
Cheetah: Bridging the Gap Between Machine Learning and Particle Accelerator
Physics with High-Speed, Differentiable Simulations∗

Jan Kaiser,1, † Chenran Xu,2, ‡ Annika Eichler,1, 3 and Andrea Santamaria Garcia2

1Deutsches Elektronen-Synchrotron DESY, Germany
2Karlsruhe Institute of Technology (KIT), Germany

3Hamburg University of Technology, 21073 Hamburg, Germany
(Dated: 11 January 2024)

Machine learning has emerged as a powerful solution to the modern challenges in accelerator
physics. However, the limited availability of beam time, the computational cost of simulations,
and the high-dimensionality of optimisation problems pose significant challenges in generating the
required data for training state-of-the-art machine learning models. In this work, we introduce
Cheetah, a PyTorch-based high-speed differentiable linear-beam dynamics code. Cheetah enables
the fast collection of large data sets by reducing computation times by multiple orders of magnitude
and facilitates efficient gradient-based optimisation for accelerator tuning and system identification.
This positions Cheetah as a user-friendly, readily extensible tool that integrates seamlessly with
widely adopted machine learning tools. We showcase the utility of Cheetah through five examples,
including reinforcement learning training, gradient-based beamline tuning, gradient-based system
identification, physics-informed Bayesian optimisation priors, and modular neural network surrogate
modelling of space charge effects. The use of such a high-speed differentiable simulation code will
simplify the development of machine learning-based methods for particle accelerators and fast-track
their integration into everyday operations of accelerator facilities.

I. INTRODUCTION

Future particle accelerator experiments will place ever-
increasing demands on the performance and capabilities
of particle accelerator operations and experiment analy-
sis. In order to meet these demands, the research com-
munity is increasingly turning to machine learning (ML)
methods, which have already demonstrated their ability
to push the envelope of what is possible in the field of
accelerator science [1–4].

One of the remaining challenges holding back this line
of research is the demand for large amounts of data
(including environment interactions) of these methods.
Reinforcement learning (RL), for example, has already
successfully been used to train intelligent tuning algo-
rithms and controllers that can outperform the currently
deployed black-box optimisation algorithms and hand-
crafted controllers [1, 5–7]. However, RL methods re-
quire many interactions with their target task to train
a well-performing policy. For example, 6 000 000 sam-
ples were needed in [1] to successfully train a policy on a
transverse beam tuning task. Orders of magnitude larger
number of samples are also common with other RL appli-
cations [8, 9]. The general scarcity of beam time makes
collecting experimental data for ML methods, such as
RL, a significant bottleneck. Gathering at least partial
data sets in simulation can alleviate this problem, but
existing accelerator simulation codes have mostly been

∗ All figures and pictures by the authors are published under a
CC-BY7 licence.

† jan.kaiser@desy.de; Equal contributions
‡ chenran.xu@kit.edu; Equal contributions

developed with a focus on the design phase of accelera-
tors, where high-fidelity and physical correctness are crit-
ical, and computing times range from minutes to several
hours for one simulation. Consequently, data collection
with existing simulation codes becomes impractical with
the growing demand for large data sets. In this paper, we
introduce Cheetah, a PyTorch-based high-speed differen-
tiable linear-beam dynamics code. Cheetah is capable of
accelerating beam dynamics simulations by multiple or-
ders of magnitude through tensorised computation and
several speed optimisation methods. In the specific ex-
ample of [1], this equates to a reduction in RL training
time from over 12 days when using the Ocelot simulation
code [10] to just over 1 hour when using Cheetah.

At the same time, numerical optimisation is fast be-
coming an important tool for accelerator design, tuning,
and model calibration [11, 12]. Advanced numerical opti-
misation methods like Bayesian optimisation (BO) have
been used to achieve impressive results [13]. However,
demands to solve optimisation problems of increasing di-
mensionality are growing, and BO may struggle to ef-
ficiently optimise objective functions with more than a
few dozen degrees of freedom [13]. In the field of ML,
gradient-based optimisation has successfully been used to
optimise up to 70 billion parameters [14, 15]. However,
computing gradients of complex models, like beam dy-
namics, using numerical or analytical methods are com-
putationally expensive. Instead, automatic differentia-
tion has found widespread adoption in machine learning
for the fast computation of gradients. ML frameworks,
such as PyTorch [16] and JAX [17], allow convenient
and computationally cheap automatic differentiation to
calculate the partial derivatives up to arbitrary orders for
all the parameters using the chain rule. Because Cheetah
is constructed upon PyTorch, it provides built-in support

ar
X

iv
:2

40
1.

05
81

5v
1

 [
ph

ys
ic

s.
ac

c-
ph

]
 1

1
Ja

n
20

24

mailto:jan.kaiser@desy.de
mailto:chenran.xu@kit.edu

2

for automatic differentiation to efficiently compute the
gradients of the beam dynamics models it implements.
Hence, Cheetah makes optimisation over the large pa-
rameter spaces of accelerator facilities tractable beyond
the number of parameters that can feasibly be optimised
with the current state-of-the-art numerical optimisers.

Surrogate modelling of start-to-end accelerator sys-
tems utilising neural networks (NNs) is another active
area of research [2–4]. Such surrogate models can be
used to acquire offline models of processes in accelerator
facilities or as a fast and differentiable stand-in for com-
putationally expensive simulations. Nevertheless, NN are
usually trained on start-to-end data, taking actuators as
inputs and sensor values as output. This makes it dif-
ficult to reuse trained models for applications beyond
those intended at the time of training. Moreover, NN
surrogate models are not commonly designed to interface
with beam dynamics simulators. Conveniently, Cheetah
is implemented using PyTorch, which is first and fore-
most an ML framework. As a result, models implemented
in Cheetah can be readily integrated with NN surrogate
models. This also means that gradient propagation from
NN surrogate models through Cheetah and vice versa
works out-of-the-box. With Cheetah, it is therefore possi-
ble to combine modular NN surrogate models with phys-
ical beam dynamics simulations. In particular, Cheetah
provides a practical platform for integrating modular NN
surrogate models with handcrafted beam dynamics mod-
els, making the expensive-to-train surrogate models more
reusable.

In the following, we introduce Cheetah and its inner
workings in Section II, benchmarking its speed in Sec-
tion IID. In the second half of this paper, we present
five different application examples (also shown in con-
text in Fig. 1), taking advantage of Cheetah’s speed for
reinforcement learning in Section IIIA, and using its dif-
ferentiability for beam tuning in Section III B and system
identification in Section III C, followed by an example us-
ing Cheetah as a BO prior in Section IIID, and demon-
strating how Cheetah may host modular NN surrogate
models in Section III E.

A. Related work

The field of programmatic beam dynamics modelling is
very mature. There exist various well-established simula-
tion codes for modelling beam dynamics in particle accel-
erators, e.g. ASTRA [18], Bmad [19], Elegant [20], and
MAD-X [21]. As Python has become increasingly popu-
lar in scientific computing, many of these have been aug-
mented with Python adaptors. Further, the Ocelot [10],
Xsuite [22], and Bmad-X [23] simulation codes have been
specifically developed directly in Python. Some calcula-
tions in Cheetah are based on those used in Ocelot.

Neural network (NN) surrogate modelling is also find-
ing increased use to acquire fast and accurate models
of complex beam behaviours [2, 4]. An NN surrogate

model is trained to infer the space charge field in a vac-
uum chamber cross-section using a physics-informed loss
function including a partial differential equation with the
Lorentz factor, elliptical bi-Gaussian charge density, and
boundary condition in [3].
An overview of opportunities for differentiable pro-

gramming in particle physics instruments is given in [24].
Specialised handcrafted differentiable simulations have

been constructed for various applications. A handcrafted
differentiable physics model is used as the discriminator
in a generative adversarial network (GAN) setup to train
an NN to reconstruct time-domain measurements of X-
ray pulses without labelled data in [25]. In [26, 27] the
hysteron density function of a Preisach model is fitted
to accurately model hysteresis from experimental data.
In [27, 28], a differentiable beam dynamics simulation
of a tomographic beamline is used to reconstruct phase
space distributions from experimental screen images. Si-
multaneous calibration of all detector parameters of a liq-
uid argon time projection chamber using a differentiable
simulation of the latter is performed in [29]. In [30], a dif-
ferentiable self-consistent space charge simulation model
based on the truncated power series algebra (TPSA) is
developed to speed up the simulated optimisation of ac-
celerator design parameters under consideration of space
charge induced effects.
A similar effort to Cheetah is pursued in [23], where

the authors introduce Bmad-X, a library-agnostic differ-
entiable particle tracking code written in Python based
on Bmad. They demonstrate the application of Bmad-X
on examples of beamline optimisation, model calibration,
and phase-space reconstruction. Bmad-X and Cheetah
present very similar advantages, with both offering fast
differentiable beam dynamics simulations. However, they
differ in some aspects. In contrast to Cheetah, Bmad-X
can be used with backend libraries other than PyTorch,
while Cheetah has a stronger focus on fast computa-
tions and currently supports a larger number of lattice
elements and conversions from other simulation codes.
Specifically, the goal of Cheetah is to bridge the gap
between fast hand-crafted and data-driven particle ac-
celerator models, streamlining their applications to vari-
ous applications. As such, it aims to enable researchers
to collect low-fidelity data fast and to use differentiable
models to train ML models or perform complex system
identification.
An early preliminary version of Cheetah was first pre-

sented in [31]. It was not yet designed to support auto-
matic differentiation and lacked the majority of the fea-
tures Cheetah now has.

