KIT | KIT-Bibliothek | Impressum | Datenschutz

Dynamics of the black soliton in a regularized nonlinear Schrödinger equation

Pelinovsky, Dmitry E.; Plum, Michael 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider a family of regularized defocusing nonlinear Schrodinger (NLS) equations proposed in the context of the cubic NLS equation with a bounded dispersion relation. The time evolution is well-posed if the black soliton is perturbed by a small perturbation in the Sobolev space $H^s(\mathbb{R})$ with $s > \frac{1}{2}$. We prove that the black soliton is spectrally stable (unstable) if the regularization parameter is below (above) some explicitly specified threshold. We illustrate the stable and unstable dynamics of the perturbed black solitons by using the numerical finite-difference method. The question of orbital stability of the black soliton is left open due to the mismatch of the function spaces for the energy and momentum conservation.


Volltext §
DOI: 10.5445/IR/1000168543
Veröffentlicht am 19.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000168543
Umfang 15 S.
Vorab online veröffentlicht am 18.01.2024
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page