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Abstract
Fiber orientation tensors (FOT) are widely used to approximate statistical orientation distri-
butions of fibers within fiber-reinforced polymers. The design process of components made
of such fiber-reinforced composites is usually accompanied by a virtual process chain. In
this virtual process chain, process-induced FOT are computed in a flow simulation and trans-
ferred to the structural simulation. Within the structural simulation, effective macroscopic
properties are identified based on the averaged information contained in the FOT. Solving
the field equations in flow simulations as well as homogenization of effective stiffnesses ne-
cessitates the application of a closure scheme, computing higher-order statistical moments
based on assumptions. Additionally, non-congruent spatial discretizations require an inter-
mediate mapping operation. This mapping operation is required, if the discretization, i.e.,
mesh, of the flow simulation differs from the discretization of the structural simulation. The
main objective of this work is to give an answer to the question: Does the sequence of clo-
sure and mapping influence the achieved results? It will turn out, that the order influences
the result, raising the consecutive question: Which order is beneficial? Both questions are
addressed by deriving a quantification of the closure-related uncertainty. The two possible
sequences, mapping followed by closure and closure followed by mapping, yield strongly
different results, with the magnitude of the deviation even exceeding the magnitude of a ref-
erence result. Graphical consideration reveals that for both transversely isotropic and planar
FOT-input, invalid results occur if the mapping takes place prior to closure. This issue is
retrieved by orientation averaging stiffness tensors. As a by-product, we explicitly define
for the first time the admissible parameter space of orthotropic fourth-order fiber orientation
tensors and define a distance measure in this parameter space.
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1 Introduction

Discontinuous fiber-reinforced polymers (DiCoFRP) combine a high degree of design free-
dom with appealing mechanical properties. Consequently, this class of material is usually
deployed within highly functionalized semi-structural components, such as housings or sup-
port structures. These parts are typically manufactured by compression molding (CM) or
injection molding (IM). The flow process in these manufacturing processes, induces spa-
tial variation of the local fiber orientation, i.e., the microstructure. The effective, macro-
scopic mechanical properties of the composite are primarily controlled by the underlying
microstructure. As this microstructure is the result of the manufacturing process, local and
effective stiffness, strength, etc. are mainly determined by the manufacturing process. To
take account of this interaction of the process and the resulting microstructure during the
design phase, process simulation and structural simulation are interlinked sequentially in a
so-called computer aided engineering (CAE) chain. Several methodological and application-
oriented contributions on CAE chains indicate the relevance of this approach for both con-
tinuous reinforced [1, 2] and discontinuous reinforced [3–5] composites.

In addition, CAE chains have been utilized to quantify the impact of process-induced
uncertainties on structural behavior [6]. Feasible computation on the component level re-
quires efficient numerical algorithms. For this reason, macroscopic material models are used
within the structural simulation in free as well as commercial state-of-the-art solutions. The
flow-induced orientation of the fibers is obtained during the flow simulation [7–9] and de-
scribed by a spatial field of statistical fiber orientation tensors (FOT) [10, 11]. This field
is mapped onto the structural simulation’s spatial discretization. If the identified fiber ori-
entation tensors are of second-order only, closure approximations [7] are commonly used
to derive fourth-order fiber orientation tensors, as effective mechanical properties are af-
fected by fourth-order information on the fiber’s orientation [12]. The structural simulation
is often limited to linear elasticity with spatially varying local stiffnesses [13–15]. These
stiffnesses may be obtained by full field [16–18] or mean field [13–15, 19, 20] homogeniza-
tion. The latter may follow a two-step approach [21–23], where in a first step, a transversely
isotropic stiffness can be obtained by a homogenization method for aligned inclusions, such
as Halpin-Tsai [24], Mori-Tanka [25] or Tandon-Weng [26]. In a second step, this stiffness
is orientation-averaged based on the local pre-computed FOT from the process simulation.

Within this work, we focus on the mapping and closure of fiber orientation tensors within
a virtual process chain. We raise the question: Which order of mapping and closure, i.e.,
mapping before closure or closure before mapping, is beneficial? Therefore, we study and
quantify the difference of both options in terms of resulting fourth-order fiber orientation
tensors. The quantification is based on the known variety of fourth-order fiber orientation
tensors [12, 27], which for the orthotropic case is specified analytically for the first time.
Consequences of the order of mapping and closure for effective linear elastic stiffnesses are
demonstrated. We conclude that, if only the second-order fiber orientation tensor is obtained
from a flow simulation within a virtual process chain, then the closure should be applied
first based on the source discretization.

