
Hazard Analysis of Collaborative Human-Robot Systems:

A Simulation- and Agent-based Approach

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Tom P. Huck

Tag der mündlichen Prüfung: 09.02.2024

1. Referent: Prof. Dr. Tamim Asfour

2. Referent: Dr. Torsten Kröger

I would like to express my gratitude to the people who supported me:

First and foremost, I would like to thank my supervisors Tamim Asfour and Torsten

Kröger, as well as my colleagues at IAR-IPR, especially the "Safety Group": Christoph

Ledermann, Patrick Schlosser, Woo-Jeong Baek, Xi Huang, Wolfgang Wiedmeyer, and

Michael Mende. The support from all of you has been invaluable.

Parts of this work stem from a fruitful collaboration with Chalmers University, where I

worked with Constantin Cronrath, Bengt Lennartson, Martin Fabian, Yuvaraj Selvaraj,

and Ze Zhang. It has been a pleasure to work with you.

My special thanks go to my family and to Rebecca for their support during difficult times

of my PhD research.

I dedicate this thesis to my parents who showed me the importance of being curious and

open-minded, a mindset which is essential in research. You are the best.

Abstract

Hazard Analysis of Collaborative Human-Robot

Systems:

A Simulation- and Agent-based Approach

With the trend towards human-robot collaboration, robot systems are getting both
more complex and more safety-critical. To ensure safety of humans, and to meet norma-
tive and legal requirements, safety-critical robot systems need to be analyzed thoroughly
for potential safety flaws and hazards before going into operation. In current practice, this
hazard analysis is largely based on human reasoning, experience, expert knowledge, and
simple tools such as checklists. With increasing system complexity, additional tools for
hazard analyses are required.

This thesis proposes a simulation- and agent-based approach for hazard analysis of
collaborative human-robot systems. The proposed approach draws on the concept of
agent-based testing. In agent-based testing, the analyzed system, also known as the sys-
tem under test (SUT), is embedded into a simulation environment where one or multiple
testing agents are present. The testing agents are entities in the simulation model which
interact with the SUT, thereby stimulating the SUT and allowing analysts to test whether
the SUT responds in a safe manner. In the context of human-robot collaboration, the
agent-based approach allows it to simulate human robot interactions and observe whether
the robot interacts with humans in a safe manner. A crucial question in agent-based test-
ing is how to create agent behaviors which are suitably critical to expose safety flaws and
hazards in the SUT. To address this question, the thesis frames hazard analysis as a search
problem. Given a simulation model of SUT and Agent, a safety specification, and a search
space of possible agent behaviors, the goal of the search problem is to find agent behav-
iors to which the SUT responds in an unsafe manner. For solving this search problem, the
thesis proposes the concept of risk-guided search, which uses domain-specific risk met-
rics in conjunction with search- and reinforcement learning algorithms. By attempting to
maximize the risk metric, these algorithms learn to create high-risk agent behaviors which
lead to unsafe states and thereby expose hazards.

The risk-guided search concept is demonstrated and validated in experiments from the
domain of industrial human-robot collaboration. In these experiments, simulation models
of the test scenarios are created which contain certain safety-critical design flaws that are
deliberately introduced into the models in order to create hazards. The risk-guided search
is then deployed to identify these hazards.

While the results are promising, there are certain limitations to the risk-guided search
approach. In particular, there is a fundamental trade-off between accuracy of the simu-
lation and exhaustiveness of the search: A high level of detail and complexity leads to

iii

a search-space explosion, so that an exhaustive search generally becomes infeasible. To
address this limitation, the thesis proposes a second approach, namely a two-layer anal-
ysis which analyzes the system both on a higher abstraction level where an exhaustive
exploration is possible, and on a less abstract simulation model which provides a higher
level of detail. The performance of risk-guided search and two-level approach, as well
as their respective strength and weaknesses, are compared. Although the two-layer ap-
proach outperforms the risk-guided search, the experiments also indicate cases where the
risk-guided search has certain advantages, indicating that both approaches are merited.

With respect to application in safety-critical use cases, it should be emphasized that
the techniques developed in this thesis should be seen as an addition to augment the exist-
ing spectrum of hazard analysis methods, and not as a replacement for existing methods.

Keywords: Robot Safety, Risk Assessment, Hazard Analysis, Simulation

iv

Zusammenfassung

Gefahrenanalyse von Kollaborativen

Mensch-Roboter Systemen: Ein Simulations- und

Agentenbasierter Ansatz

Mit dem Trend zur Mensch-Roboter-Kollaboration werden Robotersysteme sowohl
komplexer als auch sicherheitskritischer. Um die Sicherheit von Menschen zu gewährleis-
ten und normative und gesetzliche Anforderungen zu erfüllen, müssen sicherheitskritische
Robotersysteme vor der Inbetriebnahme gründlich auf mögliche Gefahren hin analysiert
werden. In der aktuellen Praxis basiert diese Gefahrenanalyse weitgehend auf menschlich-
em Verstand, Erfahrung, Expertenwissen und einfachen Werkzeugen wie Checklisten. Mit
zunehmender Systemkomplexität werden zusätzliche Werkzeuge für die Gefahrenana-
lyse benötigt.

In dieser Arbeit wird ein simulationsbasierter Ansatz für die Gefahrenanalyse von
kollaborativen Robotersystemen vorgeschlagen. Der vorgeschlagene Ansatz stützt sich
auf das Konzept des agentenbasierten Testens. Beim agentenbasierten Testen wird das zu
analysierende System, auch System under Test (SUT) genannt, in eine Simulationsumge-
bung eingebettet, in der sogenannte Testagenten vorhanden sind. Bei den Testagenten
handelt es sich um Entitäten im Simulationsmodell, die mit dem SUT interagieren. Die
Testagenten regen das SUT zur Reaktion an, wobei beobachtet werden kann, ob sich das
SUT in einer sicheren Weise verhält. Im Kontext der Mensch-Roboter-Kollaboration er-
laubt der agentenbasierte Ansatz die Simulation von Mensch-Roboter-Interaktionen. So
kann virtuell getestet werden, ob der Roboter auf sichere Weise mit Menschen interagiert.

Eine entscheidende Frage beim agentenbasierten Testen lautet, wie man ein Verhal-
ten der Testagenten erzeugt, welches hinreichend sicherheitskritisch ist, um bestehende
Gefahren aufzudecken. In dieser Arbeit wird diese Herausforderung als Suchproblem
formalisiert. Ausgehend von einem Simulationsmodell des SUT und des Agenten, einer
Sicherheitsspezifikation und einem Suchraum möglicher Verhaltensweisen des Agenten
besteht das Ziel des Suchproblems darin, Verhalten zu finden, auf die das SUT in einer
unsicheren Weise reagiert. Zur Lösung dieses Suchproblems wird das Konzept der risiko-
geleiteten Suche vorgeschlagen. Hierbei werden domänenspezifische Risikometriken in
Verbindung mit Such- und Reinforcement-Learning Algorithmen verwendet. Durch die
Maximierung der Risikometrik lernen diese Algorithmen, unsichere Zustände zu provo-
zieren und decken somit Gefährdungen auf.

Das Konzept der risikogeleiteten Suche wird in Experimenten aus dem Bereich der
industriellen Mensch-Roboter-Kollaboration demonstriert und validiert. In diesen Experi-
menten werden Simulationsmodelle von kollaborativen Robotersystemen betrachtet. In
diese Modelle werden gezielt sicherheitskritische Fehler eingebracht, um potentielle Ge-

v

fahren zu erzeugen. Anhand dieser gefahrenbehafteten Systeme wird getestet, ob die risi-
kogeleitete Suche zielgerichtet Gefahren identifizieren kann.

Auch wenn die Ergebnisse der Experimente vielversprechend ausfallen, hat der An-
satz der risikogeleiteten Suche gewisse Grenzen. Insbesondere gibt es eine grundlegende
Limitation im Hinblick auf die Genauigkeit der Simulation und die Vollständigkeit der
Suche: Ein steigender Detailgrad führt zu einer Explosion des Suchraums, sodass eine
vollständige Exploration im Allgemeinen nicht mehr durchführbar ist. Um dieser Ein-
schränkung zu begegnen, schlägt die Arbeit einen zweiten Ansatz vor. Hierbei handelt es
sich um eine zweischichtige Analyse, die das System sowohl auf einer höheren Abstrak-
tionsebene analysiert, auf der eine erschöpfende Suche möglich ist, als auch auf einem
weniger abstrakten Ebene mit einem detaillierteren Simulationsmodell. Die Performanz
der risikogeleiteten Suche wird mit der des zweistufigen Ansatzes verglichen. Obwohl die
Performanz des zweistufigen Ansatzes die der risikogeleiteten Suche übertrifft, zeigen die
Experimente auch Fälle, in denen die risikogeleitete Suche gewisse Vorteile hat, sodass
beide Ansätze ihre Berechtigung haben.

Im Hinblick auf die Anwendung in sicherheitskritischen Anwendungsfällen ist zu be-
tonen, dass die in dieser Arbeit entwickelten Methoden als Ergänzung des bestehenden
Spektrums von Gefahrenanalyseverfahren zu sehen sind und nicht als Ersatz für beste-
hende Verfahren.

Stichwörter: Robotik, Sicherheit, Risikobeurteilung, Gefahrenanalyse, Simulation

vi

Contents

Abstract iii

Zusammenfassung v

1. Introduction 1

1.1. Motivation . 1
1.2. Research Questions . 2
1.3. Contributions of this Thesis . 3
1.4. Limits on the Scope of this Thesis . 5
1.5. Overview of Content . 6

2. Preliminaries 9

2.1. Human-Robot Collaboration and Safety 9
2.1.1. Terminology . 9
2.1.2. HRC-related Safety Standards 11
2.1.3. Implementation of Safe HRC Systems 13
2.1.4. Human-Robot Collisions . 14
2.1.5. Risk Assessment, Risk Mitigation, and Hazard Analysis of HRC

systems . 16
2.2. Theoretical Background . 19

2.2.1. Markov Decision Process . 19
2.2.2. Monte Carlo Tree Search . 21
2.2.3. Automata . 23
2.2.4. Supervisory Control Theory . 27

3. Related Work 31

3.1. Semi-Formal Hazard Analysis Methods 33
3.1.1. Systems-Theoretic Process Analysis (STPA) 33
3.1.2. HAZOP and HAZOP-UML . 34
3.1.3. Task-oriented Hazard Analysis 35

3.2. Formal and Rule-based Methods . 36
3.2.1. Model Checking . 36
3.2.2. Safety Proofs with Differential Dynamic Logic 37
3.2.3. Rule-based Expert Systems . 38

3.3. Testing-based Methods . 39
3.3.1. Agent-based Testing . 39
3.3.2. Coverage-based Testing . 40
3.3.3. Falsification . 40
3.3.4. Testing in Virtual Reality . 41

3.4. Current Industrial Practice . 42
3.5. Discussion of Related Work and Limitations of Current Methods 43

vii

Contents

4. Simulation- and Agent-based Hazard Analysis Approach 49

4.1. Problem Definition . 49
4.1.1. Simulation Model and Safety Specification 49
4.1.2. Agent-based Simulation . 51
4.1.3. Hazard Analysis as a Search Problem 53

4.2. Proposed Solutions . 56
4.2.1. Risk-Guided Search . 56
4.2.2. Automata-constrained Risk-guided Search 57
4.2.3. Two-level Hazard Analysis . 58

5. Risk-Guided Search 59

5.1. Risk Metric . 59
5.1.1. Motivation for Introducing a Risk Metric 59
5.1.2. Choice of Risk Metrics . 61

5.2. Search Method . 63
5.2.1. Formulation of Search Problem 63
5.2.2. Search Algorithms Used in this Thesis 63
5.2.3. Further Search Algorithms . 65

5.3. Experiments . 65
5.3.1. Goal and Methodology . 65
5.3.2. Scenarios . 66
5.3.3. Results . 68
5.3.4. Mobile Robot Case Study . 69
5.3.5. Discussion of the Experiments 72

5.4. Chapter Summary . 72

6. Automata-constrained Risk-guided Search 75

6.1. Introductory Example . 76
6.2. Description Format for Agent Behaviors 77
6.3. Constraints on the Agent’s Behavior . 79
6.4. MCTS Adaptation for Automata-Constrained Risk Guided Search 81
6.5. Experiments . 82

6.5.1. Goal and Methodology . 82
6.5.2. Implementation . 84
6.5.3. Results . 84

6.6. Chapter Summary . 86

7. Two-level Hazard Analysis 89

7.1. Exhaustiveness vs. Accuracy: A Fundamental Trade-Off 89
7.2. Overview of the Proposed Approach . 90
7.3. First Level: Synthesis of Critical Event Sequences 91

7.3.1. Abstraction of the Collaborative System 91
7.3.2. Abstraction of the Safety Specification 94
7.3.3. Overapproximation of Unsafe Behaviors 95
7.3.4. Synthesis of Critical Event Sequences 97

7.4. Second Level: Simulation-based Evaluation of Synthesized Event Se-
quences . 97

7.5. Experiments . 100
7.5.1. Goal and Methodology . 100

viii

Contents

7.5.2. Implementation . 100
7.5.3. Results . 101
7.5.4. Discussion . 104

7.6. Chapter Summary . 105

8. Discussion and Outlook 107

8.1. Contributions of this Thesis . 107
8.2. Limitations . 109
8.3. Future Work . 110
8.4. Transfer to other Application Domains 111
8.5. Final Remarks . 112

9. Appendix 129

A. Experiment Details . 129
A.1. Experiments from Chapter 5 . 129
A.2. Experiments from Chapter 6 . 134
A.3. Experiments from Chapter 7 . 137

B. Algorithms . 138
C. Modeling of HRC Systems with Supremica 141

C.1. Modeling . 141
C.2. Synthesis . 145
C.3. Example . 146

List of Figures 156

List of Tables 157

List of Algorithms 159

ix

1. Introduction

1.1. Motivation

Human-robot collaboration (HRC) is a type of human-robot interaction where humans
and robots collaborate to achieve shared goals [25]. Often, this entails human and robot
working together in shared workspaces or even in direct physical interaction, which requi-
res safe robot systems. To address this need, an increasing number of robot manufacturers
offer so-called cobots, that is, robots with safety features intended specifically for collabo-
rative use. Although the share of cobots compared to traditional industrial robots is still
small, it has been increasing steadily over the last five years [95]. Various HRC use-cases
are currently being explored, such as in manufacturing [92], construction [126], service
[175], or personal care [38].

Functional safety is a crucial requirement for HRC systems. In the context of HRC,
functional safety means that humans who are interacting with a robot shall not be sub-
jected to unacceptable risk of injury [93]. Over recent years, a large number of research
works have been published to address this need. Various safety measures for collabora-
tive robots have been developed and standards have been published to detail the safety
requirements to which robots must comply [117, 98, 100, 102].

However, endowing robots with safety measures is – on its own – not sufficient to
achieve functional safety. One also needs to ensure that the safety measures are appropri-
ate to the use-case and sufficient to address potential hazards that might occur in a given
system context. In other words, there needs to be a procedure to analyze if the designed
system is actually safe. Such a procedure is called risk assessment. A risk assessment
typically entails an analysis of the system as well as an identification and estimation of
potential risks. On this basis, safety experts decide if the risks are acceptable or if further
safety measures are required [96]. In comparison to the rapid development of HRC, risk
assessment methods are lagging behind, as most methods are still based on human rea-
soning, experience, and expert knowledge [89, 84]. Although this approach is viable for
relatively simple HRC systems, it does not scale well with increasing system complexity.

This thesis explores a novel approach to support the risk assessment of HRC systems.
In particular, the thesis focuses on the hazard analysis phase of the risk assessment pro-
cedure. The goal of the hazard analysis is to analyze if a system can reach any unsafe
states, and how these states manifest themselves in terms of hazardous situations (such
as a particular human-robot collision). This is a crucial aspect of the risk assessment,
because risks can only be assessed and mitigated if the underlying hazards are identi-
fied in the first place. However, hazard analysis is often challenging, because safety is
an emergent property which results from dynamic interactions between various system
components. Experience in safety engineering has shown that analyzing such emergent
properties places a high burden on human analysts and frequently leads to hazards being

1

1. Introduction

overlooked [125]. Another challenge is the inherent non-determinism and variability of
human behavior. In a human-robot system, one cannot assume that humans behave as
expected. Human errors or otherwise unforeseen behavior can lead to hazardous situa-
tions and therefore also needs to be included in the analysis, adding a further layer of
complexity to the problem.

One possible way to mitigate this complexity is to conduct hazard analysis on the
basis of system models. Different types of models are conceivable for this purpose, in-
cluding semi-formal models (e.g. UML or flow diagrams), formal models (e.g., automata
or petri nets), and simulation models. In this work, simulation models are chosen as the
main approach. Simulation has long been used for the development of robot systems.
Since simulation is already a part of many development processes, simulation models are
readily available in many cases and can be re-purposes for hazard analysis. Furthermore,
simulations can provide a relatively high level of detail, especially with respect to spatial
and physical aspects which are particularly important for HRC. However, despite these
advantages, simulation-based hazard analysis is still relatively sparsely researched in the
domain of robotics. It is the goal of this work to demonstrate that simulation can be a
beneficial tool for hazard analysis of HRC systems. To achieve this, a number of open
research questions need to be addressed, as will discussed in the following section.

This thesis uses industrial HRC applications to demonstrate the proposed methods.
However, the research questions which are addressed are also relevant for other HRC
types of systems and even beyond the domain of robotics.

1.2. Research Questions

RQ1: How to analyze increasingly complex robot systems for potential hazards?

Traditionally, safety engineering has been focused on ensuring that individual safety-
critical systems, such as sensors or actuators, behave according to their specifications and
do not exceed certain failure probabilities [93, 101]. However, complex safety-critical
systems consist of a large number of subsystems which interact with each other and with
the system environment in a variety of ways. Safety at the system level is therefore an
emergent property [125]. In other words, even if each subsystem operates reliably and
according to its specifications, unsafe behaviors may still occur due to unintended inter-
actions between multiple subsystems or between subsystems and system environment.
Emergent properties cannot be sufficiently assessed when considering only subsystems
without taking into account interactions between them, and between system and system
environment. As a consequence, there may be hazards which only emerge under specific
circumstances, e.g. when the system interacts with its system environment in a specific
manner. Such hazards can remain undetected in the design phase of a system but then
emerge later in operation to cause accidents. Traditional safety engineering methods focus
on hazards which arise due to system malfunctions, such as random component failures.
Developing methods to identify emergent hazards on a system-level, however, is still an
open challenge, in particular with respect to increasing system complexity. This thesis
aims to addresses this challenge in the context of human-robot collaboration. However,
the research question is also relevant in a wider context, since similar challenges also exist
in other safety-critical domains (e.g., autonomous driving).

2

1.3. Contributions of this Thesis

RQ2: How to formalize and automate the task of hazard analysis?

As mentioned in the introduction, the analysis of safety-critical systems is part of a
process known as risk assessment. To date, the practice of risk assessment has been largely
informal. While there are general guidelines and simple tools such as checklists, the core
tasks still rely mainly on human reasoning [89, 84]. As the complexity of safety-critical
systems increases, this approach alone is no longer sufficient. Automated tools can be a
valuable complement to human analysts when analyzing complex systems. However, to
enable automated analyses, the informal problem of identifying hazards based on human
reasoning must be translated into a formal problem definition. This thesis addresses this
challenge by proposing a framework in which hazard analysis is formalized in such a
way that it can be solved algorithmically, thereby enabling the development of automated
tools which can support the human reasoning that is applied in current risk assessment
procedures.

RQ3: How to mitigate search-space complexity in simulation-based testing?

Search space complexity is a crucial challenge in the analysis of safety-critical sys-
tems. Robot systems may encounter a wide range of different situations and interactions
with their environment. This can lead to a vast set of different conditions under which the
behavior of a system needs to be analyzed. Furthermore, it is often the case that unsafe
system states are relatively rare in comparison to safe states. Efficient search techniques
are needed to mitigate search space explosion problems and find conditions that lead to
unsafe states. Furthermore, there is a fundamental conflict between the detail and the
exhaustiveness of model-based hazard analyses. The more detailed a system is modeled,
the more computational cost is associated with evaluation of the model’s behavior in a
given scenarios. Thus, an increasing level of detail makes it more difficult to achieve an
exhaustive analysis. On the other hand, more abstract models with smaller state spaces
can enable exhaustive analyses, but cannot represent the real-world system accurately. For
effective hazard analyses, a suitable trade-off needs to be found.

1.3. Contributions of this Thesis

Contribution 1: A Novel Approach for Safety Testing of Collaborative

Robot Systems in Simulation

RQ1 has raised the issue of identifying emergent hazards in complex systems. This
thesis investigates the use of simulation-based testing as a possible approach to address
this challenge. While simulation-based testing is frequently used to verify and validate
individual components such as control code, this work focuses on system-level testing,
that is, considering the behavior of the robot system as a whole and, most importantly, its
interaction with humans. A special emphasis is placed on identifying emergent hazards
which result from interactions between robot and human. To that end, the thesis leverages
the concept of agent-based testing [13]. Agent-based testing is a technique in which the
analyzed system, also referred to system under test (SUT) is embedded in a simulation
environment along with so-called test agents. The test agents are dynamic entities within

3

1. Introduction

the simulation that interact with the SUT. By creating different agent behaviors, the SUT
is tested in a variety of different interaction scenarios. Agent-based testing is particularly
suitable for the analysis of human-robot interactions. By modeling the human as a test-
ing agent, one can subject the robot system to test cases which capture a wide range of
different human-robot interactions.

The agent-based testing approach also addresses RQ2. Recall that RQ2 has raised the
question of how to formalize and automate hazard identification. Recall that the goal of
hazard analyses is to find situations in which the robot system behaves in an unsafe man-
ner. In an agent-based test environment, this translates to finding agent behaviors which
cause place the system to enter an unsafe state. Thus, the hazard identification problem
essentially takes the form of a search problem where the search space consists of possi-
ble agent behaviors. By framing the hazard identification problem in this way, it can be
solved automatically using appropriate search algorithms. The automated generation and
execution of agent behaviors in simulation allows evaluation of a large number of simu-
lated interaction sequences which would be impossible with the time-consuming manual
creation of test cases.

Contribution 2: Risk-guided Search and Safety Testing with Adversarial

Agents

As stated in RQ3, a crucial challenge in hazard identification is to find conditions
under which unsafe states occur, especially as these unsafe states are often relatively rare
and search spaces are complex. Some hazards only manifest themselves under specific
conditions. If the agent’s behaviors do not cause the SUT to enter these critical states,
existing hazards may remain undetected. Thus, one needs to create critical conditions
under which potential system hazards become observable. To address this challenge, this
thesis proposes the method of risk-guided search. In this method, the test agents act as au-
tonomous entities within the simulation. Controlled by heuristic search algorithms, they
learn to adapt their behavior based on past interaction sequences. This ability is exploited
to automatically create critical interaction scenarios. The creation of agent behaviors is
guided by a domain-specific risk metric. The risk metric assigns a risk score to each agent
behavior, based on domain-specific features extracted from the simulation, such as dis-
tances, speeds, and collision forces. The obtained risk metric is fed back as a reward to
the agent. The agent attempts to behave in a way which maximizes the risk metric. Thus,
the agent essentially acts as an adversarial agent which attempts to expose weak points and
hazards in the SUT. As it will be shown in multiple experiments throughout this thesis,
such an adversarial testing approach is significantly more effective in exposing hazards
than conventional random sampling approaches. For modeling of more complex interac-
tion scenarios, a variant called automata-constrained risk-guided search is introduced. In
this variant, the agent is constrained to certain feasible behaviors which are encoded in
the form of extended finite automata (EFA). The EFA limits the search space to a partic-
ular set of potentially relevant behaviors. This further mitigates search complexity and
excludes unrealistic or infeasible behaviors.

4

1.4. Limits on the Scope of this Thesis

Contribution 3: Two-level Analysis combining Formal Verification and

Simulation-based Testing

RQ3 also states that it is necessary to find a trade-off between the level of detail and
the exhaustiveness of the analysis. To that end, this thesis proposes a two-level analysis
approach which attempts to strike a balance between abstract but exhaustive formal anal-
ysis methods and detailed but non-exhaustive simulation-based tests. This method relies
on system models on two distinct abstraction levels: An abstract formal model in the form
of extended finite automata, and a more detailed simulation model. The formal level is
treated as a pre-processing step to the simulation-based analysis. By leveraging synthesis
methods for discrete event systems, a set of unsafe agent behaviors is extracted from the
automata model. These agent behaviors are then used as input to the simulation model,
where the resulting simulation runs are investigated in more detail. Experiments show that
the two-level analysis outperforms both random sampling and the previously introduced
risk guided search. However, it comes at the cost of an increased modeling effort.

1.4. Limits on the Scope of this Thesis

This thesis has several contact points with other, related research areas. In order to
clearly delimit the scope of the work and to avoid misunderstandings, some distinctions
from other research fields are drawn in the following.

First, although this thesis presents simulation-based methods, it is not concerned with
how to create simulation models of HRC systems. Of course, detailed and accurate simu-
lation models are essential for successful application of these methods in practice. How-
ever, the development of simulation models, especially with respect to digital modeling
of humans, is a separate field of research with its own research challenges. Here, it is
assumed that suitable models are already given, because the focus of this work is on how
to leverage existing simulation models effectively for hazard analyses, and not on how to
develop of the models themselves.

Furthermore, this thesis is not concerned with developing hazard analysis tools for im-
mediate practical application. Instead, the focus is placed on conceptual solutions which
can serve as a basis for industrial tools in the future. Since the focus here is on conceptual
aspects, there will be certain simplifications throughout the thesis, especially regarding
experiments and application examples. The associated limitations and the required future
work to address these limitations will be discussed towards the end of this thesis.

Finally, it should be pointed out that in this thesis, risk assessment is understood
as a design-time activity. This distinction is important because there is also a body of
work where risk assessment is understood as a run-time activity (e.g. [116, 164, 56]).
These works investigate how robots can continuously monitor their environment, identify
potentially hazardous situations in real time, and react accordingly. While both design-
time and run-time risk assessments are important, they are fundamentally different in their
respective approaches: Run-time risk assessment is intended to assess the current state
of a system at a given point of time during the system’s operation phase. The goal is to
identify hazardous situations as they are about to arise so that the system can trigger a safe
reaction. In contrast, design-time risk assessments are conducted prior to the system’s
operation. Here, the goal is to identify and mitigate potential hazards during the system’s

5

1. Introduction

design phase. In other words, one might say that run-time risk assessments are a part
of the system’s control strategy, whereas design time risk assessments are a part of the
system’s development process. Both problems are challenging in their own way: for
runtime risk assessments, a robust real-time perception and interpretation of the robot’s
environment is necessary. For the design-time risk assessment, this is not needed, since
the risk assessment is conducted prior to the system’s operation (i.e., "offline"). However,
the main challenge here lies in the vast search space of possible system states, and in
trying to identify possible unsafe states given incomplete or imperfect information about
the system and the conditions it may be subjected to in future operation.

1.5. Overview of Content

The remainder of this thesis is structured as follows:

• Chapter 2 introduces preliminaries. The Chapter is split into two sections. Section
2.1 defines some terminology which is used throughout the thesis and introduces
relevant background information about safety standards and regulatory require-
ments with regard to safety in HRC. Section 2.2 focuses on theoretical background,
especially with respect to modeling formalisms and algorithms that are used later
in the thesis.

• Chapter 3 presents the current state-of-the-art regarding hazard analysis methods,
covering both HRC and other safety-related systems. Sections 3.1-3.3 present re-
lated research works while Section 3.4 discusses current industrial practice. Section
3.5 concludes the chapter by discussing limitations of the current state of the art.

• Chapter 4 presents the general outline of the concept proposed in this thesis. Sec-
tion 4.1 provides a formal problem definition and Section 4.2 outlines the proposed
solutions for the stated problem.

• Chapters 5-7 present the core contributions of the thesis. Each chapter focuses on
a specific technique or aspect of the proposed methods:

– Chapter 5 introduces the concept of risk-guided search, discusses the heuris-
tic risk metric, and describes the selection of suitable search algorithms.

– Chapter 6 extends the previously introduced risk-guided search by introduc-
ing additional formalisms for more detailed agent modeling, especially with
respect to constraints on the agent’s behavior.

– Chapter 7 compares the proposed simulation-based techniques with formal
verification and introduces the two-level approach as a combination of both.

Each one of the three chapters above includes an experiments section, where the
respective techniques are demonstrated and evaluated in case studies.

• Chapter 8 discusses the thesis’ contributions with respect to their potential impact
as well as limitations and open challenges and concludes the thesis with a summary
and an outlook on possibilities for future work.

It is recommended to read the thesis in sequential order. This goes in particular for Chap-
ters 5-7, as the techniques introduced in these chapters build each other. However, each

6

1.5. Overview of Content

of the Chapters 5-7 contains a brief chapter summary. Readers who are looking for a
quick overview, or readers who are only interested in particular aspects of the thesis, can
therefore skip some chapters and read the respective summaries instead.

Colored boxes are used throughout the thesis to highlight particular aspects:

Blue boxes contain definitions.

Yellow boxes contain examples.

Green boxes reference prior publications of the author on which this thesis is based.

7

2. Preliminaries

This Chapter discusses preliminaries which are needed as a basis for further contents
of this thesis. The first Section provides background information on the topic of safety
in human-robot collaboration. This includes terminology, safety standards, and current
procedures for risk assessment and hazard analysis. The second Section introduces theore-
tical concepts which are used in this thesis, such as Markov Decision Processes, Finite and
Extended Finite Automata, and Supervisory Control Theory. If these concepts are known,
the reader may skip the theoretical part at this point and refer back to it if necessary.

2.1. Human-Robot Collaboration and Safety

2.1.1. Terminology

Before discussing the issue of safety in HRC systems, some terminology needs to be
clarified. Terms like safety, hazard, or risk are often used with an intuitive understanding,
but without a clear definition. Sometimes, terms are used interchangeably and even the
relevant standards differ in some definitions. Within this thesis, the following definitions
are used. They are based on the standards ISO 12100 [96] and IEC 61508 [93], as these
are some of the most commonly used safety standards in Europe. Readers should be aware
that terms and standards may vary depending on region and responsible standardization
body.

Safety

IEC 61508 defines safety as the "freedom from unacceptable risk of physical injury or
of damage to the health of people, either directly, or indirectly as a result of damage to
property or to the environment" [93]. Note that this thesis deals only with safety in the
sense of direct physical injury (e.g., as result of human-robot collisions). Tangentially
related aspects, such as ergonomic problems or psychological issues (e.g., due to stress-
ful working conditions), are not considered here. Also, it is necessary to differentiate
between safety and security. Security is the protection against intentional threats such
as cyber attacks, unauthorized access, or sabotage. Safety and security are often closely
related (e.g. a security threat in a critical infrastructure may also become a safety concern).
This thesis, however, focuses explicitly on safety and does not deal with security issues.

Risk

ISO 12100 describes risk as a combination of the severity of a damage and its probability
of occurrence [96]. This definition, however, is rather vague as it does not specify how

9

2. Preliminaries

exactly risk, severity and probability are linked. There is currently no universally accepted
definition of how risk should be be quantified. For instance, some approaches use decision
trees or matrices to map different risk criteria to discrete risk levels [99]. Others define risk
on the basis of probability distributions [128]. This thesis defines risk as a metric which
assigns a numerical value to a given situation or system configuration which indicates its
criticality, based on domain-specific criteria (e.g., human-robot distance, collision forces,
etc.). Although this does not fall strictly within the definition of risk given above, it is a
pragmatic approach which is sufficient for the purposes of this thesis. Details on the risk
metric follow in Chapter 5.

Hazard and Hazardous Situation

A hazard is a potential source of harm [96]. In industrial systems, hazards come in various
different types, such as mechanical hazards, electrical hazards, hazards through noise,
etc. This thesis focuses on mechanical hazards posed by robots, namely collisions and
clamping/crushing hazards. Note that the presence of a hazard does not necessarily imply
that there is a concrete and immediate danger to a person. Instead, a hazard can result
from certain safety-critical system properties which may remain uncritical during most of
the operational time and only emerge as a concrete danger in specific situations.

A hazardous situation is a situation in which a hazard manifests itself as a concrete
danger to a person [96]. For instance, a fast-moving robot is a latent danger (i.e., a hazard),
but human workers are only concretely in danger if they come near it without sufficient
slow-down or safety-stop of the robot (i.e., a hazardous situation). This difference is
particularly noteworthy as the general approach of this thesis will be to expose latent
system hazards by finding concrete action sequences that result in concrete hazardous
situations where the latent hazard becomes manifest and observable (details in Chapter 4).

Risk Assessment

Risk Assessment is a procedure which is conducted during the development of safety-
critical systems to ensure that system designers are aware of risks and can plan appropriate
safety measures. The exact steps of a risk assessment procedure differ across domains and
safety standards. Generally speaking, however, risk assessment includes the determina-
tion of system limits, the identification of hazards, the assessment of the risks associated
with these hazards, and the identification of risks that need further risk reduction measures
[96, 93].

Risk Mitigation

Risk Mitigation is the procedure of planning and implementing safety measures to bring
unacceptable risks below an acceptable threshold. The risk mitigation procedure generally
follows the risk assessment procedure [96].

10

2.1. Human-Robot Collaboration and Safety

Figure 2.1.: Difference between A-, B-, and C-Standards. [151]. Image courtesy of PILZ
GmbH & Co. KG.

Hazard Analysis/Hazard Identification

A hazard analysis, also referred to as hazard identification, is a sub-task of risk assess-
ment that focuses on identifying hazards of the analyzed system and the concrete haz-
ardous situations in which these hazards emerge [93, 96]. The identification of hazards
and hazardous situations is a crucial part of the risk assessment procedure, since it is a
necessary precondition for risk evaluation and mitigation.

2.1.2. HRC-related Safety Standards

This Section introduces some safety standards which are related to HRC systems.
For the sake of brevity, only certain aspects which are directly relevant to this thesis are
addressed. The following overview is structured into A-, B-, and C-standards (Figure
2.1). A-standards are generic standards which define basic guidelines independently of
concrete machine types or safety measures. B-standards have a more limited scope. They
address certain safety aspects or safety measures. C-standards are have the most narrow
focus, as they give specifications for a specific type of machine [151].

A-Standards

ISO 12100 is the basic ISO standard for risk assessment and risk reduction of machin-
ery [96]. It defines a general procedure for risk assessment and risk reduction as well
as a checklist of potential hazards. Since ISO 12100 is an A-Standard, its guidelines are
applicable to a wide range of machinery. Thus, the procedures and the hazard checklist
are fairly generic and not specifically geared towards robot systems. A more detailed
discussion of the procedures defined by ISO 12100 follows in Section 2.1.5.

B-Standards

ISO 13854 considers relative movement between objects which can lead to hazardous
situations where human body parts are trapped and potentially crushed. ISO 13854 de-

11

2. Preliminaries

fines body-region specific safety distances to avoid this. If there is relative movement
between objects whose distance is less than the minimum distance, a crushing hazard
must be assumed [103]. In the context of HRC, these minimum distances are important
because they help to distinguish between transient collision hazards (i.e., collisions in free
space), and quasi-static collision hazards (i.e., collisions where the human body is trapped
between the robot and another obstacle). Details on these collision types are discussed in
Section 2.1.4.

Figure 2.2.: A Laserscanner monitors an area surrounding a robot [137]. Image repro-
duced with permission of SICK AG

ISO 13855 deals with contactless safety sensors like laser scanners or light curtains,
which are often used to monitor the area surrounding the robot for approaching humans
[159] (see Fig. 2.2). ISO 13855 defines how these safety sensors should be placed and
how their detection areas should be dimensioned, depending on various factors such as
the expected approach speed, approach direction, and response time of the safety sensor
[97]. The standard therefore has implications for the layout of collaborative robot cells.

ISO 13857 specifies minimum distances to avoid the reaching of hazardous areas by
human limbs [105]. Despite the close proximity of human and robot, safety distances still
play a role in HRC, for example when safety fences are used to close off areas which are
not monitored by safety sensors. In such cases, ISO 13857 must be considered to avoid
cases where human workers can reach over or around safety fences and provoke critical
collisions.

C-Standards

ISO 10218 is a C-Standard specifically for robots and robot systems. ISO 10218 con-
sists of two parts. Part 1 defines safety requirements for the robots themselves, whereas
part 2 defines safety requirements for the robot system, which includes not only the robot,
but also other components like tools, sensors, fences, etc. Part two explicitly states that
any robot system must undergo a risk assessment according to the ISO 12100 procedure.
Similarly to ISO 12100, part two of ISO 10218 also provides a hazard checklist, but with
hazards that are more specifically geared towards robots systems [98].

12

2.1. Human-Robot Collaboration and Safety

ISO/TS 15066 is a technical specification that amends ISO 10218 with further details
specifically for collaborative robot systems1. ISO/TS 15066 defines four possible safety
modes for collaborative operation, namely [102]:

• Safety-rated monitored stop (SRMS): In this mode, safety is achieved by monitoring
the surrounding area of a robot (e.g. with a laser scanner, Figure 2.2) and stopping
the robot as soon as a human enters a certain safety zone. While this operation
mode is the easiest to implement, it also is the most restrictive.

• Hand Guidance: In this mode, the robot is guided by hand while certain safety
restrictions (e.g., on the maximum admissible velocity) are continuously monitored.
Hand guidance is mainly used for teach-in of waypoints in robot programming, but
otherwise only plays a limited role.

• Speed and Separation Monitoring (SSM): In this mode, human-robot distance and
robot velocity are continuously monitored. At any given time, the maximum admis-
sible robot velocity is calculated as a function of the human-robot distance and
the robot velocity is limited accordingly. SSM may also be realized with multiple
discrete safety zones and step-wise velocity reduction instead of continuous velocity
sclaing.

• Power and Force Limiting (PFL): In this mode, safety is maintained by ensuring
that collision force and pressure remain below certain body-region specific limits.
Thus, collisions are acceptable as long as they are uncritical in terms of the stated
limits.

Especially the PFL mode is interesting from a hazard analysis perspective, as it is much
more permissive with respect to collisions than SRMS or SSM. In PFL mode, collisions
need not necessarily be avoided for a robot application to be safe. Rather, is only required
that certain body-region specific thresholds are not exceeded. This introduces an addi-
tional layer of complexity into the hazard analysis and risk assessment procedure as it is
not sufficient to only identify whether collisions are possible or not. Instead, possible col-
lision scenarios need to be identified, including the body regions that are affected and the
robot velocity at time of collision, in order to determine if the collisions are acceptable.

2.1.3. Implementation of Safe HRC Systems

In industrial robot applications, safety has conventionally been ensured by physically
separating human workers and robots through the use of safety fences. However, more
sophisticated approaches are needed to implement the aforementioned collaborative ope-
ration modes specified by ISO/TS 15066.

The operation modes SRMS and SSM are usually implemented with perception sys-
tems which detect approaching humans and trigger a reactive robot behavior [144]. In
industrial use cases, commonly used perception systems are laser scanners, light cur-
tains, and pressure sensitive floor mats. Light curtains and floor mats are suitable for
implementing SRMS. They trigger safety stops when human workers are detected. More
sophisticated sensors like laser scanners are typically used for SSM. They allow for a

1Note that at the time of writing this thesis ISO/TS 15066 has the status of a (temporary) technical speci-
fication. It is expected that ISO/TS 15066 will be integrated into the ISO 10218 standard in the future.

13

2. Preliminaries

step-wise or continuous velocity reduction as the worker approaches the robot. The use of
camera systems for the perception of humans is currently being researched. While camera
systems for perception of humans are commonplace nowadays, their use in safety-critical
applications is still an open challenge, as it is challenging to build perception systems
which comply with the strict safety requirements of HRC [165, 166]. Examples of safety-
compliant commercially available camera systems for the detection of human workers are
the PILZ SafetyEye [149] and the SICK safeVisionary [172].

The operation modes SRMS and SSM are not always feasible, especially in cases
where human worker and robot need to collaborate in close proximity to perform their
task. In such cases, PFL is the preferred operation mode. In this operation mode, a limi-
tation of collision force and pressure is required. This can be achieved through different
measures. First, the mechanical design of the robot itself can reduce collision criticality,
e.g. by limiting the robot’s mass, using compliant joints, or padding the robot links with
soft material. Examples of this are seen in ABB Yumi robot [3] which is lightweight and
has padded surfaces, and in the Rethink Robotics Sawyer robot [158], which uses compli-
ant joints with springs to reduce collision forces.
Apart from constructive measures, software functions are also a feasible way to implement
the PFL operation mode. This is typically done through a combination of software-based
speed limitation and collision detection. The collision detection typically uses joint torque
measurements (either directly or via motor currents) to sense collisions and stop the robot
shortly after a contact is detected, while the speed limitation limits the robot’s kinetic en-
ergy that is transferred to the human body in case of a collision. Examples of these safety
functions can be found in the Universal Robot URe-Series [178], the KUKA LBR iiwa

[114], and the ABB GoFa [2] robot. Recently, capacitive sensing has also been proposed
to implement PFL. Capacitive sensors are able to detect potential collision objects at a
certain distance and are therefore able to initialize a safety stops before the actual impact
occurs. While this strategy cannot avoid collisions entirely, it reduces collision forces
significantly compared to collision detections which are based only on torque measure-
ments [7].

2.1.4. Human-Robot Collisions

Collisions are the primary hazard in HRC scenarios and have been studied extensively
in crash-tests [77, 78, 76]. These studies show that collision criticality depends on several
factors including the affected body region, the robot’s speed and mass, and if the collision
is unconstrained (also known as transient) or constrained. In a constrained collision, the
human body is clamped or crushed between the robot and another obstacle (also known
as quasi-static collision). This is the more critical type of collision because the human
body cannot recoil from the collision point and thus more of the robot’s kinetic energy is
transferred to it. In early stages of HRC, various different metrics have been proposed to
quantify collision criticality [79, 135, 45]. Nowadays, however, collision force and pres-
sure are the generally accepted criteria and have been included into the standardization
[28, 29, 102] (see Section 2.1.2).

