KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning to Do or Learning While Doing: Reinforcement Learning and Bayesian Optimisation for Online Continuous Tuning

Kaiser, Jan ; Xu, Chenran ORCID iD icon 1; Eichler, Annika; Garcia, Andrea Santamaria 1; Stein, Oliver; Bründermann, Erik ORCID iD icon 1; Kuropka, Willi; Dinter, Hannes; Mayet, Frank; Vinatier, Thomas; Burkart, Florian; Schlarb, Holger
1 Institut für Beschleunigerphysik und Technologie (IBPT), Karlsruher Institut für Technologie (KIT)

Abstract:

Online tuning of real-world plants is a complex optimisation problem that continues to require manual intervention by experienced human operators. Autonomous tuning is a rapidly expanding field of research, where learning-based methods, such as Reinforcement Learning-trained Optimisation (RLO) and Bayesian optimisation (BO), hold great promise for achieving outstanding plant performance and reducing tuning times. Which algorithm to choose in different scenarios, however, remains an open question. Here we present a comparative study using a routine task in a real particle accelerator as an example, showing that RLO generally outperforms BO, but is not always the best choice. Based on the study's results, we provide a clear set of criteria to guide the choice of algorithm for a given tuning task. These can ease the adoption of learning-based autonomous tuning solutions to the operation of complex real-world plants, ultimately improving the availability and pushing the limits of operability of these facilities, thereby enabling scientific and engineering advancements.


Volltext §
DOI: 10.5445/IR/1000168548
Veröffentlicht am 19.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Beschleunigerphysik und Technologie (IBPT)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000168548
HGF-Programm 54.11.11 (POF IV, LK 01) Accelerator Operation, Research and Development
Verlag arxiv
Vorab online veröffentlicht am 06.06.2023
Schlagwörter Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Accelerator Physics (physics.acc-ph)
Nachgewiesen in arXiv
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page