This paper is organized as follows. In Sect. 2, basic properties of fiber-orientation ten-
sors and parametrizations are recapitulated. Subsequently, a measure for the uncertainty of
closure approximations is introduced. In Sect. 3, we study the consequences of the order
of mapping and closure and introduce an uncertainty quantification. Consistency of selected
closure approximations is evaluated in Sect. 4, before implications for mechanical properties
are shown demonstrated in Sect. 5.
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1.1 Notation

Symbolic tensor notation is preferred throughout this work. Scalars are denoted by standard
Latin and Greek letters, e.g., a,λ,F . First-order tensors are represented by bold lower case
letters, e.g., p,γ , whereas upper case Greek or Latin letters are used for second-order ten-
sors such as A,E. Fourth-order tensors are denoted by C,S. The composition of second
and higher-order tensors, e.g., AB is denoted without taking use of a particular operator
symbol. In contrast, a linear mapping of an arbitrary lower order tensor by a corresponding
higher order tensor is denoted using brackets, e.g., C [E]. Scalar products between two ten-
sors of the same order are marked by a dot, e.g., A · C. The dyadic outer product yields a
tensor of order m + n from the multiplication of a m by a n-order tensor, e.g., a ⊗ A. The
Frobenius norm

√
A · A is used and abbreviated through ‖A‖. The rotation of an arbitrary

order tensor is denoted by the Rayleigh product Q � S, where the second-order tensor Q is
member of the special orthogonal group SO(3). The operator sym returns the weighted sum
of all possible permutations (refer to [27, 28] for details). Tensor components in a Cartesian
coordinate system, are denoted by indices, e.g., ai,Aij where the number of indices corre-
sponds to the tensor order and the range of the values indicates the dimension. Two types
of indices must be distinguished. Iterators in a set of discrete values are denoted by upper
case letters I, J, . . . ∈N, whereas the indices of tensor components in the three-dimensional
space are denoted by lower case letters i, j, . . . range from one to three. Unless otherwise in-
dicated, Einstein’s convention for summation holds, thus indices appearing twice in a single
expression imply summation.

2 Description of Fiber Orientation States

The scalar-valued fiber orientation distribution function (FODF)

ψ : S2 �→ [0;∞) (1)

is defined as a mapping from the unit-sphere S2 to non-negative real numbers. The FODF
quantifies the probability P of finding fibers in a specific interval I ⊆ S2 via integration

P (I) =
∫
I

ψ dS. (2)

Following the work of Kanatani [10], FOTs of the first-kind are defined as statistical mo-
ments of the FODF. Hence, the n-th-order FOT A〈n〉 is given by

A〈n〉 =
∫
S2

ψ (n)n⊗n dS, (3)

where n is a unit-vector and the operator (·)⊗n represents the n-th time dyadic product. For
the case of a finite number N of equally weighted discrete fibers, Equation (3) reduces to

A〈n〉 = 1

N

N∑
I

n⊗n. (4)

Demanding the FODF to be an even function ψ (n) = ψ (−n), it is obvious that all
odd-order FOT vanish, while all even-order FOT are completely symmetric. Further, the
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(n − 2)th-order FOT is fully contained within the nth-order FOT and can be obtained by a
linear mapping of the second-order identity tensor I by

A〈n−2〉 = A〈n〉 [I ] . (5)

Advani and Tucker III [11] showed that the exact orientation-average of a nth-order trans-
versely isotropic tensor can be computed explicitly if the nth-order FOT is known. They
obtained an exact solution for Jeffery’s Equation [29] for an ellipsoidal inclusion in a fluid
flow, yielding a transport Equation for the nth-order FOT in space and time

∂A〈n〉
∂t

+ ∂A〈n〉
∂x

[u] = f 〈n〉

(
A〈n〉,A〈n+2〉,

∂u

∂x
, . . .