For the hazard analysis of HRC systems, it is required to assess if potential human-
robot collisions are acceptable with respect to the ISO/TS 15066 limits. Thus, collision
force and pressure must be determined. If a physical prototype of the HRC system is avail-
able, this can be done with specialized collision measurement equipment which mimics

14

2.1. Human-Robot Collaboration and Safety

the collision behavior of the human body and measures both force and pressure [73, 150].
However, the hazard analysis procedure typically begins in an early development stage
where real-world collision measurements are not possible. Thus, model-based collision
analyses are required. For that purpose, ISO/TS 15066 proposes a simple two-body colli-
sion model which consists of an effective robot mass mR, an effective mass of the affected
human body mH , and a spring constant k to model the elasticity of the human body. Note
that mH and k are specific to the affected human body part. For transient collisions, mR

and mH are combined to a reduced effective mass µ (compare ISO/TS 15066, Eq. A.3):

µ =

(

1

mR

+
1

mH

)−1

(2.1)

For quasi-static collisions where the human body is constrained, the effective human mass
approaches infinity, so the effective collision mass equals the robot mass (i.e., the total
kinetic energy of the robot is transferred to the human body):

lim
mH→∞

µ = mR (2.2)

The effective robot mass is approximated as follows (compare ISO/TS 15066, Eq. A.2):

mR ≈
M

2
+mL (2.3)

Here, M is the total mass of the robot’s moving parts and mL is the payload of the robot.
The effective mass mH and spring constant k of the human body are body-region specific
values which are defined in Table A.3 of ISO/TS 15066.

From the equivalence between the maximum spring energy and the maximum kinetic
energy during the collision, the peak collision force Fcoll and the peak collision pressure
pcoll for a collision with relative velocity vrel and contact area A are calculated as follows
(compare ISO/TS 15066, Eq. A.2):

F 2
coll

2k
=

1

2
µvrel

2 (2.4)

Fcoll = vrel
√

kµ (2.5)

pcoll =
Fcoll

A
(2.6)

The ISO/TS 15066 model is strongly simplified. In reality, human-robot collisions are
highly complex nonlinear processes. Especially the pressure exerted on the human body is
difficult to estimate, because the contact area A depends on the human body deformation.
Furthermore, the estimation of mR (see Eq. 2.3) is simplified. In reality, the effective
mass depends on the robots joint angle configuration q [121]:

mR =
(

uT (J(q)M(q)JT (q)u
)

)−1 (2.7)

Here, M(q) and J(q) denote the robots inertia and jacobian matrix, respectively, and
u denotes the collision direction vector.

The development of more accurate yet efficient collision models is still an open re-
search challenge. Novel approaches include the use of nonlinear spring constants to model

15

2. Preliminaries

body elasticity [121], nonlinear skin deformation models [171], finite-element analysis
[146], and regression methods which are trained on data from collision measurements
[113, 177]. In the remainder of this thesis, however, the simplified collision model will
be used because it is computationally inexpensive and all required model parameters are
specified by ISO/TS 15066.

2.1.5. Risk Assessment, Risk Mitigation, and Hazard Analysis

of HRC systems

As emphasized multiple times throughout this thesis, safety is an emergent property
which arises from the interaction of all relevant components in a system [125]. Thus,
a set of safe components does not necessarily comprise a safe system. Translated to
the context of robotics, this means that robots are not inherently safe. Instead, potential
hazards and appropriate safety measures are highly dependent on a number of factors
such as task, spatial layout of the robot cell, programming and system environment of the
robot, and more. To ensure that the relevant hazards in a system are recognized and the
associated risks are sufficiently addressed, a risk assessment and risk mitigation procedure
is required. An important step in this procedure is the hazard analysis, in which potential
hazardous situations need to be identified [98].

As discussed in Section 2.1.2, risk assessment is a design-time activity, that is, the
system is analyzed before commissioning. If systems go into operation without a thorough
risk assessment, system designers might be unaware of potential hazards. This can lead to
serious omissions in the safety measures of a system, and, ultimately, to accidents. In the
European Union, performing risk assessments is mandatory from a legal perspective. The
EU machinery directive 2006/42/EC mandates that a risk assessment must be performed.
Failure to comply with this directive might result in lawsuits and barriers to market entry
[61]. Furthermore, an early identification of hazards helps to avoid costly changes or
re-designs at later development stages, which reduces development time and costs.

General risk assessment guidelines and procedures are specified by the standard ISO
12100 [96]. These procedures include the following steps:

1. Determination of limits: The limits of the analyzed system and its intended use are
specified. This includes for example the purpose of the system, its intended use as
well as foreseeable misuse, environmental conditions, operator qualifications, and
more (Section 5.4 of ISO 12100).

2. Hazard analysis: Potential hazards and hazardous situations are identified (Section
5.5 of ISO 12100).

3. Risk estimation: The risks associated with the identified hazards and hazardous
situations are estimated (Section 5.6 of ISO 12100).

4. Risk evaluation: The estimated risks are evaluated and it is decided which of the
risks require risk mitigation measures (Section 6 of ISO 12100).

After these four steps are completed, safety measures are chosen and implemented
to mitigate any risk that is deemed to be unacceptable. After measures for risk reduction
have been chosen, the procedure must be repeated, since the risk mitigation measures

16

2.1. Human-Robot Collaboration and Safety

Start

Determination
of Limits

Hazard Analysis

Risk Estimation

Risk Evaluation

Risks
sufficiently
reduced?

StopRisk Mitiga-
tion Measures

YesNo

Figure 2.3.: Iterative risk assessment and mitigation procedure according to ISO 12100
(adapted from [96]).

might change the properties of the system and could introduce new hazards in other places.
Thus, risk assessment and mitigation are iterative procedures, as shown in Figure 2.3.

Within the general framework for risk assessment and mitigation, this thesis focuses
on the hazard analysis phase. Hazard analysis is perhaps the most crucial part of the
overall risk assessment and mitigation procedure, since risks cannot be estimated, evalua-
ted, or mitigated if system designers are unaware of the underlying hazards.

The following non-exhaustive list includes some exemplary questions which safety
engineers need to consider when analyzing the safety of HRC systems:

• Are any human-robot collisions possible in this system?

• If yes, in what situation or at what point of the collaborative task are these collisions
likely to happen?

• Which parts of the human body are affected by the potential collisions?

• What collision force and pressure are expected for the potential collisions? Are
these values acceptable for the affected body parts?

• Are there any foreseeable misuses or possible human errors that can cause critical
situations which are not included in the nominal task?

• Is it possible to circumvent safety measures and if yes, how?

Note that - like the whole risk assessment and mitigation procedure - the hazard analysis is
a design-time activity, meaning that it is carried out before the developed system becomes
operational. Usually, the hazard analysis begins even before a physical prototype of the
system is available. This means that safety engineers need to answer the aforementioned
questions and predict hazardous situations without having a real-world system available
that could be used for analysis or measurements. Safety standards such as ISO 12100
generally assume that risk assessment is a largely manual procedure, performed mainly
on the basis of human reasoning, expert knowledge, and experience. Simulation- or other
model-based hazard analysis methods are not mentioned by the standard [96]. Instead, the

17

2. Preliminaries

standard mostly recommends intuitive techniques such as brainstorming. For additional
guidance through the the hazard analysis procedure, generic checklists of commonly oc-
curring hazards and typical hazardous situations are available [96, 98].

The need for risk assessments and hazard analyses is not specific to industrial robot
systems. These procedures are also required for a wide range of other safety-critical
systems. This includes all kinds of industrial machinery [61], non-industrial robots (e.g.,
personal assistance robots) [100] and autonomous vehicles [104, 106].

There are a number of issues which make hazard analysis in the context of HRC
particularly challenging (see also [89] and Figure 2.4):

Figure 2.4.: Challenges affecting the hazard analysis of HRC systems

• Complexity of system and safety Measures: safety in HRC depends on a large num-
ber of factors, including design choices such as cell layout, choice of robot, and
operation mode, etc. as well as dynamic effects, such as robot stopping time, col-
lision forces, sensor response times, etc. [152, 102] All of these factors interact
with each other and influence overall system safety in a complex manner. Expe-
rience in safety engineering has shown that in such complex systems can only be
assessed properly when considering all possible interaction of the subsystems, and
that human analysts only have a limited capacity to do this [125].

• Systems with black-box components: black-box components are system compo-
nents whose internal structure and functionality is not fully known to analysts. The
behavior of black-box systems is therefore difficult to foresee, which makes it chal-
lenging to analyze their safety [120]. In future, it must be expected that an increas-
ing number of robot systems will contain such black box components. One rea-
son for this is the advance of artificial intelligence and machine learning methods,
whose behavior in real-world conditions is often difficult to predict. Furthermore,
pre-compiled third party software whose source code is not available must also be
considered a black box component.

• Need for detailed consideration of physical aspects: in hazard analyses of HRC
systems that operate under PFL mode, it not sufficient to simply determine if col-
lisions are possible or not. Instead, it must determined what body regions are po-
tentially affected and the potential collision force and pressure must be estimated.

18

2.2. Theoretical Background

This requires detailed considerations about the movement and physical properties of
humans and robots, which adds another layer of complexity to the hazard analysis
procedure.

• Need for consideration of human error/unexpected behavior: the inherent non-
determinism of human behavior, especially the possibility of human error or other
unforeseen behaviors, is a general challenge in the design and analysis of human-
machine interactive systems [82, 36]. In HRC scenarios, however, this is especially
critical since the human is such an integral component of the HRC systems, and
unforeseen human behaviors can easily lead to safety-critical situations [143, 20].

• Limited experience: HRC is, despite being seen as a major trend, still relatively
novel in industrial practice. Thus, compared to other kinds of machinery, there is
still a major lack of experience and expert knowledge when it comes to the hazard
analysis of HRC applications [26, 1]. This is especially critical since the tool sup-
port for HRC hazard analysis is limited and the procedure is still mainly based on
human reasoning (as will be discussed in the following Chapter).

• Flexible production requires frequent changes to system/safety configuration: since
HRC applications are intended for flexible production of small- to medium sized
product lots, it is expected that many HRC systems will undergo frequent changes,
which may affect safety-relevant aspects of the system configuration. This, in turn
requires frequent renewal of the hazard analysis, leading to increased efforts in
terms of time and cost [61].

When considering the aforementioned issues, it becomes clear that performing hazard
analyses for HRC systems is not a trivial task. As discussed previously, current hazard
analysis methods are not sufficient to address these challenges. Development of assistive
hazard analysis tools is therefore an active area of research. An in-depth discussion of the
current state of the art and novel hazard analysis methods follows in Chapter 3.

2.2. Theoretical Background

2.2.1. Markov Decision Process

The Markov Decision Process (MDP) is a model for sequential decision making prob-
lems [179]:

Definition 1 Markov Decision Process

An MDP is described by the following 5-tuple (adapted from [179]):

〈S,A, T,R, s0〉

Where S is the set of states, A the action space, T the transition function, R the

reward, and s0 the initial state. An agent in an MDP starts in the initial state s0
and sequentially selects actions a ∈ A. The execution of an action alters the state

according to the transition function T and returns a reward according to the reward

function R.

19

2. Preliminaries

Note that the transitions between states in the MDP are usually stochastic. This means
that for a given state-action pair s, a, the transition function T (s, a) does not give a de-
terministic next state, but rather some probabilities by which different resulting states
may be reached. Thus, the transition function maps to each state-action pair a vector of
probabilities for reaching the various states in S:

T : S × A→ [0, 1]|S| (2.8)

where |S| denotes the number of states. However, the transition does not need to be
stochastic. Deterministic transitions are also possible. In the case of deterministic transi-
tions, the transition function maps a next state to each state-action pair:

T : S × A→ S (2.9)

The reward function R is typically used to describe costs and benefits of taking certain
actions in certain states. For any given state-action pair (s, a), the reward function issues
a reward R(s, a), that is, the reward for taking action a in state s. The set of values which
the reward can take are generally problem-specific. In this work, it is assumed that the
reward is a real-valued number:

R : S × A→ R (2.10)

Note that the reward function in itself may also be stochastic, that is, the rewards may
differ between different executions of the same action in the same state. An MDP must
fulfill the so-called Markov property, which requires that for any given state and action,
the transition probability T (s, a) and the reward R(s, a) must depend only on the current
state and action, and not on the history of previous states and/or actions [179].

A policy π is a decision-making strategy which maps to each state an action that is
taken by the agent:

π : S → A (2.11)

A common problem related to MPDs is to find an optimal policy π∗ which maximizes the
expected sum of rewards over a finite horizon of n decisions:

π∗ = argmaxπ

n
∑

k=0

Rk, γ ∈ R, 0 < γ < 1 (2.12)

where Rk is the expected reward incurred in the k − th timestep. Another common prob-
lem is to find a policy that maximizes the expected sum of rewards over an infinite horizon:

π∗ = argmaxπ

∞
∑

k=0

γkRk (2.13)

In the case of infinite horizons, a real-valued discount factor 0 < γ < 1 is introduced
to avoid divergence of Eq. (2.13) [179]. The problem of finding optimal policies can be
solved by Reinforcement Learning algorithms and heuristic search algorithms. Such an
algorithm, namely Monte Carlo Tree Search, is discussed in the following.

20

2.2. Theoretical Background

Algorithm 1 Monte Carlo Tree Search (Pseudocode based on explanation in [187])

1: while not stoppingCriterion() do

2: currentNode = rootNode;
3: while fullyExpanded(currentNode) do // Traversal
4: currentNode = SELECTBESTCHILD(currentNode);
5: end while

6: currentNode = EXPAND(currentNode);
7: reward = ROLLOUT()
8: BACKPROPAGATION(currentNode, reward);
9: end while

10:

11: function SELECTBESTCHILD(currentNode) // according to UCT criterion

12: bestChildNode = argmax
(

node.q
node.n + c

√

· log(parentNode).n
childNode.n

)

;

13: return bestChildNode;
14: end function

15:

16: function EXPAND(currentNode)
17: a = randomSample(currentNode.untriedActions);
18: childNode = Node(parent=currentNode, incomingAction = a, q = 0, n = 0);
19: currentNode.children.append(childNode);
20: return childNode;
21: end function

22:

23: function BACKPROPAGATION(currentNode,reward)
24: currentNode.n← currentNode.n+ 1;
25: currentNode.q ← currentNode.q+reward;
26: if currentNode == rootNode then

27: return;
28: else

29: BACKPROPAGATION(currentNode.parent, reward);
30: end if

31: end function

32:

33: function ROLLOUT()
34: while not isTerminal() do

35: doRandomAction();
36: end while

37: reward = getReward();
38: return reward;
39: end function

2.2.2. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a heuristic search algorithm to approximate op-
timal decision making strategies in sequential decision making problems such as MDPs
[120]. MCTS is a search method which operates on a search tree. Each node of the tree
corres-ponds to a state of the decision making process, and each vertex of the tree cor-

21

2. Preliminaries

Figure 2.5.: Principle of Monte Carlo Tree Search: (1) Tree is traversed by selecting from exist-
ing nodes according to a selection criterion. (2) A new node is added. (3) Random
actions are sampled, starting from the newly selected node. (4) The incurred reward
is backpropagated. (Authors own figure, based on [88])

responds to an action. By sampling action sequences and storing information about the
incurred rewards, MCTS iteratively builds the search tree and estimates the values of the
nodes. For the sampling strategy, MCTS combines selection based on previously incurred
rewards with random sampling and thereby balances exploitation and exploration [69].
The principle of the MCTS algorithm is shown in Figure 2.5. Pseudocode is given in
Algorithm 1. MCTS iteratively repeats the following four steps [69, 187]:

• Traversal: The traversal starts at the root node. As long as the current node is
fully expanded (i.e., all actions in the current state have been tried at least once),
the next state is chosen according to some pre-defined selection rule (Algorithm 1,
ll. 3-5). A common selection rule is the UCT criterion (Upper Confidence Bounds
applied to Trees). This criterion selects the action which leads to the child node that
maximizes the following expression (Algorithm 1, ll. 11-14):

qi
ni

+ c ·

√

log(np)

ni

(2.14)

where qi is the value of the i− th child node, ni is the number of visits to the i− th
child node, and np is the number of visits to the parent node. The tuning parameter
c ∈ R is chosen by the user to balance between exploration and exploitation.

• Expansion: When the traversal reaches a node that has not yet been fully expanded
(i.e., that has some untried actions), a new node is added by randomly sampling and
executing one of the untried actions (Algorithm 1, l. 6 and ll. 16-21).

• Rollout: From the new node, a so-called rollout is performed to obtain an initial
estimate of the node’s value. In the rollout, actions are sampled according to some
pre-defined rollout policy until a termination criterion is fulfilled. A common rollout
policy is to sample actions randomly (Algorithm 1, l. 7 and ll. 33-39).

• Backpropagation: The reward incurred in the rollout phase is backpropagated
along the nodes that have been taken in the traversal and expansion phase. Depend-
ing on the implementation of the algorithm, the backpropagation rule may vary. A
common approach is to increment each node’s q-value by the incurred reward, and
the number of visits for each node by one (Algorithm 1, l. 8 and ll. 23-31).

22

2.2. Theoretical Background

One property of MCTS which is important in the context of this thesis is that MCTS
builds a search tree on the fly (i.e., during runtime) and only requires information about
the rewards that have been incurred and the actions that have been taken in a given search
iteration. In contrast to other methods for optimal decision making such as Q-learning,
which estimate a state-action-value function, MCTS does not require explicit state infor-
mation. Instead, states are encoded implicitly in the search tree (note that each node can
be encoded as a the sequence of actions that have led to the respective node without us-
ing information about the internal state of the decision making process). This makes the
MCTS algorithm suitable for exploring black-box systems whose internal state is either
unknown, or too complex to be represented explicitly [120].

2.2.3. Automata

Automata models are frequently used to describe discrete-event systems (DES), that
is, systems with discrete states and state transitions [122]. In contrast to MDPs, however,
they do not include stochastic transitions or reward functions (at least not in their original
form, extensions such as stochastic automata are however known [168]). In this thesis,
several processes in collaborative robotics (e.g., sequential assembly tasks) are abstracted
as DES. Therefore, a short introduction to automata theory is given below. In particular,
two types of automata are discussed: Finite Automata (FA) and Extended Finite Automata

(EFA), which extend FA by additional modeling formalisms.

Finite State Automata

Definition 2 - Finite State Automaton

A finite state automaton (FA) is given by a 4-tuple [122]:

A = 〈Q,Σ, δ, q0〉 (2.15)

Where Q is a discrete set of states, Σ is the input alphabet, q0 the initial state and δ
the state transition function. The set of states Q is finite. The transition function δ
describes the transitions between states. Transitions are triggered by events e ∈ Σ.

Note that in literature, the elements of Σ are often called symbols. In this work,
however, transitions of automata are used to model discrete events. Thus, the term event

is more fitting. The set of all events is called input alphabet Σ. The transition function δ
is a function which returns the next state for a given current state and event:

Q× Σ→ Q (2.16)

Note that δ may not be defined for certain combinations of states and events, since it can
be that some events are not feasible certain states. Thus, the structure of the automaton
limits the set of feasible event sequences.

Input alphabet and acceptance. The set of events Σ is called the input alphabet of the
automaton. Let Σ∗ denote the set of all sequences of events of arbitrary length that can
be constructed from Σ. Then, a sequence of events (e0, e1, e2...), ei ∈ Σ is called a word

23

2. Preliminaries

over the input alphabet Σ. Executing the sequence results in a run through the automaton,
that is, a sequence of states (q0, q1, q2, ...) which are reached by executing the respective
events and taking the related transitions in the automaton. Note that for the run to be
completed, the next event must always be feasible, that is, δ(si, ei) must return a valid
state for all (ei, si) in the word and the run, respectively. If this is the case, then the word
is accepted. The set of all accepted words is called the Language L(A) of the automaton
[122].

Synchronization. In some cases, it is desirable to model systems in a modular man-
ner, that is, broken down into subsystems, where each subsystem is represented as a sub-
model automaton. The system behavior as a whole is then given by the synchronization

of the automata submodels. Consider two finite state automata A,B. Then, the synchro-
nization of the automata is given by [122]:

A||B = 〈QA ×QB,ΣA ∪ ΣB, δ, (q0,A, q0,B)〉 (2.17)

That is, the state space of the synchronized automaton is the cartesian product of the
submodel automata’s respective state spaces, and the input alphabet is the union of the
submodel automata’s respective state spaces. The initial state is the state that corresponds
to both submodel automata’s respective initial states. The transition function is defined as
follows [122]:

δ((qA, qB), e) =

δA(qA, e)× δB(qB, e) e ∈ ΣA ∩ ΣB

δA(qA, e)× {qB} e ∈ ΣA\ΣB

{qA} × δB(qB, e) e ∈ ΣB\ΣA

(2.18)

Intuitively, this means that if an event e is part of both submodel automata’s respective
input alphabets ΣA and ΣA, then the resulting state is determined by both submodel au-
tomata’s transition functions. Note that if either δ(qA, e) or δ(qA, e) are undefined, then
δ(qA, e)×δB(qB, e) is also undefined. In other words, both submodel automata must agree
that a transition is possible. If an event is only part of the input alphabet of A, then the
next state is (qA, qB) is obtained by executing transition function δAof the submodel au-
tomaton A, while the part of the state that relates to the submodel automaton B remains
the same (and vice versa).

Marked states. The definition of finite automata can be extended by specifying sets of
marked states Qm ⊆ Q [122]:

A = 〈Q,Σ, δ, q0, Qm〉 (2.19)

Generally, marked states express some desired state that the automaton must reach. If
marked states are used, then the definition of the language L(A) is extended by the re-
quirement that all words in L(A) must create a run that ends in a marked state. That
is, a sequence of events is only accepted if it results in the automaton entering a marked
state. When synchronizing automata with marked states, the marked states of the resulting
synchronized automaton are defined as the cartesian product of the individual automata’s
marked states [122]:

Qm,A||B = Qm,A ×Qm,B (2.20)

Note that throughout in this thesis, marked states will be omitted from some automata
models for reasons of simplicity. In these cases, the following convention holds: if no

24

2.2. Theoretical Background

marked states are explicitly defined in an automaton, then all states will be treated as
if they were marked. If, however, marked states are explicitly defined, then only those
explicitly defined states are treated as marked states, whereas the remaining states are
treated as unmarked states.

Extended Finite Automata

Extended finite automata (EFA) extend the aforementioned FA with additional mode-
ling formalisms [41, 174]:

• Integer variables of finite range can be defined to maintain information about certain
system variables, without having to explicitly create a new state for each possible
valuation of that variable.

• Guards are logical expressions over the variables. For a transition to be executed,
the guard expression must evaluate to true. In other words, guard statements protect
transitions from being executed until certain conditions are fulfilled. Thus, they can
be used to express conditions on the feasibility of certain events.

• Update rules are functions which change the values of variables when a transition
is executed2.

The following definition introduces a notation of EFA as it is used throughout this thesis
and its related publications (see also [90]).

Definition 3 - Extended Finite Automata (EFA)

An EFA is a tuple

E = 〈Σ, V, L,→, G,M, l0, V0, L
m〉 (2.21)

where Σ is a finite set of events, V is a finite set of bounded discrete variables, L
is a finite set of locations,→⊆ L× Σ× G×M × L is the conditional transition

relation, where G and M are the respective sets of guards and update rules, l0 ∈ L
is the set initial location, V0 the initial assignment of the variables, and Lm ⊆ L is

the set of marked locations.

The state of an EFA is given by its current location l ∈ L and the current values its
variables vi ∈ V . The set of states of an EFA is thus given by Q = L× V .

The definition of input acceptance and accepted languages in EFA is analogous to
the definition for FA introduced above, but with some differences. First, the guard state-
ments need to be considered as additional conditions to determine if an event sequence
is accepted. Second, instead of marked states, EFA have marked locations. Graphically,
these marked locations are denoted by circles. Transition from one location l0 to another
location l1 are denoted with a labeled arrow shown below (figure adapted from [90]):

l0 l1
e : [g]a

2Note that literature on EFA often uses the term actions rather than update rule. Here, however, the term
action is already in use, which might lead to confusion. Thus, the term update rule is chosen, which is
a fitting term since the execution of a transition updates the values of certain variables.

25

2. Preliminaries

Note that the transition is labelled by an event e ∈ Σ, a guard g ∈ G and a update rule
m ∈ M . Guard statements are logical expressions over the variables in V . A transition
can only occur if the guard statement g evaluates to true. When the event e occurs and
the guard statement evaluates to true, the current location changes and the update rule m
is executed, updating some of the values of the variables. Note that guards and update
rules are not necessarily defined for all transitions, they may also be omitted. Example 1
illustrates the structure of EFA.

Example 1 - Structure of EFA

The EFA below consists of two locations l1, l2 and has three events: e1, e2 and e3. The

automaton is extended into an EFA by introducing a variable c (initial value: c = 1) and

two update rules associated to events e1 and e3. The update rule associated to event e1
increments the counter and the action associated to event e3 resets the counter. Further, a

guard statement [c > 3] is introduced which ensures that the transition associated to event

e2 can only be taken if the counter is larger than 3:

q1

q2

e1 : [] c = c+ 1

e2 : [c > 3]e3 : [] c = 0

The result is an automaton that requires at least three occurences of the event e1 until

the event e2 can be executed. After e2, the event e3 is required to reset the counter and

return to the initial state. Note that due to the additional modeling formalisms which allow

for a more concise specification of behaviors, EFA models are often more compact than

FA models. This is illustrated by the following automaton below, which models the same

behavior as above, but is an ordinary FA instead of an EFA, resulting in a less compact

model.

q10 q11 q12 q13

q2

e1

e1 e1 e1

e2e3

26

2.2. Theoretical Background

Example 1 already suggests that finite automata and EFA are equal in terms of their ex-
pressiveness. In fact, it can be shown that extended finite automata can be converted
into ordinary finite automata that are equal in terms of the accepted language [174, 141].
The main advantage of EFA however is that they allow for a more concise system rep-
resentation, which makes the modeling of complex systems more manageable for human
users. By breaking down systems into submodels and using EFA to describe these sub-
models, complex systems can be modeled in a relatively compact manner. The (more
complex) automaton of the system as a whole does not require manual modeling, as it can
be derived algorithmically by converting the submodel EFA into ordinary automata and
synchronizing them as described in the previous subsection. This makes the application
of automata modeling more scalable and potentially interesting for real-world use cases.
Note that this advantage only refers to the process of modeling, but not necessarily the
process of analysis. This is due to the fact that EFA do not reduce the state space itself,
they merely represent states in a different manner (i.e., as locations paired with valuations
of the variables instead of explicit states)[174].

2.2.4. Supervisory Control Theory

Supervisory Control Theory (SCT), also known as Ramadge-Wonham Framework,
is a theoretical framework for analysis, control, and synthesis of discrete event systems
(DES) [157]. Consider a DES known as the Plant, which represents a system that shall
be controlled. The plant is modeled by an automaton G. Let Σ be the set of events that
may occur in the plant. The set of all plant events Σ shall be the input alphabet of the
plant automaton G. A word over the input alphabet corresponds to a sequence of events
(σ1, σ2, ...), σi ∈ Σ. Thus, a word over the input alphabet describes a certain behavior of
the plant. Consequently, the language L(G) describes the set of all possible behaviors of
the plant [39, 174].

Supervisory control theory provides means of restricting the plant behavior such that
it satisfies certain properties. This is done by synthesizing a so-called Supervisor which
dynamically restricts the behavior of the plant by enabling and disabling events. The
supervisorK observes the events generated by the plant and assigns to each observed event
sequence a control decision that specifies which of the events in Σ shall be admissible:

K : pre(L(G))→ 2Σ (2.22)

where pre(L(G)) denotes the set of prefixes of the plant automaton’s language (i.e., the set
of all accepted event sequences and partial event sequences that are a prefix of an accepted
sequence), and 2Σ denotes a set of binary vectors indicating for each event whether it is
currently admissible or not. Intuitively, one can think of a supervisor as a policy which
observes the events generated by the plant in previous timesteps, and then decides to en-
or disable certain events of the plant in the next step, based on the previously observed
sequence [39, 141].

The aim of SCT is to restrict the plant behaviour to a certain subset of admissible
behaviors. The specification of admissible behaviors is given by a specification automaton
SP , whose language L(SP) corresponds to the admissible subset of L(G). Supervisor
synthesis creates a supervisor K which restricts the plant behavior in such a way that
the specification SP is satisfied and the controlled systems is non-blocking. This means

27

2. Preliminaries

that the controlled system is able to reach a marked state from any reachable state (i.e.,
the supervisor prevents the system from entering deadlocks). To that end, the synthesis
algorithm creates the synchronous composition G ‖ SP of plant and specification and
then iteratively removes blocking states from G ‖ SP until the remaining system is non-
blocking3 [141, 188].

Software tools for supervisor synthesis employ fixpoint algorithms for the iterative
removal of blocking states. An important property of these synthesis algorithms is that
they are guaranteed to yield a minimally restrictive supervisor, that is, a supervisor which
only removes as much of the originally possible plant behavior as is needed to achieve
compliance with the specification and non-blockingness, but not more [188, 141]. In
other words, the resulting supervisor is guaranteed to include all possible behaviors as
long as they comply with the specification and are non-blocking. For an example of such
algorithms, the reader is referred to [188]. Modern software tools for supervisor synthesis,
such as Supremica [129] employ more sophisticated algorithms which exploit the modula-
rity of composed plant models to synthesize partial supervisors for subsystems, thereby
mitigating state-space explosion problems [6, 141]. This enables analyses of complex
systems up to a million states [129]. The following example (adapted from [90]) illustra-
tes the principle of supervisor synthesis:

Example 2 - Supervisor Synthesis.

Consider the plant system G shown below with the events Σ = {a, b, c, d}. The behavior

of G in terms of the possible event sequences is easy to see: Initially, the events a or c can

occur. Event a must always be followed by event b, and event c must always be followed by

event d. Each of the resulting sequences (ab) and (cd) may occur arbitrarily often, but at

the end, there must always be one occurrence of event a to ensure that the system reaches

a marked state. As a regular expression, this can be denoted as follows: ((ab)∗(cd)∗)∗a.

iG:G:

j

k

a

c

d

b

Assume that a restriction on the plant behavior shall be imposed. For instance, a possible

restriction could be that the event a must happen exactly once during operation of the plant

(but not more than once). This specification is expressed by the following automaton SP .

Observe that this automaton allows arbitrarily often repetitions of a, b, c, but requires the

3Note that literature on SCT typically considers the input alphabet to consist of two disjoint subsets of
events: Σ = ΣC ∪ ΣU , where ΣC refers to controllable events which can be enabled and disabled
by the supervisor, and uncontrollable events ΣU which cannot be influenced by the supervisor [39].
Apart from non-blockingness, the synthesis algorithms also ensure controllability of the plant. In the
applications presented in this thesis, however, all events are considered controllable. Thus, the notion
of controllability is not discussed further.

28

2.2. Theoretical Background

event a to happen exactly once in order to reach the marked state. As a regular expression,

this is denoted by (b∗c∗d∗)a(b∗c∗d∗):

x

SP:SP:

y
a

b, c, d b, c, d

In the first step of supervisor synthesis, the plant automaton is synchronized with the spec-

ification automaton, and the system G ‖ SP is obtained. Note that in this system, the only

marked state is (j, y) (highlighted in blue), since the synchronous composition requires that

both original states of the synchronized automata are marked (compare Eq. (2.20)):

〈i,x〉G ‖ SP:G ‖ SP: 〈k,y〉

〈k,x〉 〈i,y〉

〈j,y〉

a

b

cd dc

Observe that G ‖ SP satisfies the specification, as it requires event a to occur exactly once

in order to reach the marked state, but does not allow for further occurrences of event a
after that. However, the synchronization has lead to the possibility of blocking behaviors.

For instance, event b may occur after event a, leading to state (i, y). While this is allowed

by the specification, it results in to a blocking behavior as no return into the marked state

is possible from there on. Thus, the synthesis algorithm removes the blocking states (i, j)
and (k, y). The following non-blocking system represents the remaining behaviors that are

allowed by the supervisor:

〈i,x〉G ‖ SP:G ‖ SP: 〈k,y〉

〈k,x〉 〈i,y〉

〈j,y〉

a

b

cd dc

Images (c) 2023 IEEE [90]

29

3. Related Work

This chapter presents the current state-of-the-art with respect to risk assessment and
hazard analysis methods for safety-critical systems. As the previous discussions have
highlighted, the high system complexity, the unpredictability of human behavior, and the
vast range of possible system states and interaction scenarios make it difficult to analyze
and validate the safety of HRC systems. Similar problems exist for other safety-critical
systems outside the domain of HRC, such as aerospace systems and autonomous road
vehicles. The development of methods for risk assessment, hazard analysis, and safety
validation is an active field of research across all domains of safety-critical systems. In
this chapter, an overview of existing methods is given. The overview focuses on methods
that have been applied to HRC or other robotic systems, but it also includes potentially
transferable approaches from other domains.

Publications Related to this Chapter

Parts of the work presented in this chapter have been published in:

• Huck, Tom P., et al. "Risk assessment tools for industrial human-robot collabora-
tion: Novel approaches and practical needs." Safety Science 141 (2021): 105288.

This chapter is largely based on a survey conducted as part of this dissertation [89].
The survey features a literature review and a survey among industrial practitioners. The
literature review was conducted in three stages. First, a search was conducted on Google

Scholar, IEEEXplore and ScienceDirect, using the following combinations of keywords:

{Human Robot}AND

Collaboration
OR

Interaction

AND

Safety
OR
Risk
OR

Hazard

AND

Assessment
OR

Analysis

From this search, 183 potentially relevant publications were first selected on the basis of
title and abstract. In a second stage, the publications were examined closer to determine
their relevance to the subject. For inclusion of a work into the review, all of the criteria
shown in Table 3.1 had to be met. After completion of the selection process, the results
were iteratively refined by considering further references in publications that were found
to be especially relevant. After completion of the initial selection phase, the search was
repeated regularly using the above keywords in order to capture further relevant publica-
tions that may have appeared in the meantime. While the contents are focused on HRC,
methods from other areas of application which are potentially transferable to a robotics
context are also covered.

The results of the literature research showed a wide range of different approaches
which vary significantly in terms of goal, scope, and methodology. For a better overview,

31

3. Related Work

Nr. Criterion

1 The publication proposes an approach that can be used to support at least one
aspect of (HRC) risk /hazard analysis.

2 The publication is concerned with safety in the sense of avoiding physical harm
due to accidents. Aspects like psychological safety, ergonomics, or security are
not considered here.

3 The publication is concerned with safety on a system level, not on the level of
individual components like end-effectors, sensors, etc.

4 The publication is concerned with risk assessment/hazard analysis as a design-
time activity (in contrast to runtime activities which are not concerned with the
safety of a robot system as a whole, but rather with handling specific situations
that occur during operation).

5 The proposed approach is novel and goes beyond the procedures which are al-
ready established by current safety standards (Section 2.1).

Table 3.1.: Inclusion criteria for the literature review (adapted from [89]).

the results are structured in the following three categories: Semi-formal methods, for-

mal and rule-based methods, and testing-based methods. The distinction between these
categories is as follows:

• Semi-formal methods use a formalized system model (e.g., block diagrams or con-
trol structure diagrams) to analyze safety critical systems in terms of hazards and
risks. This system model is used to guide the user through the hazard analysis.
However, the analytical burden is still mainly placed on human reasoning (i.e., the
analysis is not automated).

• Formal- and rule-based methods: Formal methods evaluate the safety of systems
by evaluation of strictly formalized models. In many cases, this allows for au-
tomated verification and formal safety proofs. Rule-based expert systems reason
about safety properties based on pre-defined rules which encode domain-specific
expert knowledge.

• Testing-based methods identify hazards by exposing the system to various testing
conditions and observing the system’s response. This can be done either in the real
world or in simulation. While the former is more realistic, its feasibility is limited
by cost, time, and availability of physical prototypes. Thus, this Section is mainly
concerned with simulation-based testing.

Since this thesis focuses on the identification of hazards, only approaches which are appli-
cable or related to the hazard analysis phase of the risk assessment procedure are included.
Approaches that are mainly related to other parts of the risk assessment procedure (e.g.,
collision models, methods for the estimation of injury severity) are not mentioned below.
For more details, the reader is therefore referred directly to the publication (see green box
above).

This Chapter is structured as follows: Section 3.1 discusses semi-formal methods,
Section 3.2 discusses formal- and rule-based methods, and Section 3.3 discusses testing-
based methods. The survey among industrial practitioners is presented in Section 3.4.
Finally, Section 3.5 discusses the limitations of the related work and highlights research
gaps.

32

3.1. Semi-Formal Hazard Analysis Methods

3.1. Semi-Formal Hazard Analysis Methods

Semi-formal hazard analysis relies on system models for hazard identification. These
models, however, are only loosely formalized. Therefore, they cannot be evaluated auto-
matically. The hazard analysis is thus based on human reasoning. The models serve as a
tool to structure the hazard analysis and to guide human analysts through the procedure.

3.1.1. Systems-Theoretic Process Analysis (STPA)

Leveson introduced the Systems-Theoretic Process Analysis (STPA) as a method to
identify hazards in complex social, technical, or socio-technical systems [125]. STPA is
based on the premise that the majority of hazards do not emerge due to faults or failures
on the level of individual system components, but are introduced into the system in the
design phase in form of unintended functionality that may lead to unsafe states. This
is usually a consequence of system developers being unable to comprehend all possible
interactions between system components due to high system complexity. Developers are
therefore unaware of unsafe states that may result from unintended interactions between
system components.

STPA aims to counter this problem through the use of control structure diagrams.
Control structure diagrams in STPA are hierarchical diagrams of system components
where each component serves as a controller for one or multiple underlying components
(note that the term controller in this context does not necessarily refer to a technical com-
ponent, but to any system component that serves a control function, including human
operators). Each controller provides control inputs to and receives feedback information
from the underlying components. An example of a control structure diagram for a mobile
robot system is shown in Figure 3.1 After modeling the control structure and specifying
what control input and feedback are provided by each component, the user must iden-
tify potentially hazardous control actions (HCA). This is done by analyzing each control
action and assessing whether the control action could lead to an unsafe state if executed
inadequately. STPA assumes four basic types of inadequate control actions that a user
should consider [125, p. 213]:

• A control action that should be provided is not provided, or the controlled compo-
nent does not follow/execute the control action.

• A control action that should not be provided is provided.

• A control action is provided too early or too late (either in terms of time, or in terms
of sequence)

• A control action is stopped too soon or applied too long.

If the user determines that any of these inadequate control actions can lead to an unsafe
state, the related control action is called a hazardous control action (HCA). For each
HCA, all components that are involved in the respective control loop are further analyzed
to identify if and how they could cause the HCA.

Although early STPA applications were seen mainly in the field of critical infra-
structure and defense systems, there are also examples of this technique being applied
to robot systems: Mitka and Moroutsos derive safety requirements for domestic robots

33

3. Related Work

Figure 3.1.: Example of an STPA control structure diagram for a mobile robot system[4].

on the basis if STPA hazard analyses [139]. Bensaci et al. have apply STPA to identify
hazards of a complex multi-robot system [30]. Adriaensen et al. present a case study of
STPA being applied to a collaborative mobile robot [4]. Nuchalifah et al. present a case
study on analyzing safety and security of a mobile disinfection robot using STPA-Safesec,
an STPA extension which covers not only safety, but also security threats [145].

3.1.2. HAZOP and HAZOP-UML

Hazard and Operability Analysis (HAZOP) is a hazard analysis technique which was
originally developed for the chemical process industry. Its procedures are defined in the
IEC 61882 standard [94]. Similarly to STPA, HAZOP is based on a graphical system
model. In the chemical process industry, this is usually a flow diagram. A set of guide

34

3.1. Semi-Formal Hazard Analysis Methods

words (e.g., high pressure, low pressure, high temperature, etc.) is then systematically
applied to the different parts of the flow diagram to identify process deviations that could
be potentially hazardous (note that this guide-word approach is similar to STPA’s identi-
fication of HCAs).

Because the original HAZOP guide words are specific to the chemical process in-
dustry, it is difficult to apply the original HAZOP method to the field of robotics. For
the application to robot systems, Martin-Guillerez et al. introduced HAZOP-UML [131].
Instead of the original flow diagrams, HAZOP-UML uses Unified Modeling Language
(UML) diagrams (see Figure 3.2) to model robot use cases and an adapted set of guide
words to identify hazards. Case studies of HAZOP-UML in a robotics context are pre-
sented by Guiochet et al. [75, 74].

Figure 3.2.: A use case of a walking assistance robot is modeled in a UML sequence
diagram for the purpose of hazard identification with HAZOP-UML [75].

3.1.3. Task-oriented Hazard Analysis

Apart from the two previous methods which are based on control structure diagrams
and UML diagrams, there are also semi-formal methods which use a task model as a
basis for hazard identification. Generally speaking, the approach of these task-oriented
methods is to break down a human-robot interaction task, such as a collaborative assembly
sequence, into different sub-tasks and assign potential hazards to these subtasks.

One such example is presented by Marvel et al. [133], who propose a task-based haz-
ard analysis method that is based on an extension of Hierarchical Task Analysis (HTA).
HTA is a long-standing method to describe and analyze manual assembly tasks [176].
Marvel et al. decompose collaborative workflows hierarchically into subtasks. Each sub-
task is assessed on the basis of a task ontology. The ontology describes the subtasks
in terms of subjects and predicates. Subjects are the physical components that are in-
volved (Robots, Humans, Tools, etc.). Predicates are properties and capabilities of task
and subjects (e.g. what kind of collaboration takes place, what properties the involved

35

3. Related Work

tools have, etc.). Potential hazards are assigned to each subtask based on the respective
subject /predicate combinations. Although in some cases, automatic hazard identification
is theoretically possible (e.g. if certain subject/predicate combinations are already known
to cause specific hazards), the overall analysis is still mostly a manual procedure.

Antonelli and Stadnicka present the Process Failure Model and Effects Analysis tech-
nique for HRC systems (HRC-PFMEA) [12]. Like HAZOP, HRC-PFMEA is based on
the already established hazard analysis technique FMEA [34] and has been adapted to
HRC use cases. In its core, the PFMEA method consists of a set of pre-defined rules and
criteria which help the user to identify and assess hazards that are related to collaborative
workflows. The workflow is broken down into individual process steps. Each process
step is then analyzed by the human users with respect to potential failure modes. This
includes mistakes made by the robot, mistakes made by the human, and mistakes made
due to inadequate interaction of both parties. If a failure mode is found to be applicable to
a certain process step, then the user can apply a pre-defined set of rating criteria to assess
if the failure mode is safety-critical, how critical it is, and what type of risk mitigation
measures should be used.