II. FAST DIFFERENTIABLE LINEAR BEAM
DYNAMICS IN PYTORCH

The overarching goal in implementing Cheetah was to
provide a differentiable beam dynamics code with im-
proved speed over existing simulation codes to be used

3

Physical PhysicalSurrogate wrapped
in Cheetah

Integrate module neural network surrogates

Input variable

Model
PriorO

bj
ec
tiv
e
va
lu
e

Bayesian optimisation prior

Actuator / unknown variable

D
ev
ia
tio
n
fro
m
ta
rg
et
/

gr
ou
nd
tru
th

Gradient-based tuning /
system identification

Agent

Environment

Reinforcement learning

(a) (b)

(c) (d)

FIG. 1. Overview of where Cheetah fits into the proposed applications, with the Cheetah logo marking its use as a component
of these applications. (a) Cheetah is used as a physical prior for BO. (b) Cheetah provides a differentiable beam dynamics
model which can be used for accelerator tuning and system identification. (c) Cheetah enables the implementation of fast beam
dynamics environments for training RL agents. (d) Cheetah provides the infrastructure to seamlessly integrate modular NN
surrogate models with physical beam dynamics simulations.

for ML applications. Here, the conscious decision is
made to trade accuracy to achieve these speed improve-
ments. This means that Cheetah, while faster than ex-
isting codes, is lower fidelity than they are. With ML
applications this is a worthwhile trade-off. Methods like
domain randomisation [32] enable NN models trained on
inaccurate simulated data to effectively generalise to the
real-world domain. Moreover, initial training of an ML
model on cheap low-fidelity data followed by fine-tuning
on high-fidelity data is a widely used method to speed up
the training of ML models. At the same time, Cheetah is
designed to integrate seamlessly with popular ML tools.
We intend for Cheetah to be used both as a tool in ML ap-
plications, e.g. to support the training of neural network
models, and as an application of ML itself, e.g. through
the integration of neural network models in its simulation
pipeline. Last but not least, our goal is to make Cheetah
easy to use, easily extensible and follow best practices in
its implementation with high-quality code.

To this end, Cheetah is implemented in the Python
programming language, which hosts an extensive ML
ecosystem and is widely used in scientific computing.
Cheetah employs the PyTorch [16] framework. While
the primary purpose of PyTorch is the implementation
of ML algorithms, its fast tensor compute capabilities,
strong graphics processing unit (GPU) support and au-
tomatic differentiation features make it an ideal fit for
fast parallel scientific computation.

To validate that Cheetah’s models the physics of beam
dynamics accurately and to ensure high code quality,
Cheetah makes use of various continuous integration (CI)

pipelines. Numerous tests are implemented to verify not
only that Cheetah runs without errors, but also that its
outcomes are physically plausible and match those com-
puted by Ocelot [10, 11]. Automatic code formatting
and linting are also used to enforce a high standard of
readability and maintainability for Cheetah’s code, while
ensuring that implementations follow the best program-
ming practices of PEP8 and minimising the incidence of
elusive future errors. The official GitHub repository [33]
is set up with clear contribution guidelines and well main-
tained in an effort to foster future collaboration in the
development of Cheetah. To lower the barrier of entry
and ease installation, stable versions of Cheetah are reg-
ularly deployed to PyPI. Reference documentation and
some use case examples for Cheetah are made available
via Read the Docs[34].

A. Beam tracking in Cheetah

At its core, Cheetah is made up of two main object
classes, Beam and Element, which provide implementa-
tions of charged particle beams and accelerator elements,
such as magnets and drift sections, respectively. Both
of these inherit from PyTorch’s Module, allowing their
parameters to be optimised with the tools provided by
PyTorch when set to a Parameter instead of a Tensor.

Cheetah provides two ways to represent the beam, a
ParticleBeam with coordinates of each macroparticle
and a ParameterBeam with only statistical values rep-
resenting the beam, both being a subclass of the Beam.

4

In ParticleBeam, each particle is represented by a seven-
dimensional vector

p = (x, x′, y, y′, τ, δ, 1) , (1)

where {x, y} are the horizontal and vertical positions,
{x′, y′} are the slopes in trace space, τ the longitudinal
displacement, and δ the momentum offset with respect
to the nominal energy. The six-dimensional vector is ex-
panded at the end, analogous to an affine space, allowing
a coherent representation of transfer maps also for effects
like magnet misalignments and thin-lens magnets.

For applications that require faster computations and
do not require modelling of the bunch substructures, a
second representation, the ParameterBeam, is used. It
assumes a Gaussian beam and represents the entire beam
by a seven-dimensional vector µ of the mean position
in each dimension of the phase space and a covariance
matrix Σ.

Furthermore, the Beam subclasses implemented in
Cheetah offer convenient computation of various of their
properties. Both beam representations support generat-
ing Gaussian beams or being loaded from files saved by
other particle tracking codes, a feature which is further
discussed in Section IIC. In addition, ParticleBeam in-
stances can be generated with regularly spaced macropar-
ticles.

The Element class represents accelerator beamline el-
ements, such as magnets, drift sections, or diagnostic
instruments. Each subclass must implement a track
method that transforms an incoming beam to an out-
going beam that was affected by the element. To add
a new element to Cheetah, one simply inherits from
Element and implements the track method. The track
method can implement arbitrary computations from sim-
ple matrix multiplications for first-order tracking to more
complex behaviours like higher-order transfer maps for
non-linear elements, beam image computations for di-
agnostics screens, or neural network inference. By de-
fault, Cheetah elements compute linear beam dynam-
ics using an implementation of the linear transfer map
RCheetah ∈ R7×7 that is already provided

RCheetah =

(
R0

...
0 · · · 0 1

)
, (2)

with R0 ∈ R6×6 being the standard transfer matrix
based on [35]. For some elements more complex be-
haviours are already implemented in Cheetah. For ex-
ample, the transverse motion in accelerating cavities is
modelled according to [36]. For the remainder of this
paper, all transfer matrices R are assumed to be of the
form RCheetah.

To track a beam through an element with a transfer
matrix R, the default implementation either computes

Pout = PinR
⊺ (3)

for a ParticleBeam Pin ∈ Rn×7 with n macroparticles,
or

µout = Rµin

Σout = RΣinR
⊺ (4)

for a ParameterBeam with the characteristic parameters
{µin,Σin}.
For elements that only implement linear beam dynam-

ics, it is therefore sufficient to implement a transfer map
method returning a first order transfer matrix R for the
element. At the time of writing this paper, Cheetah has
support for drift sections, dipole magnets with adjustable
face angles (e.g. SBends and RBends), thin-lens corrector
magnets, quadrupole magnets, cavities, beam position
monitors (BPMs), markers, diagnostic screen stations,
apertures, solenoid magnets, and elements with custom
transfer maps. In addition, Cheetah provides a special
Segment subclass of Element. It represents a sequential
lattice of accelerator components and supports nesting of
other smaller Segment elements.
We continue to extend Cheetah with new elements and

features. In a further community-driven effort, users of
Cheetah can add new features, such as elements, phys-
ical processes, and specialised transfer maps, according
to task specific requirements.

