=0.284)
Conscious investment
decision (P8)

4.68 (0.62) 4.71 (0.53) -0.26 (p=0.794)

Emission compensation
trust (P9)

3.89 (1.22) 4.12 (1.01) -0.98 (p=0.332)

Information overload
(P10)

3.89 (1.22) 4.12 (1.01) -0.98 (p=0.079)

Overload influence (P11) 2.98 (1.45) 2.83 (1.17) 0.57 (p=0.571)

Table A.4.: Comparison of items in the post-experimental questionnaire in the cost treat-
ments on a five-point Likert scale (1-5). Items P1-P11 can be found in Table
A3.
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Accept recom- Deny recom-

Item mendation mendation T-test

Mean (SD) Mean (SD)

Energy knowledge (P1) 3.49 (0.99) 3.12 (0.89) 1.96 (p=0.053)
Individual impact on
emission reduction (P2)

3.85 (0.94) 3.79 (0.91) 0.33 (p=0.74)

Individual emission
reduction behavior (P3)

3.17 (1.08) 3.15 (1.01) 0.08 (p=0.939)

Perceived usefulness of
recommendation (P4)

2.89 (1.34) 3.50 (1.32) 0.08 (p=0.027*)

Investment behavior
(P5)

3.72 (1.00) 3.63 (0.90) 0.46 (p=0.647)

Recommendation notice
(P6)

4.74 (0.76) 4.58 (0.72) 1.12 (p=0.324)

Task understanding (P7) 4.72 (0.57) 4.40 (0.88) 2.09 (p=0.039*)
Conscious investment
decision (P8)

4.74 (0.56) 4.56 (0.60) 1.57 (p=0.119)

Emission compensation
trust (P9)

3.74 (1.175) 4.10 (1.15) -1.49 (p=0.139)

Information overload
(P10)

2.94 (1.51) 3.31 (1.26) -1.31 (p=0.190)

Overload influence (P11) 3.02 (1.36) 2.88 (1.14) 0.54 (p=0.592)

Table A.5.: Comparison of items in the post-experimental questionnaire in the emission
treatments on a five-point Likert scale (1-5). Items P1-P11 can be found in
Table A3.
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Accept re- Deny re-

Item mendation mendation T-test

Mean (SD) Mean (SD)

Energy knowledge (P1) 3.40 (0.97) 3.71 (0.80) -1.10 (p=0.275)
Personal measures (P2) 3.71 (0.89) 3.71 (0.96) -0.02 (p=0.983)
Individual CO2 saving
(P3)

2.90 (1.16) 2.93 (1.03) -0.09 (p=0.926)

Perceived usefulness of
recommendation (P4)

4.27 (1.09) 2.29 (1.16) 5.79 (p<0.001***)

Investment behavior
(P5)

3.92 (1.02) 4.14 (0.83) -0.75 (p=0.457)

Recommendation notice
(P6)

4.73 (0.73) 5.00 (0.00) -1.37 (p=0.176)

Task understanding (P7) 4.73 (0.49) 4.71 (0.45) 0.10 (p=0.92)
Conscious investment
decision (P8)

4.48 (0.79) 4.93 (0.26) -2.06 (p=0.044*)

Emission compensation
trust (P9)

4.13 (1.11) 3.93 (0.88) 0.60 (p=0.55)

Information overload
(P10)

3.40 (1.32) 2.86 (1.46) 1.29 (p=0.202)

Overload influence
(P111)

3.10 (1.33) 3.43 (1.12) -0.82 (p=0.416)

Table A.6.: Comparison of items in the post-experimental questionnaire in the preference
treatments on a five-point Likert scale (1-5). Items P1-P11 can be found in
Table A3.
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(2017). Multi-agent systems applied for energy systems integration: State-of-the-
art applications and trends in microgrids. Applied Energy, 187:820–832.

Colasante, A., D’Adamo, I., and Morone, P. (2021). Nudging for the increased
adoption of solar energy? evidence from a survey in italy. Energy Research &
Social Science, 74:101978.

Connolly, D., Lund, H., Mathiesen, B. V., Werner, S., Möller, B., Persson, U.,
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Vesely, S. and Klöckner, C. A. (2020). Social desirability in environmental psychology
research: Three meta-analyses. Frontiers in psychology, 11:1395.
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