Another similar approach is shown in a case study by Gopinath and Johansen [70].
They use a method known as Job Safety Analysis (JSA) and apply it to a collaborative
assembly process. Similarly to HRC-PFMEA, JSA also breaks down a collaborative task
into sub-procedures, and analyzes these with respect to potential hazards. Yet, the JSA
procedure appears to be more generic and informal and less strictly defined than the HTA-
and ontology-based approach of Marvel et al. [133]

3.2. Formal and Rule-based Methods

In contrast to the semi-formal methods presented above, formal methods rely on sys-
tem models which are more strictly formalized. The strict formalization of these models
allows it to provide formal safety proofs, in some cases even automatically. How-ever,
human experts are still required to create and tailor the models, and to formulate speci-
fications. In the following, two formal methods are discussed which have been applied
to robotics, namely model checking and safety proofs with differential dynamic logic.
Furthermore, rule-based expert systems are discussed. Although these do not provide a
safety proof, they can also be considered formal methods as they perform reasoning on a
pre-defined rule base of formalized expert knowledge.

3.2.1. Model Checking

Model checking is an analysis technique where the behavior of analyzed systems
is captured in a formal model which is then verified against certain specifications such
as safety constraints [43]. The most prominent model checking tool in the context of
HRC is SAFER-HRC ("Safety Analysis Through Formal vERification in Human-Robot
Collaboration"), which was first proposed by Askarpour et al. [18]. SAFER-HRC uses on
linear temporal logic (LTL) as a modeling language to describe HRC systems and safety
specifications. LTL consists of logical operators and propositional variables. Logical op-
erators include the operators known from boolean logic, as well as additional operators

36

3.2. Formal and Rule-based Methods

that describe time relations. In particular, SAFER-HRC uses the language TRIO, which is
an extension of LTL that features a quantitative notion of time [67]. The system model ex-
pressed in TRIO is checked against safety specifications using bounded model checking
to determine if the system conforms to certain safety specifications. The SAFER-HRC
modeling approach is based on a composition of several submodels: one model describes
the human operator (O), one the robot system (R), one the layout of the workcell (L).
Each of these models describe safety-related properties of the respective elements as well
as constraints for the configuration of each system (e.g., to avoid unrealistic human body
configurations in the O-model). Additionally, task models (T) are defined to specify the
interactions between the components in the O, R, and L models. These task models break
down tasks into elementary actions, where each action is characterized by preconditions
(i.e., conditions that must hold for the action to occur), postconditions (i.e., conditions that
hold after the action has occurred), and safety constraints that must not be violated during
the action. Additionally, the user can assign priorities to decide what actions should be
performed first if preconditions of multiple actions are fulfilled at the same time. Fur-
thermore, safety specification are formulated by the user in a formal language. Since the
submodels are all represented by TRIO formulae, the system model can be checked auto-
matically against the specifications using bounded satisfiability checking. In the case of
SAFER-HRC, the satisfiability checker ZOT [155] is used. ZOT analyzes if there exist
any system behaviors which satisfy the constraints of the O-, R-, and L-models as well as
the pre- and postconditions of the T model, but violate a safety constraint. If this is the
case, then a hazardous situation has been identified and the unsafe system configuration is
presented to the user as evidence. Following the iterative approach of the ISO 12100 risk
assessment procedure (compare Section 2.1.2), users can iteratively add safety measures
by modifying the model (e.g., by specifying that the robot must stop in certain situations)
and then re-conduct the satisfiability check to identify whether the respective hazard has
been eliminated [18].

Over the recent years, several extensions of the SAFER-HRC methodology have been
developed [18, 19, 180], including a model of operator behavior and human error [20].
Rathmair et al. present a hybrid approach where formal verification is combined with
3D models to identify potential clamping hazards between the robot and static objects.
They also consider system variability, namely variations of robot speed and trajectory,
to avoid the need for repeating the hazard analysis in case of minor modifications to the
robot movement. Outside the industrial domain, formal verification has also been applied
to other fields such as medical and assistance robotics [182, 42, 124] or mobile outdoor
robotics [156].

3.2.2. Safety Proofs with Differential Dynamic Logic

While the aforementioned model checking approaches generally rely on the enumer-
ation and exploration of discrete state-spaces, there are also methods which rely on math-
ematical proof. These methods are especially useful for Cyber-physical systems (CPS),
which are characterized by both continuous-time behaviors (such as movements or other
physical processes) as well as discrete behaviors (such discrete control decisions by a
computer). Robot systems are a typical example for CPS because they feature both dis-
crete computational aspects and interaction with the physical world [153].

37

3. Related Work

Due to the partly continuous nature of the state-space of CPS, exhaustive exploration
of discrete states, as it is done in many model checkers, is not possible. Instead, safety
properties need to be shown through mathematical proof. To that end, Differential Dy-
namic Logic (dL) has been developed. dL is a logic for reasoning about the behavior
of CPS and proving properties of CPS. dL uses differential equations with domain con-
straints to describe the physical behavior of CPS, and discrete operators such as assign-
ment, choice, and repetition, to describe the discrete behavior of CPS. Apart from first-
order logic operators, dL also features quantifiers that express reachability properties for
the continuous evolution [153].

In a hazard analysis context, dL can be used to prove (or disprove) safety properties of
CPS. Although safety proofs for complex CPS are challenging, the compositional nature
of dL formulae allows for a "divide and conquer" approach [153]. Furthermore, an appro-
priate choice of abstraction level can help to keep complexity manageable. Examples of
dL safety proofs for robots are found for instance in [140, 112, 33]. A theorem prover for
dL, named KeYmaera X, is available to assist with proof efforts [66].

3.2.3. Rule-based Expert Systems

Rule-based expert systems for hazard analysis encode domain-specific safety know-
ledge in the form of pre-defined rules. This representation allows for automatic identi-
fication of potential hazards. Awad et al. [22] have developed a rule-based method for
automated hazard analysis and risk assessment of HRC systems on the basis of the PPR-
model [63], which describes collaborative robot workflows by three finite sets of proper-
ties: Product properties P , resource properties R, and process properties A. The union of
all three sets is called the set D of workplace design properties: D = P ∪R∪A. Further,
there is a a finite set H which contains hazards that may occur at a HRC workplace. For an
inference about potential hazards, pre-defined rules map the design characteristics di ∈ D
of a given workplace to the relevant workplace hazards hi ∈ H (see Figure 3.3). Addi-
tionally, some rules are defined to assist users with additional tasks such as risk estimation
or selection of risk mitigation measures. Wigand et al. [186] present a similar knowledge-

Figure 3.3.: Workplace design properties di ∈ D are mapped to hazards hi ∈ H [22].

based hazard identification technique, which extends on the ideas of Awad et al. They
also apply a rule-based mapping of hazards, but do so on three different abstraction levels
to capture different perspectives on the system. The three levels are: intra-component
(e.g., hazards resulting from sharp edges on workpieces), inter-component (e.g. crushing
hazards due to gaps between work-pieces), and workstation (e.g. hazards due to robot
movement).

38

3.3. Testing-based Methods

Rule-based systems can also be combined with simulation. The tools CobotPlanner

[65] and Dynarisk [27], developed by the Fraunhofer institutes IFF and IWU, can be con-
sidered hybrids of rule-based expert systems and 3D simulation tools. They rely partially
on pre-defined rules and formulae (e.g. for determining safety distances or safe robot ve-
locities), and partially on 3D simulation models (e.g., for calculation and visualization of
hazardous areas).

3.3. Testing-based Methods

The previously discussed approaches rely on white-box system models. White-box
models allow users to analyze systems by explicitly reasoning about certain well-known
features of the system’s internal structure or functionality. In contrast, black-box mod-

els capture input-output relations of systems, but do not explicitly consider the system’s
internal structure [127]. The applicability of white-box methods is limited when the an-
alyzed system is either highly complex, or contains black-box components like compiled
third-party software or data-driven algorithms. In such cases, safety needs to be validated
through testing. To that end, the system which is analyzed (referred to as system under
test, SUT) is subjected to external stimuli in a testing environment and it is observed if the
SUT responds to these stimuli in a manner which satisfies safety specifications. The test-
ing environment may either be a real-world environment or a simulation. Since this thesis
is primarily concerned with the early design phase where real-world systems are usually
not available for testing, this section focuses on simulation-based approaches. A major
research challenge in the context of simulation-based testing is the creation of appropri-
ate test cases which need to be realistic, representative of the real-world conditions that
the system will be subjected to, and critical enough to expose potential errors and design
flaws in the SUT. Especially the latter is difficult to achieve, since it is usually not known
a-priori what safety flaws a system contains or under which conditions it may fail. There
are different approaches for generating test cases and guiding the test case generation,
which are briefly introduced below.

3.3.1. Agent-based Testing

Agent-based testing is a test method that focuses on the interaction of a system with
its environment. In agent-based testing, a simulation model of the SUT is introduced into
a simulation environment that contains autonomous agents with which the SUT has to
interact. In this environment, the SUT is exposed to various different agent behaviors.
This allows analysts to observe how the SUT interacts with these agents and responds to
their behaviors [60]. Agent-based testing is therefore particularly suitable for domains
such as HRC, where safety depends on dynamic reaction and interaction. Araiza-Illan et
al. propose an agent-based approach for testing HRC systems. In their approach, the SUT
is introduced into a system environment where it interacts with human agents [16]. In
order to create realistic testing conditions, the agents are modeled to have certain beliefs,
desires, and intentions which are reflected in their behavior [16, 13]. Another agent-
based approach is presented by Grzeskowiak et al. [72], who aim to test mobile robot
navigation by exposing the robot to a simulated crowd of pedestrians. To simulate the
crowd’s motion, each pedestrian in the crowd is considered as an individual agent who

39

3. Related Work

aims to optimize their path with respect to a certain cost function, that depends on the
pedestrian’s current state as well as its environment (e.g., the presence of other agents
or obstacles). Chance et al. propose a similar agent-based testing approach, but in the
domain of autonomous vehicles [40]. They present a multi-agent framework, where an
autonomous vehicle needs to navigate safely in the vicinity of a group of pedestrians
which are modeled as agent who make autonomous decisions (e.g., whether to cross the
road in front of the vehicle at a given point in time).

3.3.2. Coverage-based Testing

High-fidelity simulations are computationally expensive and the underlying simula-
tion models often have large state-spaces. Thus, simulation-based testing usually cannot
guarantee complete coverage of all system states which can possibly be reached in the
simulation model. To assess the trustworthiness of simulation-based tests, it is therefore
necessary to quantify the degree of test coverage that has been achieved with a particular
set of test cases. Simply counting the number of tests is not sufficient for this, as the
number of test cases alone does not reflect the quality or diversity of the testing scenarios.
Instead, coverage metrics are used. Coverage metrics typically define a degree of cover-
age based on certain domain-specific criteria. Generally, coverage metrics are a relative
quantity which measures the degree of coverage achieved by a set of tests:

Coverage =
Number of test cases covered

Number of total test cases possible

However, what constitutes complete testing is often not clearly defined and sometimes,
there are infinitely many possible test cases. Thus, coverage metrics are usually based
on domain-specific criteria. In software testing, for instance, coverage measures quantify
to what extent a given piece of program code is executed during testing. This can be
determined based on factors such as the number of executed statements, functions, or
branches in a program [142]. Coverage metrics can also be defined based on of the share
of requirements that have been tested [185].

In the context of simulation-based safety testing, coverage metrics can be used as a
quality criterion for the generation of test cases. Araiza-Illan et al. propose the use of
code coverage criteria to guide the generation of test scenarios when testing robot control
code [14]. Lesage and Alexander [123] present another coverage-guided testing approach
for human-robot systems. Instead of code coverage, they propose the use of a domain-
specific metric called situation coverage, which is based on the situations that have been
covered by testing rather than execution metrics of the control code. In this context, situ-
ations are defined on the basis of certain human-robot configurations. A similar concept
is presented by Hawkins and Alexander in the context of autonomous vehicles, where
situation coverage is defined based on aspects such as the configuration of the road or the
positions of parked vehicles positions in a traffic scenario [81].

3.3.3. Falsification

Apart from creating realistic testing scenarios and achieving a high degree of cover-
age, it is also important that testing scenarios are sufficiently critical to expose hazards in

40

3.3. Testing-based Methods

Figure 3.4.: Falsification principle [49]

safety critical systems. This is especially crucial when hazards are "hidden", that is, when
unsafe behaviors remain unobserved in most situations and only emerge under specific
conditions. Falsification methods aim to expose these hazards by creating adversarial
test cases which are as critical as possible and thereby cause the SUT to fail, enter an
unsafe states, encounter an accident, or otherwise behaves in an undesired way [107].
The principle of falsification is shown in Figure 3.4: The SUT is embedded in a simula-
tion environment. The environment is controlled by a falsification algorithm (FA). The
FA decides on some input a which affects the simulation environment. This input may
consist, for instance, of actions or events which are executed in the simulation, or pa-
rameter values which alter some properties of the simulation environment. The adapted
simulation is executed and the behavior of the SUT under these new conditions is mon-
itored to detect any violation of safety constraints. After the simulation has terminated,
a reward r is returned to the FA. The reward indicates the level of criticality of the sim-
ulation scenario. Such a rewards can be based, for instance, on the occurrence of unsafe
states or some other domain-specific metric chosen by a user. One prominent example of
this approach is Adaptive Stress Testing (AST) [119, 120, 111]. This approach treats the
SUT as a black-box and deploys algorithms such as Monte Carlo Tree Search [120] and
Deep Reinforcement Learning [110] to generate conditions that falsify safety properties.
Adaptations of AST leverage dissimilarity rewards (i.e., rewards that encourage a diverse
exploration of the search space) [46] and domain expert knowledge [58]. Apart from
AST, there is also a large number of other falsification approaches, which use different
algorithms to create testing scenarios, but follow in principle similar concepts. Most of
these examples are found in the field of autonomous vehicle testing [23, 55, 108, 71, 109].
A comprehensive survey is presented in [48].

3.3.4. Testing in Virtual Reality

Testing in virtual reality is a compromise between real-world testing and simulation-
based testing. Testing in virtual reality can be useful for analysis of HRC systems, as it
allows safety engineers to experience simulation models or digital twins of a system in
a realistic three-dimensional visualization [134, 161, 54]. Coupling virtual reality tech-
nology with human pose detection and digital human models also allows human-in-the
loop simulations where real human operators can interact with a digital twin of the robot
system. This enables safety engineers to spot potential collision scenarios without en-
dangering real humans, and allows them obtain first insights regarding possible collision
scenarios [138, 167]. Furthermore, virtual reality can also be used for safety training of
operators [53].

41

3. Related Work

Instead of performing a full human-in-the loop approach, it is also possible to im-
port pre-recorded human motion data into simulators to create a testing environment. One
such example is presented by Bobka et al. [32], who have developed the Human Industrial

Robot Interaction Tool (HIRIT). This tool allows users to import recorded human motion
data and simulate human motions in conjunction with collaborative robots. During the
simulation, safety-related quantities such as robot speed and minimum human-robot dis-
tance are evaluated. This system is primarily intended to validate robot controllers that
react to approaching humans (e.g., through velocity scaling on the basis of human-robot
distance). The import of motion data allows a realistic simulation of human motion. A
drawback, however, is that once recorded and imported, the motions cannot be altered.
If one wants to change the behavior of the human in the simulation, e.g. for a closer
investigation of certain safety-critical situations, new data must first be recorded.

3.4. Current Industrial Practice

In addition to the literature review, a series of expert interviews and an online sur-
vey were conducted to assess the current industrial practice of risk assessment and hazard
analysis for HRC systems. In a first step, in-person interviews with 16 experts from the
German automation industry were conducted. All participants had professional expe-
rience in conducting hazard analyses/risk assessments and implementing HRC applica-
tions. The interviews were conducted in the form of structured qualitative interviews and
evaluated according to the qualitative content analysis methodology of Mayring [136].
In a second step, an online survey with further 28 participants was conducted to validate
the findings of the initial interview series and content analysis. Below, the findings are
presented in an abbreviated and aggregated manner. For a full overview of the survey, in-
cluding details on questionnaire, content analysis, and quantitative evaluation, the reader
is referred to [89].

The survey indicates that industrial practitioners largely follow the methods pre-
scribed by the EU machinery directive and ISO 12100. Yet, the methods specified in
these documents are rather general and not strictly formalized (Sec. 2.1.2). Regarding the
tools used in hazard analysis, a majority of participants stated that they use office software
(e.g., spreadsheets) as a tool for hazard analysis. Approximately half of the participants
stated that they use commercial risk assessment software, such as WEKA CE Manager

[184], Safexpert [91], Docufy [57], or GESIMA [5]. These tools, however, are mainly
geared towards generating documentation and guiding the user through the risk assess-
ment procedure. They do not provide any advanced features such as automated hazard
identification or collision force estimation. Notably, none of the participants stated that
they use any of the novel methods presented in this chapter. A majority of participants
stated that checklists are useful for support of hazard identification and that risk assess-
ments should be conducted by a group multiple people. Furthermore, the participants
almost unanimously stated that experience and know-how are the most important factors
for risk assessment.

When asked about desires for future tools and methods, a majority of participants
stated that simulation-based collision analysis would be desirable. However, less than
half of the participants expect that simulation has the potential to replace real-world col-
lision measurements entirely. When asked about suggestions for future risk assessment

42

3.5. Discussion of Related Work and Limitations of Current Methods

tools, participants mentioned the use of CAD data for automated calculation of safety dis-
tances, automated checking for critical geometries such as shearing points or sharp edges,
and CAD-aided cell layout planning. Furthermore, suggestions included automated or
partially automated hazard identification (e.g. by means of artificial intelligence), pre-
defined risk-templates for the assessment of frequently occurring tasks, and the use of
digital human models in HRC simulation (e.g., to assess collision possibilities with criti-
cal body parts such as the head).

While most participants seemed to be open to improvements and new features, aware-
ness of the novel methods from scientific literature among the participants was limited,
and those methods which are known to the experts are largely viewed skeptically. Figure
3.5 shows the participants’ attitude towards some of the novel methods discussed above.
It is noteworthy that apart from HAZOP-UML (which is likely well-known because its
foundation, HAZOP, is already an established method), all of the methods are largely un-
known to the participants. Among those participants which did have some knowledge of
the respective methods, a significant share views them as "not promising".

Figure 3.5.: Attitude towards novel methods amongst industrial practitioners [89].

The survey indicates several important points: First, current industrial practice makes
only very limited use of dedicated tools and methods beyond the general procedures pre-
scribed in the respective standards. Tool support seems to be mainly limited to check-lists,
commercial documentation tools, and simple office software such as spreadsheets. Sec-
ond, tools and methods with novel capabilities are, at least in principle, seen as desirable
by industrial practitioners. Third, despite novel tools being seen as generally desirable the
methods from scientific literature are not yet established in industry. This may be because
they are largely unknown, but also because they are seen with some skepticism. Although
the number of participants in this survey is too small to draw general conclusions, the
aforementioned points are also corroborated by other works which report similar prob-
lems around risk assessment and hazard analysis methods [1, 68, 84, 80].

3.5. Discussion of Related Work and Limitations of

Current Methods

As discussed above, the current industrial practice of hazard analysis relies heavily on
human reasoning, intuition, and expert knowledge (Section 3.4). It only draws on limited
support from systematic hazard analysis methods or software tools [89, 84]. While human

43

3. Related Work

reasoning remains an important pillar of hazard analyses, its efficacy is limited when it
comes to the analysis complex dynamic systems. To identify potential hazards, one needs
to consider a vast set of system states and interactions between sub-systems, which may
easily overburden the analytical skills of humans (compare the challenges discussed in
Section 2.1.5). Thus, additional methods and tools are needed to support current hazard
analysis practices.

Figure 3.6.: Conflicting goals of hazard analysis methods.

One of the most crucial aspects in hazard analyses is the achievable completeness of

identified hazards, that is, whether the analysis has identified all hazards and/or poten-
tially hazardous behaviors of a system. In the context of model-based hazard analyses,
one needs to differentiate between (i) completeness with respect to the real system and (ii)
completeness with respect to the system model. The former means that the analysis iden-
tifies all hazardous situations or behaviors that can appear during operation of the system
in the real world whereas the latter means that the analysis identifies all hazardous situa-
tions or behaviors that can appear in the model (regardless whether that model accurately
corresponds to the real-world system). Completeness with respect to the system model is
primarily a matter of runtime and computational cost. Often, exhaustive exploration of all
possible system behaviors is only feasible for simple or highly abstracted models. Com-
pleteness with respect to the real-world system requires not only that the model is searched
exhaustively, but also that the model accurately represents the real-world system. These
can be opposing goals, since the former requires that the model is simple enough to facil-
itate exhaustive search without exploding computational cost whereas the latter requires
that the model is detailed enough to represent the real-world system accurately. Therefore,
it is difficult to achieve both exhaustive exploration and a high level of detail given a lim-
ited computational budget. In other words, a higher level of detail requires a more detailed
model of the analyzed system, which in turn increases computational cost and makes it
more difficult to achieve exhaustive exploration. Conversely, given limited computational
resources, the desire to exhaustively explore all possible model states places restrictions
on the modeling detail due to state-space explosion problems. These conflicting goals can
be imagined as a "magic triangle" as shown in Figure 3.6. This triangle shall be used in
the following to illustrate the differences among the state-of-the-art approaches.

44

3.5. Discussion of Related Work and Limitations of Current Methods

Semi-formal methods guide users through the procedure based on system models
(e.g., control structure diagrams or UML diagrams). Compared to methods that are based
on intuition and experience, this approach provides a more rigorous and structured hazard
analysis procedure (Section 3.1) which helps to decrease the likelihood of hazards being
overlooked or forgotten. However, semi-formal methods only have limited potential for
automation, since the core of the procedure still depends on human reasoning. This makes
semi-formal methods vulnerable to the same problems as described in the previous para-
graph, albeit to a lesser extent. In Figure 3.6, semi-formal methods are found towards the
lower left corner of the triangle, as they are generally associated with low computational
cost (as most of the analytical work is done by human reasoning), but also with low detail
and limited exhaustiveness.

Formal verification techniques based on model checking, such as SAFER-HRC, are
capable of automated hazard analysis without relying on human users to identify hazards
(Section 3.2). Given sufficient computational power, these methods can analyze complex
systems with large state spaces that would be infeasible to analyze by human reason-
ing alone. However, the formalization of the hazard analysis procedure introduces new
challenges: First, the user must translate system and safety specification into a formal
model, which requires time and training and is error-prone. Second, to keep modeling
complexity manageable and avoid state-space explosion problems, formal modeling fre-
quently requires significant modeling abstractions, such as discretizations of continuous
state variables. This is illustrated in Figure 3.7, which shows a model of a HRC system
used in a formal verification case study. Note that the collaborative workspace is ab-
stracted through a discretization into several large two-dimensional areas. Abstractions
like these limit the achievable level of detail compared to more fine-grained approaches
such as simulation1. Formal safety proofs by means of differential dynamic logic can
ensure that certain safety properties hold at all times given certain initial conditions, even
for mixed discrete-continuous hybrid systems that cannot be verified by discrete model
checking. However, finding proofs is challenging and requires experts who are trained in
the proof techniques. Furthermore, such proof techniques cannot be applied to systems
which are composed of black box components. Furthermore, even if a system design is
proven to be correct w.r.t. certain safety specifications, there is no guarantee that there are
no errors such as software bugs in the system’s implementation. Thus, although formal
proofs are highly valuable, they do not alleviate the need for further assurance measures.
Formal methods are generally associated with a relatively high degree of exhaustiveness,
but also with considerable computational cost and limited level of detail, placing them
somewhere between the top and left corner of the triangle in Figure 3.6. A combination
of both high detail and exhaustiveness is often computationally infeasible, as indicated on
the right edge of the figure.

The approach proposed in this work uses simulation-based testing as a tool for hazard
identification. This promises several advantages:

• Availability: In contrast to formal languages or rule-based description formats, 3D-
simulation is already widely used in the robotics and automation industry [42]. Nu-
merous commercial and non-commercial simulators are available [52]. Since 3D
simulation is already being used for other tasks such as layout planning, cycle time

1It should be noted that this particular figure is only intended as an example. The discretization does not
necessarily have to be as coarse-grained as depicted.

45

3. Related Work

Figure 3.7.: Example of modeling abstractions: A discretized human-robot collaborative
workspace from a SAFER-HRC case study [17].

optimization, or virtual commissioning, a simulation model is often already avail-
able in the development process and can be used as a basis for hazard analysis.

• Detail: Although all models require a certain amount of abstraction, a detailed
3D simulation requires much less modeling abstractions than a formal verification
approach. The high accuracy of state-of-the-art 3D simulators allows users to model
spatial and dynamic properties in a detailed manner (e.g. movements, collision
geometries, collision forces, etc.) which is of particular importance in collaborative
robot applications.

• Scalability: Most existing hazard analysis methods are so-called white-box methods
that require in-depth reasoning about the system’s internal structure and function.
For instance, analyzing a UML description or building a formal model requires an
in-depth understanding of the analyzed system. In principle, this is not a disadvan-
tage, since it is certainly desirable that users try to understand the analyzed system
as much as possible. However, white-box approaches do not scale well with in-
creasing system complexity, because maintaining an in-depth understanding about
the system’s internal structure and function becomes increasingly difficult as sys-
tems become more complex. Simulation-based methods are more scalable with
respect to system complexity because they enable the user to adopt a black-box

approach. The simulation model is considered a black box which is exposed to dif-
ferent testing conditions (i.e., simulation inputs) and the resulting system behaviors
(i.e., simulation outputs) are checked for violations of safety criteria [48]. Since
this approach relies on input-output relations and does not require an analysis of the
internals of the simulation model, it is suitable for complex systems which cannot
be analyzed with a white-box approach [120].

While there are already examples for simulation-based safety analysis techniques in litera-
ture (Section 3.3), most of these techniques are being applied in other domains, especially
in the context of autonomous vehicles [47, 23, 55, 108, 71, 109]. In the domain of col-
laborative robotics, there are still relatively few works which have considered simulation-
based hazard analysis, and those works have focused mainly on the testing and validation
of software-related aspects (e.g., code validation [15, 16] or testing of control strategies

46

3.5. Discussion of Related Work and Limitations of Current Methods

[32]). For a comprehensive support of hazard analysis, however, a more extensive ap-
proach is needed, which takes into account system-level behavior, interactions between
system and system environment, and physical aspects of HRC, such movements, geome-
tries, and collision forces. Such approaches will be introduced in the following chapters.
More specifically, the remainder of this thesis will propose simulation-based techniques
as well as a two-layer approach which combines simulation with formal methods. While
the simulation-based techniques generally trade exhaustiveness for a higher level of detail
(placing them on the lower right of Figure 3.6), the two-layer approach attempts to strike
a balance between both aspects (as indicated by the central position in Figure 3.6).

47

4. Simulation- and Agent-based

Hazard Analysis Approach

This Chapter introduces a novel approach for hazard analysis of collaborative robot
systems. The proposed approach is based on simulation and combines prior work in the
fields of agent-based testing (esp. the approach of Araiza-Illan et al. [13]), falsification
(esp. AST [120]), and formal verification. Section 4.1 states a formal problem defini-
tion for the hazard analysis problem, and Section 4.2 discusses solutions for the stated
problem.

4.1. Problem Definition

This thesis builds on previous work by combining aspects of agent-based testing, fal-
sification, and formal methods into a framework for simulation-based hazard analysis. To
that end, the hazard analysis problem needs to be expressed in a formal problem defi-
nition. In this Section, a formal problem definition is presented, which frames hazard
analysis as a search problem (inspired by [120]).

4.1.1. Simulation Model and Safety Specification

It is assumed that the analyzed system is represented by a simulation modelM. The
set of all possible states of the simulation model M shall be called state space S. Let
s0 denote the initial state of the system and let Sreach denote the set of all states that are
reachable from s0. Furthermore, it is assumed that the safety constraints to which the
system must adhere are given by a safety specification spec:

Definition 4 - Safety Specification

The safety specification spec is a mapping from the simulation state space S to a

boolean value that indicates whether a given state is safe or unsafe:

spec : S → {true, false} (4.1)

Where true corresponds to a safe state and false to an unsafe state. The safety

specifications may encode any user-defined criterion that is decidable on the basis

of the information given by the simulator state space. The safety specification can

consist of multiple sub-specifications which are concatenated by logical conjunc-

tions or disjunctions.

From a practical perspective, it should be noted that the simulation state s may not
always be fully observable (e.g., because the programming interface of the simulation

49

4. Simulation- and Agent-based Hazard Analysis Approach

software does not allow full access to the simulator’s internal state variables, because the
system contains black-box components, or because the simulation state is too complex
and handling the full vector of state variables is impractical). However, state-of-the art
3D simulators typically allow the user to retrieve numerous safety-related variables, such
as speeds or distances, which are calculated from the internal state. Thus, strictly speak-
ing, spec is not a mapping from the actual simulator state, but rather from set of state
observations. For the sake of simplicity, however, no explicit distinction between the ac-
tual state the observation will be made in the following. It is assumed that the observation
provides sufficient information to decide whether a state is safe or unsafe. The following
example illustrates what the specifications may look like:

Example 3 - Safety Specifications

Consider the two following safety specifications which are given in textual form:

(A) "Human and robot must never have contact while the robot is moving."

(B) "Human and robot must never collide with a collision force that is greater than the

respective body-region specific limit."

Suppose that the simulation allows the user to retrieve the following information about the

current simulation state s in every simulation timestep:

• dHR,i(s): The distance between robot and the i−th human body part (index i repre-

sents the respective body part).

• vR(s): The robot’s current cartesian speed (for articulated robots, consider the

speed of the fastest robot joint).

• Fc,i(s): A body-part specific estimation of the force exerted on the human body in

case of a human-robot contact.

Further, let Fmax,i denote a body-region specific collision force limit. Now, the specifica-

tions above can be expressed as follows:

(A) specA(s) = (vR(s) == 0) ∨
∧

i

(dHR,i(s) > 0) (4.2)

(B) specB(s) =
∧

i

((dHR,i(s) > 0) ∨ (Fc,i(s) > Fmax,i)) (4.3)

Note that Eq. (4.2) specifies that in a given state s the robot must either be stopped (first

part of the logical disjunction) or there must be no human robot contact, that is, all body

parts must have a distance greater than zero from the robot (second part of the logical

disjunction).

Eq. (4.3) specifies that for all body regions, the respective body region must either have a

distance from the robot greater than zero (i.e., not be in contact) (first part of the logical

disjunction) or that the exerted contact force on the respective body part must be below the

body-part specific threshold (second part of the logical disjunction).

For a given safety specification, the set of unsafe states U is defined as the set of all
states where spec(s) evaluates to false:

50

4.1. Problem Definition

Definition 5 - Set of unsafe states

The set of unsafe states U is the set of all states s ∈ S for which spec(s)(s) evalu-

ates to false:

U = {s | spec(s) = false} (4.4)

Note that the set U is only defined implicitly via the definition of the safety specification:
for a given state s, it can be decided if s ∈ U by evaluating spec(s), but the set of unsafe
states U is not known at the start of the hazard analysis, since it is generally unknown a-
priori whether a violation of the safety specification is possible in the given system, and,
if yes, in what specific states these violations occur.

4.1.2. Agent-based Simulation

In principle, the goal of the hazard analysis is to determine if the system can reach any
unsafe state, that is, to determine if Sreach∩U 6= ∅. In practice, however, obtaining the set
of reachable states Sreach is usually not tractable for the type of system models considered
here. While the calculation of all reachable states might be feasible for certain types of
systems (e.g., certain classes of hybrid and continuous systems whose dynamics can be
described analytically [10]), it is not tractable for the complex 3D-simulation models that
are needed to simulate HRC systems, as these are generally not based on an analytical
description of system dynamics, but rather on numerical simulation.

Since an exhaustive computation is too costly, this work relies on a sampling-based
approach to discover unsafe states: rather than attempting to calculate the full set of reach-
able states, the state-space is sampled by executing multiple simulation runs (see Figure
4.1). Each simulation run generates a trajectory through the system’s state space. Along
this trajectory, every state si is checked for a violation of the safety specification by eval-
uating spec(si). The goal of this approach is to find simulation runs along which the
system enters an unsafe state. If such a simulation run is found, it serves as a counterex-
ample showing that the system violates the safety specification. Furthermore, visualizing
and re-playing the simulation run can help the user to identify and fix the underlying safety
flaws in the system.

Adopting this approach raises the question of how to generate meaningful simulation
scenarios. This work addresses the issue by adopting the agent-based approach proposed
by Araiza-Illan et al. [13]. In agent-based testing, it is assumed that one or multiple virtual
agents interact with a simulation model of the system which is being analyzed (Section
3.3.1). These agents interact with the system model and thereby create varying simulation
conditions that cause the system to respond in different ways. In other words, trajectories
through the state space are generated by sampling agent behaviors and passing them to
the simulator, where they ultimately result in different state-space trajectories.

To enable this agent-based approach, the simulation modelM is partitioned into two
interacting sub-models. One submodel represents the analyzed robot system and is hence-
forth referred to as System under Test (SUT). Note that the SUT includes not only the
robot itself, but also its periphery (e.g., sensors, tools, protective fences, etc.). The other

51

4. Simulation- and Agent-based Hazard Analysis Approach

Figure 4.1.: The state space of the analyzed system contains two subsets: Reachable
states and unsafe states. The goal of the hazard analysis is to states which
are reachable and unsafe. Since computing the whole of Sreach and U is
computationally expensive, the state-space is sampled by creating individ-
ual simulation runs and checking for unsafe states along the resulting state
trajectories.

subsystem represents the testing agent. As this thesis is mainly concerned with human-
robot collaboration, the testing agents in the following examples will be virtual models of
humans that are collaborating with the robot system. However, it should be emphasized
that the agent does not necessarily have to take the form of a human model. In other use
cases, the agent may also represent other entities that are relevant in that specific case.
In a mobile robot navigation task, for instance, the agents may take the form of dynamic
obstacles, while in a multi-robot system, the agents may represent other robots.

The behavior of the SUT depends on the programming of the SUT itself and on the
behavior of the testing agent. It is assumed that the SUT responds deterministically to a
given agent behavior. Since the SUT’s behavior depends on the agent’s behavior, the agent
behavior can be considered as an input to the simulation modelM, whereas the behavior
of the SUT is an emergent behavior which arises within the simulation as a consequence
of the agent behavior and the programming of the SUT.

Generally, the agent’s behavior may feature discrete aspects (e.g. the execution of
discrete worksteps in a collaborative assembly task), continuous aspects (e.g. motion
parameters such as velocities), or combinations of both. How to encode agent behaviors
will be discussed in more detail in Chapter 6. For now, it is assumed that there is a given
set if possible behaviors denoted by B (how to model and describe B will be discussed in
more detail in Chapter 6). This set forms the input space of the simulation. Because the
behavior of the SUT is a consequence of the given agent behavior, the simulation model
can be regarded as a function which maps the set of agent behaviors B to a power set of the
state-space. In other words, the simulation model receives an given agent behavior b ∈ B
as input and returns a corresponding trajectory through the state-space of the simulation
model.

52

4.1. Problem Definition

Definition 6 Agent-based Simulation Model

Given a set of agent behaviors B and a state-space S, an agent-based simulation

model is a mapping

M : B × S → Sk k ∈ N (4.5)

That is, for a given initial state s0 ∈ S and a given agent behavior b ∈ B, the sim-

ulation model returns a resulting state sequence of finite length k which represents

a trajectory through the model’s state-space:

M(s0, b) = (si) = (s0, s1, s2, ..., sk), si ∈ S (4.6)

4.1.3. Hazard Analysis as a Search Problem

Given the definition of unsafe states and the definition of agent-based simulation, the
hazard analysis problem can now be defined formally. A system is considered unsafe if at
least one unsafe state is reachable from the initial state, that is, if there exists at least one
agent behavior which, when performed in interaction with the SUT, causes the system to
enter an unsafe state. Such a behavior shall be called an unsafe behavior. The question
of determining whether the SUT interacts safely with the agent therefore comes down to
determining if there exists an unsafe behavior. Thus, the problem of hazard analysis can
be framed as a search problem (see also [120]).

Definition 7 Hazard Analysis as a Search Problem

The hazard analysis problem shall be described by the following 5-tuple:

〈M, s0, S, B, spec〉 (4.7)

Where M is a a simulation model, s0 the initial state of the model, B the set of

possible agent behaviors, and spec the safety specification.

The goal of the search is to find at least one unsafe behavior, that is, a behavior

bu ∈ B for which the simulation model enters an unsafe state su along the resulting

state trajectory:

(si) =M(s0, bu) s.t. ∃ su ∈ (si) : spec(su) = false (4.8)

This principle is illustrated in Figure 4.2. The behavior of the agent is given by a sequence
of discrete actions ai. The goal is to find an agent behavior (i.e., an action sequence1)
which transfers the system from the initial state s0 to an unsafe state sU ∈ U . Note that by
framing the problem in this way, the proposed approach combines aspects of agent-based

1Note that in this simplified schematic, the length of the state trajectory k is equal to the length of the
action sequence n. In practice, this is not necessarily the case. Typically it will be k > n, since an
action of the agent usually extends over multiple simulation timesteps, especially for detailed models
with a high resolution in the time domain

53

4. Simulation- and Agent-based Hazard Analysis Approach

testing with falsification: the agent’s goal is to find action sequences that lead to unsafe
states, that is, to falsify system safety. The agent can thus be interpreted as an adversarial

agent who attempts to act in an unsafe manner in order to expose hazards. For now, this
approach may seem rather abstract. The following example 4 uses a simple "grid world"
system to illustrate the concept.

Figure 4.2.: A state trajectory (s0, s1, s2, ..., sk) is created by sampling an agent behavior
(represented as an action sequence (ai)) and executing it in the joint simula-
tion model of agent and SUT. The goal is to find a behavior which results in
an unsafe state.

Figure 4.3.: A simple gridworld system

54

4.1. Problem Definition

Example 4 Consider the grid world system depicted in Fig. 4.3. The system consists of

two subsystems. The SUT is the robot and the testing agent is the human. The system state

s is described by three state variables:

s = (x, y, sR)

where x, y denote the agent’s position in the grid world and sR denotes the state of the

robot. The robot state can be either "working" or "stopped". The system’s initial state is

s0 = (0, 0, working)

i.e., the agent is at position (0,0) and the robot is working. The robot is stationary, but the

agent can move in the grid world by taking steps in positive and negative x- and y-direction,

respectively. The set of events is therefore

A = {+x,+y,−x,−y}

and the set of agent behaviors is given by the set of possible action sequences

B = An

where n is the action sequence length. Suppose that a safety specification requires that

there should be no human-robot collisions, that is, the agent must not be able to reach the

robot while the robot is working. One can immediately see that the set of unsafe states U
(i.e., the set of states that violate this specification) consists of only one state, namely:

U = {(0, 3, working)}

To avoid collisions, the robot monitors its surrounding. The monitored area is highlighted

red in Figure 4.3. As soon as a human enters the monitored area, a safety stop is triggered.

Due to several factors like sensor delay and required braking time of the robot, there is

a delay in the stopping time. Assume that the stopping time takes as long as it takes a

human to make two steps. With the previously proposed approach, the safety of this system

is assessed by searching for action sequences that lead to U . Consider the two exemplary

paths in Figure 4.3. The event sequence

(+y,+y,+y)

(corresponding to route A in the figure) results in the state (0, 3, stopped) /∈ U , which is not

unsafe (note that the robot stops in time because the human needs to take two steps through

the monitored area which gives the robot sufficient time to stop). However, by taking the

event sequence

(−x,−x,+y,+y,+y,+x,+x)

(corresponding to route B), the agent only steps through the monitored area once, which

doesn’t give the robot sufficient stopping time and thus results in the unsafe state:

(0, 3, working) ∈ U

It is thus shown that the system is unsafe.

The example above is, of course, strongly simplified. From a practical standpoint, it
is not necessary to frame the hazard analysis as a search problem in this simple example,

55

4. Simulation- and Agent-based Hazard Analysis Approach

because a human analyst will be able to quickly spot the safety flaw. However, in more
realistic and complicated cases, spotting safety flaws through human reasoning is much
more challenging. Suppose, for instance, that the system in Example 4 is not a simple
grid world, but a highly detailed simulation model of a real robot system. There will be
many additional factors to consider. For instance, the robot’s stopping time may depend
on its current velocity and configuration in a nonlinear manner. Further, the human may
be able to reach over or around the monitored safety zone, or there may be bugs in the
robot program due to which the robot will not stop as it is supposed to. With increasing
system complexity, there will come a point where explicitly reasoning about such safety
properties becomes impractical and a search-based approach is the more practical solu-
tion. Furthermore, the SUT might contain black-box components, whose behavior is not
fully known at the start of the analysis (e.g., a piece of compiled software whose source
code is unavailable). In cases like these, a search-based approach is the only viable option,
as prior knowledge about the system’s behavior is not sufficient to make reliable safety
claims. In addition, in contrast to Example 4, the set of unsafe states U is usually not
known explicitly. Even if the safety specification is clearly defined, the concrete ways in
which the SUT might fail to conform to that specification are often not known a-priori.
Thus, at the beginning of the analysis, it is not known what specific system states be-
long to U , or even if there are any unsafe states. The necessity to first characterize U by
discovering examples of unsafe states is a further reason to use a search-based approach.

4.2. Proposed Solutions

Now, that the hazard analysis has been formalized as a search problem, the question
arises what methods should be used to solve the search problem. The main challenge
in this context is search space complexity: In complex HRC systems, the search space
of possible agent behaviors can become so complex that an exhaustive simulation of all
possible agent-SUT-interactions is computationally infeasible. Therefore, strategies are
needed to increase search efficiency and limit search space complexity. This thesis pro-
poses solutions to address this issue. A brief summary of these solutions is given below.
Over the course of the following three Chapters, the solutions are discussed in more detail.
Since the Chapters build on each other, they should be read in successive order.