B. Speed optimisation

Cheetah achieves its speed through several automatic
and opt-in optimisations. First of these is the use of
PyTorch, which is itself implemented in C++ and Com-
pute Unified Device Architecture (CUDA) and is well-
optimised thanks to widespread community support. Py-
Torch holds a key speed advantage over established pack-
ages like NumPy in its built-in ability to run on GPUs
supporting CUDA or Metal Performance Shaders (MPS),
which can provide significant speed improvements for
massively parallel computations such as single particle
tracking.
Moreover, Cheetah automatically identifies sequences

of elements that can have their transfer matrices com-
bined. We refer to this optimisation as dynamic transfer
map reduction. For example, if a Segment is made up
of an alternating sequence of dipole magnets and drift
sections following linear beam dynamics, followed by an
active diagnostic screen station and another sequence of
alternating dipole magnets and drift sections, Cheetah
will automatically recognise that the transfer matrices
{RM1, RD1, RM2, RD2 . . . } of the elements upstream of
the screen station can be combined into a single transfer
matrix Rupstream screen, and that the same can be done
for the sequence of elements downstream of the screen
station. A simple example following this description is
shown in Fig. 2. This optimisation can be influenced by
the user to some extent. Some elements, such as diag-
nostic screen stations and BPMs, support being activated

5

FIG. 2. Visualisation of a simple example for transfer map
reduction. The tracking function of the screen is denoted by
fS . It cannot be reduced along with other transfer maps.
The transfer maps drift sections and magnets upstream of
the screen {RD1, RM1, RD2} and downstream of the screen
{RD3, RM2, RD4} can be reduced to two transfer maps RA1

and RA2, one on each end of the screen.

or deactivated, based on whether the user intends to use
their functions. Cheetah makes transfer map reduction
decisions based on the activation status of these elements.
Other elements such as cavities, automatically determine
whether they can be optimised through transfer map re-
duction. Cavities, for example, produce a drift transfer
matrix when inactive, which is automatically combined
with other transfer maps, but do not take part in trans-
fer map reduction when they are active and have more
complex effects on the beam. Because transfer map re-
duction does not always need to be performed every time
a beam is tracked through a Segment, Cheetah provides
an opt-in variant of the same optimisation, where the
user can tell Cheetah which elements may be changed in
the future. All other elements are then frozen, allowing
Cheetah to perform static transfer map reduction. This
optimisation can be very effective when only a few pa-
rameters are changed between consecutive simulations on
large lattices.

In a similar vein, Cheetah can be commanded to find
all inactive elements that are effectively drift sections,
and replace them with actual drift sections, which are
generally faster to compute. In addition, drift sections in
Cheetah are pure linear beam dynamics elements, mean-
ing they can be merged with adjacent linear beam dy-
namics elements, either dynamically and on-the-fly, or
statically before tracking.

Especially when combining these optimisations, they
can significantly speed up computations in Cheetah.
Critically, all the implemented optimisations maintain
the differentiability and correct gradients of the models.

C. Integration with other codes

To facilitate the quick adoption of Cheetah, the ability
to load beams and lattices, especially from other par-
ticle tracking codes, is crucial. Cheetah’s default lat-
tice exchange format is an adapted variant of the in-
teroperable lattice exchange format LatticeJSON [37].
Based on the standard JSON format, this makes read-
ing and writing of lattice files which are compatible with

Cheetah straightforward in any programming language.
Cheetah’s modular and simple architecture further sim-
plifies the implementation of converters from other lattice
and beam exchange formats. Cheetah currently supports
loading beams from ASTRA, lattices from Bmad, and
both beams and lattices from Ocelot.

D. Speed benchmarks

In this section, we benchmark the execution speed of
Cheetah with other simulation codes on the same track-
ing tasks. The lattice considered for the benchmark is
the Experimental Area section of the ARES accelera-
tor [38, 39] at DESY, which is further investigated in
some of the use case examples in Section III. The section
is in total 2.05m long, consisting of three quadrupole
magnets, two corrector magnets, and drift sections in
between. The benchmarks were run on two different
computing platforms to account for the potential advan-
tages of different hardware. Firstly, we ran simulations
on a laptop with an Apple M1 Pro with 10 CPU Cores
and 32GB of RAM. Secondly, we considered a high-
performance computing (HPC) cluster node with two
AMD EPYC 7643 having a combined 192 cores, 1024GB
of RAM, and 4 Nvidia A100 GPUs, each having 80GB of
VRAM. Both the central processing unit (CPU) and the
GPU were considered with Cheetah on the cluster node.
Note that at the time of writing, Cheetah can only use
one GPU at any time. Simulation times were averaged
over multiple runs using Python’s timeit package. Chee-
tah was run in multiple different configurations: track-
ing a ParameterBeam, tracking a ParticleBeam on CPU,
and tracking a ParticleBeam on GPU. For all the con-
figurations, we benchmarked with and without the opt-
in lattice optimisations. We further compared Ocelot
and ASTRA [18] with and without space charge. Par-
allel ASTRA was run using 8 performance cores on M1
Pro and 48 cores on EPYC 7643, which we found to be
the fastest configurations for this particular benchmark.
In addition, we consider Bmad-X with a NumPy back-
end and Xsuite for the benchmarks. The results of the
speed benchmark are listed in Table I. For Cheetah with
ParticleBeam and other simulation codes, a beam with
100 000 macroparticles is used. The benchmarks were
run with a pre-release version of Cheetah v0.6.2.
We find that Cheetah can compute the benchmarked

simulation setup up to 8 orders of magnitude faster than
the other benchmarked simulation codes. In particular,
Cheetah is about 5500 times faster than the fastest AS-
TRA setup without space charge on the ARM laptop.
The fastest setup of Ocelot is outperformed by Chee-
tah by over 9000 times on the same device. In our
benchmarks, Cheetah also achieves computational speeds
around 1900 times faster than the already very fast
Bmad-X. Xsuite achieves speeds comparable to Cheetah
without Cheetah’s opt-in optimisations turned on, but
Cheetah is up to two orders of magnitude faster when

6

opt-in optimisations are used. Remember that these
speed advantages of Cheetah by design come at the cost
of accuracy, where higher-order effects, collective effects,
and others are left out by default in order to achieve
the reported speeds. We further find that in our bench-
mark Cheetah’s ParameterBeam is tracked between 2 and
40 times faster than the same ParticleBeam. GPU ac-
celeration is a sensible choice only with ParticleBeam,
though it is not guaranteed to improve compute times.
While we did observe 8 times faster simulation with lat-
tice optimisations turned on, simulations slowed down by
a factor of almost 1.6 without them. This is the result
of the benchmark beam tracking 100 000 particles. In
this case, the overhead induced by sending instructions
and data to the GPU outweighs the performance benefits
of highly-parallel computation. On the other hand, when
the number of tracked particles is increased to 10 000 000,
tracking with optimisations turned on takes 37.5ms on
CPU and 998 µs on GPU. With optimisations turned
off, Cheetah tracks the same beam in 37.5ms on CPU
and 5.36ms on GPU. This is a significant improvement,
demonstrating the advantages of GPU acceleration in
Cheetah. Moreover, we find that in our benchmarks,
opt-in optimisations yielded up to 38 times faster exe-
cution on CPU and up to 51 times faster execution on
GPU. Note that the opt-in optimisations benchmarked
here are the most extreme case, taking maximum advan-
tage of the optimisations to demonstrate Cheetah at its
fastest and at its slowest. In real-world use of opt-in op-
timisations, we expect results to be slightly worse than
the optimised cases showcased here, as some user-defined
exceptions might reduce the effectiveness of Cheetah’s
optimisations.

III. USE CASE EXAMPLES

In the following we would like to demonstrate in five
examples how Cheetah might be used and what it is capa-
ble of. In Section IIIA, we demonstrate on the example
of recently published work, how Cheetah can be used to
enable fast reinforcement learning in simulation for poli-
cies that transfer well to the real world. This is followed
by examples of using Cheetah’s automatic differentiation
features to perform gradient-based accelerator tuning in
Section III B and gradient-based system identification in
Section III C. In Section IIID, we show Cheetah’s utility
as a physics-based prior in the context of Bayesian opti-
misation. At last, we demonstrate Cheetah’s suitability
for an extension by modular element neural network sur-
rogate models in Section III E. The following is not an
exhaustive list of applications for Cheetah. We believe
that as Cheetah is adopted, users will find many more
problems it can solve.

A. High-speed simulations for reinforcement
learning

In recent work, Cheetah played a key role in the suc-
cessful training of a neural network policy for tuning
the transverse beam properties in a particle accelerator
through the method of RL [1, 5, 40] – so-called reinforce-
ment learning-trained optimisation (RLO). Specifically,
this work considers a tuning task in the Experimental
Area (EA) beamline section at the ARES accelerator.
The EA is made up of a sequence {Q1, Q2, Cv, Q3, Ch}
of two quadrupole magnets, followed by a vertical dipole
magnet, a third quadrupole magnet and a horizontal
dipole magnet. These magnets allow for the tuning of the
transverse beam properties (µx, σx, µy, σy), i.e. position
and size in the horizontal and vertical dimensions. These
properties are measured with a diagnostic screen station
downstream of the magnets. At ARES, transverse beam
parameter tuning is commonly performed in preparations
for experiments in an experimental vacuum chamber in-
stalled downstream of the EA. The goal of the trans-
verse beam tuning task in the EA is to find the magnet
settings u = (kQ1

, kQ2
, αCv

, kQ3
, αCh

) that minimise the
difference between the beam parameters observed on the
screen b = (µx, σx, µy, σy) and some target beam param-
eters b′ =

(
µ′
x, σ

′
x, µ

′
y, σ

′
y

)
set by a human operator. In

the EA, the beam entering that section bin and the trans-
verse misalignments m of components like quadrupoles
and the screen are not known, making this the trans-
verse beam tuning task more challenging to solve. To
date, transverse beam tuning is mostly solved manually
by experienced human operators, which requires a lot of
time and makes it difficult to reproduce results.