4.2.1. Risk-Guided Search

A naïve approach for creating agent behaviors would be to sample actions of the
agent randomly, execute them in the simulation, and evaluate the safety specification in
every simulation timestep to monitor the simulation state for violations of the specifica-
tion. However, this naïve approach does not take advantage of the fact that the simulation
state not only allows for binary statements about whether a state is safe or unsafe, but
also allows further inferences about the degree of risk associated with a particular state.
For instance, consider a safety specification which specifies that all human-robot colli-
sions shall be considered unsafe states. Then, a simulation state entailing a near-collision
is not indicated as an unsafe state according to the safety specification. Yet, it is still
associated with a much higher risk than a state where the robot is standing still or the
human-robot distance is large. Leveraging such risk information in the search for unsafe

56

4.2. Proposed Solutions

Search Algorithm Simulation

Safety monitoring
and risk estimation

Agent be-
havior

Observation
of simulation
stateRisk score

Figure 4.4.: Schematic of the risk-guided search approach

states has the potential to increase search efficiency and result in a more reliable discov-
ery of unsafe states. To that end, this thesis proposes the concept of risk-guided search.
The risk guided search deploys search algorithms which are guided by a domain-specific
risk metric. Based on this risk metric, the algorithms adapt their search strategy in order
to maximize the risk metric. This leads to the creation of high-risk behaviors which re-
sult in unsafe states and thereby expose hazards in the analyzed system. The principle is
shown in Figure 4.4 as an interplay of the functional components (i) search algorithm, (ii)
simulation and (iii) safety monitoring and risk estimation:

• Search algorithm: The search algorithm iteratively samples agent behaviors for
execution in the simulator. The algorithm receives feedback from the simulation in
form of a domain-specific risk metric which is calculated by the safety monitoring
and risk estimation component.

• Simulation: The simulation model consists of two interacting sub-models: a model
of the agent and a model of the SUT. The simulation receives the agent behaviors
sampled by the search algorithm. The behaviors are then executed by the agent
model in interaction with the SUT, which causes the SUT to be subjected to different
interaction scenarios.

• Safety monitoring and risk estimation: During each simulation run, a risk score is
calculated using a domain-specific risk metric. Afterwards, the risk score is fed back
into the search algorithm. The risk metric acts as a heuristic to guide the search: by
attempting to maximize the risk metric, the search algorithm creates high-risk agent
behaviors which lead to unsafe states and thereby expose hazards.

4.2.2. Automata-constrained Risk-guided Search

Automata-constrained risk guided search follows the principle introduced above, but
adds formalisms to impose constraints on the agent’s behavior. To that end, the agent is
abstracted as a discrete event system which is modeled by an extended finite automaton
(EFA, see Figure 4.5). The notion of automata acceptance is used to discriminate be-
tween feasible and infeasible agent behaviors. Consequently, the set of feasible behaviors
is obtained by computing the accepted language of the EFA. Automata-constrained risk-
guided search ensures that the search algorithm only samples behaviors from this feasible

57

4. Simulation- and Agent-based Hazard Analysis Approach

set. This gives users the possibility to exclude certain behaviors which are considered in-
feasible or unrealistic. Thereby, the user can limit the search space to a subset of behaviors
which is considered particularly relevant, while excluding behaviors that are considered
unrealistic.

EFA Model of Agent Search Algorithm Simulation

Safety monitoring
and risk estimation

Set of fea-
sible be-
haviors Agent be-

havior

Observation
of simulation
stateRisk score

Figure 4.5.: Schematic of the automata-constrained risk-guided search approach

4.2.3. Two-level Hazard Analysis

The two-level hazard analysis approach is introduced towards the end of this thesis
as an alternative to address some limitations of the risk-guided search. It analyses the
SUT on two different abstraction levels and thus combines aspects of formal verification
and simulation (Figure 4.6). On the higher (i.e., more abstract) level, the agent, SUT, and
safety specification are modeled as EFA. A set of potentially unsafe behaviors is synchro-
nized from these EFA models using formal synthesis algorithms. Thereby, potentially
hazardous behaviors are identified a-priori, that is, before any simulations are conducted.
On the lower (i.e., more detailed) abstraction level, these potentially hazardous behaviors
then simulated to determine whether they are indeed unsafe with respect to the origi-
nal, non-abstracted safety specification. The simulation-based analysis therefore does not
need to sample from the whole search space of feasible behaviors. Instead, it focuses on
those behaviors which are already identifies as potentially unsafe, making more efficient
use of computational resources.

High abstraction
level (formal model)

Low abstraction
level (simulation)

Safety monitoring
and risk estimation

Set of crit-
ical agent
behaviors

Observation of
simulation state

Figure 4.6.: Schematic of the two-level approach

58

5. Risk-Guided Search

This Chapter introduces the aforementioned concept of risk-guided search (see Figure
4.4) in more detail. Section 5.1 focuses on the risk metric. It discusses how to quantify
the level of risk which is associated to a given simulation run. Section 5.2 focuses on the
search algorithm. Possible search methods are discussed, and a suitable search algorithm
is selected. On the basis of this algorithm, it is discussed how the risk information can be
used to effectively find hazardous behaviors. Finally, section 5.3 presents a series of ex-
periments to demonstrate the feasibility of the proposed techniques. In these experiments,
risk-guided search is deployed to identify hazards in a set of exemplary HRC systems.

Publications Related to this Chapter

Parts of the work presented in this Chapter have been published in:

• Huck, Tom P., Christoph Ledermann, and Torsten Kröger. "Simulation-based Test-
ing for Early Safety-Validation of Robot Systems". 2020 IEEE Symposium on Prod-
uct Compliance Engineering (SPCE). IEEE, 2020.

• Huck, Tom P., Christoph Ledermann, and Torsten Kröger. "Virtual Adversarial Hu-
mans finding Hazards in Robot Workplaces". 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021.

5.1. Risk Metric

5.1.1. Motivation for Introducing a Risk Metric

The purpose of the risk metric is to quantify the level of risk associated to a given
simulation sequence. The risk information is used to guide the search for unsafe states.
Unsafe states may be rare, especially for systems which already have safety measures
that are relatively strong, but not fully sufficient [120]. Thus, simply evaluating whether
an unsafe state was found or not in a given simulation run would only provide sparse
feedback to the search algorithm. For a more effective search, it is desirable that the
search algorithm receives richer feedback, which not only indicates if an unsafe state has

occured, but also provides some quantitative feedback indicating how close to an unsafe
state a given state trajectory has come, even if no unsafe state is visited directly. Given
perfect information about the state space, an obvious approach for this would be to define
a distance metric over the state space, calculate the state in U that is closest to the current
state s, and return the distance between that state and the current state. However, as
mentioned before, U is not known explicitly, as it is only implicitly defined via the safety
specification. Thus, a direct distance calculation is not possible and a heuristic needs to
be introduced. Since the goal is to find unsafe states, a reasonable choice is a heuristic

59

5. Risk-Guided Search

which reflects the level of risk that is inherent to a given simulation state. As will be
shown towards the end of this Chapter, optimizing the search strategy with respect to such
a metric can significantly increases search effectiveness.

The need for a heuristic risk metric raises the issue of how to quantify risk. As dis-
cussed in Chapter 2, ISO 12100 defines risk as a quantity composed of the components
probability of occurrence and severity of outcome [96]. Yet, the standard does not make
any formal definition regarding the quantification of these aspects, as the risk estimation
is mainly based on qualitative judgments of human experts. In a more formal approach,
Madjumdar et al. [128] characterize the risk of a potentially hazardous situation with a
probability distribution P (ω), ω ∈ Ω, where ω is a possible outcome of the given situa-
tion (e.g. a collision with a certain body part) and Ω is the set of all possible outcomes.
The severity is represented by a cost function:

Z : Ω→ R (5.1)

which assigns a cost (i.e., severity) to each possible outcome. While this definition is
attractive from a theoretical standpoint because of its rigor, it is only practical when P (ω)
and Z(ω) are known or can be estimated sufficiently accurately. Here, however, this is
not the case due to two reasons: First, because estimating P (ω) would require accurate
probabilistic models of the agent behavior (i.e., models that provide detailed information
as to how likely it would be that the agent behaves in certain ways given a certain sit-
uation). Such models are generally hard to obtain, because they require large amounts
of data from which such distributions can be estimated. Even if a probabilistic model is
available, its validity would only extend to the specific use-case or scenario for which the
data has been obtained (e.g., a specific task or workflow). Second, even if a distribution
of agent behaviors was known, estimating Z(ω) would require a large number of repeated
simulation runs where individual behaviors ω ∈ Ω are sampled from the distribution and
then simulated in order to obtain a severity and estimate Z(ω). This would defeat the orig-
inal point of the risk-guided search, which is to reduce computational cost by reducing the
number of simulation runs that are required to find a hazard.

A more pragmatic approach is to omit the probabilistic aspects, and instead assign
the risk value for a given simulation state directly on the basis of domain-specific safety-
related variables such as speeds or distances, which can be observed directly from the
simulation in each timestep. Thus, the risk metric is defined as follows:

Definition 8 - Risk metric

The risk metric r is a mapping from the simulation state space to a scalar, real-

valued, and nonnegative risk score.

r : S → R
+ (5.2)

The mapping is given by a heuristic function which takes into account safety-related

variables from the respective simulation state.

Note that r(s) only takes into account one simulation state at a time (i.e., momentary
values for distances, speed, etc.). Yet, the goal is to obtain a risk estimate for a whole
simulation run. Therefore, r(s) is evaluated in each simulation timestep and after com-
pletion of the simulation run, the maximum risk value that has occurred over its course

60

5.1. Risk Metric

is returned. If multiple robots are present in the simulation scene, the risk is evaluated
separately with respect to each robot, and the maximum is taken.

Of course, such a simplified metric is only an imperfect approximation, as it neglects
the probabilistic aspects of risk. In the context of this work, however, this is acceptable,
because the metric is intended as a heuristic to provide guidance and make the search more
effective, and not as a definitive criterion for the final risk assessment. Final decisions on
risk estimation and evaluation remain in the hands of human experts.

5.1.2. Choice of Risk Metrics

The risk metric should be based on the particular safety specification so that specifi-
cally those behaviors which falsify the safety specification receive a high risk metric. If
risk metric and safety specification do not correspond well, there may be cases in which
the search algorithm converges to behaviors which maximize risk, but do not necessarily
result in a violation of the safety specification1. Thus, it is reasonable to define the risk
metric on the same (or similar) safety-related variables as the safety specifications. For
instance, if the safety specification specifies that a certain collision force limit must not be
exceeded, it is reasonable to define the risk metric (at least partly) in terms of a collision
force estimation. Furthermore, it is beneficial if the risk metric has a nonzero gradient
at all points, as this allows the search algorithm to evaluate even subtle differences be-
tween subsequent simulation runs, and thus adapt the search accordingly. Metrics which
stagnate over larger areas of the search space will not provide this type of fine-grained
feedback. Finally, the risk metric should include a case distinction to distinguish between
different types of situations which may occur in human-robot interactions. Although such
a case distinction may lead to discontinuities in the risk metric, it allows the metric to
adjust the risk quantification criteria depending on the current situation.

It should be emphasized that the design of the risk metric is a decision of the user
which may vary from case to case. How a risk metric should look like concretely depends
on the specific use case, the information that is available from the simulation environment,
and the concrete formulation of the safety specification. Thus, one cannot define a generic
risk metric which is fitting for all use cases. Throughout this thesis, different risk metrics
will be used depending on the respective use cases and contexts. The following Example
5 (adapted from [87]) shows one possible risk metric that is applicable in the context of
human-robot collaboration.

Example 5 - Risk Metric for Human-Robot Collaboration Scenarios
In the following, an exemplary risk metric for human-robot collaboration scenarios is pre-

sented. The metric distinguishes between three cases:

(a) Low-risk situations. In some configurations it is clear that the robot does not present

an immediate hazard to the human worker, for instance where the distance between

robot is large so that neither human nor robot can reach each other, or situations

1In the context of reinforcement learning, such effects are known as reward hacking. This term comes from
the idea that if the reward does not correspond well with the intended goal of the user, the reinforcement
learning agent may find a way to "hack" the task, that is, to exploit high rewards without satisfying the
user’s intended goals. Interesting discussions about this issue are found in [11] and [173]. A specific
occurrence of reward hacking is discussed in Section 5.3.4

61

5. Risk-Guided Search

where the robot is standing still. In such configurations, the metric should take a

very small value (or zero).

(b) Contact situations. Contact force and pressure are the major factors in determin-

ing criticality of contact situations [28]. Since pressure is notoriously difficult to

estimate (see section 2.1.4), it is pragmatic to base the risk metric on estimated con-

tact force. As discussed in section 2.1.4, contact force estimation needs to be body

region-specific. A possible approach to consider this is to quantify collision severity

for a risk metric is to take the ratio Fc

Fmax
between the estimated contact force Fc

and the maximum collision force Fmax for the affected body region, so that both the

potential collision force and the criticality are taken into account.

(c) Near-contact situations are in between the first and the second case. While no imme-

diate contact is occurring, there is a potential collision hazard because the robot is

moving in close vicinity to the human. In such cases it is reasonable to base the risk

metric value on the human-robot distance dHR. The risk metric should decrease as

the distance increases and tend towards zero for large distances. One possibility for

this is to define an inversely proportional relationship of the form r ∝ 1
dHR

between

the risk r and the human-robot distance dHR. However, with an inversely propor-

tional relation, small distances would lead to extremely high risk values, even if the

potential collision severity is moderate. An alternative is to define an exponential

relationship of the form r ∝ e−dHR , as the exponential function decreases with in-

creasing distance, but approaches an upper limit of one as the distance approaches

zero.

These considerations lead to the following risk metric definition:

r(s) =

0, if vR ≤ vcrit

e−dHR , if (vR > vcrit) ∧ (dHR > 0)
Fc

Fmax
+ 1, if (vR > vcrit) ∧ (dHR = 0)

(5.3)

where dHR denotes the distance between the robot and the closest human body part, Fc

denotes the estimated human-robot contact force, Fmax denotes the maximum permissible

contact force for the affected body part, vR is the robot’s speed, which is defined as the

cartesian speed of the fastest robot link, and vcrit is a user-defined speed threshold above

which the robot is considered to be potentially hazardous.

A plot of the risk metric from Example 5 is shown in Figure 5.1. The plot shows the
risk values for the body regions face, thorax, and hands as a function of the robot speed
and the human-robot distance. For the collision force estimation, the model according
to ISO/TS 15066, Annex A was used (see Eq. (2.1)-(2.5)) and an effective robot mass
of 10kg was assumed. As the plot illustrates, the risk metric decreases exponentially
with increasing human-robot distance. The highest risk values are achieved for contact
situations (i.e., dHR = 0). In contact situations, the risk metric increases with increasing
robot velocity and drops to zero below the critical threshold vcrit (here, 0.25m/s). The
addition of +1 in the last case of Eq. (5.3) ensures that contact situation are assigned
higher risk values than non-contact situations. Furthermore, note that the risk values in
contact situations are generally higher for more critical body regions (i.e., face) and lower
for less critical body regions (i.e., hands).

62

5.2. Search Method

(a) Face (b) Thorax (c) Hands

Figure 5.1.: Plot of the risk metric from from Example 5. The risk score is plotted over
robot velocity and human-robot distance for different affected body regions.

5.2. Search Method

5.2.1. Formulation of Search Problem

Recall Definition 7, where hazard analysis was characterized as a search problem
given by the following tuple:

〈M, s0, S, B, spec〉 (5.4)

Where M denotes the simulation model, s0 the initial simulation state, S the simulation
state space, B the set of possible agent behaviors and spec the safety specification. Fur-
ther, recall that the goal of the search problem is to find an agent behavior b ∈ B which,
when executed in the simulation, results in a state trajectory which includes at least one
unsafe state:

M(b, s0) = (s0, s1, s2, ...) s.t. ∃i : spec(si) = false (5.5)

To mitigate search-space complexity, an approach is needed to efficiently find behaviors
that lead to hazardous states. As discussed before, this may be achieved by deploying a
search method which leverages information given by the risk metric to guide the search. In
the following, a specific search method is presented that will used in this thesis. Possible
alternatives are also discussed.

5.2.2. Search Algorithms Used in this Thesis

In the following, agent behaviors shall be denoted by sequences of actions from an
action space A (a more sophisticated description of agent behaviors will be introduced in
the next Chapter):

b = (ai) = (a1, a2, a3, ..., an), ai ∈ A

With this formulation of agent behaviors, the search problem can be interpreted as a se-
quential decision making problem and formulated as a Markov Decision Process (MDP).
Recall from Chapter 2 that an MDP is defined as follows:

〈S,A, T,R, s0〉

63

5. Risk-Guided Search

Where S is the set of states, A the action space, T the transition function, R the reward,
and s0 the initial state. Here, the set of states is given by the state space of the simulation
model, and the action space is given by the agent’s action space. The transition function
T is not given directly as a function, but implemented by the simulator, which returns a
new state for a given state and action2. The reward function R is defined on the basis of
the previously introduced risk metric.

In this thesis, Monte Carlo Tree Search (MCTS) is selected as the main algorithm
for solving the MDP that is the hazard analysis problem. The basic MCTS algorithm has
already been introduced in Section 2.2.2 (Algorithm 1). Here, an adaptation of the MCTS
algorithm is used (Pseudocode in Appendix B, Algorithm 2). To understand how MCTS
is utilized for risk guided search, one can think of the possible agent behaviors and the
resulting simulations as a search tree where the nodes of the tree correspond to simulation
states and the vertices correspond to actions performed by the agent. The root of the tree
corresponds to the initial state, and the depth of the tree to the length n of the action
sequence that is simulated. Conventional tree search approaches, such as depth-first or
breadth-first search, are not well-suited since they attempt complete traversal of the search
tree and do not employ any heuristics to mitigate search space complexity. MCTS resolves
the complexity issue by relying partly on a tree search, and partly on random sampling.
Furthermore, MCTS relies on reward functions as additional criterion to guide the search
and make more informed decisions on what route to take when traversing through the
search tree. The decision to use MCTS is based on the following considerations:

• MCTS incrementally builds a search tree where each node represents a simulation
state and each edge an action. This representation form is well-suited for the se-
quential nature of the search problem.

• MCTS does not require an explicit state representation. Instead, the state is im-
plicitly encoded in the search tree by means of the actions (edges) leading to the
respective node. This makes the search algorithm easily applicable even for black-
box systems whose internal state is unknown or only partially known [120].

• Through the UCT criterion and the combination of tree traversal with random roll-
outs, MCTS systematically balances explorative and exploitative search behavior
while requiring only a small number of hyper-parameters to be chosen by the user.

• MCTS has already been shown to perform well in falsification problems from other
application domains [120].

The simulation is run in lockstep with the MCTS algorithm. When the search algo-
rithm starts in the root note, the simulation is set to its initial state. During tree traversal,
each time the algorithm traverses from one node to another, the action corresponding to
the respective edge is executed in the simulator. This procedure also holds for the ex-
pansion and rollout phases. At the end of the rollout, the maximum risk metric, which
has been calculated in the simulator during the simulation run, is retrieved and backprop-
agated as a reward. Note that by running search algorithm and simulator in lockstep, it
is ensured that each node in the search tree corresponds to a particular simulation state.
Thus, the search algorithm can learn to find high-risk action sequence on the basis of its
internal search tree without the need for an explicit representation of the simulation state.

2It should be noted that MDPs are typically regarded as having probabilistic state transition whereas the
simulator is assumed to be deterministic in this instance. This does not invalidate the analogy with MDP,
since the simulator can simply be regarded as a transition function that returns the follow-up state with
probability one.

64

5.3. Experiments

5.2.3. Further Search Algorithms

The MCTS algorithm is chosen as an exemplary method to demonstrate the concepts
of this thesis. However, the thesis does not claim that it is necessarily the best or most
efficient algorithm for the given problem. Beyond the chosen algorithms, there are further
alternatives which can also be considered for risk-guided search.

Alternatives include other RL algorithms, for instance Q-Learning [44], Approxi-
mate Q-Learning [147], Deep Reinforcement Learning [64] and other Policy Optimiza-
tion methods such as Trust-Region Policy Optimization or Proximal Policy Optmiza-
tion [169]. Furthermore, MCTS adaptations for continuous action spaces could be con-
sidered [189, 118].

Similarly to reinforcement learning, which maximizes the cumulative reward, one
can also use optimization algorithms which attempt to maximize or minimize an objec-
tive function. In other words, the search for hazards can also be characterized as an op-
timization problem where the goal is to maximize an objective function given by the risk
metric. There is a vast range of different optimization algorithms in literature. Optimiza-
tion algorithms frequently rely on analytical objective functions and/or their derivatives
which requires information about the gradients of the objective function [162]. Here,
however, the objective is obtained from simulation. Since the simulation is based on nu-
merical calculations, it is generally not possible to obtain an analytical function which
maps behaviors to risk metric values. Therefore, neither an analytical objective function,
nor information about its gradient is available. This restricts the class of potentially suit-
able algorithms to the class of so-called black-box optimization algorithms, also known as
direct search algorithms [154, 8]. These algorithms adapt their search strategies based on
heuristics and point-wise evaluations of the objective function. Thus, they do not require
an analytical formulation of the objective function or information about the gradient of the
objective function. Examples for black-box optimization algorithms include Genetic and
Evolutionary Algorithms [35], Simulated Annealing [163], Particle Swarm Optimization
[181], and the Great Deluge Algorithm [59].

5.3. Experiments

5.3.1. Goal and Methodology

This section presents proof of concept experiments for the risk-guided search ap-
proach. The goal of these experiments is to to demonstrate feasibility and investigate in
how far the use of risk-guided search improves the detection of unsafe states in compari-
son to a baseline approach which samples actions randomly and does not utilize any risk
information for search guidance.

The methodology of these experiments is as follows (Figure 5.2): Each experimental
scenario consists of a simulation scene with a digital human model as an agent and a robot
system as an SUT. In each scenario, a certain safety-critical design flaw is deliberately
introduced into the respective SUT, resulting in certain collision hazards. The risk-guided
search is deployed to find agent behaviors which provoke collisions and thereby expose
the hazards. Since the safety flaws are deliberately introduced into the SUT, the hazards

65

5. Risk-Guided Search

Figure 5.2.: Methodology for the experiments. Safety flaws are deliberately introduced
into the system to create hazards. The risk guided search is deployed to find
simulation runs leading to uncover these hazards. The performance in find-
ing these simulation runs is compared against a baseline random sampling
approach.

are known a-priori. This approach allows it to create controlled conditions where certain
well-defined hazards are present within the test scenarios. It is important to emphasize that
this knowledge about the hazards is not encoded into the search algorithm in any form. In
other words, the experiments are conducted as if the hazards were initially unknown.

In order to compare how the risk information improves the effectiveness of the agent,
a random sampling strategy is deployed for comparison. This baseline strategy does not
rely on feedback from the simulation in form of a risk metric, but creates agent behaviors
by sampling randomly from a uniform distribution over the action space.

5.3.2. Scenarios

The experiments are conducted in six scenarios. In each scenario, a collaborative
robot cell is considered which contains certain safeguards to avoid potential human-robot
collisions (e.g., laser scanners, light curtains, etc.). Depending on the scenario, the re-
spective safeguards are altered to create certain hazards. For instance, safeguards may be
partially removed, reaction times prolonged, or safety-distances reduced. The following
Example 6 (descriptions and figures taken from [88]) illustrates two of the six test scenar-
ios exemplary. For further details, the reader is referred to the original publication of the
experiments [88] and to the appendix.

66

5.3. Experiments

Example 6 Test Scenarios

Scenario 5-A: A robot is working in a cell encased by safety fences. The front of the cell is

open. As a safety measure, a sensor mat is placed in front of the cell (yellow area in Figure

above). The mat senses the human stepping on it and stops the robot when the worker steps

on it. However, the mat’s coverage is insufficient as it only covers the front of the cell, but

not the right and left side. This raises the potential for collisions if the human walks reaches

from the side around the fence into the cell (see figure above).

Note that the human can cause a collision both on the left side and on the right side of the

cell. However, only on the left side, the speed of the colliding robot part is high enough

to exceed the collision force limit. If the collision happens on the right side, the contact

force (and thus, the risk metric) is not as high as in case of a collision on the left side). The

collision on the right side is therefore associated with local maximum of the risk metric.

Scenario 5-B: In this scenario, two robots are working in simultaneously besides each

other, performing a pick-and-place task. Each robot is surrounded by a laser scanner zone

which detects approaching humans and triggers an according safety stop (red and yellow

areas in figure above). However, due to improper design of the zone’s geometries, the

human worker can cause a critical collision by entering through the right laser scanner

field but then turning and reaching towards the left robot (or vice versa). In such a case,

the robot opposite of the field through which the human has entered comes within human

reach before a safety stop is triggered.

67

5. Risk-Guided Search

Implementation

The simulation scenarios are implemented in the CoppeliaSim robotics simulator
[160]. For modeling the human agent, CoppeliaSim’s default human model Bill is used.
The action space of the agent in these experiments consists of a discrete set of six basic
walking steps and six upper body movements, resulting in an action space of 36 move-
ment combinations which can be concatenated into an action sequence that constitutes a
more complex motion. To simplify the simulation and prevent an explosion of the search
space, arm motions are not explicitly modeled. To account for the possibility that the
human arms or hands could collide with the robot, a reachability check is performed at
each simulation time step to check if the robot is in the reachable space of the human
arms. Simulation states in which the robot is reachable by the human arms are evaluated
as if they were collision states. Any collision where the contact force exceeds the colli-
sion force limit of the affected human body region is regarded an unsafe state. The safety
specification is thus defined as follows:

spec(s) =

{

true, if dHR(s) > 0 ∨ Fc(s) < Fmax

false, otherwise
(5.6)

Contact force estimation and maximum force values are based on ISO/TS 15066 (see
Section 2.1.4). For the search algorithm, the MCTS implementation of Lee et al. [120] is
used.

The random sampling baseline is implemented by sampling actions sequentially from
a uniform distribution over the action space A. In both MCTS and random sampling, an
action sequence is terminated when an unsafe state is found, or if the maximum action
sequence length is reached. Both MCTS and random sampling are performed in each of
the six testing scenarios. Due to the stochastic nature of both approaches, the test runs
are repeated multiple times to limit the influence of statistical outliers. Ten test runs with
different random seeds are performed for each scenario and search method, resulting in a
total of 120 test runs (i.e., 60 for risk-guided search and random sampling, respectively).
Each test run is limited to a computational budget of of 320 search iterations (i.e., 320
action sequences, since each iteration corresponds to one action sequence). The maximum
action sequence length is set to n = 8.

5.3.3. Results

The following criteria are evaluated to assess the performance of both methods:

• Number of hazards missed (Nmiss): For each test scenario and search method, ten
test runs are performed. It is counted in how many of the ten test runs the testing
scenario’s respective hazard was missed. In this context, missed means that none
of the 320 action sequences contained an unsafe state (i.e., no behavior was found
that exposed the respective unsafe state). This gives a measure of how reliable the
respective methods are in exposing hazards.

• Avg. number of iterations to discovery of hazard (Niter): For each scenario and
search method, it is calculated how many search iterations were required on average
until the first unsafe state is discovered (for test runs were the hazard was missed,

68

5.3. Experiments

the full number of 320 iterations is counted into the average). This gives a measure
of how quickly the respective search methods were able to detect hazards.

The results are given in Table 5.1. Out of a total of 60 test runs, the random search
was unable to find an unsafe state in seven instances, amounting to a miss rate of ca.
11.7%. In contrast, the MCTS approach only was unable to find an unsafe state in one
instance, amounting to a miss rate of ca. 1.7%. Furthermore, the MCTS approach required
significantly fewer search iterations to find an unsafe state in all test scenarios. In some
scenarios, namely scenarios 2, 3, and 6, the MCTS approach even took less than half the
number of search iterations that was required by the random search to find an unsafe state.

Test Scenario Random MCTS

Nmiss Niter Nmiss Niter

5-A 4 203.4 1 131.6
5-B 2 174.3 0 69.4
5-C 0 37.4 0 12.8
5-D 1 115.8 0 83.1
5-E 0 28.5 0 14.9
5-F 0 71.1 0 24.6

Table 5.1.: Results of the experiments [88] (Note that the order of scenarios differs from
[88])

Special attention should be paid to the one test run in scenario 5-A where the risk-
guided search was unable to find an unsafe behavior. This test run was examined closer
by re-playing the search with the same random seed and observing the resulting behavior.
It was found that the algorithm failed to find an unsafe state because it converged to
a behavior which constitutes a local optimum in terms of the risk metric. This local
optimum was already discussed in Example 6. As can be seen in Example 6 (top figure,
right side), rather than avoiding the safety mat by walking around to the left, the human
walks to the right around the mat and reaches into the robot cell from the right side. While
this behavior does indeed lead to a collision, the collision speed is relatively low, as the
robot can only be reached close to its base. Thus, the contact force is smaller and does not
exceed the threshold Fmax. Consequently, the discovered collision state is not an unsafe
state. Meanwhile, the actual unsafe state (i.e., the collision on the left side of the cell)
remains undiscovered.

5.3.4. Mobile Robot Case Study

In addition to the experiments presented above, a case study was performed, focusing
on risk-guided search in an industrial use case. The objective was to identify safety-critical
behaviors of a mobile robot navigating in the presence of human workers on an industrial
shop floor. This case study is not entirely within the scope of this thesis, but it raises some
interesting aspects which warrant a discussion. Therefore, it is discussed qualitatively in
an abbreviated manner. For details and quantitative results, the reader is referred to [85].

The case study is focused on an industrial application with a mobile robot (Figure
5.3) which is navigating a shop floor in the presence of both static obstacles and human
workers. Human workers are tracked by ceiling-mounted cameras and their positions

69

5. Risk-Guided Search

are transferred to the mobile robot. The robot uses a nonlinear model-based predictive
controller (NMPC). The NMPC predicts both the robot’s own dynamics as well as the
movements of human workers to calculate control inputs which should lead to collision-
free and optimized paths. Additionally, a laser scanner at the front and back of the mobile
robot triggers a safety stop should the NMPC be unable to avoid a collision. Obviously,

Figure 5.3.: The industrial application from the case study. The depicted mobile robot is
loaded by a robot arm on a gantry and has to deliver the parts autonomously
on the shop floor, where human workers are present. Therefore, collision
avoidance is crucial [85].

the collision avoidance behavior of the mobile robot is crucial for the safety of human
workers and needs to be tested. Due to the high system complexity, testing is conducted by
means of simulation-based black box tests. The simulation environment includes a model
of the mobile robot, a model of static obstacles, and a model of a human worker. To that
end, the NMPC is embedded into the simulation environment as a black-box component
which receives the resulting simulation state (i.e., position and orientation of robot and of
the human) and sends control commands (i.e., velocity and yaw rate) to the mobile robot.
The simulated human worker acts as test agent and attempts to provoke unsafe states.
In this context, an unsafe state is defined as a collision where the relative movement
between human and robot exceeds a critical limit. The simulation proceeds as follows: in
every time step, the agent (i.e., the human worker) selects a velocity and yaw rate from
a continuous action space and moves accordingly in the simulation environment. The
mobile robot chooses control inputs and performs movements as well, taking the human
position into account. From the resulting relative position and movement of human and
robot, a risk metric is calculated. Based on the risk metric, a reward is issued to the agent.

In contrast to the previous experiments, Proximal Policy Optimization (PPO) is cho-
sen instead of MCTS, as it is better suited to continuous action spaces. For details regard-
ing the PPO algorithm, the reader is referred to Schulman et al. [169]. The PPO algorithm
was deployed with two different reward formulations. In the first reward formulation, the
reward is given immediately after each action, that is, the agent accumulates rewards over
the action sequences. In the second reward formulation, the reward is recorded but with-
held until the end of an action sequence. At the end of the action sequence, the agent is
issued the maximum reward that has occcured over the course of the action sequence. Ad-
ditionally, a baseline method is employed which samples the the action space randomly

70

5.3. Experiments

and is only constrained by a simple collision avoidance mechanism to avoid collisions
with static obstacles such as walls. In the following, the RL algorithms with accumulative
and maximum reward will be denoted by RLacc and RLmax, respectively, and the random
sampling baseline by RS.

Each of the three each algorithms (i.e., RLacc, RLmax, and RS) is deployed in sim-
ulations with different initial states and different settings of the mobile robot. In these
simulations, the risk guided search proved to be effective in identifying hazardous situa-
tions, and learned to exploit safety flaws of the mobile robot, such as depicted for example
in Figure 5.4. As performance criteria, the number of identified critical collisions, as well

Figure 5.4.: The agent exploits a safety flaw, namely the gap between the robot’s laser
scanner detection zones (green) by waiting for the mobile robot to pass and
then stepping in between the gap. Thereby, the agent creates a hazardous
situation where the robot’s safety measures cannot avoid a collision [85].

as the diversity of the different collision situations, were evaluated. With respect to both
criteria, the risk guided search (i.e., RLmax and RLacc) outperformed RS, with RLmax

generally exhibiting a superior performance to RLacc. However, the performance advan-
tages were only significant with regard to the absolute number of collisions found. With
respect to the diversity, performance gains of the risk guided search compared to RS were
noticeable, but minor.

A notable finding of the case study was that RLacc exhibited an interesting behavior
that can be considered reward hacking. Reward hacking is a phenomenon where the agent
succeeds in maximizing its reward (i.e., maximizing the risk metric), but fails to achieve
the intended goal of the user (i.e., the discovery of unsafe states) due to a poor correspon-
dence between the reward and the user’s actual goal [173]. In this particular case, the
agent learned to repeatedly provoke near-collisions rather than actual collisions. While
an actual collision would have led to a higher reward, it would have terminated the action
sequence, denying the agent the opportunity to incur further rewards. In contrast, repeat-
edly causing near-collision gives the agent an opportunity to collect medium rewards for
as long as the maximum duration of the action sequence. This is an example of how mis-
alignment between the reward formulation and the goal of the hazard analysis can impede
hazard identification. The dependence on the reward formulation is further indicated by

71

5. Risk-Guided Search

the fact that the reward hacking behavior was virtually absent for RLmax, as this reward
formulation does not incentivize the agent to accumulate rewards. Instead, the agent has
an incentive to achieve a single reward that is as high as possible.

5.3.5. Discussion of the Experiments

In the experiments, the risk-guided search successfully found unsafe states and thereby
uncovered the hazards which were introduced into the systems for testing purposes. Fur-
thermore, the results confirm the premise of risk-guided search, namely that the use of
search algorithms guided by a risk metric improves the chances of uncovering hazards in
simulation-based testing scenarios compared to common random sampling approaches.
The beneficial effect of leveraging the information provided by the risk metric is clearly
seen when comparing the miss rate of the risk-guided search to that of the random sam-
pling approach. The risk-guided search also performs significantly better in terms of the
number of iterations needed to detect an unsafe condition. The superior performance
shown in the experiments was also observed in the case study, albeit in a different use
case and with a continuous rather than discrete action space.

Of course, there are some limitations. The experiments were conducted in simplified
settings, especially with regard to the modeling of the agent. While this is sufficient
to provide a proof of concept, it is not yet suitable analyze realistic HRC workflows.
Furthermore, no constraints on the agent’s behavior are considered. Also, the experiments
show that with MCTS being a heuristic, non-exhaustive search, the approach can miss
hazards at times. This is illustrated by the case of the MCTS algorithm failing due to
convergence to a local minimum. A further limitation is the potential issue of reward
hacking, as exhibited in the case study [85]. As seen in the case study, this problem
is highly dependent on the reward formulation, and it may be difficult to decide on an
appropriate reward formulation a-priori.

Nevertheless, the results are overall promising. They show that the approach is in
principle suitable to achieve fully automated hazard identification on the basis of simula-
tion models, without relying on human analysis or any other form prior knowledge about
potential hazards. Furthermore, the experiments confirm the main assumption behind the
risk-guided search approach, namely that leveraging the risk information does indeed im-
prove search performance significantly. The simplifications are reflections of the fact that
the experiments were conducted in a proof of concept setting. They do not indicate princi-
pled limitations of the approach. Also, the possibility of incomplete hazard identification
lies in the nature of of all testing- and falsification-based approaches that do not rely on
an exhaustive search. It is not a shortcoming which is specific to the risk-guided search.
Both limitations will be addressed in the following chapters. A more detailed modeling
formalism for the human behavior, including constraints, will be introduced in Chapter 6,
and the issue of completeness will be addressed in Chapter 7.

5.4. Chapter Summary

This Chapter has introduced the concept of risk guided search. In Section 5.1, a
heuristic risk metrics has been introduced to quantify the level of risk associated to a

72

5.4. Chapter Summary

simulation run. In Section 5.2, search procedure was introduced which leverages infor-
mation from the risk metric as a guidance criterion. In particular, Monte Carlo Tree
Search has been selected as a suitable algorithm for implementing risk-guided search. Fi-
nally, proof-of-concept experiments were conducted. In these experiments, the goal was
to expose collision hazards in simulation models of different robot systems. The results
of the experiments show that the concept of risk-guided search is feasible. Furthermore,
the experiments indicate that leveraging risk metric information in conjunction with a
search algorithm significantly improves the discovery of unsafe states compared to a ran-
dom sampling baseline. However, it was also pointed out that it is possible for hazards
to remain undiscovered, for example because search algorithms converge to local optima
which exhibit a relatively high risk, but do not constitute an unsafe state.

73

6. Automata-constrained

Risk-guided Search

Chapter 5 provided a proof-of-concept showing that risk-guided search can be an ef-
fective approach to expose hazards. However, the proof-of-concept experiments were con-
ducted in simplified settings and with simplified agent models. Furthermore, the experi-
ments did not consider the fact that behaviors of the agent may be subject to constraints.
While these simplifications are justified for a proof of concept, a more comprehensive
model of agent behavior is needed for practical applications. This includes modeling for-
malisms to capture agent behaviors with both discrete and continuous aspects, as well as
ways to capture and enforce constraints on the agent’s behavior. Section 6.1 illustrates
these needs with a simple example. An extended model of agent behavior is introduced
in Section 6.2. Formalisms to model and enforce constraints on the agent behavior are
introduced in Sections 6.3 and 6.4. Finally, Section 6.5 presents a series of experiments
where the two newly introduced aspects are combined with the risk-guided search from
the previous Chapter.

Publications Related to this Chapter

Parts of the work presented in this Chapter have been published in:

• Huck, Tom P., Christoph Ledermann, and Torsten Kröger. "Testing Robot Sys-
tem Safety by Creating Hazardous Human Worker Behavior in Simulation." IEEE
Robotics and Automation Letters 7.2 (2021): 770-777.

• Constantin Cronrath, Tom P. Huck, Christoph Ledermann, Torsten Kröger, and
Bengt Lennartsson. "Relevant Safety Falsification by Automata Constrained Rein-
forcement Learning". 2022 IEEE International Conference on Automation Science
and Engineering (CASE). IEEE, 2022.

• Huck, Tom P., et al. "Hazard Analysis of Collaborative Automation Systems: A
Two-layer Approach based on Supervisory Control and Simulation." 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE, 2023.

75

6. Automata-constrained Risk-guided Search

6.1. Introductory Example

The following Example 7 (adapted from [90]) presents a HRC scenario which will be
used as a running example throughout this Chapter.

Example 7 - Exemplary HRC Task

Consider the HRC workstation depicted above. Assume that the collaborative task per-

formed by human and robot is as follows: the human walks from the center area to the

storage table, retrieves a part from the table, places it in front of the robot, then walks back

to the center, and activates the robot at the control panel. The robot performs a procedure

(e.g., drilling) on the part until the worker stops the robot again through the control panel.

The worker then retrieves the part and places it back onto the storage table. As a safety

measure, the area around the robot is monitored by a laser scanner (red area). A safety

stop of the robot is triggered when the worker enters the detection area. To monitor the on-

going work of the robot from close distance without triggering a safety stop, the worker can

activate the robot in a safety override mode, where the stop triggered by the laser scanner

is overridden.

Note that in the previous Chapter, the behavior of the agent was modeled as sequence
of simple movements from a purely discrete or continuous action space (see Section 5.3,
Eq. (9.1)). Clearly, this is not sufficient for modeling agent behaviors in scenarios such
as the one in Example 7. Furthermore, the previous Chapter has not considered the fact
that not all permutations of actions from the action space are necessarily feasible. Often,
the possible action sequences of the agent are limited, as dependencies between actions
constrain the feasible order of actions. In Example 7, for instance, the worker can only
place the workpiece in front of the robot if it has been picked up previously. Furthermore,
the worker can only pick up the workpiece after walking to area B, and so on. Failure to
consider such constraints can lead to several problems: First, the search may find suppos-
edly hazardous behaviors that are not realistic. This does not only waste computational
resources, but may also distract from actually critical behaviors. Second, attempting to
perform action sequences which are infeasible could, depending on the implementation

76

6.2. Description Format for Agent Behaviors

of the simulation, drive the simulation into deadlocks or other error states. These issues
highlight the need for more sophisticated modeling of the agent’s behavior. Solutions are
discussed in the following Sections.

6.2. Description Format for Agent Behaviors

The techniques developed in this thesis are mainly geared towards HRC as a use-case.
Therefore, it is reasonable to assume that the testing agent will usually represent a human
that is interacting with the robot. Because real-world human behavior is highly complex,
such a description format naturally requires a certain degree of abstraction. Marvel et
al. have shown that human behavior in human-robot interactions can be described hier-
archically by first decomposing it into relatively complex worksteps, which in turn are
then further decomposed over multiple levels until a level of atomic actions is reached
[133]. Bobick [31] differentiates between three abstraction levels of human behavior:
Atomic movements, activities, which are sequences of atomic movements, and actions,
which involve several activities and often entail complex interactions with the environ-
ment. Breaking down the agent behavior to such fine-grained hierarchy like in [133] and
[31] is not done here to avoid overly complicated agent models. Instead, this thesis takes a
pragmatic approach and differentiates between action- and parameter-level from the per-
spective of the resulting search space: The discrete action level includes all aspects of the
behavior that can be described by sequences of discrete labels (e.g., discrete worksteps in
an assembly sequence), whereas the parameter-level includes features that are represen-
ted through continuous-valued parameters (e.g. coordinates or velocities of movements).

The discrete aspects of the behavior shall be denoted by an action sequence (ai) of
events from a discrete action space A. The continuous parameters shall be described by a
real-valued parameter vector (θj). Together, action and parameter sequence constitute an
agent behavior b (see also [87]):

Definition 9 - Agent Behavior

The behavior b of the agent is modeled by a tuple of an action sequence (ai) and a

corresponding parameter vector (θj):

b = 〈(ai), (θj)〉 (6.1)

(ai) = (a1, a2, ..., an), ai ∈ A (6.2)

(θj) = (θ1, θ2, ..., θm), θj ∈ R (6.3)

The set of all possible agent behaviors is denoted by B:

B ⊆ An × R
m (6.4)

Note the following remarks regarding the definition above:

• The length n of the action sequence is not necessarily equal to the length m of the
parameter vector, since some events might be associated with multiple parameters,
whereas other events might have no associated parameter.

77

6. Automata-constrained Risk-guided Search

• Intuitively, the action sequence can be thought of as an abstract template describing
what actions the agent performs in what order, while the parameters describe how

the agent performs the respective actions.

• In the previous Chapter, the search space of possible agent behaviors consisted of
the set of possible action sequences An. Now, the search space is given by a subset
of the cartesian product of the sets of discrete action sequences and continuous
parameter combinations. This leads to a mixed discrete-continuous search space
(see Eq. (6.4)).

The following example illustrates the new definition of agent behaviors more concretely
[90]:

Example 8 - Action Sequence and Parameters. Consider again the scenario from Ex-

ample 7. The agent’s action space in this scenario is modeled as follows:

A = {t1, t2, uS , dS , uR, dR, b1, b2, b3, r} (6.5)

With the individual actions as defined below:

Action Explanation

t1 Walking between area A and B

t2 Walking between area A and C

uS Picking up the part at the storage table

dS Putting down the part at the storage table

uS Picking up the part at the robot station

dS Putting down the part at the robot station

b1 Pressing button to activate robot

b2 Pressing button to activate robot in safety override mode

b3 Pressing button to stop robot

r Retracting hand after reaching motion

The following action sequence describes a possible workflow where the worker walks to

the storage area, picks up a part, walks to the robot and places the part at the robot station,

and then walks back to press a button (e.g., to activate the robot).

(t1, uS , r, t1, t2, dR, r, t2, b1) (6.6)

Continuous parameters may include the walking velocity of the human worker, which in-

fluences whether the robot can stop in time when the human enter the laser scanner zone.

Also, one might consider the possibility that the worker’s reaching motion is not consistent

when placing the workpiece in front of the robot, which might lead to collisions between

the robot and the human worker’s hands and arms. A possible parameter vector could

therefore be as follows:

θ = (vH ,∆x,∆y) (6.7)

where vH denotes the human worker’s walking speed, and ∆x,∆y denotes the longitudinal

and lateral displacement of the position where the worker puts down the workpiece.

Choosing an appropriate abstraction level for modeling the agent behaviors is a use-
case specific question to which no general answer can be given. The abstraction level
needs to be chosen on a case-by-case basis under consideration of the specific use-case
and the desired level of detail of the analysis. Also, the achievable level of detail may

78

6.3. Constraints on the Agent’s Behavior

be limited by the capabilities of the simulation software. The same is true for the choice
of continuous parameters. Obviously, it is not reasonable to parameterize every detail of
the agent’s behavior as this would lead to an excessively large search space. Instead, the
choice of parameters should focus on safety-critical aspects. Furthermore, the choice of
parameters may also be limited by the degree of detail of the simulation.

Note that the models introduced above only cover the behavior of the agent and do
not include any description of the behavior of the SUT. This is due to the fact that the
SUT’s behavior is already encoded in the simulation model of the robot system. In other
words, the agent’s behavior is used as a simulation input, while the SUT’s behavior is an
emergent behavior that results from the SUT’s programming and the agent behavior (see
also Section 4.1.2). Consequently, describing the agent’s behavior is sufficient for the
purposes of this Chapter. An extension of the model which covers both agent and SUT
will be discussed in Chapter 7.

6.3. Constraints on the Agent’s Behavior

In addition to the previously introduced description format, a formalism is needed to
express constraints on the feasible agent behaviors. On the continuous parameter level, it
is straightforward to enforce constraints by restricting the sampling of the parameters to a
certain interval given by parameter limits θmin,j and θmax,j . On the action level, however,
the formulation of constraints is more challenging because the constraints are dynamic,
that is, the set of currently feasible actions depends on the history of previous actions and
thus varies over time. To express such dynamic constraints, the behavior of the agent is
abstracted as a discrete-event system (DES). Several modeling formalisms for DES are
known, such as Petri Nets (PN), Finite Automata (FA), and Extended Finite Automata
(EFA). In this work, EFA are chosen, since EFA are more intuitive to read than PN and
more compact than FA (see also Section 2.2.3). Recall from Section 2.2.3 that an EFA is
an automaton model which extends finite automata with additional modeling formalisms,
namely a set of variables V , guards G and modifiers M . Guards are logical expressions
over the variables in V . A transition which is associated with a guard g ∈ G can only be
taken if g holds true given the current variable values. Upon execution of the transition,
the modifier is executed and modifies one or multiple variables v ∈ V . The feasible
behaviors of the agent shall be described by an EFA called the agent EFA model. The
input alphabet of this EFA corresponds to the action space A (i.e., an event is associated
with an action of the agent). The use of variables, guards, and modifiers allows for the
encoding of constraints on the feasible action sequences.

Definition 10 Agent EFA

The EFA which describes the feasible action sequences of the agent is called agent

EFA and shall be denoted by A:

A = 〈A, VA, LA,→A, GA,MA, l0A, V0A〉 (6.8)

Where A is the action space of the agent, VA is a set of bounded discrete variables,

LA is the set of locations, GA the set of guards, MA the set of modifiers,→A is the

conditional transition relation, V0A is the initial assignment of the variables, l0A
the initial location, and Lm

A the set of marked locations.

79

6. Automata-constrained Risk-guided Search

Remark: The notion of locations in EFA should not be confused with spatial locations of
the agent. Although in the example presented below, the locations in the EFA sometimes
correspond to spatial locations of the agent, they are not necessarily to be understood
in a spatial sense, but can also be used to express other aspects of the agent’s current
state. Example 9 illustrates the use of EFA for modeling the agent’s behavior and related
constraints [90]:

Example 9 - Agent EFA modeling

Consider again the HRC scenario from Example 7 with the corresponding action space

from example 8. The figure below shows an agent automaton H for this scenario. Circles

represent locations, arrows to events, guards are denoted in green and inside square brack-

ets []. Modifiers are denoted in red behind the square brackets. The events correspond to

the action space as defined in Table 8. In addition to the events, the variable P ∈ {0, 1, 2}
(initial value: P = 0) is introduced to track the position of the workpiece (0: at storage, 1:

in worker’s hands, 2: at robot station). The initial location is lH0. Note that some events

require guards to be fulfilled before the transition is enabled. By means of these guards,

workflow constraints are enforced. For instance, to put down a workpiece at the robot sta-

tion dR, the guard is [P = 1], because the worker holding the part is a prerequisite for

putting it down.

lA0

A:A:

lA1

lA2 lA3

lA4

lA5

t1

t1
u
S
:
[P

=
0]

P
←

1

d
S
:
[P

=
1]

P
←

0

r

b
1 ,b

2 ,b
3
:
[P
6=

1]

r

t2

t2

u
R
:
[P

=
2]

P
←

1

r

d
R
:
[P

=
1]

P
←

2

Note that the input alphabet of A corresponds to the action space A of the agent (i.e.,
each event corresponds to an action of the human worker). Thus, the notion of automata

acceptance can be used to distinguish between feasible and infeasible behaviors. For
instance, in Example 9, the action sequence

(t1, uS, r, t1, t2, dR, r, t2, b1)

is a feasible behavior and constitutes an accepted input for the automaton. The reader can
easily verify this by tracing the transitions through starting in location lH0. In contrast, the
sequence

(t1, dS, r, t1, t2, dR, r, t2, b1)

represents an infeasible behavior where the worker puts down the workpiece before pick-
ing it up. Observe that this sequence is not accepted by the automaton, since the guard
statement P = 1 for the second transition dS is not fulfilled.

The set of feasible action sequences corresponds to the the set of action sequences that
are accepted by the automaton. Recall that the set of accepted input sequences is called

80

6.4. MCTS Adaptation for Automata-Constrained Risk Guided Search

the language of the automaton. In other words, an action sequence can only be performed
by the agent if it is included in the language LA of the agent automaton. Although the state
space of A is finite, LA may include infinitely long action sequences (e.g. loops which
contain marked states). Since it is only possible to simulate sequences of finite length
n, the set of feasible behaviors is further restricted to a subset Ln

A, which only includes
sequences up a certain maximum length n.

Definition 11 - Feasible Action Sequences

The set of feasible action sequences is the set of action sequences which:

• are part of the language of the automaton and

• have a length less than or equal to the maximum sequence length n.

This set shall be denoted by Ln
A:

Ln
A = {(ai) : (ai) ∈ LA, |(ai)| ≤ n}

Recall that an event sequence must end in a marked location to be a considered a part
of the automaton language. Throughout this thesis, there will be some cases where all
locations are considered to be marked and thus no distinction between unmarked and
marked locations are drawn. In such cases, the graphical representation with double-lined
circles is omitted for notational simplicity. Thus, if one of the following EFA contains no
explicitly marked states, all states are treated as marked states, whereas if an EFA does
contain explicitly marked states, only these are treated as marked states.

At this point, the reader might ask why it is necessary to run simulation model and
agent automaton in parallel when the feasibility of actions could also be checked directly
on the basis of the observed simulation state. The reason for this is twofold: First, main-
taining a separate model reduces the reliance on the internal state of the simulator, thus
preserving the black-box character of the approach. Second, a lightweight model such as
an automaton can be used to identify potentially critical behaviors a priori, that is, before
running any simulations. Such a preprocessing step allows it to focus the more computa-
tionally expensive simulation efforts on potentially more interesting regions of the search
space (more on this approach in the next Chapter).

6.4. MCTS Adaptation for Automata-Constrained

Risk Guided Search

In the following, the risk-guided search from chapter 5 is combined with the newly
introduced agent model. The primary change compared to the chapter 5 is that the space
of possible action sequences does not consist of An anymore, but only of a certain subset
of feasible sequences Ln

A ⊆ An that is given by the language of the agent EFA model A
(compare Def. 11). The second change is that the agent’s behavior does now not only
feature action sequences, but continuous parameters as well.

81

6. Automata-constrained Risk-guided Search

To facilitate these changes, the risk-guided search is adapted. Pseudocode of the
adapted algorithm can be found in Appendix B, Algorithm 3. Compared to the method
from chapter 5, there are two major changes:

• Continuous valued motion parameters are introduced. Thus, the algorithm not only
needs to sample an action sequence, but also a parameter vector. While the action
sequence is sampled by the MCTS algorithm, the parameter vector is sampled ran-
domly from a uniform distribution between the respective parameter limits θmin,j

and θmax,j . The sampled parameters are given to the simulator at initialization of
the simulation run.

• Second, the adapted algorithm also maintains a representation of the agent automa-
ton which is executed in lockstep with the simulation. Each time the agent performs
an action in the simulator, the same action is also fed into the automaton, which per-
forms a corresponding transition and thus updates its internal state. In the expansion
and rollout phase, where new events are sampled, the current state of the automa-
ton is evaluated to determine the currently feasible events. Thereby, the sampling
is restricted only to the currently feasible subset of the action space, subjecting the
algorithm to the dynamic constraints which are formulated in the automaton. Both
simulator and automaton are reset to their initial states at the beginning of a new
search iteration.

Regarding the first point, it should be noted that in principle it is also possible to sam-
ple the parameters with a parameter optimization method such as Simulated Annealing
or the Nelder-Mead Algorithm (see Section 5.2.3) rather than sampling them randomly.
Such a parameter optimization method could be used to find a set of parameters which
maximizes risk. However, this would lead to a two-stage optimization problem, where
each action sequence presents a parameter search problem in itself, where the same action
sequence needs to be sampled several times until the parameter optimization converges.
For search problems with a large number of feasible action sequences, extensive com-
putation time is needed to solve such an optimization problem for each action sequence.
Thus, a random sampling strategy is chosen here. A two-stage search approach which
uses parameter optimization methods, namely the Nelder-Mead optimization algorithm,
has been implemented in some experiments which are not presented in this thesis. How-
ever, no significant advantage over an MCTS algorithm combined with randomization of
continuous parameters was found. For a more in-depth discussion on this, the reader is
referred to [87].

6.5. Experiments

6.5.1. Goal and Methodology

In the following, a series of experiments is presented to demonstrate the newly in-
troduced techniques. Like in the previous chapter, the experiments are based on HRC
scenarios which contain specific hazards and the developed techniques are deployed to
identify these hazards. The main difference to the previous chapter is that the experiments
here consider more complex tasks where constraints on the agent’s behavior need to be
considered. Further, the search space in these experiments consists of a combination of

82

6.5. Experiments

(a) Scenario 6-B (b) Scenario 6-C

Figure 6.1.: Simulation scenarios 6-B (left) and 6-C (right). Scenario C features the same
collaborative task as scenario second B, but with the difference that access to
the shared workspace is only possible through a light curtain (red area).

discrete events and continuous-valued parameters. As in the previous experiments, the
performance of the risk-guided search is compared with a random sampling approach.
For further details on the experiments, the reader is referred to [90].

The experiments are conducted in three scenarios 6-A to 6-C. Scenario 6-A is based
on the exemplary HRC system which was used as a running example throughout this chap-
ter Example 7-9. In this scenario, there are two safety flaws which can lead to potentially
hazardous situations:

• There is a certain time delay between the time the human enters the safety zone and
the stop of the robot, leading to a possible collision hazard if the robot does not
manage to stop in time as the worker approaches.

• The safety override button allows the worker to deactivate the safeguard, which can
also lead to a collision hazard.

Scenario 6-B is shown in Fig. 6.1a. It is modeled after a real-world HRC application
in a German automotive manufacturing plant [115]. In these scenarios, human and robot
collaboratively assemble a gearbox. The workflow is as follows: The workflow is as fol-
lows: the worker retrieves two parts (bearings) from a shelf (A) and inserts one of them
into the housing of the gearbox (B). The worker then activates the robot by pressing a but-
ton (D). The robot moves over the housing and then downwards to mount the gearwheel
(E) in the housing. In the meantime, the worker inserts the other bearing into the cover (C)
and finally mounts the cover onto the housing. Due to the absence of safeguards, poten-
tially hazardous situations in this scenario include hand being crushed between gearwheel
and housing, and the head colliding with the robot’s elbow joint.

Scenario 6-C is based on scenario 6-B and has the same workflow, but the robot
system features an additional light curtain (see Fig. 6.1b) which is placed in front of the
robot as a safety measure. In this scenario, the safety flaw consists of a prolonged response
time of the light curtain and the robot safety stop. This leads to potential collision hazards.
However, the light curtain makes collisions much rarer, and thus, it is significantly more
difficult in this scenario for the search algorithm to find hazardous behaviors. A more
detailed description of the scenarios, including the definition of action space, agent EFA,
and motion parameters, is given in Appendix A.2.

83

6. Automata-constrained Risk-guided Search

6.5.2. Implementation

As in the previous chapter, simulation models for the three scenarios are created in
CoppeliaSim. The agent automata are modeled in SUPREMICA, a tool for analysis and
synthesis of DES [129]. SUPREMICA automatically converts the EFA representation of
the agent automaton into an equivalent FA which is then is exported as an XML file (recall
that any EFA can be converted into an equivalent FA as discussed in Section 2.2.3). The
exported file serves as the automata representation for the algorithm. The algorithm saves
the current state of the automaton. Each time a state transition is performed, the state is
updated based on the transitions in the XML file. The set of feasible actions is obtained by
looking up all feasible transitions given the current state. The random sampling approach
is implemented by calculating the set of feasible action sequences in advance from the
XML file, and then randomly sampling from a uniform distribution over the calculated
sequences. The motion parameters are sampled randomly from a uniform distribution
over the interval θmin,j, θmax,j , both in the risk-guided search and in the random sampling
approach.

As a safety specification, it is defined that all collision states with a contact force
exceeding 70% of the ISO/TS 15066 collision force threshold shall be deemed as unsafe1:

spec(s) =

{

true, if (dHR(s) > 0) ∨ (Fc(s) < 0.7 · Fmax)

false, otherwise
(6.9)

For the contact force estimation, the collision model according to ISO/TS 15066 is used
(see Section 2.1.4). The reward for the MCTS algorithm is defined as the maximum risk
metric which has appeared over the course of the action sequence. The risk metric is
defined according to Eq. (5.3) from Section 5.1.2.

For both risk guided search and random sampling, ten test runs with different random
seeds are performed in each of the three scenarios. For a fair comparison, each test run is
limited to the same computational budget, namely 500 simulation runs with a maximum
length of n = 12 (scenario 6-A) and n = 10 (scenarios 6-B and 6-C), respectively.
For each simulation run ending in an unsafe state, the corresponding action sequence,
parameter vector, and maximum risk metric are logged.

6.5.3. Results

The performance is compared in terms of:

• N : The number of found action sequences leading to an unsafe state.

• rmean: The mean risk value of the found unsafe sequences.

Note that these criteria differ from the performance criteria in the previous chapter. Previ-
ously, the aim of the experiment was to show that risk-guided search generally improves
the chances of discovering a given hazard. In this case, where the scenarios are more
complex, there may be multiple hazards or multiple action sequences leading to an unsafe

1Note that this safety specification is stricter than in the previous experiments, where only collisions ex-
ceeding the full limit were deemed unsafe. The stricter specification was chosen to find a more diverse
range of unsafe states, including collision states where the force threshold is not fully exceeded.

84

6.5. Experiments

(a) Number of hazardous sequences (b) Average risk

Figure 6.2.: Results of the Experiments from Section 6.5

state. Thus, instead of just determining whether a hazard was found or not, it is investi-
gated how many different unsafe action sequences are found. Furthermore, the risk metric
values are recorded to investigate not only how many unsafe sequences are found, but also
how critical the associated behaviors are.

The results are shown in Figure 6.2. As seen in Figure 6.2a, the risk-guided search
significantly outperforms the random baseline in terms of the number of unsafe action se-
quences found in scenarios 6-A and 6-C. In scenario 6-B, however, the risk-guided search
finds fewer unsafe action sequences than the random baseline. Furthermore, as seen in
Figure 6.2b, the behaviors created by the risk-guided search are, on average, associated
with higher risk scores than those created by the random sampling. A likely explanation
for this is that the risk-guided search converges to certain behaviors which are then sam-
pled repeatedly with different parameters, thus managing to achieve on average higher
risk in a hazardous sequences than the random sampling, where high-risk sequences are
not more likely to be sampled repeatedly than other sequences.

While the strong performance in scenarios 6-A and 6-C is in line with the previously
found performance advantage of the risk-guided search, the relative under-performance
of the risk-guided search in scenario 6-B is somewhat unexpected. After all, in the pre-
viously presented experiments, the risk-guided search has consistently outperformed ran-
dom sampling. A possible explanation is that the safety measures in scenario 6-B are
relatively weak compared to those in the other scenarios. Thus, unsafe sequences are
easier to find. In other words, the probability that any given sequence is unsafe is rela-
tively high in scenario 6-B. This favors an unbiased random search which samples a broad
and diverse set of sequences. In contrast, the more challenging scenarios 6-A and 6-C,
where unsafe states are rarer and unsafe sequences are thus more difficult to find, favor
the risk-guided search.

To investigate this assumption closer, further experiments were conducted. In these
experiments, multiple variations of testing scenario 6-C were created. The instances differ
only with regard to response time of the robot’s safety stop which occurs as a reaction of
the activation of the light curtain. The smaller the response time, the quicker a safety stop

85

6. Automata-constrained Risk-guided Search

Figure 6.3.: Relative performance of risk-guided vs. random search for different light
curtain response times.

is triggered. Obviously, with a quicker safety stop, it is more challenging to create agent
behaviors which result in collisions. Thus, the search problem becomes more challenging
as the response time decreases. The results are shown in Figure 6.3. The horizontal
axis denotes the response time. On the left, the graph starts with an infinite response
time, that is, no reaction is triggered (this essentially corresponds to scenario B where
not light curtain is present). Then, the response time is decreased gradually, making
the search problem increasingly challenging, until it reaches the original response time
that corresponds to scenario C from Figure 6.2. The vertical axis denotes the relative
performance of risk-guided and random search. The relative performance is measured as
follows:

relative performance =
Nrisk−guided −Nrandom

Nrandom

where Nrisk−guided is the number of unsafe sequences found by the risk-guided search
and Nrandom the number of unsafe sequences found by the random search. As Figure 6.3
shows, the risk-guided search initially under-performs compared to the random search in
the less challenging cases, while outperforming the random search in more challenging
ones. In other words, the comparative advantage of the risk-guided search grows as the
test scenarios become more challenging.

6.6. Chapter Summary

In this Chapter, the risk-guided search method was extended to enable more compre-
hensive and realistic agent behavior. To that end, two additions were introduced. First,
the agent behavior, which formerly only covered discrete actions, was extended by a set
of parameters to describe continuous-valued aspects of the agent behavior.

Second, an automata-based description format was introduced to capture constraints
with respect to the agent’s feasible action sequences. For this, Extended Finite Automata
(EFA) are used. Although their expressive power is not higher than that of ordinary finite
automata, EFA offer additional modeling formalisms which allow for easier and more
concise modeling, and their representations are more compact and easier to understand

86

6.6. Chapter Summary

for human users. This makes the modeling of complicated workflows more manageable.
With the automata-based model, the notion of accepted languages is used to decide if a
given action sequence is feasible or not. In particular, the set of feasible action sequences
is defined as the language of the automaton.

The risk-guided search approach was subsequently adapted to include the constraints
expressed by the EFA. To that end, the EFA is run in lockstep with the MCTS algorithm.
In each search step, the EFA is evaluated to provide the currently feasible set of actions,
from which the MCTS algorithm then samples its next action. Additionally, random sam-
pling of the continuous parameters is introduced to capture the variability of some of the
agent’s continuous parameters (e.g. varying walking speeds of human agents).

The adapted search was tested against a random baseline in different industrial HRC
scenarios. As in Chapter 5, each test scenario was designed to include certain hazards,
and the search method was deployed to find behaviors leading to corresponding unsafe
states. The experiments indicated that the random baseline performed better than the risk-
guided search in easier scenarios (i.e., scenarios with weak safety measures and relatively
frequent unsafe states). However, with increasing difficulty (i.e., as safety measures get
stronger and unsafe states become more rare), the risk-guided search increasingly outper-
forms the baseline.

87

7. Two-level Hazard Analysis

So far, the hazard analysis has been treated as a search problem which is solved
through iterative sampling and execution of agent behaviors directly in simulation. This
Chapter investigates an alternative approach which relies on a combination of formal ver-
ification and simulation. To that end, the EFA model which has been used previously to
model the set of feasible agent behaviors is now extended to cover not only the agent,
but the complete system of agent and SUT as well as the safety specification. This yields
two system models on different abstraction levels: An abstract formal model consisting of
EFAs, and a more detailed simulation model. The hazard analysis proceeds in two steps:
First, the formal model is evaluated to obtain a set of potentially critical agent behaviors.
Then, these agent behaviors are executed in the more detailed simulation model for closer
examination.

This Chapter is structured as follows: Section 7.1 lays out the motivation for the novel
approach, Section 7.2 gives an overview of the proposed approach. Sections 7.3 and 7.4
discusses the two levels in more detail, and in Section 7.5, the approach is demonstrated
and compared to the methods from the previous Chapters.

Publications Related to this Chapter

Parts of the work presented in this Chapter have been published in:

• Huck, Tom P., et al. "Hazard Analysis of Collaborative Automation Systems: A
Two-layer Approach based on Supervisory Control and Simulation." 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE, 2023.

7.1. Exhaustiveness vs. Accuracy: A Fundamental

Trade-Off

For a better understanding of the motivation behind the two-level approach, the com-
parative advantages and disadvantages of formal and simulation-based methods are dis-
cussed briefly (see also [183] and [120]). Ideally, a model-based hazard analysis should
achieve two major goals:

• The system model on which the analysis is conducted should be as detailed as pos-
sible, so that it accurately represents the real-world system which is analyzed.

• The analysis should be as exhaustive as possible. Ideally, a fully exhaustive explo-
ration of all possible behaviors is desired, in order to provide a safety guarantee
(assuming, of course, the model on which the analysis is performed correctly rep-
resents the real-world system).

89

7. Two-level Hazard Analysis

These are two opposing goals: As the level of detail grows, so does the model’s state
space. With an increasing size of the state space, there comes a point where exhaustive
state-space exploration is not feasible anymore from a computational point of view. Espe-
cially for complex systems, formal verification approaches which provide provable safety
claims are not always tractable. On the other hand, with a detailed simulation model
which is computationally expensive, one often cannot perform enough simulation runs
for an exhaustive analysis [60].

In other words, there is a fundamental trade-off between exhaustiveness and accuracy.
As shown in Table 7.1, formal verification and simulation-based testing can be seen as
two opposite ends of this spectrum, with specific advantages and disadvantages which
complement each other. Given the complementary nature of the two approaches, a two-
level analysis is proposed.

Formal Verification Simulation-based Testing

Formal system model (e.g. automaton) ↔ System represented by simulation
model

Abstract model, limited accuracy ↔ Detailed model, high accuracy
(Relatively) small state space ↔ Large state space
(Near) exhaustive exploration of state
space

Exhaustive exploration infeasible

Can provide safety guarantees w.r.t.
formal model

↔ Can only provide examples of unsafe
behaviors, but no guarantee that a sys-
tem is safe

Table 7.1.: Comparison of formal verification and simulation-based testing

7.2. Overview of the Proposed Approach

The two-level analysis utilizes system models on two distinct abstraction levels. On
the higher level of abstraction (referred to as first level), the system is abstracted as a
Discrete-Event System (DES). The second level consists of a simulation model, as seen in
the previous Chapters. DES abstractions have been used previously in Chapter 6 to model
the feasible behaviors of the agent. Now, the DES model is extended to cover the complete
system consisting of the agent and the SUT, as well as the interactions between agent and
SUT. The safety specification is also abstracted as an automaton which uses the notion of
marked and unmarked locations to differentiate between unsafe and safe states. Then, a
supervisor synthesis (as introduced in Section 2.2.4) is performed to obtain a set of critical
event sequences by which the agent may potentially cause the system to violate the safety
specification. Each event sequence is executed by the agent in the simulation multiple
times with different configurations for the continuous agent parameters. During these
simulations, the risk metric as well as the original (non-abstracted) safety specification
are evaluated. This allows for a more detailed judgment as to how critical the synthesized
agent behaviors actually are.

As mentioned in the literature survey from Chapter 3, this is not the first work to
explore a combination of formal verification and simulation-based testing in a robotics
context. In particular, similar approaches have been proposed by Webster et al. [183] and

90

7.3. First Level: Synthesis of Critical Event Sequences

Askarpour et al. [21]. However, there are certain features which set the following ap-
proach apart from existing literature. Webster et al. [183] consider combined approaches
of formal verification and simulation, but only in the sense of an overarching development
process where human engineers act as intermediaries between the different verification
and validation steps. Here, in contrast, the approach is integrated, with simulations be-
ing created automatically from the output of the formal model without the need for user
interference. Askarpour et al. [21] use formal verification as a hazard analysis method
and deploy the simulation primarily as a means of visualizing the findings of the formal
verification. Here, however, both simulation and formal verification are treated as integral
parts of the hazard analysis procedure. Furthermore, this work is fundamentally different
in the way it utilizes the formal models: Rather than setting up the formal models for a
fully-fledged analysis, they are used as a relatively simple, abstract and light-weight pre-
processing layer for the more detailed simulations in the second step. Finally, the present
work is the first to use Supervisory Control Theory (SCT) in a hazard analysis context.
Compared to model checkers which are typically used in formal verification (see Section
3.2), the use of SCT in this context has several advantages which will discussed later in
this Chapter.

7.3. First Level: Synthesis of Critical Event

Sequences

7.3.1. Abstraction of the Collaborative System

For a formal analysis, system and safety specification are abstracted as discrete event
systems (DES). Like in the previous Chapter, Extended Finite Automata (EFA) are used
as a DES modeling formalism. To that end, the agent EFA model which was introduced
in the previous Chapter is extended by another EFA which represents the SUT. Together,
the EFA models for agent and SUT form a DES abstraction of the collaborative system:

Definition 12 - Abstract System Model

The collaborative system is modeled by two EFA A and SUT which represent the

behavior of agent and SUT, respectively.

A = 〈A, VA, LA,→A, GA,MA, l0A, V0A〉

SUT = 〈ΣSUT , VSUT , LSUT ,→SUT , GSUT ,MSUT , l0SUT , V0SUT 〉

Where A denotes the action space of the agent and ΣSUT denotes the set of events

that can appear in the SUT. Further elements of the automata are defined according

to Definition 3. The behavior of the complete system of both agent and SUT is given

by the synchronous composition of the two EFA:

A ‖ SUT

Note the following remarks on Definition 12:

• Interactions between agent and SUT can be modeled through shared events which
appear in both EFA, and through shared variables which can be read and/or manipu-

91

7. Two-level Hazard Analysis

lated by both EFA (see Section 2.2.3). Hence, the agent’s action space A and the set
of SUT-related events ΣSUT as well as the variable sets VA and VSUT are generally
not disjoint.

• The joint event space A ∪ ΣSUT contains all events that can occur in the model of
the collaborative system. Hence, A∪ΣSUT is the input alphabet of the synchronized
composition. An event sequence

(ei) = (e1, e2, . . .), ei ∈ A ∪ ΣSUT

denotes one particular behavior of the system. The language of the synchronized
composition L(A ‖ SUT) contains all feasible event sequences and thus represents
the set of all possible behaviors that can occur in the collaborative system.

• For reasons of brevity, the concrete modeling procedure for obtaining the EFAs is
not explained here. Instead, the EFA models are assumed as given. For more de-
tails, the reader is referred to Appendix C. There, a detailed step-by-step modeling
guideline is given which explains how to obtain the EFA models from scratch.

The following Example 10 (adapted from [90]) illustrates how a system model in the form
of EFAs could look like. Note that the individual EFA models may appear smaller and less
complex than the actual behavior they encode would suggest. This is due to two reasons:
First, states are not only encoded in the form of locations, but also in the form of variables,
which makes for a more compact modeling. Second, the system behavior is given by the
synchronous composition A ‖ SUT , whose state space is the cartesian product of the
state-spaces of the individual EFA. Fortunately, however, it is not necessary to construct
the synchronous composition explicitly, as this can be done on-the-fly by efficient DES
tools such as SUPREMICA [129]. The ability to construct more complex automata models
through composition of simple modules makes EFA a powerful modeling tool.

Example 10 Abstract System Model

Recall the HRC system from example 7. The behavior of the agent (i.e., the human worker)

in this system can be modeled by the following EFA:

qH0

A:A:

lH1

lH2 lH3

lH4

lH5

t1

t1

u
S
:
[P

=
0]

P
←

1

d
S
:
[P

=
1]

P
←

0

r

b
1 ,b

2 ,b
3
:
[P
6=

1]

r

t2 S ← 1

t2 S ← 0

u
R
:
[P

=
2
]
P
←

1,
W
←

1

r
W
←

0

d
R
:
[P

=
1]

P
←

2
,
W
←

1

Where the events (i.e., the action space of the agent) are defined as follows:

92

7.3. First Level: Synthesis of Critical Event Sequences

t1 Walk between area A and B

t2 Walk between area A and C

uS (dS) Pick up (putting down) part at the storage table

b0 press button to stop robot

b1 press button to start robot

b2 press button to start robot in safety override mode

r retract hands (after reaching motion or button pressing)

Furthermore, the discrete integer variables P , W , and S are introduced. P ∈ {0, 1, 2}
denotes the position of the workpiece (0: at storage, 1: in worker’s hands, 2: at robot

station). W ∈ {0, 1} denotes if the agent currently occupies the shared human-robot

workspace (0: not occupied, 1: occupied). S ∈ {0, 1} denotes if the agent currently

occupies the laser scanner zone (0: not occupied, 1: occupied). Observe that some events

require guard statements to be fulfilled before the transition is enabled. Through these

guard statements, constraints on the agent’s behavior are enforced. For instance, the guard

is P = 1 needs to hold in order to put down a workpiece at the robot station dR, because

the worker must first be in possession of the part to put it down.

The model of the SUT (i.e., the robot system) is shown below:

lR0

SUT :SUT :

lR2

lR1

b2 : [P 6= 1] R← 1

b0 : [P 6= 1] R← 0
b
1 :

[P
6=
1]

b2 : [P 6= 1]

b
1
:
[P
6=

1]
R
←

1

b
0
:
[P
6=

1]
R
←

0

sa
f
ety

S
top

:
[S

=
1]

:
R
←

0

b0 : [P 6= 1]

b1 : [P 6= 1]

b2 : [P 6= 1]

In this model, each operation mode of the robot is represented by a location lR,i (idle:

lR0, working: lR1, working in safety override mode: lR2). The agent changes the oper-

ation mode by pressing the buttons (events b0, b1, and b2). Note that b0, b1, b2 are shared

events: While they are performed by the agent, they appear both in the agent’s and in the

SUT’s automata model, as the agent’s behavior also changes the state of the SUT. As dis-

cussed in Section 2.2.3, shared events are one of the ways how interactions between system

components can be modeled in EFAs (the other way being shared variables).

Additionally, the SUT features an event (safetyStop) which represents the safety stop trig-

gered by the laser scanner. This event transfers the robot from working into idle mode. The

safety stop is only enabled if the robot is running in normal operation mode and the laser

scanner is occupied (as denoted by the guard statement S = 1). Note that (safetyStop)
is not available in safety override mode (i.e., in qR2), as the robot’s safety function is de-

activated in this mode of operation. Furthermore, the variable R ∈ {0, 1} is introduced. It

denotes if the robot is currently idle (R = 0) or active (R = 1).

93

7. Two-level Hazard Analysis

7.3.2. Abstraction of the Safety Specification

The original safety specification spec as introduced in Definition 4 is defined over
the simulation state-space S. Since the simulation state-space is more detailed than the
state-space of the abstracted system model from Definition 12, it is generally not possible
to evaluate the original safety specification spec on the abstracted models (for instance, if
spec uses collision forces as a criterion, but the abstracted system is not sufficiently de-
tailed to estimate collision forces, then it is not possible to evaluate spec on the abstracted
model). Thus, an abstraction of the safety specification is needed which, analogously
to the original safety specification, maps the state-space of the abstracted model to a bi-
nary safety decision. This can be achieved with a third automaton that uses the notion of
marked locations to differentiate between safe and unsafe states.

Definition 13 Abstract safety specification

The abstract safety specification is given by an EFA named SP:

SP = 〈ΣSP , VSP , LSP ,→SP , GSP , l0SP , V0SP , L
m〉 (7.1)

where the initial location l0 is unmarked and the remaining locations are marked:

LSP = {l0SP} ∪ Lm

The initial unmarked location l0SP represents a safe state and the marked locations

represent unsafe states. The event space ΣSP represents unsafe events that can

occur in the system (e.g., a collision). These unsafe events transfer the EFA from

the initial (safe) state to a marked (unsafe) state. The set of variables is a subset of

the variable space of the system model:

VSP ⊆ VA × VSP

The guards GSP represent the conditions under which the unsafe events can occur.

Note the following remarks on Def. 13:

• Intuitively, SP can be thought of as an observer which observes the variables of
the system model and evaluates the variables with respect safety criteria that are
encoded in the guards GSP . If a safety criterion is violated, the corresponding guard
statement is fulfilled, and SP changes location from the initial unmarked location
to a marked location. This ensures that SP will always enter a marked state if a
safety criterion is violated, while remaining in an unmarked state otherwise.

• SP should have no shared events with the system model EFAs: ΣSP∩(A∪ΣSUT) =
∅, and SP should have no update rules for variables (i.e., it can observe, but not
change the values of variables). Thereby, it is ensured that SP can only observe
the behavior of the system model, but cannot influence its behavior. If this is not
adhered to when modeling SP , one may inadvertently impose false restrictions on
the system behavior and thus exclude potentially safety-critical behaviors from the
analysis.

• Encoding the safety specification in form of an automaton instead of simply specify-
ing a logical formula over the variable space may seem unnecessarily complicated

94

7.3. First Level: Synthesis of Critical Event Sequences

at first glance. However, having both the system model and the safety specification
represented as an EFA will prove useful in Section 7.3.4, where a synthesis tech-
nique will be applied which expects both system model and safety specification to
be given in that form.

The following Example 11 illustrates this principle by presenting a corresponding safety
specification for the models from the previous Example 10 (see also [90]).

Example 11 Abstract Safety Specification

The EFA model SP , which represents the safety specification, is shown below:

lSP0

SP:SP:

lSP1

c : [R = 1 ∧W = 1]

This EFA only has two locations. lSP0 represents a safe state and lSP1 an unsafe state,

that is, a human-robot collision. Note that the lSP1 is marked, but only reachable through

event c (collision). For the event collision to occur, the following guard statement has to

be fulfilled: R = 1 ∧W = 1. This guard statement expresses the safety criterion: A state

is considered to be a collision if the agent is in the collaborative workspace while the robot

is working.

7.3.3. Overapproximation of Unsafe Behaviors

Abstracting system and safety specification as DES decreases state-space complexity
and enables enables an exhaustive identification of hazardous behaviors. However, as
discussed in Section 7.1, abstraction comes at the cost of limited detail. The loss of detail
can lead to inaccuracies of the abstract model compared to the simulation model. These
inaccuracies can manifest themselves as follows:

• The abstract model classifies an event sequence as safe, although it is actually un-
safe when analyzed in simulation. In the following, such an occurrence shall be
called missed alarm, since the abstract model fails to highlight a potential hazard.

• The abstract model classifies an event sequence as unsafe, although it is actually
safe when analyzed in simulation. This shall be called false alarm, since the abstract
model falsely claims the presence of a hazard.

The relationship between true, false, and missed alarms is illustrated in Figure 7.1. From
a hazard analysis perspective, missed alarms are clearly more critical than false alarms.
While false alarms can be filtered out easily by a more detailed simulation-based analysis,
a missed alarm would mean that a critical event sequence is discarded before simulation,
causing the respective hazard to remain unnoticed. Therefore, the abstract model should
be designed in such a way that it overapproximates the set of unsafe behaviors (i.e., missed
alarms are avoided at the cost of having more false alarms). To achieve this, certain
modeling principles should be obeyed. These are discussed in the following.

Conservative abstraction of safety specifications. The safety specification should
be abstracted conservatively, so that the abstract safety specification SP is more conser-
vative than the original safety specification spec. Typically, the state-space of the abstract

95

7. Two-level Hazard Analysis

Figure 7.1.: Relationship between false, true, and missed alarms.

model contains less information than the state-space of the original simulation model.
Thus, the abstract safety specification has less detailed information available to decide
whether a given state is safe or unsafe. To arrive at a conservative safety specification,
safety-critical information that is missing should be assumed to take a worst-case values.
For instance, if the original safety specification states that a collision should not exceed
certain collision force values, but the abstracted model does not contain collision force
information, then all collisions should be assumed to exceed the limits, and the abstracted
safety specification should classify all collision states as unsafe (as seen e.g. in Example
11).

Overapproximation of spatial occupancy. Since EFA only allow for discrete states,
the shared workspace of agent and SUT needs to be discretized. Variables and update
rules need to be introduced to track the current occupancy of agent and SUT in each state
(as seen e.g. with the variabls R and W in Example 10). The discretzation should be
designed in such a way that the spatial occupancy of agent and SUT is overapproximated,
which leads to a more conservative detection of collision hazards.

Non-deterministic timing. EFA feature no quantiative notion of time. This means
that EFA models consider the order of events (e.g., "event e2 occurs after event e1"), but
not their timing ("e.g., "event e2 occurs 1 second after event e1"). This can lead to issues
if the exact timing behavior is important for safety. In Example 10, for instance, the
laser scanner needs to stop the robot before the human can reach the robot’s workspace.
This depends on the time that the human needs to approach the robot as well as the time
that is required for the laser scanner to detect the human and stop the robot. Of course,
the EFA models could be augmented to feature a quantitative notions of time (e.g., by
introducing clock variables). However, this would increase model complexity and require
users to make assumptions about the durations of events which is error-prone. A more
elegant solution is to avoid timing constraints by keeping the timing of critical events
non-deterministic. When synthesizing critical event sequences, this forces the synthesis
algorithm to consider all possible interleavings of events, and not just one sequence with a
prescribed timing. Of course, this may also include event sequences which are potentially
unsafe, but not actually feasible in terms of timing. However, these sequences are filtered
out in the second layer of the analysis, where the simulation accurately models actual
timing behavior of the systems. This principle can be seen, for instance, in the model for

96

7.4. Second Level: Simulation-based Evaluation of Synthesized Event Sequences

the SUT from Example 10. Here, the robot is supposed to enter a safety stop as the human
enters the laser scanner zone. However, instead of assuming that the safety stop occurs
immediately upon entry in the safety zone, the safety stop is modeled as a separate event
which is associated with the guard [S = 1]. In other words, the model merely states that
entering the laser scanner zone is a precondition for the safety stop, but it does not assume
that the safety stop occurs simultaneously or with any other specific timing.

7.3.4. Synthesis of Critical Event Sequences

A supervisor synthesis is performed to extract a set of critical event sequences from
the abstract models. As explained in Section 2.2.4, supervisor synthesis yields a subset
of all possible behaviors of a system. The synthesized subset contains exactly those be-
haviors that comply to a given specification. By performing a supervisor synthesis for the
plant SUT ‖ A with respect to the specification SP , one can thus obtain the set of all
possible event sequences that result in unsafe states. Recall that the supervisor synthesis
aims to create non-blocking behaviors, that is, event sequences which result in marked
states.