In order to solve this beam tuning task utilising RLO,
a task-specific RL loop is defined as shown in Fig. 3.
In this loop, the accelerator environment is implemented
using Cheetah at the time of training and then replaced
with the real ARES accelerator at the time of application.
The Python package Gymnasium [41] (the successor to
the previously popular OpenAI Gym [42]) is used to de-
fine the environment. A multilayer perceptron (MLP)
of two hidden layers is used as a policy model. Each
layer has a width of 64 neurons and uses a rectified
linear unit (ReLU) activation. The policy takes as in-
put the normalised observed beam b, the currently set
quadrupole strengths and deflection angles of the mag-
nets u, and the target beam parameters b′. Its output
is defined as normalised changes to the magnet settings
at = ∆u. The rewards and observations are normalised
using a running average during the training. The ac-
tions are normalised to the action spaces, which is [-3,
3] m−2 for quadrupole strengths, [-0.6, 0.6] mrad for ver-
tical steering magnet, and [-0.3, 0.3] mrad for horizontal
steering magnet. The different action ranges of vertical
and horizontal magnets are chosen so that they have ap-
proximately the same steering effect at the position of
the diagnostics screen.

To train the policy, the Twin Delayed DDPG

7

TABLE I. Step computation times of simulation codes in milliseconds

Code Comment Laptop HPC node

ASTRA space charge 264 000.00 3 605 000.00
no space charge 109 000.00 183 000.00

Parallel ASTRA space charge 39 000.00 17 300.00
no space charge 16 900.00 12 600.00

Ocelot space charge 22 100.00 21 700.00
no space charge 182.00 119.00

Bmad-X 40.50 74.30
Xsuite CPU 0.81 2.82

GPU - 0.57
Cheetah ParticleBeam 1.60 2.95

ParticleBeam + optimisation 0.79 0.72
ParticleBeam + GPU - 4.63
ParticleBeam + optimisation + GPU - 0.09
ParameterBeam 0.76 1.29
ParameterBeam + optimisation 0.02 0.04

Environment

Agent

FIG. 3. Flowchart of the RL loop for the ARES EA transverse
tuning task. The environment – during training defined in
terms of Cheetah – outputs an observation ot and a rt based
on the previous action at−1. The agent then computes a new
action at using the neural network policy. The new action is
applied to the environment and results in the next observation
ot+1 and reward rt+1.

(TD3) [43] algorithm is used for its relative training sam-
ple efficiency among model-free RL algorithms. Specif-
ically, we employ the implementation provided by the
Stable Baselines3 [44] Python package. As originally in-
troduced to the field of RL for accelerators in [1], domain
randomisation [32] is performed during training by sam-
pling magnet and screen misalignments, as well as the
incoming beam parameters and the target beam from a
uniform distribution at the start of each rollout episode.
We define the reward for transverse beam parameter tun-
ing as

R (st,at) =

{
R̂ (st,at) if R̂ (st,at) > 0

2 · R̂ (st,at) otherwise
(5)

with R̂ (st,at) = O (ut) − O (ut+1), where the objec-
tive function O (ut) is the logarithmic and weighted dif-
ference between the observed and target beams

O (ut) := ln
1

4

4∑
i=1

w(i)
∣∣∣b(i) − b′(i)

∣∣∣ . (6)

A weight vector w = (1, 2, 1, 2) was chosen for the final
training.
The policy is trained over a total of 6 000 000 inter-

actions with the Cheetah environment. One interaction
with the real environment involves sending new set points
to the magnet power supplies, waiting for the power sup-
plies to finish ramping to their set points, and taking
multiple images of the diagnostic screen with the beam
turned on and with the beam turned off. Altogether this
process takes ca. 10 s to 20 s. Consequently, training
on the real ARES accelerator would take about 3 years
of continuous beam time. With beam time a scarce re-
source, such a long training is infeasible. Fast simula-
tions like Cheetah can be computed faster than real time
and enable us to collect the equivalent of many years of
real time experience in much more feasible time frames.
As was shown in Section IID, Cheetah is especially fast,
allowing for the equivalent of 3 years of experience to
be collected in just 27min. Other RL algorithms such as
Proximal Policy Optimisation (PPO) also allow for paral-
lel rollouts on multiple environments. Using a simulation
like Cheetah means that experience could be collected
even faster in this case, while we usually do not have
access to multiple of the same accelerator for training.
Despite having been trained using a comparatively

simple simulation and deployed to the real world zero-
shot without fine-tuning, our RL policy successfully tunes
the transverse beam parameters on the real accelerator,
finding magnet settings that achieve beam parameters
closer to the target than those found by other state-of-
the-art black-box optimisation algorithms. Moreover, the
trained policy converges on these magnet settings in just
a few samples, tuning the beam in less wall time than
human operators while achieving comparable results. An

8

0

2

4

L
os

s

×10−7

(a)

−0.5

0.0

0.5

1.0

B
ea

m
p
ar

am
et

er
 (

m
m

)

(b)

µx

σx

µy

σy

−10

0

10

Q
u
ad

ru
p
ol

e
st

re
n
gt

h
 (
m
−

2
)

(c)

Q1 Q2 Q3

0 10 20 30 40 50

Iteration

−2

0

S
te

er
in

g
an

gl
e

(m
ra

d
)

(d)

Cv Ch

FIG. 4. An NN policy trained with RL tuning of the trans-
verse beam parameters in the ARES EA. (a) The MSE loss
development over parameter update iterations. (b) Beam pa-
rameters on the diagnostics screen over parameter update it-
erations. (c) and (d) quadrupole and dipole magnet settings
over parameter update iterations.

example of a trained policy from [5] tuning the transverse
beam parameters in the EA is shown in Fig. 4. Here it
can be observed that the target transverse beam param-
eters of b′ = (−0.61mm, 0.26mm, 1.03mm, 0.35mm) are
reached after about 6 steps. For more detailed results
and discussions, please refer to [1, 5].

B. Gradient-based beam tuning and lattice
optimisation

In the field of particle accelerators, there are various
optimisation tasks, ranging from lattice optimisation in
the design phase of a facility to tuning actuators at run
time. In some cases, these tasks have too many degrees
of freedom to be feasibly solvable by black-box optimi-
sation algorithms, such as BO or RLO. However, their
underlying function and its parameters may be known.
In such cases, gradient-based optimisation may be used.

The latter has well-understood convergence properties
and extensive tooling for it has been developed in the
field of ML. Using gradient-based tuning on a model
of an accelerator can help find good setups without the
need for beam time. Even in cases where there exists a
model mismatch, this offline optimisation approach can
provide good starting points close to the optimum, which
can then be further optimised online. Further, Chee-
tah can be used to reduce model mismatches through
gradient-based system identification as is described in
Section III C.
In this example, we consider the same transverse beam

tuning task as in Section IIIA. In contrast to before, we
assume that unobserved properties, such as the incoming
beam and the beamline components’ misalignments, are
known. This may be the case in simulations during the
design stage of an accelerator, if an accelerator is known
to deviate very little from its design parameters, or if
system identification like in Section III C was performed
ahead of time.
The ARES lattice is loaded as a Cheetah Segment. Be-

cause Cheetah defines segments as PyTorch Module, all
that is needed for PyTorch to automatically compute the
gradient of the ARES EA with respect to the five magnet
settings, is to define the latter as PyTorch Parameter. A
fixed incoming beam is tracked through the EA Cheetah
Segment. The resulting beam parameters can then be
read from the diagnostic screen station at its end, and a
MSE loss, defined as

1

4

4∑
i=1

(
b(i) − b′(i)

)2
, (7)

with b′ being the target beam and b the currently
observed beam at the screen station, can be computed,
where b(i) denotes the i-th element of b. PyTorch’s au-
tomatic differentiation features can then be used to com-
pute the gradient of the particle tracking and transverse
beam parameter loss function with respect to the magnet
settings

b = fEA (u | m, bin) . (8)

Adam [45], a variant of stochastic gradient descent
(SGD) is then used to compute the updates to the mag-
net settings based on the computed gradient.
However, as is, this simple setup would result in unsta-

ble convergence. This is because the magnet settings are
on very different scales, with the maximum quadrupole
setting at 72m−2 and a maximum dipole magnet setting
of 6.2mrad. To address this, the magnet settings are nor-
malised, i.e. scaled to normally fall into the range [−1, 1].
With Cheetah, this is easily achieved by wrapping the
ARES EA Segment in an outer PyTorch Module with the
normalised magnet settings as the PyTorch Parameter.
On every call to the module’s forward method, the seg-
ment’s magnet settings u are set to

9

0

2

4
L
os

s
(a)

−5

0

B
ea

m
p
ar

am
et

er
 (

m
m

)

(b)

µx

σx

µy

σy

−10

0

Q
u
ad

ru
p
ol

e
st

re
n
gt

h
 (
m
−

2
)

(c)

Q1 Q2 Q3

0 50 100 150 200

Iteration

−20

−10

0

S
te

er
in

g
an

gl
e

(m
ra

d
)

(d)

Cv Ch

FIG. 5. Gradient-based tuning example of the transverse
beam parameters in the ARES EA. (a) The loss development
over parameter update iterations. (b) Beam parameters on
the diagnostics screen over parameter update iterations. (c)
and (d) quadrupole and dipole magnet settings over parame-
ter update iterations.

u = unormed ⊙ λ, (9)

i.e. the element-wise product of the nor-
malised actuator parameters unormed and the
scaling factors for each respective actuator com-
ponent λ. For the presented case study we use
λ =

(
5m−2, 5m−2, 6.2mrad, 5m−2, 6.2mrad

)
. Note

that for the quadrupole magnets, the scaling factors
are chosen to be smaller than the physical limits of
the real magnets so that they represent the commonly
used operational ranges of these magnets at ARES more
accurately.