Let K denote the synthesized supervisor, and L(K) the language of the synthesized
supervisor. Then, L(K) contains exactly those event sequences which lead to marked
states, while those which do not result in a marked state are removed. Since SP is de-
signed in such a way that unsafe states correspond to marked states, the synthesis yields a
set of unsafe event sequences. Since the supervisor synthesis is also minimally restrictive,
the synthesized set of unsafe event sequences is exhaustive, that is, it contains all possi-
ble behaviors that result in unsafe states, and not just some (see Section 2.2.4). Herein
lies one of the main advantages of SCT compared to other formal verification methods.
Typical formal verification approaches use so-called model checkers, such as SPIN [83].
When a violation of safety specifications is found, model checkers return a single error

trace, that is, an exemplary sequence of events which leads to an unsafe state. It is then
up to the user to correct the system error that has led to the unsafe state, adapt the model
accordingly, and re-run the model checker. While such an approach is feasible in conven-
tional model checking applications where false alarms are assumed to be relatively rare, it
is not suitable for the present use-case. The reason for this is that the overapproximative
nature of the first abstraction level can lead to a number of false alarms which is so large
that manually checking the resulting error traces is not feasible. The synthesis approach,
in contrast, yields an exhaustive set of event sequences that violate the safety specifica-
tion without requiring the user to iteratively inspect each sequence, adapt the model, and
re-run the analysis. A more detailed analysis of the error traces is then done automatically
on the second level.

7.4. Second Level: Simulation-based Evaluation of

Synthesized Event Sequences

In the next analysis step, the synthesized event sequences are executed in simulation
for a more detailed analysis. At this point, it is important to emphasize the following
aspect, which is a key difference compared to other works such as [21]: The second step

97

7. Two-level Hazard Analysis

of analysis does not strictly re-create the complete event sequences found in the formal
analysis. Instead, it only recreates the behaviors of the agent, while the behavior of the
SUT emerges as a reaction of the agent behavior in simulation. In other words, the formal
analysis can be seen as a preprocessing step which identifies potentially interesting agent
behaviors a-priori using prior knowledge. The SUT is then further scrutinized by expos-
ing it to the synthesized agent behaviors in simulation and observing it’s response, rather
than using the simulation merely as a tool for visualization. Therefore, only a subset of all
events, namely those associated with the agent’s behavior, are used as simulation inputs.
In contrast, events associated to the SUT are emergent, that is, they arise from within the
simulation as a consequence of the SUT’s behavior. Therefore, in each of the previously
generated set of unsafe event sequences, those events related to the SUT are discarded,
and the remaining sequence of agent-related events are used as inputs to the simulation.
Furthermore, it is only possible to simulate finite sequences of actions, whereas the lan-
guage of the supervisor may contain infinite sequences. Thus, it is necessary to clip the
action sequences to a maximum length n.

The set of action sequences which is thus created shall be denoted by L̃n
K. As ex-

plained above, L̃n
K is obtained from LK by taking the event sequences (ei) ∈ LK and

removing all events which are not part of the agent’s action space. The following simple
Example (adapted from [90]) illustrates this concept.

Example 12 - Removal of non agent-related events.

Suppose that the language LK of the synthesized supervisor contains the following event

sequence:

(activateRobot, approachRobot,

robotStops, enterWorkspace)

Here, the actions activateRobot , approachRobot and enterWorkspace are from the

agent’s action space A, whereas the event robotStops is from ΣSUT , that is, from the

event space of the SUT. The non-agent related event is removed and only the following

action sequence is used as input to the simulation:

(activateRobot, approachRobot, enterWorkspace)

The event robotStops is not prescribed as a simulation input, but emerges internally in the

simulation as a consequence of the behavior encoded in the robot’s simulation model.

The remaining set of action sequences L̃(K)n is then simulated. During each simula-
tion run, the risk metric and the original (i.e., non-abstracted) safety specification spec are
evaluated to assess whether the event sequence is indeed safety-critical, or whether it is a
"false alarm", that is, whether it was falsely deemed critical on the first level of the anal-
ysis. At this point, the first analysis level has already narrowed down the search space to
an (ideally relatively small) set of critical action sequences. Therefore, it is assumed that
– in contrast to the simulation-only approach – an exhaustive simulation of all remaining
sequences is possible.

Note that so far, only events relating to the agent’s discrete action space have been
considered. Continuous parameters have only be considered on the second level, as the
DES abstraction on the first level does not allow continuous variables. However, if the
computational budget allows for multiple simulation runs per event sequence, then it is

98

7.4. Second Level: Simulation-based Evaluation of Synthesized Event Sequences

also possible to consider different continuous parameters of the agent’s behavior. To that
end, each of the synthesized event sequences is simulated multiple times with different
parameter configurations. The selection of parameters can be done through random sam-
pling or heuristically. The simulation budget can be uniformly distributed over the set of
critical event sequences so that each sequence is simulated equally often.

In the following, an approach with heuristic parameter sampling is presented. Sup-
pose there are m continuous parameters in the agent’s behavior space, and each parameter
θj is subject to parameter limits θj,min and θj,max. Then, the set of feasible parameter com-
binations is given by an m-dimensional cube with 2m vertices (as shown in Figure 7.2 for
the case m = 3). The heuristic sampling approach relies on two assumptions: First, it is

Figure 7.2.: Parameter space for m = 3

assumed that parameter configurations in the corners of the cube are more likely to lead
to unsafe states, since these are associated with more extreme behaviors which are farther
away from the nominal and expected agent behavior. Second, it is assumed that edges
with more maximum values are more safety-critical than those with minimum values.
This is especially the case since continuous parameters are frequently associated with ve-
locities of the agent’s movement, and high velocities make it more difficult for the safety
measures of the SUT to respond. (Of course, this is an assumption which may not always
hold. However, it can be argued that it is a reasonable assumption in the absence of further
knowledge of the parameter’s effects). Therefore, the vertices are prioritized as follows:

v1 = (θ1,max, θ2,max, . . . , θm−1,max, θm,max)

v2 = (θ1,max, θ2,max, . . . , θm−1,max, θm,min)

...

v(2m) = (θ1,min, θ2,min, . . . , θm−1,min, θm,min)

Assume that there is a fixed simulation budget of N simulation runs. Then, the number of
parameter combinations which can be calculated per action sequence is given by

Ñ =

⌊

N

|L̃n(K)|

⌋

If Ñ < 2m, only the first Ñ parameter combinations v1 . . . vÑ of the list are simulated.
If Ñ ≥ 2m, all parameter combinations from the list are simulated, and in the case of

99

7. Two-level Hazard Analysis

Ñ > 2m, the additional simulation budget is used for randomly sampled parameter com-
binations from within the cube.

Alternatively, the simulation budget can be prioritized according to the risk metric.
This can be achieved by simulating each sequence once to obtain an initial risk estimate,
and then the distributing the remaining available simulation runs with a prioritization
scheme that assigns more simulation runs to those sequence with a high initial risk es-
timate (the assumption behind the latter approach is that sequences with a high initial risk
estimate are more likely to reach an unsafe state when the parameters are varied).

7.5. Experiments

7.5.1. Goal and Methodology

A series of experiments was conducted to investigate the feasibility and the perfor-
mance of the two-level approach, and to compare it to the result of random and the risk-
guided search from the previous Chapter1. Note that the latter two do not rely on any
synthesis algorithm, but only on simulation to identify unsafe behaviors. They are there-
fore called "simulation-only" methods in the following. Concerning the comparison be-
tween the simulation-only methods and two-level approach, the following questions are
of interest:

• Does the two-level approach find more unsafe behaviors than the simulation-only
methods?

• Does the two-level approach miss any hazards which are found by the simulation-
only approach (missed alarms)?

• Does the abstract model raise any "false alarms" which are then not confirmed to be
hazardous in simulation? And if yes, how frequent are these false alarms?

Regarding the methodology, scenarios, and evaluation criteria, the experiments in this
Chapter are identical to those performed in Chapter 6 (i.e., scenarios 6-A to 6-C). The
difference is that the in addition to the simulation model, each scenarios is also modeled
in the form of EFA in order to deploy the two-level approach is deployed additionally to
the random and risk-guided search. Performance criteria for comparison remain identical
to the previous Chapter. Implementation, execution, and results of the experiments are de-
scribed in the following. As in Chapter 6, the reader is referred to the original publication
[90] and to the appendix for further details.

7.5.2. Implementation

Modeling

The simulation models of the test scenarios are identical to the those described in
Section 6.5. For the agent models, the existing EFA models from the experiments in Sec-
tion 6.5 are used. In addition, EFA models for SUT and safety specification are created.

1Note that these are the same experiments as presented in Chapter six, but with the addition of the two-level
hazard analysis.

100

7.5. Experiments

using the software tool SUPREMICA [129]. For scenario A, a model with 90 states and
182 transitions2 was created. For scenario B and C, a model with a model with 161 states
and 367 transitions was created (note that since scenarios B and C are based on the same
simulation model, they also share the same EFA model). For reasons of brevity, the EFA
models are not discussed in detail here. A detailed description of the newly created mod-
els is given in Appendix A.3 and a step-by-step explanation of the modeling procedure is
given in Appendix C.

Synthesis and Simulation

In each scenario, a supervisor synthesis is performed with Supremica [129] (details
of the synthesis procedure are given in Appedix C.2 and C.3). The next step is to extract
the agent’s event sequences from the supervisor. Supremica represents the synthesized
supervisor as a finite automaton whose language contains all event sequences that comply
with the specification. The automaton is exported as an XML file and parsed to extract
the event sequences that are part of the accepted language of the synthesized supervisor.
However, as explained above, only the events that are part of the agent’s action space are
used as simulation input. Thus, the events related to the SUT’s behavior are discarded
in the parsing procedure. Although the number of states of the supervisor is finite, the
lanugage of the automaton may contain event sequences of arbitrary length, possibly even
of infinite length of the sequences contain loops. Since it is only possible to simulate
sequences of finite length, the length of the action sequences needs to be limited. In this
case, only sequences which do not contain more than a finite number of n agent actions
events are extracted (n = 12 for scenario A and n = 10 for scenarios B and C). This
resulted in 22 potentially critical sequences for scenario A, and 83 potentially critical
sequences for scenarios B and C. The resulting event sequences are then fed into the
simulator and evaluated with different continuous parameter combinations as explained in
Section 7.4. To evaluate the effectiveness of the heuristic parameter sampling approach, a
baseline which relies on purely randomly sampled parameters is also deployed. For each
configuration of scenario and sampling method, ten test runs with different random seeds
are performed in order to limit the influence of statistical outliers.

7.5.3. Results

Search space reduction. In all three scenarios, evaluating the first level before
performing simulation led to a significant reduction of the search space compared to
simulation-only methods. In scenarios B and C, evaluating the abstract model through su-
pervisor synthesis returned 83 potentially critical sequences out of 366 feasible sequences.
In scenario A, the reduction was even greater. Here, the abstract model returned 22 po-
tentially critical sequences out of 17441 feasible sequences. This indicates that even rela-
tively simple abstract models, such as the ones used here, can already lead to a significant
reduction of the search space.

Search performance. The search performance is measured in terms of the number
of identified unsafe behaviors and in terms of the average risk values associated to these

2The number of states and transitions given here is the number of states of the synchronous composition
of all EFA models, including Agent, SUT, ans safety specification.

101

7. Two-level Hazard Analysis

behaviors. Figure 7.3 shows the results in comparison to the the results of random search
and MCTS from the previous Chapter. Note that the experiments for the two-level ap-
proach are based on the same scenarios and use the same computational budget as in the
previous Chapter. Thus, a direct comparison to the results from the previous Chapter is
possible.

(a) Number of hazardous sequences (b) Average risk

Figure 7.3.: Performance of two-level analysis with randomly sampled parameters
(TL-R), two-level analysis with parameter sampling heuristics (TL-H), Ran-
dom Sampling, and MCTS in comparison

Figure 7.3a shows how many unsafe event sequences were found by the respective
methods (note that the figure only includes true alarms, while false alarms of the two-layer
method are excluded to make the comparison fair). The two-layer approach significantly
outperforms both MCTS and random sampling in all three scenarios. Between the two
variants of two layer approach, the one with parameter sampling heuristics (TL-H) per-
forms slightly better than the one with randomly sampled parameters (TL-R). Figure 7.3b
shows the performance in terms of the average risk score. Here, TL-H clearly outperforms
the simulation-only methods, while the TL-R version slightly underperforms them.

Disagreements between abstract model and simulation. Furthermore, it is inter-
esting to investigate if there were any false or missed alarms. However, determining the
true number of false and missed alarms would require a "ground truth", that is, a definitive
knowledge of which and how many unsafe event sequences actually exist. To achieve this,
each feasible event sequence would have to be simulated exhaustively with all possible
parameter combinations, which is computationally infeasible. However, it is still possible
to gain some insights by investigating disagreements between ETA models and simulation
models in the test runs that were performed. To that end, the following sets of sequences
are obtained from the results:

102

7.5. Experiments

• Ln(K): The set of sequences that are unsafe according to the abstract model (see
Section 7.4).

• XT : The set of sequences that are unsafe according to the two-layer analysis (i.e.,
sequences which are in Ln(K) and are confirmed to be unsafe through simulation).
These are accumulated over all test runs for the respective scenario.

• XS: The set of sequences that are unsafe according to the simulation-only methods
(i.e., random search and MCTS). Again, these are accumulated over all test runs for
the respective scenario.

• Ln(K)\XT contains all sequences which are unsafe according to the abstract model,
but where not unsafe states have been found in simulations. These sequences indi-
cate false alarms3.

• XS\L
n(K) contains all sequences which were found to be unsafe in simulation, but

not in the formal model. These sequences indicate missed alarms.

Scenario
|Ln(K)|

(unsafe sequences
in abstract model)

|XT |
(true alarms)

|Ln(K)\XT |
(false alarms)

|XS\L
n(K)|

(missed alarms)

A 22 21 0 1
B 83 45 38 11
C 83 13 70 0

Table 7.2.: Disagreements between formal model and simulation

The results are shown in Table 7.2. In scenario A, the abstract model found 22 un-
safe sequences, out of which all were confirmed to be unsafe in simulation (i.e., no false
alarms). However, there was one missed alarm. In scenario B, the abstract model found
83 potentially unsafe event sequences. 45 of these were confirmed to be unsafe in sim-
ulation, while the remaining 38 were false alarms. There were eleven missed alarms. In
scenario C, the interactions between agent and SUT are, in principle, the same as in sce-
nario B. Thus, the abstract model again finds the same 83 potentially unsafe sequences as
in scenario B. Yet, the main difference is that scenario C features stronger safety measures
in form of an additional light curtain (see Section 6.5). Due to this, many of the sequences
found to be unsafe in the abstract model now become safe, including the eleven sequences
which constituted missed alarms in scenario B. Yet, the since abstract model is does only
capture the order of events but not their exact timing, (see Section 7.3.1), it needs to as-
sume that sequences which invoke the light curtain are unsafe. This is reflected by the
large number of 70 false alarms compared to only 13 true alarms.

Investigation of missed alarms. As stated above, there were some missed alarms in
scenarios A and B. This indicates that the abstract model in this case did not truly over-
approximate the set of unsafe sequences despite the measures that were taken to achieve
such an over-approximation. A closer examination of the simulation sequences revealed
unforeseen interactions between agent and SUT in simulation which were not modeled in

3note that technically, sequences in this set can result from two conditions: (i) from a false alarm by the
abstract model or (ii) from a true alarms where an unsafe state is possible, but the simulation was not
able to expose with the continuous parameters that were sample. For reasons explained above, it is
not possible to know which of these conditions are the case. For reasons of brevity, however, these
sequences will be referred to simply as false alarms.

103

7. Two-level Hazard Analysis

Figure 7.4.: Example of an unsafe behavior which was not detected in the abstract model:
The human worker attempts to reach for the workpiece and inadvertently
presses the robot activation button with the elbow (as highlighted by the red
box). This activates the robot and leads to a potential collision with the
human head or hands. The abstract model was unable to identify this unsafe
behavior, as the depicted effect was not captured in the model.

the abstract model. One such case is shown in Fig. 7.4. Here, the worker accidentally
presses the button with its elbow which reaching for the workpiece, which results in an
activation of the robot and a potential collision with the workers head or hands. The mod-
eling techniques discussed in Sec. 7.3.3 are unable to avoid this issue, since it did neither
result from inaccuracies in the safety specification, nor spatial occupancies, nor timing,
but rather from an entirely unforeseen type of interaction which was not considered at all
in the model. The simulation-only methods, on the other hand, make fewer assumptions
about potential hazards and were thus able to identify this hazardous behavior.

7.5.4. Discussion

The main advantage of the two-level approach is that it leverages an abstraction of
the system which is exhaustively explored to identify potentially interesting (i.e., safety-
critical) agent behaviors in a first analysis step. This restricts the search space for the
following simulation-based analysis and makes the search more effective. The increased
effectiveness is demonstrated by the fact that in all testing scenarios, the two-level ap-
proach found, on average, significantly more unsafe sequences than MCTS or random
sampling.

However, the advantage comes at the cost of an increased modeling effort. Where the
purely-simulation based approaches only need one DES model to determine the feasible
agent sequences, the two-level approach requires a DES abstraction of the complete sys-
tem consisting of agent, SUT, and safety specification. On the other hand, the experiments

104

7.6. Chapter Summary

have demonstrated that even relatively simple models can already reduce search complex-
ity significantly, so performance gains compared to simulation-only methods were already
achieved with relatively small modeling effort.

The limited accuracy of the abstract models can be compensated by adopting a more
conservative modeling approach. While this can lead to a large number of false alarms
(as seen in the results from Scenario C), the overall search performance in the experi-
ments was still higher than that of the simulation-only methods (see Fig. 6.2), even when
adjusted for false alarms. Yet, the experiments have also highlighted that despite the con-
servative modeling approach, missed alarms cannot be fully avoided if there are certain
unforeseen interactions between agent and SUT which are not captured in the abstract
model (see Scenario B, Fig. 7.4).

One the other hand, one should also keep in mind that this issue is not specific to the
two-layer approach. Missed alarms also happen in purely-simulation based approaches.
In fact, even when taking the missed and alarms into account, the two-level approach still

outperforms both MCTS and random sampling.

A promising direction for further improvement would be to design a two-level ap-
proach where the second level uses the sequences obtained from the first level as a starting
point, but is not restricted to simulating only these sequences. Instead, the second level
should also be able to deviate and explore other sequences, even if they have not been
labeled as unsafe by the formal analysis. Such an approach would mitigate the problem
of missed alarms. A possible way to implement such an approach would be a to use a
MCTS algorithm which does not start with an empty search tree, but with an initial search
tree that is pre-populated with the sequences obtained on the first analysis level. Another
area of improvement would be to employ other search heuristics on the level of continu-
ous parameters such as Simulated Annealing or the Nelder-Mead Algorithm, see Section
5.2.3.

Finally, it should also be noted that in some cases, the applicability of the two-level is
limited because determining suitable modeling abstractions is difficult if the behavior of
the SUT is influenced by black-box components whose internal behavior is not fully un-
derstood (e.g., artificial neural networks or compiled third-party software). In such cases,
a simulation-only approach such as MCTS or random sampling may be more suitable.

7.6. Chapter Summary

This Chapter has introduced a two-level analysis as an alternative to purely simulation-
based risk-guided search. The two-level analysis first uses an abstract model of the system
to identify potentially hazardous event sequences, which are then scrutinized further in
simulation. To that end, the previously introduced DES model of the agent is extended by
DES abstractions of SUT and safety specification. Supervisory Control Theory (SCT) is
leveraged to extract a complete set of potentially critical event sequences which serve as
input to the simulation. In the experiments, the two-level approach outperformed purely
simulation-based approaches in terms of the number of unsafe behaviors that have been
found. However, the two-level approach also has some drawbacks. These include the
increased modeling effort as well as the possibility of false alarms (i.e., the formal model
indicates hazards where there are none) or missed alarms (i.e., an unsafe event sequence
is not simulated because the formal model misjudges it as safe).

105

8. Discussion and Outlook

This Chapter is devoted to a discussion of the presented work and an outlook on future
work. Section 8.1 discusses the contributions of the thesis. Section 8.2 critically examines
the limitations of the proposed methods. Section 8.3 presents potential avenues for future
research, while Section 8.4 explores the applicability of the developed methods to other
domains beyond industrial robotics. Lastly, Section 8.5 concludes the thesis with some
final remarks.

8.1. Contributions of this Thesis

Below, the contributions of this thesis are discussed. To that end, each of the three
research questions from Section 1.2 are revisited. For each research question, it is briefly
summarized what new insights have been gained in this thesis.

RQ1: How to analyze increasingly complex robot systems for potential hazards?

In the introduction to this thesis, it was argued that hazard analysis of robotic systems
is becoming increasingly challenging, especially due to the fact that complexity of these
systems is increasing. The literature research and expert surveys presented in Section 3
have shown that there are currently four predominant approaches to identify hazards in
safety-critical systems:

• Informal methods (e.g., brainstorming, use of expert knowledge)

• Semi-formal methods (e.g., HAZOP, STPA, FMEA)

• Formal verification

• Test-based methods (especially simulation-based testing)

While the first three approaches are relatively well-established, their applicability to com-
plex systems is limited because they are so-called white-box methods. That is, they rely
on an in-depth understanding of the system’s internal structure and functionality, either
because they rely directly on human reasoning, or because they require a formal model
of the system to be built. In contrast, simulation-based methods allow users to adopt
a black-box approach where the behavior of the system under test can be observed in a
large number of different testing conditions without requiring explicit knowledge about its
internal functionality. This makes simulation-based methods more scalable with regard to
increasing system complexity. Yet, the literature research has also shown that simulation-
based methods are still used relatively rarely in the domain of robotics in general and
human-robot collaboration in particular. Therefore, it was concluded that more research
on simulation-based testing in the context of human-robot collaboration is needed.

107

8. Discussion and Outlook

RQ2: How to formalize and automate the task of hazard analysis?

Following the findings of RQ1, it was decided to focus on simulation-based hazard
analysis as the main approach for this thesis. This, in turn, leads to the next research
question, namely how to formalize the hazard analysis problem so that it can be solved in a
simulation environment, preferably in an algorithmic manner that allows for an automated
analysis. The thesis addresses this question by proposing an agent-based testing approach.
To that end, the simulation model is partitioned into two interacting subsystems: The
robot system which is being analyzed (referred to as System under Test or SUT) and a
so-called testing agent. The testing agent interacts with the robot system and modifies
the simulation environment in which the SUT is embedded. Thereby, it creates a variety
of different testing conditions for the SUT. Given this framework, the hazard analysis
can be framed as a search problem where the goal is to find critical agent behaviors that
cause the SUT to enter a state that violates a given safety specification. To demonstrate
the feasibility of this approach multiple series of experiments were conducted. In these
experiments, the agent was represented by a digital human model, while the SUTs were
different robot systems. Safety-critical design flaws were deliberately introduced into
the SUTs and the developed techniques were deployed to expose these safety flaws by
identifying unsafe agent behaviors which lead to critical human-robot collisions.

RQ3: How to mitigate search-space complexity in simulation-based testing?

A common problem in hazard analyses is the vast number of possible interactions
between agent and SUT that need to be analyzed to find potential hazards. This is also
an issue in the agent-based testing approach of this thesis: With the exception of strongly
simplified and abstracted system models, it is usually infeasible to simulate all possible
agent behaviors. Instead, the computational budget should be concentrated on critical

testing conditions under which the SUT is likely to violate safety specifications. Yet, cre-
ating such critical conditions in a systematic manner is challenging, since there is only
limited a-priori knowledge about the specific conditions under which the SUT might fail.
Furthermore, the agent behaviors need to be constrained in order to avoid infeasible or un-
realistic agent behaviors. To address these issues, several techniques have been proposed
in this thesis:

• Risk-guided search (Chapter 5)

• Automata-constrained risk-guided search (Chapter 6)

• A two-layer analysis combining formal verification and simulation (Chapter 7)

The effectiveness of these techniques has been demonstrated in experiments from the
domain of industrial HRC. In the majority of experiments, the risk-guided search out-
performed the random baseline in terms of effective hazard identification. The two-layer
approach consistently outperformed both risk-guided search and random baseline, albeit
at the cost of a higher modeling effort.

However, it should also be noted that the developed techniques have certain limita-
tions, as will be discussed in the following Section.

108

8.2. Limitations

8.2. Limitations

As explained in the discussion of the state-of-the-art (see Section 3.5), exhaustive ex-
ploration of all possible system behaviors is rarely feasible for anything other than very
simple or highly abstract models. If more detail is required and the computational cost
prohibits exhaustive exploration, one needs to prioritize the use of the limited computa-
tional budget. The risk guided search proposed in this thesis performs such a prioritiza-
tion, since it focuses the search towards areas of the search space that exhibit high risk
scores and are, therefore, more likely to expose hazards. Although this approach per-
forms significantly better than random exploration, there is no guarantee that all hazards
are found, as the search is not exhaustive. Furthermore, the simulation can only con-
sider action sequences of finite length. For a given maximum sequence length, there may
be unsafe states which are not discovered because longer action sequences are required
to reach them. Referring back to Figure 3.6, one can see that it is difficult to achieve
both exhaustive exploration and a high level of detail given a limited computational bud-
get. The risk-guided search (Chapters 5-6) trades exhaustiveness for an increased level of
detail while the two-level approach (Chapter 7) strikes a balance between formal verifi-
cation and pure simulation-based testing. Nevertheless, one should be aware of the fact
that there is no single best hazard analysis method. The methods proposed in this thesis
should therefore be seen as an addition to existing methods, and not as a replacement.

Modeling assumptions with respect to the behavior of the testing agent, especially
with respect to the agent’s action- and and parameter space, can also lead to hazards be-
ing missed. Agents whose action space is too restrictive may be unable to expose certain
hazards. On the other hand, choosing an excessively large action space with few restric-
tions leads to an explosion of both search space and modeling effort. Striking a balance
between these two extremes is difficult, and general rules cannot be given as the problem
is use-case specific. Applying an agent-based testing approach therefore requires some
intuition as to which agent-related events or parameters might be particularly relevant and
which constraints should be placed on the agent’s behavior. Without any such intuition,
it can be difficult to craft effective agent-based testing scenarios. Further constraints can
be introduced by the modeling formalism itself. Extended Finite Automata (EFA), for
instance, only allow event sequences that can be described by regular languages. While
this limitation can be easily overcome by choosing a more powerful modeling formalism,
this would limit the possibilities for the two-level approach which relies on identification
of critical behaviors by formal methods.

Another source of limitations lies in the risk metric. The risk metric in this thesis
is a heuristic, that is, a pragmatic but simplified approach to quantifying risk. Risk is a
combination of the severity and probability of occurrence of undesired events [93], and
therefore inherently probabilistic. In contrast, the heuristic only takes into account the
current state and does not consider probabilities of future events. While the use of risk
metrics has been demonstrated to be effective in the experiments, there may be other
situations where the risk metric does not accurately represent the actual risk which is
associated to a given situation, and therefore misguides the search. Furthermore, if the
risk metric does not correspond well to the actual risk of a given situation, this can lead
to an undesired effect known as reward hacking. Reward hacking is a phenomenon where
the agent succeeds in maximizing its reward (i.e., maximizing the risk metric), but fails
to achieve the intended goal of the user (i.e., the discovery of unsafe states) due to a poor

109

8. Discussion and Outlook

correspondence between the reward and the user’s actual goal [173]. This issue has been
illustrated by the case study in Section 5.3.4.

Finally, deployment effort can also be a limiting factor. Although risk- and hazard
analyses are important to ensure safety of people and protect companies from liability
and long-term economic risk, they do not provide short-term economic benefits. In an
industrial environment characterized by time and cost pressures, novel hazard analysis
methods may be viewed with a certain degree of skepticism, particularly if they are very
time-consuming. Informal and semi-formal hazard analysis methods require none or rel-
atively simple qualitative models of the system. They are therefore quick and cheap to
deploy. In contrast, the techniques presented here are are more time consuming to deploy.
The additional deployment effort is only justified when systems are complex or highly
critical.

8.3. Future Work

Future work should target integration of more detailed digital human models. In
this thesis, simplified human models were used because the focus was on proof of con-
cepts rather than detail. For real-world application, this issue needs to be resolved. One
possible solution is the use of more detailed human body models with more degrees of
freedom along with motion capture data. Details regarding this concept are laid out in
[86, 51]. Furthermore, programming the human model needs to be as simple as possible
and should not require excessive training. To that end, a graphical user interface (GUI) is
currently being developed which allows users to conveniently define human movements
[51]. The GUI allows users to define sequences of atomic actions (such as walking, sitting
down/standing up, bending the upper body, or performing reaching motions) which can
be parameterized with respect to specific properties such as path or goal coordinates.

With a more detailed human model, it will also be possible to perform spatial reach-
ability analyses, that is, calculation of the volumes which are reachable by different human
body parts in a given layout of a robot cell. If the robot’s path and velocity are known, one
can allocate a potential a collision criticality to each point in that volume and thereby cre-
ate a spatial safety map. The map can help to determine potentially critical collision points
and required safety distances. However, this is only possible for static safeguards, because
the map only considers static reachability without dynamic aspects. Besides spatial reach-
ability, there are state-space reachability analyses, which calculate a set of possible states
that a system can reach given an initial state, a set of possible control actions, and a model
of the system’ dynamics. In contrast to spatial-only reachability analysis, state-space
reachability also considers dynamic effects. Furthermore, exhaustive state-space reacha-
bility analysis could potentially provide exhaustive proof of a system’s safety. This would
alleviate one of the major limitations of this work. In some special cases, reachability
analysis has already been applied for safety purposes [9, 148, 130]. However, reacha-
bility analysis techniques require analytical modeling of system dynamics which is often
intractable for complex 3D simulations or systems with black-box components. This is
the reason why these techniques were not used in this work. However, as the state of the
art progresses and the capabilities of these techniques evolve, they could be considered
for future work.

110

8.4. Transfer to other Application Domains

Due to the previously mentioned limitation that the analysis is usually non-exhaustive,
integration of coverage metrics (see Section 3.3.2) should also be considered. Apart from
commonly used metrics such as code coverage, future work may explore new coverage
criteria for agent-based testing. Another interesting addition could be a similarity metric

for agent behaviors, which quantifies the degree of similarity between two given agent be-
haviors. Such a similarity metric could be used to measure how far a given agent behavior
deviates from a nominal expected behavior which can offer insights as to how likely such
a behavior would be. A discussion of similarity metrics and their potential use can be
found in [87].

Postprocessing capabilities could be necessary in the future, especially in cases where
the analysis finds a large number of hazardous behaviors. In such cases, it is too time-
consuming for the user inspect all simulation traces that lead to unsafe states. Postprocess-
ing techniques such as clustering could help to organize the output into groups of similar
behaviors to aid the human user in identifying the underlying causes of the hazards. This
is especially important because even for a single underlying cause, there can be a large
number of different unsafe behaviors which trigger to the same hazardous situation (as
seen for instance in the experiments from Chapter 6).

Finally, reducing modeling efforts is an important area for future work, since high
deployment efforts can hinder practical adoption of the developed techniques. Possible
approaches could involve model libraries with preexisting components that can be tailored
to a specific use-case (e.g., a generic formal model of the human operator such as in [180]),
automatic generation of simulation models or digital twins [132, 24, 37], extraction of
formal models from control code [50], or learning of automata models from simulation
[170, 62].

8.4. Transfer to other Application Domains

This thesis has demonstrated the developed methods in the context of industrial HRC
applications. Industrial HRC was chosen as an application area for two reasons: First,
because there are well defined standards and regulations for industrial HRC systems and
second, because industrial applications are usually associated with relatively structured
environments and clearly defined tasks, which makes modeling easier. However, the pre-
sented agent-based testing approaches could also be transferred to other safety-critical
domains. Safety-critical human-robot interactions can also take place in other contexts
such as service, assistance, delivery or healthcare. While transferring the techniques to
these domains is possible in principle, it can present additional challenges. In indus-
trial human-robot collaboration, there is typically a structured environment and a clearly
de-fined task. This provides a relatively clear framework for the modeling of test scenar-
ios and agents. Furthermore, the robot will typically interact with a single operator, or
a known set of operators and the set of events that need to be considered when model-
ing the agents is limited. Other application areas may not provide such clearly defined
boundaries. Consider, for instance, a mobile robot outside the industrial domain, such
as a delivery or assistance robot. Such a robot will encounter unstructured environments
where it will encounter a much larger range of different of agents, events, and environ-
mental conditions than in an industrial setting. This makes it more difficult to define
meaningful test agents, action spaces, and simulation scenarios. Therefore, users who

111

8. Discussion and Outlook

want to apply simulation-based testing methods need to have a good initial understanding
about the agents and events that are particularly safety-relevant, so they can tailor their test
scenarios accordingly. Semi-formal hazard analysis methods like STPA could serve as a
first step towards identifying critical agents and events to take into account. On this basis,
it would be possible to build agent models and simulation-based test scenarios which can
the be used for a more detailed hazard analysis as well as for early verification of robot
control code.

8.5. Final Remarks

To conclude this thesis, some final remarks should be made. Regarding the practical
value of the work, a potential point of criticism could be that the developed techniques are
overly complex from a practical standpoint, and that current HRC applications are still
simple enough so that human reasoning is adequate for hazard analysis. However, it is
reasonable to assume that robots will continue to advance and achieve higher degrees of
autonomy, and that the complexity of HRC applications will increase. At some point, this
will likely necessitate the adoption of more sophisticated hazard analysis techniques, such
as the simulation-based approach proposed here.

Furthermore, readers should be aware that the implementation and experiments in
this thesis were focused on demonstration of conceptual aspects rather than on high per-
formance and detail. Due to the conceptual nature of the presented research, the presented
techniques are not yet ready for real-world use. On the other hand, one should note that
the simulation scenarios are not too far from real-world use cases, and that the simulations
were conducted on off-the-shelf personal computers for the consumer market. Given more
computational resources along with more elaborate simulation models, it is reasonable to
assume that scaling the developed techniques can achieve significant improvements be-
yond what was demonstrated in this thesis.

Finally, it should be noted that a major point of this work was to demonstrate how to
give computer-based hazard analysis methods some creativity and learning ability in the
finding of hazards. A hazard analysis aims to uncover potentially dangerous situations
at design time, i.e., before the system under test is put into operation or even imple-
mented. In order to do that, human analysts need the ability to foresee and anticipate how
a system might be used (or misused). Anticipating hazards requires a certain amount of
lateral thinking and creativity. In other words, an analyst must run through a wide variety
of "what if..." scenarios in a hazard analysis. Humans typically perform well at lateral
thinking, that is, at considering such "what if" questions. Computer-based hazard anal-
ysis methods, however, perform well at evaluating systems characterized by complexity
and large numbers of states and configurations, but they only have a limited capability to
create new and challenging testing conditions and uncover unforeseen hazards. By intro-
ducing a test agent that autonomously interacts with the SUT in simulation, has a learning
ability, and receives feedback in form of the risk metric, the risk-guided search aimed to
recreate - or at least mimic - some of the lateral thinking and creativity of human analysts
and coupling it with the computer’s ability to efficiently simulate a large number of test
cases. With current advances in machine learning, simulation- and agent-based testing
can become a powerful to uncover safety flaws and hazards in robotic systems, ultimately
contributing to the development of safer robots.

112

Bibliography

[1] AALTONEN, I., AND SALMI, T. Experiences and expectations of collaborative
robots in industry and academia: Barriers and development needs. Procedia Man-

ufacturing 38 (2019), 1151–1158.

[2] ABB AG. GoFa: Go far. Go Faster. Go further (product website). https:

//cobots.robotics.abb.com/en/robots/gofa/. Accessed: 2022-
10-10.

[3] ABB AG. YuMi - IRB 14000 (Product Website). https://new.abb.com/
products/robotics/collaborative-robots/irb-14000-yumi.
Accessed: 2022-10-10.

[4] ADRIAENSEN, A., PINTELON, L., COSTANTINO, F., DI GRAVIO, G., AND PA-
TRIARCA, R. An stpa safety analysis case study of a collaborative robot applica-
tion. IFAC-PapersOnLine 54, 1 (2021), 534–539.

[5] AGERER, M. S. Gesima product website (german language).
http://www.maschinen-sicherheit.net/07-seiten/7550-

software-risikobeurteilung.php. Accessed: 2019-11-11.

[6] ÅKESSON, K., FLORDAL, H., AND FABIAN, M. Exploiting modularity for syn-
thesis and verification of supervisors. IFAC Proceedings Volumes 35, 1 (2002),
175–180.

[7] ALAGI, H., ERGUN, S., DING, Y., HUCK, T. P., THOMAS, U., ZANGL, H., AND

HEIN, B. Evaluation of On-Robot Capacitive Proximity Sensors with Collision
Experiments for Human-Robot Collaboration (HRC). In 2022 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS) (2022).

[8] ALARIE, S., AUDET, C., GHERIBI, A. E., KOKKOLARAS, M., AND LE DIGA-
BEL, S. Two decades of blackbox optimization applications. EURO Journal on

Computational Optimization 9 (2021), 100011.

[9] ALTHOFF, M. Reachability analysis and its application to the safety assessment of

autonomous cars. PhD thesis, Technische Universität München, 2010.

[10] ALTHOFF, M., FREHSE, G., AND GIRARD, A. Set propagation techniques for
reachability analysis. Annual Review of Control, Robotics, and Autonomous Sys-

tems 4, 1 (2021).

[11] AMODEI, D., OLAH, C., STEINHARDT, J., CHRISTIANO, P., SCHULMAN, J.,
AND MANÉ, D. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565

(2016).

113

https://cobots.robotics.abb.com/en/robots/gofa/
https://cobots.robotics.abb.com/en/robots/gofa/
https://new.abb.com/products/robotics/collaborative-robots/irb-14000-yumi
https://new.abb.com/products/robotics/collaborative-robots/irb-14000-yumi
http://www.maschinen-sicherheit.net/07-seiten/7550-software-risikobeurteilung.php
http://www.maschinen-sicherheit.net/07-seiten/7550-software-risikobeurteilung.php

Bibliography

[12] ANTONELLI, D., AND STADNICKA, D. Predicting and preventing mistakes in
human-robot collaborative assembly. IFAC-PapersOnLine 52, 13 (2019), 743–748.

[13] ARAIZA-ILLAN, D., PIPE, A. G., AND EDER, K. Intelligent agent-based stimu-
lation for testing robotic software in human-robot interactions. In Proceedings of

the 3rd Workshop on Model-Driven Robot Software Engineering (2016), pp. 9–16.

[14] ARAIZA-ILLAN, D., WESTERN, D., PIPE, A., AND EDER, K. Coverage-driven
verification— an approach to verify code for robots that directly interact with hu-
mans. In Hardware and Software: Verification and Testing: 11th International

Haifa Verification Conference, HVC 2015, Haifa, Israel, November 17-19, 2015,

Proceedings 11 (2015), Springer, pp. 69–84.

[15] ARAIZA-ILLAN, D., WESTERN, D., PIPE, A., AND EDER, K. Model-based,
coverage-driven verification and validation of code for robots in human-robot in-
teractions. arXiv preprint arXiv:1511.01354 (2015).

[16] ARAIZA-ILLAN, D., WESTERN, D., PIPE, A. G., AND EDER, K. Systematic and
realistic testing in simulation of control code for robots in collaborative human-
robot interactions. In Annual Conference Towards Autonomous Robotic Systems

(2016), Springer.

[17] ASKARPOUR, M. Risk assessment in collaborative robotics. Proceedings of FMDS

(2016).

[18] ASKARPOUR, M., MANDRIOLI, D., ROSSI, M., AND VICENTINI, F. SAFER-
HRC: Safety analysis through formal verification in human-robot collaboration. In
35th International Conference SAFECOMP (2016).

[19] ASKARPOUR, M., MANDRIOLI, D., ROSSI, M., AND VICENTINI, F. A human-
in-the-loop perspective for safety assessment in robotic applications. In 11th Inter-

national Andrei P. Ershow Informatics Conference (2017).

[20] ASKARPOUR, M., MANDRIOLI, D., ROSSI, M., AND VICENTINI, F. Modeling
operator behaviour in the safety analysis of collaborative robotic applications. In
36th International Conference SAFECOMP (2017).

[21] ASKARPOUR, M., ROSSI, M., AND TIRYAKILER, O. Co-simulation of human-
robot collaboration: From temporal logic to 3D simulation. In 1st Workshop

on Agents and Robots for Reliable Engineered Autonomy, AREA 2020 (2020),
vol. 319, Open Publishing Association, pp. 1–8.

[22] AWAD, R., FECHTER, M., AND VAN HEERDEN, J. Integrated risk assessment and
safety consideration during design of HRC workplaces. In 22nd IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA) (2017).

[23] BABIKIAN, A. A. Automated generation of test scenario models for the system-
level safety assurance of autonomous vehicles. In Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Languages

and Systems: Companion Proceedings (2020).

[24] BARTH, M., AND FAY, A. Automated generation of simulation models for control
code tests. Control Engineering Practice 21, 2 (2013), 218–230.

114

Bibliography

[25] BAUER, A., WOLLHERR, D., AND BUSS, M. Human–robot collaboration: a
survey. International Journal of Humanoid Robotics 5, 01 (2008), 47–66.

[26] BAUER, W., BENDER, M., BRAUN, M., RALLY, P., AND SCHOLTZ, O.
Lightweight robots in manual assembly—best to start simply. Frauenhofer-Institut

für Arbeitswirtschaft und Organisation IAO, Stuttgart (2016).

[27] BDIWI, M. Intuitive Roboterprogrammierung und intelligente Werkzeuge. JOT

Journal für Oberflächentechnik 62, 8 (2022), 18–19.

[28] BEHRENS, R., AND ELKMANN, N. Study on meaningful and verified thresholds
for minimizing the consequences of human-robot collisions. In 2014 IEEE Inter-

national Conference on Robotics and Automation (ICRA) (2014), IEEE, pp. 3378–
3383.

[29] BEHRENS, R., AND PLISKE, G. Human-robot collaboration: Partial supplemen-
tary examination [of pain thresholds] for their suitability for inclusion in publica-
tions of the DGUV and standardization, 2020.

[30] BENSACI, C., ZENNIR, Y., AND POMORSKI, D. A comparative study of STPA
hierarchical structures in risk analysis: The case of a complex multi-robot mobile
system. In 2018 2nd European Conference on Electrical Engineering and Com-

puter Science (EECS) (2018), IEEE, pp. 400–405.

[31] BOBICK, A. F. Movement, activity and action: the role of knowledge in the per-
ception of motion. Philosophical Transactions of the Royal Society of London

(Biological Sciences) 352, 1358 (1997).

[32] BOBKA, P., GERMANN, T., HEYN, J. K., GERBERS, R., DIETRICH, F., AND

DRÖDER, K. Simulation platform to investigate safe operation of human-robot
collaboration systems. In 6th CIRP Conference on Assembly Technologies and

Systems (CATS) (2016), vol. 44, pp. 187 – 192.

[33] BOHRER, R., TAN, Y. K., MITSCH, S., SOGOKON, A., AND PLATZER, A. A
formal safety net for waypoint-following in ground robots. IEEE Robotics and

Automation Letters 4, 3 (2019), 2910–2917.

[34] BURDUK, A. Assessment of risk in a production system with the use of the fmea
analysis and linguistic variables. In International Conference on Hybrid Artificial

Intelligence Systems (2012), Springer, pp. 250–258.

[35] BÄCK, T. Evolutionary Algorithms in Theory and Practice: Evolution Strate-

gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, 02
1996.

[36] CACCIABUE, P. C. Guide to applying human factors methods: Human error and

accident management in safety-critical systems. Springer Science & Business Me-
dia, 2004.

[37] CAMPOS, J. G., LÓPEZ, J. S., QUIROGA, J. I. A., AND SEOANE, A. M. E. Au-
tomatic generation of digital twin industrial system from a high level specification.
Procedia Manufacturing 38 (2019), 1095–1102.

115

Bibliography

[38] CARROS, F., SCHWANINGER, I., PREUSSNER, A., RANDALL, D., WIECHING,
R., FITZPATRICK, G., AND WULF, V. Care workers making use of robots: Results
of a three-month study on human-robot interaction within a care home. In Proceed-

ings of the 2022 CHI Conference on Human Factors in Computing Systems (2022),
pp. 1–15.

[39] CASSANDRAS, C. G., AND LAFORTUNE, S. Introduction to discrete event sys-

tems. Springer, 2008.

[40] CHANCE, G., GHOBRIAL, A., LEMAIGNAN, S., PIPE, T., AND EDER, K. An
agency-directed approach to test generation for simulation-based autonomous ve-
hicle verification. arXiv preprint arXiv:1912.05434 (2019).

[41] CHEN, Y.-L., AND LIN, F. Modeling of discrete event systems using finite state
machines with parameters. In Proceedings of the 2000. IEEE International Con-

ference on Control Applications. Conference Proceedings (Cat. No. 00CH37162)

(2000), IEEE, pp. 941–946.

[42] CHOI, B. J., PARK, J., AND PARK, C. H. Formal verification for human-robot
interaction in medical environments. In Companion of the 2021 ACM/IEEE Inter-

national Conference on Human-Robot Interaction (2021), pp. 181–185.

[43] CLARKE, E. M., HENZINGER, T. A., VEITH, H., BLOEM, R., ET AL. Handbook

of model checking, vol. 10. Springer, 2018.

[44] CLIFTON, J., AND LABER, E. Q-learning: Theory and applications. Annual

Review of Statistics and Its Application 7 (2020), 279–301.

[45] CORDERO, C. A., CARBONE, G., CECCARELLI, M., ECHAVARRI, J., AND

MUNOZ, J. L. Experimental tests in human–robot collision evaluation and char-
acterization of a new safety index for robot operation. Mechanism and machine

theory 80 (2014), 184–199.

[46] CORSO, A., DU, P., DRIGGS-CAMPBELL, K., AND KOCHENDERFER, M. J.
Adaptive Stress Testing with Reward Augmentation for Autonomous Vehicle Vali-
dation. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) (2019),
IEEE.

[47] CORSO, A., LEE, R., AND KOCHENDERFER, M. J. Scalable autonomous vehicle
safety validation through dynamic programming and scene decomposition. arXiv

preprint arXiv:2004.06801 (2020).

[48] CORSO, A., MOSS, R., KOREN, M., LEE, R., AND KOCHENDERFER, M. A
survey of algorithms for black-box safety validation of cyber-physical systems.
Journal of Artificial Intelligence Research 72 (2021).

[49] CRONRATH, C., HUCK, T. P., LEDERMANN, C., KRÖGER, T., AND LENNART-
SON, B. Relevant safety falsification by automata constrained reinforcement learn-
ing. In 2022 IEEE International Conference on Automation Science and Engineer-

ing (CASE) (2022), IEEE.

116

Bibliography

[50] DA SILVA, L. D., DE ASSIS BARBOSA, L. P., GORGÔNIO, K., PERKUSICH, A.,
AND LIMA, A. M. N. On the automatic generation of timed automata models from
function block diagrams for safety instrumented systems. In 2008 34th Annual

Conference of IEEE Industrial Electronics (2008), IEEE, pp. 291–296.

[51] DAI, F., KLOSE, S., HUCK, T. P., STUHLENMILLER, F., AND LEDERMANN, C.
Human model in a simulation-assisted risk assessment tool for safe robot appli-
cations. In ISR Europe 2023; 55th International Symposium on Robotics (2023),
VDE.

[52] DE MELO, M. S. P., DA SILVA NETO, J. G., DA SILVA, P. J. L., TEIXEIRA, J. M.
X. N., AND TEICHRIEB, V. Analysis and comparison of robotics 3D simulators.
In 2019 21st Symposium on Virtual and Augmented Reality (SVR) (2019), IEEE,
pp. 242–251.

[53] DIANATFAR, M., HESHMATISAFA, S., LATOKARTANO, J., AND LANZ, M. Fea-
sibility analysis of safety training in human-robot collaboration scenario: Virtual
reality use case. In International Conference on Flexible Automation and Intelli-

gent Manufacturing (2023), Springer, pp. 246–256.

[54] DIMITROKALLI, A., VOSNIAKOS, G.-C., NATHANAEL, D., AND MATSAS, E.
On the assessment of human-robot collaboration in mechanical product assembly
by use of virtual reality. Procedia Manufacturing 51 (2020), 627–634.

[55] DING, W., CHEN, B., XU, M., AND ZHAO, D. Learning to collide: An adap-
tive safety-critical scenarios generating method. In 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (2020), IEEE.

[56] DITTRICH, F., AND WOERN, H. Robot activity adaptation for safe human-robot
collaboration based on probabilistic risk modeling. In 2016 18th Mediterranean

Electrotechnical Conference (MELECON) (2016), IEEE, pp. 1–6.

[57] DOCUFY GMBH. "DOCUFY Machine Safety" (product website). https://

www.docufy.de/en/products/docufy-machine-safety. Accessed:
2019-11-11.

[58] DU, P., AND DRIGGS-CAMPBELL, K. Adaptive failure search using critical states
from domain experts. In 2021 IEEE International Conference on Robotics and

Automation (ICRA) (2021), pp. 38–44.

[59] DUECK, G. New optimization heuristics: The great deluge algorithm and the
record-to-record travel. Journal of Computational physics 104, 1 (1993), 86–92.

[60] EDER, K. Gaining confidence in the trustworthiness of robotic and autonomous
systems. In Software Engineering for Robotics. Springer, 2021, pp. 139–164.

[61] EUROPEAN UNION. DIRECTIVE 2006/42/EC OF THE EUROPEAN PARLIA-
MENT AND OF THE COUNCIL of 17 May 2006 on machinery, and amending
Directive 95/16/EC (recast), 2006.

[62] FAROOQUI, A., FALKMAN, P., AND FABIAN, M. Towards automatic learning of
discrete-event models from simulations. In 2018 IEEE 14th International Confer-

ence on Automation Science and Engineering (CASE) (2018), IEEE, pp. 857–862.

117

https://www.docufy.de/en/products/docufy-machine-safety
https://www.docufy.de/en/products/docufy-machine-safety

Bibliography

[63] FERRER, B. R., AHMAD, B., LOBOV, A., VERA, D. A., LASTRA, J. L. M., AND

HARRISON, R. An approach for knowledge-driven product, process and resource
mappings for assembly automation. In 2015 IEEE International Conference on

Automation Science and Engineering (CASE) (2015), IEEE.

[64] FRANÇOIS-LAVET, V., HENDERSON, P., ISLAM, R., BELLEMARE, M. G.,
PINEAU, J., ET AL. An introduction to deep reinforcement learning. Foundations

and Trends in Machine Learning 11, 3-4 (2018), 219–354.

[65] FRAUNHOFER IFF. Cobot Planer - Design Safe HRC Applications Quickly and
Easily (Online Tool). https://www.cobotplaner.de/preambel, 2023.
Accessed: 2023-01-02.

[66] FULTON, N., MITSCH, S., QUESEL, J.-D., VÖLP, M., AND PLATZER, A. Key-
maera x: An axiomatic tactical theorem prover for hybrid systems. In Automated

Deduction-CADE-25: 25th International Conference on Automated Deduction,

Berlin, Germany, August 1-7, 2015, Proceedings 25 (2015), Springer, pp. 527–538.

[67] FURIA, C. A., MANDRIOLI, D., MORZENTI, A., AND ROSSI, M. Modeling time

in computing. Springer Science & Business Media, 2012.

[68] GAEDE, C., RANZ, F., HUMMEL, V., AND ECHELMEYER, W. A study on chal-
lenges in the implementation of human-robot collaboration. Journal of Engineer-

ing, Management and Operations Vol. I (2020), 29.

[69] GELLY, S., KOCSIS, L., SCHOENAUER, M., SEBAG, M., SILVER, D.,
SZEPESVÁRI, C., AND TEYTAUD, O. The grand challenge of computer go: Monte
carlo tree search and extensions. Communications of the ACM 55, 3 (2012), 106–
113.

[70] GOPINATH, V., AND JOHANSEN, K. Risk assessment process for collaborative
assembly–a job safety analysis approach. Procedia CIRP 44 (2016), 199–203.

[71] GROZA, B. Traffic models with adversarial vehicle behaviour. arXiv preprint

arXiv:1701.07666 (2017).

[72] GRZESKOWIAK, F., GONON, D., DUGAS, D., PAEZ-GRANADOS, D., CHUNG,
J. J., NIETO, J., SIEGWART, R., BILLARD, A., BABEL, M., AND PETTRÉ, J.
Crowd against the machine: A simulation-based benchmark tool to evaluate and
compare robot capabilities to navigate a human crowd. In 2021 IEEE International

Conference on Robotics and Automation (ICRA) (2021), IEEE, pp. 3879–3885.

[73] GTE INDUSTRIEELEKTRONIK GMBH. Product flyer "cobosafe" (online).
https://www.gte.de/material/325-2811-001_EN11_Flyer_

CoboSafe_CBSF-75-Basic.pdf. Accessed: 2022-07-06.

[74] GUIOCHET, J. Hazard analysis of human–robot interactions with HAZOP–UML.
Safety Science 84 (2016), 225 – 237.

[75] GUIOCHET, J., DO HOANG, Q. A., KAANICHE, M., AND POWELL, D. Model-
based safety analysis of human-robot interactions: The MIRAS walking assistance
robot. In 2013 IEEE 13th International Conference on Rehabilitation Robotics

(ICORR) (2013), IEEE.

118

https://www.cobotplaner.de/preambel
https://www.gte.de/material/325-2811-001_EN11_Flyer_CoboSafe_CBSF-75-Basic.pdf
https://www.gte.de/material/325-2811-001_EN11_Flyer_CoboSafe_CBSF-75-Basic.pdf

Bibliography

[76] HADDADIN, S., ALBU-SCHÄFFER, A., FROMMBERGER, M., AND HIRZINGER,
G. The role of the robot mass and velocity in physical human-robot interaction-Part
II: Constrained blunt impacts. In 2008 IEEE International Conference on Robotics

and Automation (2008), IEEE, pp. 1331–1338.

[77] HADDADIN, S., ALBU-SCHÄFFER, A., AND HIRZINGER, G. Safety evaluation
of physical human-robot interaction via crash-testing. In Robotics: Science and

systems (2007), vol. 3, Citeseer, pp. 217–224.

[78] HADDADIN, S., ALBU-SCHÄFFER, A., AND HIRZINGER, G. The role of
the robot mass and velocity in physical human-robot interaction-Part I: Non-
constrained blunt impacts. In 2008 IEEE International Conference on Robotics

and Automation (2008), IEEE, pp. 1331–1338.

[79] HADDADIN, S., ALBU-SCHÄFFER, A., AND HIRZINGER, G. Requirements for
safe robots: Measurements, analysis and new insights. The International Journal

of Robotics Research 28, 11-12 (2009), 1507–1527.

[80] HANNA, A., LARSSON, S., GÖTVALL, P.-L., AND BENGTSSON, K. Deliberative
safety for industrial intelligent human–robot collaboration: Regulatory challenges
and solutions for taking the next step towards industry 4.0. Robotics and Computer-

Integrated Manufacturing 78 (2022), 102386.

[81] HAWKINS, H., AND ALEXANDER, R. Situation coverage testing for a simulated
autonomous car–an initial case study. arXiv preprint arXiv:1911.06501 (2019).

[82] HOLLNAGEL, E. The phenotype of erroneous actions: Implications for HCI de-
sign. Human-computer interaction and complex systems (1991), 73–121.

[83] HOLZMANN, G. J. The model checker SPIN. IEEE Transactions on Software

Engineering 23, 5, 279–295.

[84] HORNUNG, L., AND WURLL, C. Human-robot collaboration: a survey on the
state of the art focusing on risk assessment. In Berichte aus der Robotik - Robotix-

Academy Conference for Industrial Robotics (RACIR) 2021 (Sep. 2021), pp. 10–17.

[85] HUCK, T. P., KAISER, M., CRONRATH, C., LENNARTSON, B., KRÖGER, T.,
AND ASFOUR, T. Reinforcement learning for safety testing: Lessons from a mo-
bile robot case study. arXiv preprint arXiv:2311.02907 (2023).

[86] HUCK, T. P., LEDERMANN, C., KLOSE, S., DAI, F., MATTHIAS, B., AND

BYNER, C. Development of a simulation-based risk assessment tool for HRC ap-
plications. In ISR Europe 2022; 54th International Symposium on Robotics (2022),
VDE, pp. 1–8.

[87] HUCK, T. P., LEDERMANN, C., AND KRÖGER, T. Testing robot system safety
by creating hazardous human worker behavior in simulation. IEEE Robotics and

Automation Letters 7, 2 (2021), 770–777.

[88] HUCK, T. P., LEDERMANN, C., AND KRÖGER, T. Virtual adversarial humans
finding hazards in robot workplaces. In 2021 IEEE International Conference on

Robotics and Automation (ICRA) (2021), IEEE.

119

Bibliography

[89] HUCK, T. P., MÜNCH, N., HORNUNG, L., LEDERMANN, C., AND WURLL, C.
Risk assessment tools for industrial human-robot collaboration: Novel approaches
and practical needs. Safety Science 141 (2021).

[90] HUCK, T. P., SELVARAJ, Y., CRONRATH, C., LEDERMANN, C., FABIAN, M.,
LENNARTSON, B., AND KRÖGER, T. Hazard analysis of collaborative automation
systems: A two-layer approach based on supervisory control and simulation. In
2023 IEEE International Conference on Robotics and Automation (ICRA) (2023),
IEEE, pp. 10560–10566.

[91] IBF GMBH. Safexpert Software for CE Marking (product website). https:

//www.ibf.at/en/ce-software-safexpert, 2019. Accessed: 2019-
11-11.

[92] INKULU, A. K., BAHUBALENDRUNI, M. R., AND DARA, A. Challenges and
opportunities in human robot collaboration context of Industry 4.0 - A state of the
art review. Industrial Robot: the international journal of robotics research and

application 49, 2 (2022), 226–239.

[93] INTERNATIONAL ELECTROTECHNICAL COMMISSION. IEC 61508-1:2010-1
Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 1: General requirements, 2006.

[94] INTERNATIONAL ELECTROTECHNICAL COMMISSION. IEC 61882:2016: Hazard
and operability studies (HAZOP studies) - application guide, 2016.

[95] INTERNATIONAL FEDERATION OF ROBOTICS (IFR). World robotics 2022 report,
2022.

[96] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 12100:2010
Safety of machinery - General principles for design - Risk assessment and risk
reduction, 2010.

[97] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 13855:2010
Safety of machinery - Positioning of safeguards with respect to the approach speeds
of parts of the human body, 2010.

[98] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 10218-2:2011
Robots and robotic devices - Safety requirements for industrial robots - Part 2:
Robot systems and integration, 2011.

[99] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/TR 14121-
2:2012 Safety of machinery — Risk assessment — Part 2: Practical guidance and
examples of methods, 2012.

[100] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 13842:2014
Robots and robotic devices - Safety requirements for personal care robots, 2014.

[101] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 13849-1:2015:
Safety of machinery - Safety-related parts of control systems - Part 1: General
principles for design, 2015.

120

https://www.ibf.at/en/ce-software-safexpert
https://www.ibf.at/en/ce-software-safexpert

Bibliography

[102] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO TS 15066:2016
Robots and robotic devices - Collaborative robots, 2016.

[103] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 13854:2017
Safety of machinery - Minimum gaps to avoid crushing of parts of the human body,
2017.

[104] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 26262-3:2018:
Road vehicles — Functional safety - Part 3: Concept phase, 2018.

[105] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 13857:2019
Safety of machinery - Safety distances to prevent hazard zones being reached by
upper and lower limbs, 2019.

[106] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/PAS
21448:2019-01: Road vehicles - Safety of the intended functionality, 2019.

[107] KAPINSKI, J., DESHMUKH, J. V., JIN, X., ITO, H., AND BUTTS, K. Simulation-
based approaches for verification of embedded control systems: An overview of
traditional and advanced modeling, testing, and verification techniques. IEEE Con-

trol Systems Magazine 36, 6 (2016), 45–64.

[108] KARUNAKARAN, D., WORRALL, S., AND NEBOT, E. Efficient falsification ap-
proach for autonomous vehicle validation using a parameter optimisation technique
based on reinforcement learning. arXiv preprint arXiv:2011.07699 (2020).

[109] KLISCHAT, M., AND ALTHOFF, M. Generating critical test scenarios for auto-
mated vehicles with evolutionary algorithms. In 2019 IEEE Intelligent Vehicles

Symposium (IV) (2019), IEEE.

[110] KOREN, M., ALSAIF, S., LEE, R., AND KOCHENDERFER, M. J. Adaptive stress
testing for autonomous vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV)

(2018), IEEE, pp. 1–7.

[111] KOREN, M., CORSO, A., AND KOCHENDERFER, M. J. The adaptive stress testing
formulation. arXiv preprint arXiv:2004.04293 (2020).

[112] KOUSKOULAS, Y., RENSHAW, D., PLATZER, A., AND KAZANZIDES, P. Certi-
fying the safe design of a virtual fixture control algorithm for a surgical robot. In
Proceedings of the 16th international conference on Hybrid systems: computation

and control (2013), pp. 263–272.

[113] KOVINCIC, N., GATTRINGER, H., MÜLLER, A., AND BRANDSTÖTTER, M. A
boosted decision tree approach for a safe human-robot collaboration in quasi-static
impact situations. In International Conference on Robotics in Alpe-Adria Danube

Region (2020), Springer, pp. 235–244.

[114] KUKA AG. LBR iiwa (Product Website). https://www.kuka.com/en-

de/products/robot-systems/industrial-robots/lbr-iiwa.
Accessed: 2022-10-10.

[115] KUKA AG. Sensitives Fügen von Kegelrädern im Mensch-Roboter-Kollaboration
(MRK) Betrieb (Promotional Video). https://www.youtube.com/watch?
v=02TzqIvWiso&t=37s. Accessed: 2020-06-01.

121

https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.youtube.com/watch?v=02TzqIvWiso&t=37s
https://www.youtube.com/watch?v=02TzqIvWiso&t=37s

Bibliography

[116] KULIĆ, D., AND CROFT, E. A. Real-time safety for human–robot interaction.
Robotics and Autonomous Systems 54, 1 (2006), 1–12.

[117] LASOTA, P. A., FONG, T., SHAH, J. A., ET AL. A survey of methods for safe

human-robot interaction. Now Publishers, 2017.

[118] LEE, J., JEON, W., KIM, G.-H., AND KIM, K.-E. Monte-carlo tree search in con-
tinuous action spaces with value gradients. In Proceedings of the AAAI conference

on artificial intelligence (2020), vol. 34, pp. 4561–4568.

[119] LEE, R., KOCHENDERFER, M. J., MENGSHOEL, O. J., BRAT, G. P., AND

OWEN, M. P. Adaptive stress testing of airborne collision avoidance systems. In
2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC) (2015), IEEE.

[120] LEE, R., MENGSHOEL, O. J., SAKSENA, A., GARDNER, R. W., GENIN, D.,
SILBERMANN, J., OWEN, M., AND KOCHENDERFER, M. J. Adaptive stress test-
ing: Finding likely failure events with reinforcement learning. Journal of Artificial

Intelligence Research 69 (2020).

[121] LEE, S.-D., KIM, B.-S., AND SONG, J.-B. Human–robot collision model with
effective mass and manipulability for design of a spatial manipulator. Advanced

Robotics 27, 3 (2013), 189–198.

[122] LENNARTSON, B., FABIAN, M., AND AKESSON, K. Introduction to Discrete
Event Systems (Lecture Notes with contributions from Martin Fabian and Knut
Åkesson). Department of Signals and Systems, Chalmers University of Technol-
ogy, 2009.

[123] LESAGE, B. M. J.-R., AND ALEXANDER, R. SASSI: Safety Analysis using
Simulation-based Situation Coverage for Cobot Systems. In Proceedings of Safe-

Comp 2021 (2021), York.

[124] LESTINGI, L., ASKARPOUR, M., BERSANI, M. M., AND ROSSI, M. Sta-
tistical model checking of human-robot interaction scenarios. arXiv preprint

arXiv:2007.11738 (2020).

[125] LEVESON, N. Engineering a safer world: Systems thinking applied to safety. MIT
Press, 2011.

[126] LIU, Y., HABIBNEZHAD, M., JEBELLI, H., AND MONGA, V. Worker-in-the-
loop cyber-physical system for safe human-robot collaboration in construction. In
Computing in Civil Engineering 2021. 2022, pp. 1075–1083.

[127] LOYOLA-GONZALEZ, O. Black-box vs. white-box: Understanding their advan-
tages and weaknesses from a practical point of view. IEEE access 7 (2019),
154096–154113.

[128] MAJUMDAR, A., AND PAVONE, M. How should a robot assess risk? Towards an
axiomatic theory of risk in robotics. In Robotics Research. Springer, 2020, pp. 75–
84.

[129] MALIK, R., AKESSON, K., FLORDAL, H., AND FABIAN, M. Supremica-An effi-
cient tool for large-scale discrete event systems. IFAC-PapersOnLine 50, 1 (2017),
5794 – 5799. 20th IFAC World Congress.

122

Bibliography

[130] MANZINGER, S., PEK, C., AND ALTHOFF, M. Using reachable sets for trajectory
planning of automated vehicles. IEEE Transactions on Intelligent Vehicles 6, 2
(2020), 232–248.

[131] MARTIN-GUILLEREZ, D., GUIOCHET, J., POWELL, D., AND ZANON, C. A
UML-based method for risk analysis of human-robot interactions. In Proceedings

of the 2nd International Workshop on Software Engineering for Resilient Systems

(2010), pp. 32–41.

[132] MARTÍNEZ, G. S., SIERLA, S., KARHELA, T., AND VYATKIN, V. Automatic
generation of a simulation-based digital twin of an industrial process plant. In
IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society

(2018), IEEE, pp. 3084–3089.

[133] MARVEL, J. A., FALCO, J., AND MARSTIO, I. Characterizing task-based human–
robot collaboration safety in manufacturing. IEEE Transactions on Systems, Man,

and Cybernetics: Systems 45, 2 (2014).

[134] MATSAS, E., VOSNIAKOS, G.-C., AND BATRAS, D. Prototyping proactive and
adaptive techniques for human-robot collaboration in manufacturing using virtual
reality. Robotics and Computer-Integrated Manufacturing 50 (2018), 168–180.

[135] MATTHIAS, B., OBERER-TREITZ, S., STAAB, H., SCHULLER, E., AND PELD-
SCHUS, S. Injury risk quantification for industrial robots in collaborative opera-
tion with humans. In ISR 2010 (41st International Symposium on Robotics) and

ROBOTIK 2010 (6th German Conference on Robotics) (2010), VDE, pp. 1–6.

[136] MAYRING, P. Qualitative content analysis. A companion to qualitative research 1,
2004 (2004), 159–176.

[137] METROLOGY NEWS. Making Safe Robotics More Productive. https://

metrology.news/making-safe-robotics-more-productive. Ac-
cessed: 2021-11-19.

[138] METZNER, M., UTSCH, D., WALTER, M., HOFSTETTER, C., RAMER, C.,
BLANK, A., AND FRANKE, J. A system for human-in-the-loop simulation of
industrial collaborative robot applications. In 2020 IEEE 16th International Con-

ference on Automation Science and Engineering (CASE) (2020), IEEE, pp. 1520–
1525.

[139] MITKA, E., AND MOUROUTSOS, S. G. Applying the stamp system safety engi-
neering methodology to the design of a domestic robot. International Journal of

Applied Systemic Studies 6, 1 (2015), 81–102.

[140] MITSCH, S., GHORBAL, K., AND PLATZER, A. On provably safe obstacle avoid-
ance for autonomous robotic ground vehicles. In Robotics: Science and Systems

IX, Technische Universität Berlin, Berlin, Germany, June 24-June 28, 2013 (2013).

[141] MOHAJERANI, S., MALIK, R., AND FABIAN, M. A framework for compositional
synthesis of modular nonblocking supervisors. IEEE Transactions on Automatic

Control 59, 1 (2013), 150–162.

123

https://metrology.news/making-safe-robotics-more-productive
https://metrology.news/making-safe-robotics-more-productive

Bibliography

[142] MYERS, G. J., SANDLER, C., AND BADGETT, T. The art of software testing.
John Wiley & Sons, 2011.

[143] NAJMAEI, N., LELE, S., KERMANI, M., AND SOBOT, R. Human factors for robot
safety assessment. In 2010 IEEE/ASME International Conference on Advanced

Intelligent Mechatronics (2010), IEEE, pp. 539–544.

[144] NÖRDINGER, S. Den Mensch im Blick: Wie Sensoren Cobots ab-
sichern. https://www.produktion.de/technik/den-mensch-im-

blick-wie-sensoren-cobots-absichern-290.html. Accessed:
2019-05-22.

[145] NURCHALIFAH, D., BLUMENTHAL, S., LO IACONO, L., AND

HOCHGESCHWENDER, N. Analysing the safety and security of a UV-C
disinfection robot. In 2023 IEEE International Conference on Robotics and

Automation (ICRA) (2023), IEEE.

[146] OBERER-TREITZ, S. Abschätzung der Kollisionsfolgen von Robotern zur Bewer-

tung des sicheren Einsatzes in der Mensch-Roboter-Kooperation. Stuttgart: Fraun-
hofer Verlag, 2018.

[147] PANDEY, D., AND PANDEY, P. Approximate Q-learning: An introduction. In
2010 second international conference on machine learning and computing (2010),
IEEE, pp. 317–320.

[148] PEREIRA, A., AND ALTHOFF, M. Overapproximative human arm occupancy pre-
diction for collision avoidance. IEEE Transactions on Automation Science and

Engineering 15, 2 (2017), 818–831.

[149] PILZ GMBH & CO. KG. The first safe camera system SafetyEYE opens up new
horizons for safety & security. https://www.automate.org/news/the-
first-safe-camera-system-safetyeye-opens-up-new-

horizons-for-safety-and-security. Accessed: 2022-07-06.

[150] PILZ GMBH & CO. KG:. Human-robot collaboration 4.0: Standard-compliant
HRC with the collision measurement set PRMS. https://www.pilz.com/

en-DE/company/news/articles/200588. Accessed: 2021-11-19.

[151] PILZ GMBH & CO. KG:. Overview of basic standards. https:

//www.pilz.com/en-DE/support/knowhow/law-standards-

norms/iso-standards. Accessed: 2021-11-19.

[152] PLATBROOD, F., AND GORNEMANN, O. Safe robotics - Safety in collaborative

robot systems. SICK AG White Paper, 2017.

[153] PLATZER, A. Logical foundations of cyber-physical systems. Springer, 2018.

[154] POWELL, M. J. Direct search algorithms for optimization calculations. Acta nu-

merica 7 (1998), 287–336.

[155] PRADELLA, M. A user’s guide to Zot. arXiv preprint arXiv:0912.5014 (2009).

124

https://www.produktion.de/technik/den-mensch-im-blick-wie-sensoren-cobots-absichern-290.html
https://www.produktion.de/technik/den-mensch-im-blick-wie-sensoren-cobots-absichern-290.html
https://www.automate.org/news/the-first-safe-camera-system-safetyeye-opens-up-new-horizons-for-safety-and-security
https://www.automate.org/news/the-first-safe-camera-system-safetyeye-opens-up-new-horizons-for-safety-and-security
https://www.automate.org/news/the-first-safe-camera-system-safetyeye-opens-up-new-horizons-for-safety-and-security
https://www.pilz.com/en-DE/company/news/articles/200588
https://www.pilz.com/en-DE/company/news/articles/200588
https://www.pilz.com/en-DE/support/knowhow/law-standards-norms/iso-standards
https://www.pilz.com/en-DE/support/knowhow/law-standards-norms/iso-standards
https://www.pilz.com/en-DE/support/knowhow/law-standards-norms/iso-standards

Bibliography

[156] PROETZSCH, M., BERNS, K., SCHUELE, T., AND SCHNEIDER, K. Formal ver-
ification of safety behaviours of the outdoor robot RAVON. In ICINCO-RA (1)

(2007).

[157] RAMADGE, P. J., AND WONHAM, W. M. The control of discrete event systems.
Proceedings of the IEEE 77, 1 (1989), 81–98.

[158] RETHINK ROBOTICS GMBH. Sawyer Black Edition (Product Website). https:
//www.rethinkrobotics.com/sawyer. Accessed: 2022-10-10.

[159] ROBLA-GÓMEZ, S., BECERRA, V. M., LLATA, J. R., GONZALEZ-SARABIA,
E., TORRE-FERRERO, C., AND PEREZ-ORIA, J. Working together: A review on
safe human-robot collaboration in industrial environments. IEEE Access 5 (2017),
26754–26773.

[160] ROHMER, E., SINGH, S. P. N., AND FREESE, M. CoppeliaSim (formerly V-REP):
a versatile and scalable robot simulation framework. In Proc. of The International

Conference on Intelligent Robots and Systems (IROS) (2013).

[161] RÜCKERT, P., WOHLFROMM, L., AND TRACHT, K. Implementation of virtual
reality systems for simulation of human-robot collaboration. Procedia Manufac-

turing 19 (2018), 164–170.

[162] RUDER, S. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747 (2016).

[163] RUTENBAR, R. Simulated annealing algorithms: an overview. IEEE Circuits and

Devices Magazine 5, 1 (1989), 19–26.

[164] SANDERUD, A., THOMESSEN, T., OSUMI, H., AND NIITSUMA, M. A proactive
strategy for safe human-robot collaboration based on a simplified risk analysis. In
Modeling, Identification and Control, Vol. 36, No. 1, 2015, (2015), pp. 11–21.

[165] SCHLOSSER, P., AND LEDERMANN, C. Using diverse neural networks for safer
human pose estimation: Towards making neural networks know when they don’t
know. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS) (2020), IEEE, pp. 10305–10312.

[166] SCHLOSSER, P., AND LEDERMANN, C. Achieving hard real-time capability for
3d human pose estimation systems. In 2021 IEEE International Conference on

Robotics and Automation (ICRA) (2021), IEEE, pp. 3772–3778.

[167] SCHLOTZHAUER, A., STOTZ, T., AWAD, R., AND KRAUS, W. Virtual validation
of power and force limiting setups in human-robot-collaboration. Procedia CIRP

107 (2022), 845–850.

[168] SCHRÖDER, J. Basics of stochastic automata theory. Modelling, State Observation

and Diagnosis of Quantised Systems (2003), 13–35.

[169] SCHULMAN, J., WOLSKI, F., DHARIWAL, P., RADFORD, A., AND KLIMOV, O.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

125

https://www.rethinkrobotics.com/sawyer
https://www.rethinkrobotics.com/sawyer

Bibliography

[170] SELVARAJ, Y., FAROOQUI, A., PANAHANDEH, G., AHRENDT, W., AND

FABIAN, M. Automatically learning formal models from autonomous driving soft-
ware. Electronics 11, 4 (2022), 643.

[171] SHIN, H., CHOI, J., CHOI, J., AND RHIM, S. Physical safety analysis of robot
considering impactor shape. In 2017 2nd International Conference on Robotics

and Automation Engineering (ICRAE) (2017), IEEE, pp. 1–5.

[172] SICK AG. safeVisionary2Safe 3D environment perception opens up new di-
mensions (Product Website. https://www.sick.com/de/en/catalog/

produkte/safety/sichere-kamerasysteme/safevisionary2/

c/g568562. Accessed: 2023-11-06.

[173] SKALSE, J., HOWE, N. H., KRASHENINNIKOV, D., AND KRUEGER, D. Defining
and characterizing reward hacking. arXiv preprint arXiv:2209.13085 (2022).

[174] SKOLDSTAM, M., AKESSON, K., AND FABIAN, M. Modeling of discrete event
systems using finite automata with variables. In 2007 46th IEEE Conference on

Decision and Control (2007), pp. 3387–3392.

[175] SONG, C. S., AND KIM, Y.-K. The role of the human-robot interaction in con-
sumers’ acceptance of humanoid retail service robots. Journal of Business Re-

search 146 (2022), 489–503.

[176] STANTON, N. A. Hierarchical task analysis: Developments, applications, and
extensions. Applied ergonomics 37, 1 (2006), 55–79.

[177] SVARNY, P., ROZLIVEK, J., RUSTLER, L., AND HOFFMANN, M. 3D collision-
force-map for safe human-robot collaboration. In 2021 IEEE International Con-

ference on Robotics and Automation (ICRA) (2021), IEEE, pp. 3829–3835.

[178] UNIVERSAL ROBOTS A/S. Cobots by Universal Robots (Product Website).
https://www.universal-robots.com/products/. Accessed: 2023-
07-26.

[179] UTHER, W. Markov Decision Processes. In: Encyclopedia of Machine Learning.
Springer US, Boston, MA, 2010, pp. 642–646.

[180] VICENTINI, F., ASKARPOUR, M., ROSSI, M. G., AND MANDRIOLI, D. Safety
assessment of collaborative robotics through automated formal verification. IEEE

Transactions on Robotics 36, 1 (2019).

[181] WANG, D., TAN, D., AND LIU, L. Particle swarm optimization algorithm: an
overview. Soft computing 22 (2018), 387–408.

[182] WEBSTER, M., DIXON, C., FISHER, M., SALEM, M., SAUNDERS, J., KOAY, K.,
AND DAUTENHAHN, K. Formal verification of an autonomous personal robotic
assistant. Formal Verification and Modeling in Human-Machine Systems (2014).

[183] WEBSTER, M., WESTERN, D., ARAIZA-ILLAN, D., DIXON, C., EDER, K.,
FISHER, M., AND PIPE, A. G. A corroborative approach to verification and vali-
dation of human–robot teams. The International Journal of Robotics Research 39,
1 (2020), 73–99.

126

https://www.sick.com/de/en/catalog/produkte/safety/sichere-kamerasysteme/safevisionary2/c/g568562
https://www.sick.com/de/en/catalog/produkte/safety/sichere-kamerasysteme/safevisionary2/c/g568562
https://www.sick.com/de/en/catalog/produkte/safety/sichere-kamerasysteme/safevisionary2/c/g568562
https://www.universal-robots.com/products/

Bibliography

[184] WEKA MEDIA GMBH & CO. KG. Weka manager product website. https:
//www.weka.de/ps/weka-manager-ce-english. Accessed: 2019-11-
12.

[185] WHALEN, M. W., RAJAN, A., HEIMDAHL, M. P., AND MILLER, S. P. Coverage
metrics for requirements-based testing. In Proceedings of the 2006 international

symposium on Software testing and analysis (2006), pp. 25–36.

[186] WIGAND, KRÜGER, WREDE, STUKE, AND EDLER. Report on the Application

of the COVR Toolkit and its Protocols for the Certification of Cooperative Robot

Workstations. University of Bielefeld, 2020.

[187] WINANDS, M. H. M. Monte-carlo tree search. Encyclopedia of Computer Graph-
ics and Games. Springer International Publishing, 2015.

[188] WONHAM, W. M., AND RAMADGE, P. J. On the supremal controllable sub-
language of a given language. SIAM Journal on Control and Optimization 25, 3
(1987), 637–659.

[189] YEE, T., LISỲ, V., BOWLING, M. H., AND KAMBHAMPATI, S. Monte carlo tree
search in continuous action spaces with execution uncertainty. In IJCAI (2016),
pp. 690–697.

127

https://www.weka.de/ps/weka-manager-ce-english
https://www.weka.de/ps/weka-manager-ce-english

9. Appendix

A. Experiment Details

This section contains some additional details about the experiments which have been
omitted from the main body of the thesis for sake of brevity.

A.1. Experiments from Chapter 5

The following descriptions and images are taken from [88].

The agent’s action space in the first experiment series is defined as follows:

A = AWalking × AUpperBody (9.1)

with AWalking and AUpperBody being defined as follows:

AWalking = {(stop), (step forward), (step left 45°),

(step left 90°), (step right 45°), (step right 90°)}
(9.2)

AUpperBody = {(upright), (bend forward), (bend left),

(bend right), (bend forward and right),

(bend forward and left)}

(9.3)

The reward for the MCTS algorithm is defined as follows:

R =

RE if spec(s) = false

− 1
rmax

if spec(s) = true ∧ k = n

0 otherwise

(9.4)

Where k denotes the current step of the action sequence and n the maximum action se-
quence length. RE is a nonnegative constant to reward the discovery of unsafe states and
−1/rmax is a negative penalty which is given if the action sequence reaches its maximum
length (i.e., k = n) without discovering an unsafe state. The value rmax is the maximum
risk metric value that has occured over the course of the action sequence. The risk metric
is defined similarly to to Eq. (5.3), although slight alterations have been made due to
implementation-specific details (see [88]). Note that the lower rmax the more penalty is
incurred. This encourages the algorithm to find unsafe behaviors.

Details about the scenarios are given below.

129

9. Appendix

Figure A.1.: The human worker model walks around the safety mat and reaches around
the fence, thus avoiding the safety measures and causing collisions.

Scenario 5-A

Task and layout: The cell is seen in Figure A.1. The robot performs a pick-and-place
task in a cell which is encased by fences on three sides. The front of the cell has no
fencing to allows access for human workers.

Safety measures: To avoid collisions, a sensor mat in front of the cell (yellow area in
Figure A.1). The sensor mat stops the robot when the worker steps on it.

Safety flaw/hazard: The safety flaw in this scenario is that the mat only covers the front
of the cell, but not the right and left side. This allows for potential collisions when the
human walks around the mat and reaches around the fence into the cell. Note that a
collision is possible both on the left side and on the right side of the cell. However,
only on the left side, the cartesian velocity of the robot is high enough to cause a critical
collision. The collision on the right side represents only a local optimum w.r.t. the risk
metric (i.e., a collision is possible, but the risk metric is not sufficiently high for this state
to be counted as an unsafe state).

Scenario 5-B

Task and layout: Two KUKA iiwa robots are working at an assembly line besides each
other. Each robot is located between a table and a conveyor, performing pick-and-place
movements to grab objects from the table and put them onto the conveyor.

Safety measures: Each of the two robots monitors the floor area for approaching humans
with a laser scanner. The laser scanner fields of the two robots are indicated in Figure A.2
(red for the left robot and yellow for the right robot). Entering a field triggers a safety stop
of the respective robot.

Safety flaw/hazard: The laser scanner fields are not sufficiently large to detect the human
approaching. In particular, the fields, the fields should overlap in the middle, which is not
the case. Without this overlap, it is possible for the human to provoke a collision with the
robot. As seen in Figure A.2, the human enters through the right laser scanner field and
then turns towards the left robot. Due to the missing overlap of the detection areas, the

130

A. Experiment Details

Figure A.2.: The agent enters through the right laser scanner field (yellow area), but then
turns to and reaches for the left robot, which is still running, since the left
scanner field (red area) is not triggered.

left robot is within human reach before the left laser scanner field can trigger a safety stop
(or vice versa, from left to right).

Scenario 5-C

Figure A.3.: The agent reaches through the feed opening into the robot’s path, provoking
a collision.

Task and layout: A Universal Robots UR10 robot operates on a table with a conveyor
belt. Both robot and conveyor belt are behind a plexiglass safety barrier. The safety barrier
has a feed opening through which human workers can put workpieces on a conveyor belt.

Safety measures: The safety barrier is the main safety measure. It is intended to avoid
human-robot collisions. No further safety measures are in place.

Safety flaw/hazard: The safety distance between the feed opening and the robot is in-
sufficient, allowing the human worker to reach into the robot’s path, which results in a
critical collision that exceeds collision force limits (see Figure A.3).

131

9. Appendix

Figure A.4.: The agent leans forward into the robot’s path, resulting in a critical collision
with the head.

Scenario 5-D

Task and layout: A Universal Robots UR10 robot performs a pick-and-place task on a
table. The table is closed off on two sides by a safety fence. The remaining two sides are
open.

Safety measures: A laser scanner monitors the open sides of the robot cell. A reduction
of the robot velocity is triggered when a human approaches. With the reduction, collision
forces are sufficiently reduced so that collisions with arms and upper body are uncritical.

Safety flaw/hazard: Due to the height of the table, the robot can collide not only with
arms and upper body, but also with the head (compare Section 2.1.4). Due to more re-
strictive collision force limits for the head, a head collision exceeds the threshold despite
the reduced robot velocity (see Figure A.4).

Scenario 5-E

Task and layout: A Universal Robots UR10 works in an enclosed cell which is accessible
through a light curtain.

Safety measures: The light curtain is intended to trigger a safety stop of the robot as soon
as the agent enters the cell.

Safety flaw/hazard: The combined response time of the laser scanner and the robot
stopping time (i.e., the total time that passes from the entering of the worker into the cell
until the robot has reached a safely low velocity) is too high. If the worker enters while
the robot passes a certain point on its path, the elbow joint of the robot protrudes out far
enough out so that the worker can reach it before the robot has slowed down sufficiently,
resulting in an unsafe state (see Figure A.5).