The resulting convergence of the magnet settings can
be seen in Fig. 5. In the shown example, the target beam
parameters are b′ = (0.0 µm, 0.0 µm, 0.0 µm, 0.0µm). We
observe that the final magnet settings result in the de-
sired centred and focused beam. The absolute devia-
tion of the observed transverse beam parameters to the

target transverse beam parameters is |∆µx| = 0.33 µm,
|∆σx| = 6.66 µm, |∆µy| = 0.07 µm, and |∆σy| = 0.85 µm,
resulting in a mean absolute error (MAE) of 1.98 µm.
Convergence is generally smooth, with all five magnets
converging on their final settings after about 90 gradient
steps. Note that the hyperparameters for this example
were not tuned and better results may be possible.

C. Gradient-based system identification and
virtual diagnostics

A common challenge with accelerators is that some
properties of the beam or the accelerator hardware itself
are not observable. Finding these properties usually re-
quires multiple samples at different system states, ideally
collected in a structured manner such as a grid scan for
best results. Using these samples to reconstruct the hid-
den properties constitutes an inverse problem. Inverse
problems are notoriously difficult to solve. Performing
structured measurements to identify hidden properties
of an accelerator necessitates an interruption of beam
delivery, making it a costly measurement that is only
performed if strictly needed.
Here we consider a system identification task in the

ARES EA. There are two unknowns in the EA: The in-
coming beam and the misalignments of the quadrupoles.
For this example, we aim to identify the misalignments
of the quadrupoles. Knowing these can help tune the
accelerator, for example by inserting the found misalign-
ments into the model used in Section III B, or by using
them to better align the quadrupoles and thereby reduce
the dipole effect they have on the beam when used for
focusing.
The gradients are computed with respect to the mis-

alignments, i.e. the horizontal and vertical displacements
of the magnets. Similar to the tuning example, the mis-
alignments are normalised by wrapping the EA Segment
in a PyTorch Module that holds normalised misalignment
mnormed Parameters such that

b = fEA (mnormed|bin,u) . (10)

The resulting optimisation problem is defined as

minmO (m) = (µx − µ′
x) +

(
µy − µ′

y

)
(11)

to find the misalignments such that, when these misalign-
ments are assumed in the model, the beam positions pre-
dicted on the screen best match the experimental mea-
surements. For this example, we use parasitically ac-
quired measurements from other unrelated experiments.
This effectively enables zero-shot system identification.
The specific data used here was collected during evalua-
tions of the RLO policies in [5], which was also referenced
in the example in Section IIIA.
We first start with data collected in simulations, where

the misalignments are known. This allows us to verify

10

0.00

0.05

0.10

L
os

s

(a)

Simulated data

(b)

Real-world data

−1

0

1

x
 m

is
al

ig
n
m

en
t

(m
m

)

(c) (d)

0 100 200 300 400 500

Epoch

−1.0

−0.5

0.0

0.5

y
 m

is
al

ig
n
m

en
t

(m
m

)

(e)

Q1 Q2 Q3

0 200 400 600 800 1000 1200 1400

Epoch

(f)

FIG. 6. Two examples of gradient-based quadrupole misalignment identification. For the first example, using parasitically
collected simulated data, we show in (a) the loss, (c) the horizontal misalignments, and (e) the vertical misalignments over
epochs. Dashed lines signify the ground truth misalignments, which are known in simulation. We show in (b) the loss, (d)
the horizontal misalignments, and (f) the vertical misalignments for the second example using real-world parasitically collected
data.

that the gradient-based optimisation arrives at correct
misalignments. Because we are considering simulated
data, the correct incoming beam is also known and may
be assumed in the Cheetah model. As can be seen in
Fig. 6 (a), (c), and (e), the reconstruction arrives at the
correct misalignments.

Now trusting the misalignment reconstruction, the lat-
ter may be tried on data collected from a real-world ex-
periment. With real-world data, however, the incoming
beam is often unknown. Therefore, a sensible assumption
on the incoming beam must be made. In the ARES EA,
the goal is to reduce the misalignments of the quadrupole
magnets with respect to the design orbit, which is the
centre of the beam pipe in most cases. We therefore as-
sume that the incoming beam position and momentum
are at zero, i.e. we consider the observed orbit to be the
design orbit. Doing so effectively sets the origin of the
Cheetah model to the observed orbit in the data, result-
ing in misalignments being measured as deviations from
that orbit. Other properties such as the beam size and
energy only marginally affect this particular system iden-
tification setup and are therefore not considered. As can
be seen in Fig. 6 (b), (d), and (f), the reconstruction
appears to also perform well and smoothly arrive at sen-
sible results under these conditions. However, the results
cannot be checked against the ground truth this time,
because the ground truth cannot be known.

D. Physics-based prior mean for Bayesian
optimisation

Thanks to its speed, Cheetah can provide fast predic-
tions of the beam parameters and guide optimisation al-
gorithms during online tuning tasks, ultimately boosting
their performance. One particular use case is BO, which
utilises a Gaussian process (GP) model to build a sur-
rogate model of the observed data and efficiently opti-
mise the objective function. However, when dealing with
high-dimensional tasks, BO tends to over-explore the pa-
rameter space to find the global optimum, inevitably in-
creasing the required number of samples [46]. This limits
the tasks which are solvable with classical BO algorithms
to those that have less than a few dozen of input pa-
rameters [13]. Recent studies have shown that the con-
vergence speed of BO can be significantly improved by
incorporating prior knowledge of the accelerator system
into the GP model, for example by including the correla-
tion of quadrupole magnets into the GP covariance [47]
or using an NN surrogate model as the prior mean func-
tion for the GP [48]. In the case of an NN surrogate,
it should be accurate enough, as a wrong prior will only
hamper the performance of BO. However, training such
an NN model requires many samples either from simu-
lation or real measurements, which are often not readily
available. Cheetah becomes a promising alternative for
the prior mean function for BO due to its fast inference

11

0 10 20 30 40 50

Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
B

ea
m

 s
iz

e
(m

m
)

Min. of mismatched prior

Simplex

BO

BO matched prior

BO mismatched prior

FIG. 7. Optimisation results of a beam focusing task us-
ing Nelder-Mead simplex (blue), Bayesian optimisation with
a constant mean function (orange), and BO with a Cheetah
Segment as the prior mean matched to the task (red) or mis-
matched (green). The results are averaged over 10 runs for
each algorithm and shaded regions represent one standard de-
viation. The dotted line shows the minimum objective of the
prior mean in the mismatched lattice and the dashed grey line
denotes the true minimum for each task obtained from grid
scans.

time. In addition, Cheetah’s differentiability allows effi-
cient acquisition function optimisation using gradient de-
scent methods in modern BO packages like BoTorch [49].

In the following, we demonstrate the usage of Cheetah
as a prior mean for BO in a beam-focusing task. The
investigated lattice segment is a FODO cell consisting
of two quadrupole magnets {Q1, Q2} and a diagnostic
screen at the end. The objective is to minimise the mean
beam size measured at the screen

O :=
1

2
(|σx|+ |σy|) (12)

by changing the quadrupole strengths {kQ1 , kQ2}, where
σx and σy denote the horizontal and vertical beam sizes
respectively.

We evaluated the performance of BO with a Cheetah
simulation model as a prior mean function and used BO
with a constant prior mean and Nelder-Mead simplex as
baselines. All algorithms are implemented based on the
Xopt package [50]. Both BO variants use the Matérn-
5/2 kernel and upper confidence bound (UCB) acquisi-
tion function with β = 2.0, which is a standard choice
of hyperparameters for BO applications. Each algorithm
was repeated 10 times starting from the same detuned
setting and the averaged results with one standard de-
viation are shown in Fig. 7. In the case of the prior
mean matched to the tuning task, BO with prior could
immediately find the global minimum without exploring
much of the parameter space. We then changed the lat-
tice distances so that the BO prior mean is mismatched

to the ground truth of the tuning task. BO with prior
first sampled around the minimum predicted by the prior
mean, which is denoted by the dotted line in Fig. 7(b).
Since there was a difference between the predicted and
observed beam sizes, it continued exploring the parame-
ter space and subsequently converged to the minimum.