132

A. Experiment Details

Figure A.5.: Due to a prolonged stopping time, the agent can reach the robot’s elbow
joint before the robot has slowed down sufficiently to avoid critical collision
forces.

Figure A.6.: The agent reaches for the robot after it has picked up the workpiece, but
before it has retreated behind the light curtain

Scenario 5-F

Task and layout: A KUKA iiwa robot is placed in a workcell and separated from the
agent by a light curtain. To grasp a workpiece, the robot temporarily moves outside the
workcell and then takes the workpiece inside.

Safety measures: Inside the cell, where protection by the light curtain is given, the robot
works with full velocity. When reaching outside the cell, the velocity is limited to keep
collision forces below the acceptable force limits.

Safety flaw/hazard: The collision forces are only sufficiently low until the robot has
picked up the workpiece. As soon as the robot has grasped the workpiece, its mass is
added to the effective robot mass, which increases the collision forces above the critical
threshold (compare Eq. (2.3)). Thus, a critical collision is possible if the worker ap-

133

9. Appendix

Action Explanation

t1 Walking between area A and B
t2 Walking between area A and C
uS Picking up the part at the storage table
dS Putting down the part at the storage table
uS Picking up the part at the robot station
dS Putting down the part at the robot station
b1 Pressing button to activate robot
b2 Pressing button to activate robot in safety override mode
b3 Pressing button to stop robot
r Retracting hand after reaching motion

Table A.1.: Agent action space in scenario 6A

proaches the robot with such a timing that the workpiece has already been picked up, but
the robot has not yet fully retreated behind the light curtain.

A.2. Experiments from Chapter 6

The following descriptions and images are taken from [90].

Scenario 6-A

Scenario 6-A has already been described in Examples 7 - 9 (see sections 6.1-6.3). For
the sake of completeness, the task description, action space, parameters and EFA model
are summarized again below.

Layout and Task: A figure of the cell layout is shown in Example 7 (see section 6.1).
The task proceeds as follows: The human worker starts in the center area, retrieves a part
from the storage table, places it in front of the robot, then walks back to the center, and
activates the robot at the control panel. The robot performs some processing step (e.g.,
drilling) on the part until the worker stops the robot again through the control panel. The
worker then retrieves the part and places it back onto the storage table.

Agent Model: The agent’s discrete action space is given by table A.1.

Constraints on the agent’s behavior are expressed by the EFA from Example 9. The
SUPREMICA implementation of this EFA is shown in Figure A.7:

The continuous parameters of the agent behavior are defined as follows:

θ = (vH ,∆x,∆y) (9.5)

where vH denotes the human worker’s walking speed, and ∆x,∆y denotes the longitudi-
nal and lateral displacement of the position where the worker puts down the workpiece.

Safety Measures: The area around the robot is monitored by a laser scanner (red area). A
safety stop of the robot is triggered when the worker enters the detection area. To monitor
the ongoing work of the robot from close distance without triggering a safety stop, the

134

A. Experiment Details

Figure A.7.:

Supremica implementation of the agent EFA from scenario 6-A.

worker can activate the robot in a safety override mode, where the stop triggered by the
laser scanner is overridden.

Safety Flaws/Hazards: Possible hazards in this scenario are (1) misuse of the safety
override button by the agent (e.g., starting the robot in safety override mode and later in-
serting/removing a workpiece without reverting back to safe mode) and (2) fast collisions
due to prolonged stopping time of the robot combined with fast approaches of the agent.

Scenario 6-B and 6-C

Scenarios 6-B and 6-C share the same task, and therefore also the same action space,
parameters, and EFA models as given below. The difference between both scenarios is
only in the safety measures.

Layout and Task: The robot cell layout is shown in Figure A.8. The workflow is as
follows: the worker retrieves parts from a shelf (A), inserts them into a housing and
activates the robot with a button (D) which then inserts a gearwheel (E) into the housing.
Meanwhile, the worker inserts a part into the cover (C) and finally mounts the cover onto
the housing. Potential hazards consist in the hand being crushed between gearwheel and
housing, and the head colliding with the robot’s elbow joint. The robot then starts to put a
gearwheel into the housing. Meanwhile, the human reaches into the workpiece cover and
then mounts the cover onto the housing.

Agent Model: The agent’s discrete action space is given by table A.9. The SUPREMICA

implementation of the agent EFA is shown in Figure A.9

Safety Measures: This is the only aspect where scenarios 6-B and 6-C differ. While
scenario 6-B has no particular safety measures despite a limitation of the robot’s speed,

135

9. Appendix

Figure A.8.: Cell layout in scenario B

Action Explanation

t Walk between area A and B
rP Reach for parts from shelf
rH Reach into housing
rC Reach into cover
pB Press button (activate robot)
r Retract hands (after reaching motion)
mC Mount cover on housing

Table A.2.: Agent’s action space from Scenario 6-B and 6-C.

S1S5S0S3

occ_human=0

occ_human=1

occ_human=1

parts_taken=1

parts_taken==1

occ_human=1

occ_human=0

robot_activated=1

parts_taken==1

retract

reach_in_cover

reach_partsretract

press_button

walk

mount_cover

walk

reach_in_housing

Figure A.9.: SUPREMICA implementation of the agent EFA in scenario B and C

136

A. Experiment Details

scenario 6-C features an additional fence and light curtain in front of the workstation (see
Figure 6.1b). This light curtain detects the human hand and trigger a safety stop of the
robot. However, there is a certain delay associated to the safety stop due to the latency of
the light curtain and the stopping time required by the robot.

Safety Flaw/Hazard: Hazards in this scenario include potential collisions between the
human hand and the robot, or the possibility of the human hand getting trapped between
gearwheel and housing. Both situations can appear if the agent deviates from the nominal
workflow (e.g., by switching the order of assembly actions such that the agent reaches into
the housing while the robot is inserting the gearwheel). Furthermore, a collision between
the robot and the human head is possible, if the human leans to far forward over the table
while reaching into the housing or mounting the cover.

A.3. Experiments from Chapter 7

The experiments in chapter 7 are based on the same scenarios from chapter 6 (i.e.,
scenarios 6-A, 6-B and 6-C). The difference is that the agent EFA model is extended by
further EFA models for SUT and safety specification. These additional models are shown
below.

Figure A.10.: EFA model of the SUT from scenario 6-A.

S1S0

occ_human==1 & occ_robot==1 & robot_activated==1

collision

Figure A.11.: EFA model of the safety specification from scenario A.

137

9. Appendix

S1S0

gearwheel_inserted==1

occ_robot=1

gearwheel_inserted=1

robot_activated==1

gearwheel_inserted==0

occ_robot=0
robot_activated=0

insert_gearwheel

move_back

move_to_housing

S1

S0 S2

occ_human=1

gearwheel_inserted==0
gearwheel_inserted=1

occ_human=1

parts_taken==1

occ_human=1

parts_taken==1

occ_human=1

occ_human=1

parts_taken==1

reach_in_cover

reach_in_housing

insert_gearwheel

mount_cover

reach_in_cover

mount_cover

S1S0

occ_human==1 & occ_robot==1 & robot_activated==1

collision

Figure A.13.: EFA model of the safety specification from scenario 6-B and 6-C.

B. Algorithms

The standard MCTS algorithm was already introduced in Chapter 2. In this thesis, the
algorithm is used in slightly adapted forms. Below, Algorithm 2 shows pseudocode for
the adaptation of MCTS for risk-guided search as (see Chapter 5), and Algorithm 3 shows
pseudocode for the adaptation of MCTS for automata-constrained risk-guided search (see
Chapter 6).

138

B. Algorithms

Algorithm 2 MCTS Adaptation for Risk-Guided Search (unconstrained)
1: unsafeSequences = { };
2: while not simulationBudgetExceeded do

3: currentSequence = { }; currentNode = rootNode;
4: simulation.init(); // set simulator to initial state;
5: while fullyExpanded(currentNode) do

6: // Traverse tree until reaching a node that is not fully expanded
7: currentNode, action = SELECTBESTCHILD(currentNode)
8: simulation.step(action);// update simulation state;
9: currentSequence.append(action);

10: end while

11: currentNode, action = EXPAND(currentNode);
12: simulation.step(action);
13: currentSequence.append(action)
14: while not length(currentSequence) == n do

15: // Perform rollout and backpropagate reward;
16: action = randomSample(A);
17: simulation.step(action);
18: currentSequence.append(action);
19: end while

20: reward = sim.getRisk();
21: BACKPROPAGATION(currentNode, reward);
22: if reward > riskThreshold then

23: unsafeSequences.append(currentSequence);
24: end if

25: end while

26: function SELECTBESTCHILD(currentNode)
27: // iterate over children of current node, return the one maximizing the UCT criterion

28: bestChildNode = argmax
(

node.q
node.n + c

√

· log(parentNode.n)
childNode.n

)

;

29: bestAction = bestChildeNode.incomingAction // action leading to child node;
30: return bestChildNode, bestAction;
31: end function

32:
33: function EXPAND(currentNode)
34: a = randomSample(A);
35: childNode = Node(parent=currentNode, incomingAction = a, q = 0, n = 0);
36: currentNode.child = childNode;
37: return childNode, a;
38: end function

39:
40: function BACKPROPAGATION(currentNode,reward)
41: currentNode.n← currentNode.n+ 1;
42: currentNode.q ← currentNode.q+reward;
43: if currentNode == rootNode then

44: return;
45: else

46: BACKPROPAGATION(currentNode.parent, reward);
47: end if

48: end function

139

9. Appendix

Algorithm 3 MCTS Adapatation for Automata-Constrained Risk-Guided Search
1: hazardousSequences = { };
2: while not simulationBudgetExceeded do

3: currentSequence = { }; currentNode = rootNode;
4: θ = randomSample(θmin, θmax);
5: simulation.init(θ); automaton.init(); // set simulator and automaton to initial state;
6: while fullyExpanded(currentNode) do// Tree traversal
7: currentNode, action = SELECTBESTCHILD(currentNode)
8: simulation.step(action); automaton.transition(action); // update states
9: currentSequence.append(action);

10: end while

11: currentNode, action = EXPAND(currentNode);
12: simulation.step(action); automaton.step(action);
13: curentSequence.append(action)
14: while not length(currentSequence) == n do// Rollout/backpropagation reward
15: feasibleActions = automaton.getFeasibleActions();
16: action = randomSample(feasibleActions);
17: simulation.step(action); automaton.step(action);
18: curentSequence.append(action);
19: end while

20: reward = sim.getRisk();
21: BACKPROPAGATION(currentNode, reward);
22: if reward > riskThreshold then

23: hazardousSequences.append(currentSequence);
24: end if

25: end while

26:
27: function SELECTBESTCHILD(currentNode)// find node maximizing UCT criterion

28: bestChildNode = argmax
(

node.q
node.n + c

√

· log(parentNode.n)
childNode.n

)

;

29: bestAction = bestChildeNode.incomingAction // action leading to child node;
30: return bestChildNode, bestAction;
31: end function

32:
33: function EXPAND(currentNode)
34: feasibleActions = automaton.getFeasibleActions();
35: a = randomSample(feasibleActions);
36: childNode = Node(parent=currentNode, incomingAction = a, q = 0, n = 0);
37: currentNode.child = childNode;
38: return childNode, a;
39: end function

40:
41: function BACKPROPAGATION(currentNode,reward)
42: currentNode.n← currentNode.n+ 1;
43: currentNode.q ← currentNode.q+reward;
44: if currentNode == rootNode then

45: return;
46: else

47: BACKPROPAGATION(currentNode.parent, reward);
48: end if

49: end function

140

C. Modeling of HRC Systems with Supremica

C. Modeling of HRC Systems with Supremica

In chapters 6 and 7, a detailed discussion of the modeling procedure for obtaining
EFA models was omitted for reasons of brevity. Instead, it was assumed that a model is
already given. This part of the appendix discusses the modeling procedure in more detail
and aims to provide some basic modeling guidelines. However, it should be emphasized
that the procedure presented here is only one possible way of modeling HRC systems.
Several aspects of the procedure such as the desired level of detail or the model granularity
are decisions which are to be made by the user on a case-by-case basis and cannot be
prescribed here in general terms. Furthermore, note that EFA modeling involves a certain
redundancy. Recall that the state-space of an EFA is given by the cartesian product of the
set of locations and the variable space:

S = L× V

Thus, aspects of the system state can be expressed either by introducing variables or lo-
cations, or through a combination of both. Although some general guidelines are given
below, it is ultimately a decision of the user how much they want to rely on locations
or variables to express system states. Thus, depending on modeling styles, there may be
multiple different models expressing the same behavior.

C.1. Modeling

General Modeling Approach

The hazard analysis problem is modeled by three components:

• The system under test (SUT) models the behavior of the system whose safety is to
be analyzed (e.g., a collaborative robot system).

• The agent models the behavior of the entity/entities which are interacting with the
SUT (e.g., a human that is collaborating with the robot, or another robot in a multi-
robot system).

• The safety specification classifies if a given state of the joint model of agent and
SUT is safe or unsafe.

Each model component is represented by an EFA, whereA denotes the EFA of the agent,
SUT the EFA of the SUT, and SP the EFA of the safety specification. Note that A and
SUT encode the actual behavior of the system, while SP is an abstraction of a safety
specification which may be given in a textual or other form.

Modeling of Agent and SUT

The behavior of agent and SUT are described by sequences of events from the respective
EFA models. A given behavior is encoded as a sequence of events. The set of feasible
event sequences is thus restricted by the structure of the EFA. As discussed above, in
contrast to ordinary Finite Automata (FA) which only feature states but no variables, the
state-space of EFA is given by the cartesian product of the set of possible locations and

141

9. Appendix

variables assignments. It is therefore difficult start with EFA modeling by defining the
state-space from the outset.

Instead, it is more intuitive to approach the modeling problem from the perspective
of the action- rather than the state-space. The modeler should first define an action space
which is suitable to describe the behavior of Agent or SUT, respectively. Then, the mod-
eler should reason about the feasibility of actions and action sequences under certain con-
ditions and define a location- and transitions-structure which expresses these constraints.
Afterwards, additional constraints which are not captured by the location/transition struc-
tures of the submodels can be expressed by introducing variables, guards, and update
rules. With this approach, the state-space does not have to be defined explicitly from the
outset, but follows implicitly from the locations and variables that are introduced along
the way. More specifically, the modeling could proceed as follows:

1. Define the event spaces (i.e., the sets of possible events) for agent and SUT, respect-
ively: What events can occur? What activities can the agent and SUT perform? De-
cide if activities should be assumed as instantaneous, or if they should extend over
time. If an activity is assumed as instantaneous, it is modeled by a single event. For
activities which extend over time, two events are defined: One for starting, and one
for ending the activity. Note that the sets of events for agent and SUT need not be
disjoint. If a certain event affects the behavior of both agent and SUT, it may appear
in both event spaces. This is called a shared event.

2. Build a location/transition structure. The following procedure should be per-
formed separately for Agent and SUT. In principle, it does not matter whether one
starts with modeling the agent or the SUT. We generally recommended to start with
the agent, since the agent is often the pro-active part of a system and the SUT the re-
active part of the system (compare the discussions in Chapter 4). In other words, the
agent’s behavior will generally depend less on the SUT behavior than vice-versa.
Hence, it may be easier to start with modeling the agent.

a) Start with the initial location. This represents the system’s initial state.

b) Look at the event space and select those events that are feasible in the current
location. The subset of currently feasible events shall be denoted by ΣC .

c) For each event ei ∈ ΣC , do the following:

• Create a transition labeled by ei which starts at the current location.

• Think about what events are feasible after performing ei: If the occur-
rence of ei does not change ΣC , let the transition point to the current
location (i.e., create a self-loop). If performing ei changes ΣC , then intro-
duce a new location and let the transition point to that new location.

d) Go to each new created location that was created in the previous step and
repeat the procedure starting from step 2b).

By performing above procedure, the location/transition structure will gradually ex-
pand. The expansion is complete when all locations are fully expanded, i.e., when
there is no location left from which new transitions can be added. In some cases,
the expansion of the location/transition structure may lead to redundant locations.
Two locations are redundant if the have exactly the same set of outgoing transitions.
Redundant locations can be consolidated into one location to limit the number of

142

C. Modeling of HRC Systems with Supremica

locations and make models more compact. This consolidation, however, is optional.
In some cases, the unconsolidated structure may be more intuitive and easier to read.
This should be decided on a case-by-case basis.

3. Model additional dependencies between agent and SUT. So far, the location/tran-
sition structures of agent and SUT have been modeled separately. In collaborative
systems, however, there are dependencies between the behaviors of agent and SUT.
Some of these dependencies may already be captured through shared events. How-
ever, there may also be additional inter-dependencies and/or constraints which are
not yet captured in the model. These can be expressed by introducing additional
variables and guards. The procedure for introducing such constraints is as follows:

a) For each action in the action space, determine if the action is subject to addi-
tional constraints which are not captured by the location/transition structure.

b) For each event that is subject to additional constraints, do the following:

• Determine the condition on which the feasibility of the event depends. In-
troduce new variables vi into the variable space V to track the information
that is needed to decide the condition (if they are not already represented
in V). Note: You may only introduce integer variables of finite range.

• Write the condition as a logical formula over the previously introduced
variables and add this formula as a guard to the transitions which are
associated with the respective event. The event can now only be executed
if the formula holds true.

• Determine for each event if the execution of the respective event affects
the values of the previously introduced variables. If this is the case, create
an according update rule for this event. The update rule will be executed
each time the event is executed.

Modeling of Safety Specifications

Safety specifications are usually given in textual form. These textual specifications
need to be formalized. To that end, they are translated into EFA form. The EFA rep-
resenting the safety specification shall be denoted by SP . This EFA uses the notion of
marked and unmarked states to differentiate between safe and unsafe states: safe states
are associated with unmarked states, whereas unsafe states are associated with marked

states.

To build SP , first create an initial location. The initial location is unmarked. Next,
translate the textual safety specification into a logical formula over the variable space.
This formula should evaluate to true if the safety specification is violated, and to false if
the safety condition is not violated. If the variables introduced in the previous steps are
not sufficient to express the safety specification, intrdouce additional variables introduced
(and do not forget to introduce appropriate update rules for the newly introduced variables
as well).

Next, create a marked location. This marked location represents an unsafe system
state. Create a transition from the initial (unmarked) location to the marked location.

143

9. Appendix

This transition represents the occurrence of an unsafe event. Finally, create a guard state-
ment for the newly introduced transition. The guard statement should correspond with
the logical formula from the safety specification. Hence, the transition that represents the
occurence of an unsafe event may only occur if the guard statement evaluates to true (and,
consequently, if the safety specification is violated). If there are multiple unsafe condi-
tions, one can introduce a marked location and corresponding transition for each condi-
tion. Although it would be also possible to have a single marked location and transition
that is guarded by a logical disjuction of the multiple criteria, having separate locations/-
transitions may be easier to read.

The result is an EFA with one unmarked location and one or multiple marked locations
where transitions from unmarked to marked locations can only occur if the specification is
violated. For now, this may seem like a strangely convoluted way of expressing the safety
specification. However, this structure has the advantage that it enables a safety analysis
based on supervisor synthesis, which is described in more detail later.

Remarks

Please note the following remarks on the procedure presented above:

• Refine iteratively. it is important to note that a manual modeling procedure such as
the one presented above is naturally error-prone. Furthermore, it may not be possi-
ble to find suitable agents spaces and model structures in the first go. Retroactive
changes may be necessary (e.g. the modeler may decide to introduce new events at
a later stage after defining the initial action space). Therefore, the model should be
refined iteratively by repeating above procedure until the model is consistent.

• Beware of unintentional constraints. A possible source of errors is that modelers
may unintentionally restrict the model’s behavior in ways they are not aware of.
This is particularly critical from a safety analysis point of view, since the restric-
tions can lead to potentially safety-critical behaviors being omitted from the model.
Typical errors which can lead to unintentional restrictions are, for instance:

– An outgoing transition is erroneously omitted from a location. It is therefore
important to carefully think about feasibility of all events in step 2b). Errors of
this kind can also occur if an event which has previously not been part of the
event space is added retroactively to a location of a model without checking if
that event should also be feasible in other locations of that same model.

– Variables are not updated properly, or update rules are forgotten. This can lead
to guard statements evaluating to false although they should actually be true,
thus preventing the execution of a transition that should actually be feasible.
To avoid this, it is necessary to carry out step 3b) of the procedure particularly
carefully.

• Consider introducing additional variables. Recall that there is a certain redundan-
cy in EFA as a modeling formalism. More specifically, constraints on a system’s be-
havior may be expressed either through the location/transition structure, or through
variables, guards, and update rules. Of course, it is difficult to prescribe explicitly
when one should use a location and when one should use a variable instead. As
a general rule, however, the location/transition structure is easier to read and more

144

C. Modeling of HRC Systems with Supremica

intuitive for modelers to understand than the interplay between variables, guards,
and update rules. Therefore, the procedure above uses the transition/location struc-
ture as a primary modeling formalism. Variables, guards, and update rules are then
added in a secondary modeling step after building the location/transition structure.
In some cases, however, the location/transition structure can be come very exten-
sive. To simplify the structure, modelers may consider to remove some locations
and instead introduce additional variables to capture particular aspects of the state-
space.

• Consider a modular approach: modularity can also be a helpful tool to mitigate
complexity in the modeling procedure. In the procedure above, the system is bro-
ken down into interacting sub-components, namely agent and SUT. This modular
approach can be taken even further by breaking down the models of agent and SUT
into further sub-components, which can be modeled using the same principles as
described above. For instance, if the SUT consists of several robots, an EFA for
each robot can be introduced. In some cases, it can also be useful to introduce EFA
models for passive components such as workpieces. Although these components do
not actively create events, their configuration can have an impact on the feasibility
of events in other submodels. For instance, in an assembly task, the current con-
figuration of a workpiece changes with the occurrence of certain worksteps. The
configu-ration of the workpiece, in turn, may influence what worksteps (events)
are currently feasible. Instead of attempting to encode this in the agent and SUT
EFA models, it may be worthwhile to maintain a separate EFA for the workpiece
(consider also the following example).

• Avoid marked locations in the agent and SUT models: The safety specifica-
tion should be the only of the three EFA for which marked locations are defined.
The reason for this is that in the analysis procedure described below, the notion of
marked and unmarked locations is used to differentiate between safe and unsafe
states. To keep the model clear and readable, and to avoid accidental misclassifi-
cation of safe or unsafe states, the safety specification should be the only EFA that
introduces marked states into the model, whereas the other EFA should describe
what system behaviors are possible, but remain agnostic with respect to the safety
of these behaviors.

C.2. Synthesis

The final step is the synthesis. In this step, we use methods from supervisory con-
trol theory (SCT) – more specifically, supervisor synthesis – to identify possible system
behaviors that violate the safety specification.

The system as a whole is described by A ‖ SUT , that is, the synchronization of the
two submodels. Note that A ‖ SUT in itself is also an automaton whose event space is
the union of both submodel’s event spaces. A sequence of events resulting from feasible
transitions in this automaton thus represents one possible behavior of the system. Con-
sequently, the language L(A ‖ SUT) of the automaton (i.e., the set of all feasible event
sequences) represents all possible system behaviors. The challenge is now to extract from
L(A ‖ SUT) the subset of behaviors that violate the safety specification. This is where
supervisor synthesis is applied: Supervisor synthesis restricts the behavior of a controlled

145

9. Appendix

system (called plant) in such a way that it complies to a specification. The resulting su-
pervisor is minimally restrictive and non-blocking. In this context, non-blocking means
that all resulting behaviors will always reach a marked state. We can therefore synthesize
unsafe behaviors by performing a supervisor synthesis for the system A ‖ SUT with
respect to the specification SP . Since we modeled the safety specification in such a way
that the unsafe states are marked states, the synthesized behaviors will always result in an
unsafe state, whereas safe behaviors that do not result in marked states will be discarded
by the synthesis. Minimally restrictive means that the synthesis only discards the blocking
behaviors, but no more than that. Therefore, the set of remaining behaviors is complete
w.r.t the unsafe behaviors. The result of performing a supervisor synthesis in SUPREMICA

is another automaton, whose language L(K) corresponds to the unsafe system behaviors.
This automaton can be easily exported and parsed to extract the unsafe event sequences.

C.3. Example

The following example illustrates the modeling procedure. Scenario 6-B from Section
7.5 is chosen as an exemplary scenario to be modeled.

Agent and SUT Model

We start by modeling the agent. According to step 1, we first define the event space
of the agent, which corresponds to the action space of the human worker (i.e., the set of
all actions that the human worker can perform in the collaborative assembly procedure):

{walk, press_button, retrieve_parts, reach_housing, reach_cover,mount_cover, retract}

here, walk denotes walking between the workplace and the shelf where the parts are
stored, pB is pressing the button for activating the robot, reach_housing and reach_cover
represent reaching into the housing and cover to mount a part, respectively, mount_cover
denotes mounting the cover onto the housing1. Finally, retract denotes retracting the
hands after a reaching motion has been completed. Recall that, according to the guideline,
an action which does not happen instantaneously should be modeled not only by an event
for initializing the action, but also one for ending the action. This is also the case here: the
event retract denotes retracting the hand at the end of a reaching and therefore represents
the end of the various actions which are initiated by the following events:

retrieve_parts, reach_housing, reach_cover,mount_cover

Note that there need not be a dedicated end-event for each action. Instead, a single event
can represent a termination for multiple actions if this makes sense in the particular use-
case. In contrast, walking is modeled as single instantaneous event (this is a deliberate
modeling simplification since walking is not safety-critical in the context of this example).

1For reasons of simplicity in this example we only consider one-directional assembly (i.e., no disassembly
or un-doing of assembly steps)

146

C. Modeling of HRC Systems with Supremica

We proceed with step 2: building the location/transition structure. According to step
2a), we create an initial location lH0, which represents the worker being located in front
of the robot station:

lH0A:A:

In this initial location, the worker is idle (i.e., not performing any activities). Next,
according to step 2b), we define the set of feasible events in this state:

{walk, press_button, reach_housing, reach_cover,mount_cover}

meaning that the worker can walk away from the station, press the button, or perform
the various reaching motions to manipulate the workpiece. The event retrieve_parts is
infeasible since the worker is not located in front of the shelf, and retract is infeasible
because the worker has not yet started any reaching motion.

Now, we proceed with 2c): For each event in the feasible set, we determine if the
execution of that event impacts the feasible set. We start with the walk event: Clearly,
executing walk-event impacts the feasible set. Once the worker has walked to the shelf,
the button and workpiece are no longer reachable and the related events become infeasible.
However, the event rP (retrieve parts from the shelf) becomes feasible. Since the event
affects the feasible set, a transition to a new location is created:

lH0

A:A:

lH1

walk

The same is repeated also for the other events in the feasible set. After fully expanding
the initial state, the model looks as follows:

lH0

A:A:

lH1

lH2lH3

lH4 lH5

walk

press_button

reach_housing

reach_cover

mount_cover

147

9. Appendix

We now repeat the expansion for each newly created location, starting at location lH∞:
After walking from the robot station to the shelf, the worker can reach for parts from the
shelve or walk back. Hence, the feasible set here in this location is:

{retrieve_parts, walk}

With the newly created transitions, the structure looks as follows:

lH0

A:A:

lH1

lH2lH3

lH4 lH5

lH6

walk

walk

retrieve_parts

press_button

reach_housing

reach_cover

mount_cover

By performing the expansion procedure also for the remaining nodes, we finally arrive
at the following location/transition structure:

lH0

A:A:

lH1

lH2lH3

lH4 lH5

lH6

walk

walk

retrieve_parts

retract

press_button
retract

reach_housing

retract

reach_cover

retract

mount_coverretract

Figure C.14.: Location/transition structure of the agent model

Note that it is possible to consolidate the structure: As noted above, multiple locations
can be consolidated into one if they have exactly the same outgoing transitions. Here, this
is the case for the locations lH2 to lH5. Therefore, we can create a single location l′H2 that
consolidates lH2 . . . lH5 (see Figure C.15).

Next, we repeat steps 1 and 2 of the modeling procedure for the SUT. In this case, we
decompose the SUT into two further models: One for the robot, and one for the workpiece

148

C. Modeling of HRC Systems with Supremica

lH0

A:A:

lH1lH2′ lH6

walk

walk

retrieve_parts

retract

press_button

reach_housing

reach_cover

mount_cover

retract

Figure C.15.: Consolidated location/transition structure of the agent model

(the latter being important because the assembly state of the workpiece influences the fea-
sible events for both worker and robot). For brevity, we do not show the whole modeling
procedure step by step again and only give the resulting location/transition structures.
Event space and structure of the robot model are as follows:

{move_to_housing, insert_gearwheel,move_back}

lR0

R:R:

lR1

move_to_housing

move_back
insert_gearwheel

Here, the initial location represents the robot being in idle mode. From there, the
robot can move to the housing of the workpiece. When located over the housing, the
robot can insert a gearwheel into the housing and/or move back to idle mode (note that
this structure does not enforce that the robot must insert a gearwheel before moving back,
it may also move back without having inserted it).

The location/transition structure for the workpiece model is as follows:

lW0

W:W:

lW1

lW2

insert_gearwheel

mount_cover

mount_cover

reach_housing

reach_cover

reach_cover

Here, the initial location lW0 represents a state where the workpiece is not assembled
(i.e., the gearwheel is not inserted into the housing and the cover is not mounted onto the

149

9. Appendix

housing). In this initial location, all assembly actions are feasible (i.e., the worker can
reach into both housing and cover and mount the cover onto the housing, and the robot
can insert the gearwheel into the housing). After inserting the gearwheel, however, the
housing is blocked and the worker cannot reach into the housing anymore (see lW1). After
mounting the cover, no further assembly action is possible (see lW2). With respect to the
workpiece model, the following remarks should be pointed out:

• The workpiece model only features shared events which also appear the agent- and
robot event spaces. It does not introduce new events, because the workpiece is a
passive component which cannot change its state spontaneously. Thus, the model
merely tracks the events from the other models and changes its state accordingly.

• Shared events can only occur if they are simultaneously feasible in all models in
which they are part of the event space: Thus, by restricting the feasibility of assem-
bly actions in the workpiece model, we also restrict their feasibility in the agent- and
robot model, respectively. Besides shared variables (which we will introduce in the
next step), such shared events are one of the mechanisms by which dependencies
between interactive systems is expressed.

• The workpiece model only models the feasibility of events. It does only restrict
what sequences of events are feasible, but ot does not specify in any way in what
order the assembly sequence should be carried out.

Finally, we arrive at step 3 of the procedure. In this step, we introduce variables,
guards, and update rules to model additional dependencies between the submodels which
are not yet captured by the location/transition structure. According to step 3a), we start
by going through all events and determining for each event if it is subject to additional
constraints that are not captured by the location/transition structure. According to step 3b
we introduce variables, guards, and update rules as shown in the following table:

Event Variable(s)

Ini-

tial

value

Guard(s)
Updated on

event(s)

reach_housing parts_taken ∈ {0, 1} 0 parts_taken == 1 retrieve_parts
reach_cover parts_taken ∈ {0, 1} 0 parts_taken == 1 retrieve_parts

move_to_housing robot_activated ∈ 0, 1 0 robot_activated == 1
press_button,
move_back

move_back gearwheel_inserted ∈ 0, 1 0 gearwheel_inserted == 1 insert_gearwheel

Table C.3.: Variables, guards, and update rules to capture additional dependencies

Additional constraints have been introduced for the following actions:

reach_housing, reach_cover,move_to_housing,move_back

For reach_housing and reach_cover it is required that the worker first retrieves parts
from the shelf (otherwise it would make no sense for the worker to reach into housing
or cover because the worker does not have any parts to mount). Therefore, a variable is
introduced to track if any parts have been taken. This variable is updated upon occurrence
of the event retrieve_parts. Furthermore, the event move_to_housing requires that the
robot is activated first. This is captured by a variable robot_activated which is set to
1 when the worker presses the activation button, and set back to 0 when the robot has
completed its procedure and moved back into idle mode. Finally, we want to enforce that
the robot can only move back to idle mode after the gearwheel has been inserted. Thus,
we introduce a variable gearhweel_inserted which is set to 1 when the gearwheel is
inserted.

150

C. Modeling of HRC Systems with Supremica

Safety Specification

Next, the safety specification SP is created. We start with an unmarked initial loca-
tion to represent safe states, and a marked location to represent unsafe states. We assume
that in our case, the safety specification specifies that no human-robot collision should
occur. Thus, the transition from safe (unmarked) to unsafe (marked) is associated with a
human robot collision, for which we create a new transition labeled collision.

lSP0

SP:SP:

lSP1
collision

The condition for a human-robot collision to occur is that both human and robot si-
multaneously occupy the collaborative workspace. To track the occupancy, we introduce
two additional variables occ_human and occ_robot to track the occupancy of the collabo-
rative workspace worker and robot, respectively. Finally, a guard statement is introduced,
requiring that both worker and robot must occupy the collaborative workspace for the
collision to occur:

Event Variable(s)

Ini-

tial

value

Guard(s) Updated on event(s)

collision
occ_human ∈ {0, 1},
occ_robot ∈ {0, 1}

0
occ_human == 1
∧ occ_robot == 1

reach_housing, reach_cover,
mount_cover, retract
move_to_housing
move_to_housing

Table C.4.: Additional variables, guards, and update rules for safety specification

The modeling procedure is now completed. The developed models are implemented
with the software tool SUPREMICA. The SUPREMICA implementation of the resulting
models is shown in Figures C.16-C.18.

S1S5S0S3

occ_human=0

occ_human=1

occ_human=1

parts_taken=1

parts_taken==1

occ_human=1

occ_human=0

robot_activated=1

parts_taken==1

retract

reach_in_cover

reach_partsretract

press_button

walk

mount_cover

walk

reach_in_housing

Figure C.16.: Agent model.

151

9. Appendix

S1S0

gearwheel_inserted==1

occ_robot=1

gearwheel_inserted=1

robot_activated==1

gearwheel_inserted==0

occ_robot=0
robot_activated=0

insert_gearwheel

move_back

move_to_housing

S1

S0 S2

occ_human=1

gearwheel_inserted==0
gearwheel_inserted=1

occ_human=1

parts_taken==1

occ_human=1

parts_taken==1

occ_human=1

occ_human=1

parts_taken==1

reach_in_cover

reach_in_housing

insert_gearwheel

mount_cover

reach_in_cover

mount_cover

Figure C.17.: SUT model, consisting of the submodels robot (left) and workpiece (right).

S1S0

occ_human==1 & occ_robot==1 & robot_activated==1

collision

Figure C.18.: Safety Specification.

Synthesis

Finally, we perform the Synthesis in SUPREMICA. In order to do that, we go to the
"Analyzer" section in the left upper pane, select all models (including the safety specifi-
cation), right-click, and select "Synthesize". We perform a synthesis with default settings
(see Figure C.19). Another model named "Supervisor" will appear in the upper left pane.
This is the supervisor automaton. By right-clicking on the supervisor and selecting "ex-
port", the automaton can be exported in XML format. The XML file can be easily parsed
to extract the unsafe event sequences. Note, however, that the language of the automaton
may be infinite. This can be the case if the automaton contains loops. Thus, the extraction
of event sequences should be restricted to a subset of finite length. In some cases, it may

Figure C.19.: Settings for the supervisor synthesis in Supremica.

be desirable to exclude certain events from the language (such as in Chapter 7, where we
are only interested in events related to the agent). This can be achieved by hiding events
before exporting the automaton (right-click on "Supervisor", then select "Hide events").
Note that the hiding of events may create substitute events (labeled "tau"). These can be

152

C. Modeling of HRC Systems with Supremica

removed by minimizing the automaton (right-click on "Supervisor", then select "Mini-
mize"). Afterwards, perform the export procedure again. For instance, in the experiments
in Chapter 7, the events related to the robot were hidden, the automaton minimized and
exported, and the resulting XML file was parsed to extract all unsafe event sequences up
to a length of ten events, which resulted in 83 sequences (see Section 7.5). One example
of an unsafe sequences that was synthesized is as follows:

{walk, reach_parts, retract, walk, press_button, retract, reach_in_housing, collision}

Contrary to the nominal assembly procedure, where the worker should activate the robot
after reaching into the housing, the worker in this sequence switches two actions and
presses the activation button before reaching into the housing, which results in a collision
with the robot.

153

9. Appendix

154

List of Figures

2.1. A, B, and C-Standards . 11
2.2. Laserscanner and Robot . 12
2.3. ISO 12100 Procedure . 17
2.4. Hazard Analysis Challenges . 18
2.5. MCTS Principle . 22

3.1. STPA Example . 34
3.2. HAZOP-UML Example . 35
3.3. Mapping Properties to Hazards . 38
3.4. Falsification Principle . 41
3.5. Attitude towards novel methods . 43
3.6. Conflicting goals of hazard analysis methods. 44
3.7. Workspace Discretization . 46

4.1. Simulation state space . 52
4.2. State trajectory . 54
4.3. Gridworld example . 54
4.4. Risk-guided search . 57
4.5. Automata-constrained risk guided search 58
4.6. Two-level hazard analysis . 58

5.1. Risk metric . 63
5.2. Experiments methodology . 66
5.3. Mobile robot case study . 70
5.4. Collision with mobile robot . 71

6.1. Experiment Scenarios (Chapter 6) . 83
6.2. Experiment Results (Chapter 6) . 85
6.3. Performance of MCTS vs. Random Sampling 86

7.1. False, true, and missed alarms . 96
7.2. Parameter search space . 99
7.3. Performance of Two-level search vs. MCTS and Random Sampling . . . 102
7.4. Example of unsafe behavior . 104

A.1. Experiment Scenario 5-A . 130
A.2. Experiment Scenario 5-B . 131
A.3. Experiment Scenario 5-C . 131
A.4. Experiment Scenario 5-D . 132
A.5. Experiment Scenario 5-E . 133
A.6. Experiment Scenario 5-F . 133
A.7. Agent model, scenario 6-A . 135
A.8. Experiment Scenario 6-B . 136

155

List of Figures

A.9. Agent model, scenario 6-B/C . 136
A.10.EFA model of the SUT from scenario 6-A. 137
A.11.EFA model of the safety specification from scenario A. 137
A.13.EFA model of the safety specification from scenario 6-B and 6-C. 138
C.14. Structure of the agent model . 148
C.15. Structure of the agent model, consolidated 149
C.16. Agent model implementation in SUPREMICA 151
C.17. SUT model implementation in SUPREMICA 152
C.18. SAfety specification implementation in SUPREMICA 152
C.19. Settings for the supervisor synthesis in Supremica. 152

156

List of Tables

3.1. Review inclusion criteria . 32

5.1. Results Experiments Chapter 5 . 69

7.1. Comparison of formal verification and simulation-based testing 90
7.2. Disagreements between formal model and simulation 103

A.1. Agent action space in scenario 6A . 134
A.2. Agent’s action space from Scenario 6-B and 6-C. 136
C.3. Variables, guards, and update rules . 150
C.4. Additional variables for safety specification 151

157

List of Algorithms

1. Monte Carlo Tree Search (MCTS) . 21

2. Risk-guided Search using MCTS . 139
3. Automata-Constrained Risk Guided Search using MCTS 140

159

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Research Questions
	Contributions of this Thesis
	Limits on the Scope of this Thesis
	Overview of Content

	Preliminaries
	Human-Robot Collaboration and Safety
	Terminology
	HRC-related Safety Standards
	Implementation of Safe HRC Systems
	Human-Robot Collisions
	Risk Assessment, Risk Mitigation, and Hazard Analysis of HRC systems

	Theoretical Background
	Markov Decision Process
	Monte Carlo Tree Search
	Automata
	Supervisory Control Theory

	Related Work
	Semi-Formal Hazard Analysis Methods
	Systems-Theoretic Process Analysis (STPA)
	HAZOP and HAZOP-UML
	Task-oriented Hazard Analysis

	Formal and Rule-based Methods
	Model Checking
	Safety Proofs with Differential Dynamic Logic
	Rule-based Expert Systems

	Testing-based Methods
	Agent-based Testing
	Coverage-based Testing
	Falsification
	Testing in Virtual Reality

	Current Industrial Practice
	Discussion of Related Work and Limitations of Current Methods

	Simulation- and Agent-based Hazard Analysis Approach
	Problem Definition
	Simulation Model and Safety Specification
	Agent-based Simulation
	Hazard Analysis as a Search Problem

	Proposed Solutions
	Risk-Guided Search
	Automata-constrained Risk-guided Search
	Two-level Hazard Analysis

	Risk-Guided Search
	Risk Metric
	Motivation for Introducing a Risk Metric
	Choice of Risk Metrics

	Search Method
	Formulation of Search Problem
	Search Algorithms Used in this Thesis
	Further Search Algorithms

	Experiments
	Goal and Methodology
	Scenarios
	Results
	Mobile Robot Case Study
	Discussion of the Experiments

	Chapter Summary

	Automata-constrained Risk-guided Search
	Introductory Example
	Description Format for Agent Behaviors
	Constraints on the Agent's Behavior
	MCTS Adaptation for Automata-Constrained Risk Guided Search
	Experiments
	Goal and Methodology
	Implementation
	Results

	Chapter Summary

	Two-level Hazard Analysis
	Exhaustiveness vs. Accuracy: A Fundamental Trade-Off
	Overview of the Proposed Approach
	First Level: Synthesis of Critical Event Sequences
	Abstraction of the Collaborative System
	Abstraction of the Safety Specification
	Overapproximation of Unsafe Behaviors
	Synthesis of Critical Event Sequences

	Second Level: Simulation-based Evaluation of Synthesized Event Sequences
	Experiments
	Goal and Methodology
	Implementation
	Results
	Discussion

	Chapter Summary

	Discussion and Outlook
	Contributions of this Thesis
	Limitations
	Future Work
	Transfer to other Application Domains
	Final Remarks

	Appendix
	Experiment Details
	Experiments from Chapter 5
	Experiments from Chapter 6
	Experiments from Chapter 7

	Algorithms
	Modeling of HRC Systems with Supremica
	Modeling
	Synthesis
	Example

	List of Figures
	List of Tables
	List of Algorithms