In both cases, BO with prior converged to the true
minimum within 15 steps and was more sample-efficient
than BO with a constant mean prior and simplex al-
gorithm even for the two-dimensional task. This is ex-
pected to have a larger impact on higher-dimensional
tasks as the parameter space grows exponentially. Fur-
thermore, when BO with a Cheetah prior mean is applied
to real-world tasks, one can use system identification to
determine the mismatch between the simulated and the
real accelerator using the obtained data parasitically, as
shown in Section III C. This allows further reduction of
the discrepancy between the physics-based prior mean
and the real-world systems.

E. Integrating modular neural network surrogates
with beam dynamics simulations

Some beam dynamics such as collective effects require
expensive computations to simulate. This problem has
previously been solved using NN surrogate models. Data
from experiments or high-fidelity simulations can be used
to train an NN to approximate the real world or a high-
fidelity simulation with a high degree of accuracy, while
forward passes of NNs are cheap to compute. To date,
single NN surrogates are usually used to model, for ex-
ample, specific instruments or lattice setups [2, 4, 25].
As a result, these models have limited versatility and
reusability, and novel applications require the design and
training of new models, which necessitates further beam
time or computation to acquire new training data sets.

Modular surrogate models over all parameters of
generic accelerator elements can be used as a versatile,
reusable, and reconfigurable approach to modelling larger
parts of accelerators using NNs. This modular approach
integrates well with Cheetah, as is shown in Fig. 1 (d).
Modular NN surrogates computing expensive physical ef-
fects can seamlessly be wrapped as Cheetah elements
and combined with other elements using beam dynam-
ics models already implemented in Cheetah or other NN
surrogates. Crucially, NNs are differentiable and com-
monly implemented in PyTorch. Hence, they integrate
well with Cheetah’s PyTorch backend and preserve Py-
Torch’s automatic differentiation functionality.

In this use case example, we demonstrate the imple-
mentation of a quadrupole magnet augmented with space
charge effects modelled using a NN and integrate it as an
element in Cheetah. The straightforward implementa-
tion of an NN-based modular surrogate model would see
the track method in Cheetah implemented as a forward
pass of an NN

12

FIG. 8. Scheme of the NN-enhanced quadrupole module. The
incoming ParameterBeam P is multiplied with the magnet’s
transfer matrix RQ as in classical linear beam dynamics. The
NN model predicts changes ∆ΣSC in beam parameters due to
the space charge effects, resulting in the outgoing beam bout.

bout = fSC (bin|lQ, kQ) , (13)

mapping the incoming beam bin and quadrupole pa-
rameters (lQ, kQ) to an outgoing beam bout. Fortunately,
the effects of space charge in a quadrupole are secondary
to the linear beam dynamics, and linear beam dynamics
can be modelled easily. To reduce the complexity of the
function modelled by the NN and reduce the time and
data required to train it, the tracking function through
the quadrupole element is instead reformulated as

bout = flinear (bin|lQ, kQ) + ∆ΣSC (bin|lQ, kQ) , (14)

where flinear (bin|lQ, kQ) is the handcrafted com-
putation of the linear beam dynamics through a
quadrupole magnet already implemented by Cheetah and
∆ΣSC (bin|lQ, kQ) is the change induced to the outgoing
beam by space charge effects. The NN model is used to
approximate ∆ΣSC (bin|lQ, kQ). An illustration of this
process is provided in Fig. 8.

Data for training the modular NN surrogate model is
generated using Ocelot [10] with space charge effects and
second-order tracking through a single quadrupole ele-
ment. Space charge effects are calculated with a mesh
size of 633 and applied at a unit step size of 2 cm. A to-
tal of 100 000 samples are collected from uniform distri-
butions over length lQ and strength kQ of the quadrupole,
as well as log-uniform distributions over a subset of the
incoming beam parameters

x := (σx, σx′ , σy, σy′ , στ , σδ, E, q) ⊂ bin, (15)

where E is the beam energy and q is the total charge
of the beam. The ranges over which these are sampled
for data generation are shown in Table II. A log-uniform
distribution was chosen for the beam input parameters
because their order of magnitude is more relevant in space
charge computations.

The neural network model takes x as input and out-
puts

y := (∆σx,∆σx′ ,∆σy,∆σy′ ,∆στ ,∆σδ) (16)

TABLE II. Input parameter ranges for data set generation

Input parameter Range

σx [10 µm, 1mm]
σx′ [10 µrad, 1mrad]
σy [10 µm, 1mm]
σy′ [10 µrad, 1mrad]
στ [300 nm, 300 µm]
σδ

[
10−5, 10−3

]
q [1 pC, 5 nC]
E [1MeV, 1GeV]

TABLE III. NN training hyperparameters

Hyperparameter Value

Batch size 32
Hidden activation Sigmoid
Hidden layer width 256
Learning rate 2× 10−5

Number of epochs 959 (max. 10 000)
Number of hidden layers 4
Gradient descent algorithm Adam

the changes to the beam parameters resulting from space
charge effects when compared to linear beam dynamics,
such that

∆ΣSC (bin|lQ, kQ) ≈ y = fNN (x) . (17)

We choose an MLP architecture for the NN and the
Adam [45] gradient descent algorithm for adjusting the
parameters of the model. Early stopping with a patience
(number of steps with no improvement before the train-
ing is terminated) of 10 was used. The data set is split
60/20/20 into training, validation, and test sets. The log-
arithm is taken of all beam parameter inputs before they
are input into the NN model. All inputs and outputs
are scaled to fit a unit-normal distribution with scaling
on the beam parameter inputs performed after taking
the logarithm. Hyperparameters were tuned over a to-
tal of 303 trainings using Bayesian optimisation, with
PyTorch Lightning [51] used to implement the training
and Weights & Biases [52] for experiment tracking. The
best-observed hyperparameters used for the final model
are listed in Table III.
Figure 9 shows the beam sizes, beam divergence, bunch

length, and energy spread over different beam energies
as computed by the NN-augmented quadrupole imple-
mented in Cheetah, and compares them to Cheetah’s de-
fault linear beam dynamics tracking and Ocelot’s space
charge simulation. All other parameters of the incom-
ing beam and the quadrupole parameters are fixed. We
observe that the NN-augmented quadrupole implemen-
tation correctly infers larger effects of space charge at
low energies when compared to linear beam dynamics
simulations without space charge effects. Congruently,
the beam parameters computed using the NN-augmented
quadrupole in Cheetah closely match those computed us-

13

0

5

10

15

σ
x
 [
m

m
]

D
at

a
se

t
sa

m
p
le

(a)

0

50

100

150

σ
x
′
[m

ra
d
]

(b)

5

10

σ
y
 [
m

m
]

(c)

2 4 6 8 10

Energy [MeV]

0

50

100

σ
y
′
[m

ra
d
]

(d)

2 4 6 8 10

Energy [MeV]

0

5

10

σ
τ
 [
m

m
]

(e)

2 4 6 8 10

Energy [MeV]

0.0

0.1

0.2

0.3

σ
δ

(f)

Cheetah Neural Ocelot simple Ocelot space charge

FIG. 9. Outgoing beam parameters for the same incoming beam over different energies tracked with the default linear
quadrupole in Cheetah (black), the NN-augment space charge quadrupole (red), Ocelot without space charge calculations
(blue), and Ocelot with space charge calculations (green).

ing Ocelot with space charge effects, indicating that our
simulations accurately capture space charge effects.

We benchmark the computational speed of the NN-
augmented space charge quadrupole element against
Ocelot’s space charge simulation. For this evaluation,
the incoming beam and quadrupole settings considered
for the experiments in Fig. 9 are used with an energy
of 6.2MeV. Ocelot is configured with the same space
charge simulation setup as was used to generate the
training data. We find that Ocelot takes an average of
1.36 s to perform space charge tracking through a sin-
gle quadrupole, while the same simulation is performed
by the NN-augmented Cheetah element in an average
of 370µs – a reduction in compute time of more than
3 orders of magnitude. These benchmarks were run on
the same Apple M1 Pro SOC’s CPU considered in Sec-
tion IID. Unlike Ocelot’s space charge implementation,
Cheetah can take advantage of hardware acceleration on
GPU, which is expected to result in a further reduction
of compute times.

Moreover, because an NN is used for the modular sur-
rogate modelling, the computation remains fully differ-
entiable, in effect providing differentiable space charge
simulations that can seamlessly be integrated with other
beam dynamics simulations.

This example serves as a proof of concept for Chee-
tah’s ability to provide a platform for modular surro-
gate modelling. In fact, to the best of our knowledge,
this is the first instance of modular NN-based surro-
gate modelling in particle accelerator simulations. As
such, the integration of modular NN surrogate models
in Cheetah enables us to build data-driven, high-speed,
high-fidelity models of beam dynamics that would oth-
erwise require computationally expensive models. More-

over, Cheetah can also be integrated with modular NN
surrogates trained on real-world data, allowing for miti-
gation of model mismatches. In future work, we hope to
add more NN-augmented and fully NN-based elements to
Cheetah. While the presented example applies to para-
metrically defined beams, it can easily be extended to
beams defined as particle clouds by employing NN ar-
chitectures such as PointNet [53], which is intended as a
future extension of Cheetah.

IV. CONCLUSIONS

In this work, we introduced Cheetah, a Python pack-
age providing high-speed differentiable beam dynamics
simulations for machine learning applications. Cheetah
is easy to use, provides an extensible platform for fu-
ture differentiable models and integrates well with the
ML ecosystem in Python. Moreover, we demonstrated
Cheetah’s capabilities using five example applications.
We illustrated its speed training a NN policy to perform
transverse beam tuning while achieving zero-shot trans-
fer to the real world. Further, we showed how automatic
differentiation in Cheetah can be used for gradient-based
beamline tuning as well as gradient-based system iden-
tification. Cheetah’s usefulness as a differentiable prior
for Bayesian optimisation was also shown while optimis-
ing beam focusing through a FODO cell. Lastly, we pre-
sented an example of how Cheetah can easily be extended
by training a modular NN space charge model to predict
how space charge affects the beam when tracked through
a single quadrupole magnet.

Cheetah will see continued extension as a tool for our
work. We further hope that in the future, members of

14

the community will collaborate in extending Cheetah, for
example with already developed differentiable models of
processes in particle accelerators. Such collaboration and
integration will help make these tools more accessible to
the community. Further extensions of Cheetah planned
from our side include the integration of additional mod-
ular surrogate models, in particular for single particle
tracking based on PointNet [53], and batched parallel
execution of simulations to increase speeds further. In
addition, experiments using JAX [17] as a backend for
Cheetah might aid in attaining even faster simulation
speeds as was seen by switching the backend of Stable
Baselines3 to JAX in SBX [44].

CODE AVAILABILITY

The source code of Cheetah is hosted at https://
github.com/desy-ml/cheetah. The code for the pre-
sented use case examples is available from https://
github.com/desy-ml/cheetah-demos. More extensive
code regarding the RL example may be found at https:
//github.com/desy-ml/rl-vs-bo.

ACKNOWLEDGMENTS

This work has in part been funded by the IVF
project InternLabs-0011 (HIR3X) and the Initiative

and Networking Fund by the Helmholtz Association
(Autonomous Accelerator, ZT-I-PF-5-6). The au-
thors acknowledge support from DESY (Hamburg, Ger-
many) and KIT (Karlsruhe, Germany), members of the
Helmholtz Association HGF, as well as support through
the Maxwell computational resources operated at DESY
and the bwHPC at SCC, KIT. The authors thank Oliver
Stein for his contribution to JOSS, from which Chee-
tah was derived. Furthermore, the authors thank Felix
Theilen for the software maintenance work he performed
on Cheetah. Finally, the authors thank Frank Mayet for
providing help with the parallel version of ASTRA.

AUTHOR CONTRIBUTIONS

J.K. originally conceived and developed Cheetah as
a fast simulation code. Further development of Chee-
tah as a differentiable simulation code was done by J.K.
and C.X. J.K. undertook example studies of Cheetah on
reinforcement learning, gradient-based tuning, gradient-
based system identification, and modular neural network
surrogate modelling. C.X. performed example studies on
using Cheetah as a prior for Bayesian optimisation and
contributed to the other examples studies. J.K. wrote the
manuscript. C.X. contributed sections to the manuscript
and provided substantial edits. A.E. and A.S.G. secured
funding. All authors read and edited the manuscript.

[1] J. Kaiser, O. Stein, and A. Eichler, in Proceedings of
the 39th International Conference on Machine Learn-
ing , Proceedings of Machine Learning Research, Vol. 162,
edited by K. Chaudhuri, S. Jegelka, L. Song, C. Szepes-
vari, G. Niu, and S. Sabato (PMLR, 2022) pp. 10575–
10585.

[2] A. L. Edelen, S. G. Biedron, J. P. Edelen, S. V. Milton,
and P. J. V. D. Slot (JACoW Publishing, 2017) pp. 488–
491.

[3] K. Fujita, IEEE Access 9, 164017 (2021).
[4] J. Kaiser, A. Eichler, S. Tomin, and Z. Zhu (2023).
[5] J. Kaiser, C. Xu, A. Eichler, A. S. Garcia, O. Stein,

E. Bründermann, W. Kuropka, H. Dinter, F. Mayet,
T. Vinatier, F. Burkart, and H. Schlarb, Learning to
do or learning while doing: Reinforcement learning
and bayesian optimisation for online continuous tuning
(2023), arXiv:2306.03739 [cs.LG].

[6] C. Xu, J. Kaiser, E. Bründermann, A. Eichler, A.-S.
Müller, and A. Santamaria Garcia, in Proceedings of
the 14th International Particle Accelerator Conference,
14 (JACoW Publishing, Geneva, Switzerland, 2023) pp.
4487–4490.

[7] V. Kain, S. Hirlander, B. Goddard, F. M. Velotti, G. Z.
Della Porta, N. Bruchon, and G. Valentino, Physical Re-
view Accelerators and Beams 23, 124801 (2020).

[8] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey,
F. Carpanese, T. Ewalds, R. Hafner, A. Abdolmaleki,

D. Casas, C. Donner, L. Fritz, C. Galperti, A. Huber,
J. Keeling, M. Tsimpoukelli, J. Kay, A. Merle, J.-M.
Moret, and M. Riedmiller, Nature 602, 414 (2022).

[9] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev, et al., Nature 575 (2019).

[10] I. Agapov, G. Geloni, S. Tomin, and I. Zagorodnov, Nu-
clear Instruments and Methods in Physics Research 768
(2014).

[11] S. Tomin, I. Agapov, M. Dohlus, and I. Zagorodnov,
in Proc. of International Particle Accelerator Conference
(IPAC’17), Copenhagen, Denmark, 14-19 May, 2017 , In-
ternational Particle Accelerator Conference No. 8 (JA-
CoW, Geneva, Switzerland, 2017) pp. 2642–2645.

[12] Z. Zhang, A. Edelen, C. Mayes, J. Garrahan, J. Shtal-
enkova, R. Roussel, S. Miskovich, D. Ratner, M. Boese,
S. Tomin, G. Wang, and Y. Hidaka, in Proceedings of
the 13th International Particle Accelerator Conference
(IPAC 2022) (2022).

[13] R. Roussel, A. L. Edelen, T. Boltz, D. Kennedy,
Z. Zhang, X. Huang, D. Ratner, A. S. Garcia, C. Xu,
J. Kaiser, A. Eichler, J. O. Lubsen, N. M. Isenberg,
Y. Gao, N. Kuklev, J. Martinez, B. Mustapha, V. Kain,
W. Lin, S. M. Liuzzo, J. S. John, M. J. V. Streeter,
R. Lehe, and W. Neiswanger, Bayesian optimization al-
gorithms for accelerator physics (2023), arXiv:2312.05667
[physics.acc-ph].

https://github.com/desy-ml/cheetah
https://github.com/desy-ml/cheetah
https://github.com/desy-ml/cheetah-demos
https://github.com/desy-ml/cheetah-demos
https://github.com/desy-ml/rl-vs-bo
https://github.com/desy-ml/rl-vs-bo
https://proceedings.mlr.press/v162/kaiser22a.html
https://proceedings.mlr.press/v162/kaiser22a.html
https://proceedings.mlr.press/v162/kaiser22a.html
https://doi.org/10.1109/ACCESS.2021.3132942
https://arxiv.org/abs/2306.03739
https://doi.org/10.18429/JACoW-IPAC2023-THPL029
https://doi.org/10.18429/JACoW-IPAC2023-THPL029
https://doi.org/10.1103/PhysRevAccelBeams.23.124801
https://doi.org/10.1103/PhysRevAccelBeams.23.124801
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/https://doi.org/10.18429/JACoW-IPAC2017-WEPAB031
https://doi.org/https://doi.org/10.18429/JACoW-IPAC2017-WEPAB031
https://doi.org/10.18429/JACoW-IPAC2022-TUPOST058
https://doi.org/10.18429/JACoW-IPAC2022-TUPOST058
https://doi.org/10.18429/JACoW-IPAC2022-TUPOST058
https://arxiv.org/abs/2312.05667
https://arxiv.org/abs/2312.05667

15

[14] H. Touvron, L. Martin, K. Stone, P. Albert, A. Alma-
hairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen,
G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu,
B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez,
M. Khabsa, I. Kloumann, A. Korenev, S. Koura, M.-
A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu,
Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Moly-
bog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta,
K. Saladi, A. Schelten, R. Silva, E. Michael, S. Ranjan,
S. Xiaoqing, E. Tan, B. Tang, R. Taylor, A. Williams,
J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan,
M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,
S. Edunov, and T. Scialom, Llama 2: Open foundation
and fine-tuned chat models (2023).

[15] G. Team, Gemini: A family of highly capable multimodal
models (2023).

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, in Advances in Neural Information Pro-
cessing Systems 32 , edited by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett
(Curran Associates, Inc., 2019) pp. 8024–8035.

[17] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, and Q. Zhang, JAX: com-
posable transformations of Python+NumPy programs
(2018).

[18] K. Flöttmann, ASTRA – A space charge tracking algo-
rithm (1997).

[19] D. Sagan, Computational accelerator physics. Proceed-
ings, 8th International Conference, ICAP 2004, St. Pe-
tersburg, Russia, June 29-July 2, 2004, Nucl. Instrum.
Meth. A558, 356 (2006), proceedings of the 8th Interna-
tional Computational Accelerator Physics Conference.

[20] M. Borland, in Proceedings of the 6th International Com-
putational Accelerator Physics Conference (2000).

[21] CERN, MAD-X – Methodical accelerator design (1990).
[22] G. Iadarola, R. D. Maria, S. Lopaciuk, A. Abramov,

X. Buffat, D. Demetriadou, L. Deniau, P. Hermes, P. Kic-
siny, P. Kruyt, A. Latina, L. Mether, K. Paraschou,
Sterbini, F. V. D. Veken, P. Belanger, P. Niedermayer,
D. D. Croce, T. Pieloni, and L. V. Riesen-Haupt,
Xsuite: An integrated beam physics simulation frame-
work (2023).

[23] J. G.-A. et al., in Proc. IPAC’23 , IPAC’23 - 14th Inter-
national Particle Accelerator Conference No. 14 (JACoW
Publishing, Geneva, Switzerland, 2023) pp. 2797–2800.

[24] T. Dorigo, A. Giammanco, P. Vischia, M. Aehle,
M. Bawaj, A. Boldyrev, P. de Castro Manzano,
D. Derkach, J. Donini, A. Edelen, et al., Reviews in
Physics , 100085 (2023).

[25] D. Ratner, F. Christie, J. Cryan, A. Edelen, A. Lutman,
and X. Zhang, Optics express 29, 20336 (2021).

[26] R. Roussel, A. Edelen, D. Ratner, K. Dubey, J. P.
Gonzalez-Aguilera, Y. K. Kim, and N. Kuklev, Phys.
Rev. Lett. 128, 204801 (2022).

[27] R. Roussel and A. L. Edelen, Applications of differen-
tiable physics simulations in particle accelerator model-
ing (2022).

[28] R. Roussel, A. Edelen, C. Mayes, D. Ratner, J. P.
Gonzalez-Aguilera, S. Kim, E. Wisniewski, and J. Power,
Phys. Rev. Lett. 130, 145001 (2023).

[29] S. Gasiorowski, Y. Chen, Y. Nashed, P. Granger,
C. Mironov, D. Ratner, K. Terao, and K. V. Tsang, Dif-
ferentiable simulation of a liquid argon time projection
chamber (2023).

[30] J. Qiang, Phys. Rev. Accel. Beams 26, 024601 (2023).
[31] O. Stein, J. Kaiser, and A. Eichler, in Proceedings of

the 13th International Particle Accelerator Conference
(2022).

[32] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel, in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (2017) pp. 23–
30.

[33] J. Kaiser, C. Xu, O. Stein, and F. Theilen, Cheetah,
https://github.com/desy-ml/cheetah (2021).

[34] https://cheetah-accelerator.readthedocs.io.
[35] K. L. Brown, Adv. Part. Phys. 1, 71 (1968).
[36] J. Rosenzweig and L. Serafini, Phys. Rev. E 49, 1599

(1994).
[37] F. Andreas, LatticeJSON, https://github.com/

nobeam/latticejson (2019).
[38] E. Panofski et al., Instruments 5 (2021).
[39] F. Burkart, R. Aßmann, H. Dinter, S. Jaster-Merz,

W. Kuropka, F. Mayet, and T. Vinatier, in Proceed-
ings of the 31st International Linear Accelerator Confer-
ence (LINAC’22), International Linear Accelerator Con-
ference No. 31 (JACoW Publishing, Geneva, Switzerland,
2022) pp. 691–694.

[40] A. Eichler, F. Burkart, J. Kaiser, W. Kuropka, O. Stein,
C. Xu, E. Bründermann, and A. Santamaria Garcia, in
12th International Particle Accelerator Conference (JA-
CoW Publishing, 2021) pp. 2182–2185.

[41] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis,
G. d. Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG,
M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff,
J. J. Tai, A. T. J. Shen, and O. G. Younis, Gymnasium
(2023).

[42] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, OpenAI Gym
(2016).

[43] S. Fujimoto, H. van Hoof, and D. Meger, Address-
ing function approximation error in actor-critic methods
(2018), preprint available at https://arxiv.org/abs/

1802.09477v3.
[44] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus,

and N. Dormann, Journal of Machine Learning Research
22, 1 (2021).

[45] D. P. Kingma and J. Ba, CoRR abs/1412.6980 (2014).
[46] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and

N. de Freitas, Proceedings of the IEEE 104, 148 (2016).
[47] J. Duris, D. Kennedy, A. Hanuka, J. Shtalenkova, A. Ede-

len, P. Baxevanis, A. Egger, T. Cope, M. McIntire, S. Er-
mon, and D. Ratner, Physical Review Letters 124 (2020).

[48] C. Xu, R. Roussel, and A. Edelen, arXiv preprint
arXiv:2211.09028 (2022).

[49] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton,
B. Letham, A. G. Wilson, and E. Bakshy, in Advances
in Neural Information Processing Systems 33 (2020).

[50] R. Roussel, A. Edelen, A. Bartnik, and C. Mayes, in Proc.
IPAC’23 , IPAC’23 - 14th International Particle Accel-
erator Conference No. 14 (JACoW Publishing, Geneva,
Switzerland, 2023) pp. 4796–4799.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://github.com/google/jax
http://github.com/google/jax
https://www.desy.de/~mpyflo/
https://www.desy.de/~mpyflo/
https://doi.org/https://doi.org/10.1016/j.nima.2005.11.001
https://doi.org/https://doi.org/10.1016/j.nima.2005.11.001
https://madx.web.cern.ch/madx/
http://arxiv.org/abs/2310.00317
http://arxiv.org/abs/2310.00317
https://doi.org/10.18429/JACoW-IPAC2023-WEPA065
https://doi.org/10.1103/PhysRevLett.128.204801
https://doi.org/10.1103/PhysRevLett.128.204801
http://arxiv.org/abs/2211.09077
http://arxiv.org/abs/2211.09077
http://arxiv.org/abs/2211.09077
https://doi.org/10.1103/PhysRevLett.130.145001
http://arxiv.org/abs/2309.04639
http://arxiv.org/abs/2309.04639
http://arxiv.org/abs/2309.04639
https://doi.org/10.1103/PhysRevAccelBeams.26.024601
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://github.com/desy-ml/cheetah
https://cheetah-accelerator.readthedocs.io
https://doi.org/10.1103/PhysRevE.49.1599
https://doi.org/10.1103/PhysRevE.49.1599
https://github.com/nobeam/latticejson
https://github.com/nobeam/latticejson
https://doi.org/10.18429/JACoW-LINAC2022-THPOJO01
https://doi.org/10.18429/JACoW-LINAC2022-THPOJO01
https://doi.org/10.18429/JACoW-LINAC2022-THPOJO01
https://doi.org/10.18429/JACoW-IPAC2021-TUPAB298
https://doi.org/10.5281/zenodo.8127026
https://arxiv.org/abs/1802.09477v3
https://arxiv.org/abs/1802.09477v3
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.1109/JPROC.2015.2494218
https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://doi.org/doi:10.18429/jacow-ipac2023-thpl164
https://doi.org/doi:10.18429/jacow-ipac2023-thpl164

16

[51] W. Falcon and The PyTorch Lightning team, PyTorch
Lightning (2019).

[52] L. Biewald, Experiment tracking with Weights and Bi-
ases (2020), software available from wandb.com.

[53] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, arXiv preprint
arXiv:1612.00593 (2016).

https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://www.wandb.com/
https://www.wandb.com/

	Cheetah: Bridging the Gap Between Machine Learning and Particle Accelerator Physics with High-Speed, Differentiable Simulations
	Abstract
	Introduction
	Related work

	Fast differentiable linear beam dynamics in PyTorch
	Beam tracking in Cheetah
	Speed optimisation
	Integration with other codes
	Speed benchmarks

	Use case examples
	High-speed simulations for reinforcement learning
	Gradient-based beam tuning and lattice optimisation
	Gradient-based system identification and virtual diagnostics
	Physics-based prior mean for Bayesian optimisation
	Integrating modular neural network surrogates with beam dynamics simulations

	Conclusions
	Code availability
	Acknowledgments
	Author contributions
	References