)
, (6)

with u representing the velocity field. Due to the rapidly increasing number of unknowns,
Equation (6) is implemented almost exclusively for n = 2 in available solvers. Hence, only
second and fourth-order FOTs are regarded in Equation (6) and are denoted hereafter via A

and A respectively. The normalization condition of the FODF implies that the trace of the
second-order FOT is equal to one, i.e.,

tr (A) = 1 (7)

holds. The set of all admissible fourth-order FOT in dimensions two and three may be ob-
tained by completely symmetric tensors of fourth order which eigenvalues are non-negative
and sum to one [12, 27].

2.1 Parameterization of Fiber Orientation Tensors

The normalization constraint in Equation (7) implies
∑3

i λi = 1 for each FOT of second-
order with eigenvalues λi . In consequence, a two-parameter representation of the rotation-
invariant shape is given by the non-orthogonal decomposition

A (α1, α3) = Aiso + α1

⎛
⎝1

− 1
2 − 1

2

⎞
⎠vi ⊗ vj + α3

⎛
⎝− 1

2 − 1
2

1

⎞
⎠vi ⊗ vj (8)

following Bauer and Böhlke [27]. An orthogonal basis transformation Q ∈ SO(3) of a fixed
global basis {ei} yields the right-handed orientation coordinate system (OCS) {vi}, such that
Q = vi ⊗ ei holds [27]. Even in the absence of any material symmetry [30], the OCS is not
unique, as the indispensable orthotropy of a second-order tensor induces an ambiguity of the
sign of pairs of the eigenvectors vi . However, any choice of the eigensystem is suitable and
only effects Q. Admissible second-order FOT are strictly positive semidefinite, restricting
the ranges of α1, α3. The set N com comprises all pairwise commuting FOT of second-order
and is defined by

N com = {− 2/3 ≤ α1 ≤ 2/3, (9)

− 1/3 + 1/2α1 ≤ α3 ≤ 2/3 + 2α1 ∧ 2/3 − α1
}
.

Two tensors A1 and A2 commute, if

A1 A2 = A2 A1 (10)
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Fig. 1 Visualization of N com

adapted from [27]

holds. Hence, A1 and A2 share an equivalent set of eigenvectors. The set N com is visualized
in Fig. 1. The classical orientation triangle [31], imposing descending order of the eigen-
values, may be represented based on the parameterization (8) by 0 ≤ α1 ≤ 2/3, α1 − 1/3 ≤
α3 ≤ 0 defining a subspace of N com [27].

Based upon harmonic decomposition [30, 32], Bauer and Böhlke [27] derive a parameter-
ization of a generic fourth-order FOT A containing a constant isotropic part Aiso, a deviatoric
distribution being linear in the second-order FOT A and the remaining deviatoric harmonic
tensor F with

A= A
iso + 6

7
sym

(
A′ ⊗ I

)+ F. (11)

The constant isotropic tensor is A
iso = 7/35 sym (I ⊗ I ). The fourth-order deviator F has

nine degrees of freedom and following Bauer and Böhlke [27] might be defined by the tensor
coefficient representation

F (d1, . . . , d9) = (12)
⎛
⎜⎜⎜⎜⎜⎝

−d1 − d2 d1 d2 −√
2 (d4 + d5)

√
2d6

√
2d8

−d1 − d3 d3
√

2d4 −√
2 (d6 + d7)

√
2d9

−d2 − d3
√

2d5
√

2d7 −√
2 (d8 + d9)

completely symmetric

⎞
⎟⎟⎟⎟⎟⎠

Bv
ξ ⊗ Bv

ζ ,

within an ortho-normal Kelvin-Mandel-basis Bv
ξ with ξ = 1..6 spanned by the OCS of the

corresponding second-order FOT. Material symmetry constraints have simple representa-
tions within the OCS-based parameterization (11). An orthotropic fourth-order FOT is char-
acterized by vanishing coefficients d4 to d9, i.e.,

F
ortho (d1, d2, d3) = F (d1, d2, d3,0,0,0,0,0) . (13)
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2.2 Closure Approximations for Fiber Orientation Tensors

Closure algorithms based on second-order fiber orientation tensors are frequently used to
solve at least two problems. The first problem is solving the transport problem of flowing
fibers in Equation (6) defining the spatial and temporal evolution of a given initial field of
fiber orientation tensors. The second problem is averaging a transversely isotropic mechan-
ical stiffness with the Advani-Tucker [11] orientation average, if only second-order FOT in-
formation is available. A closure approximation C is a mapping A = C (A) which associates
any second-order FOT with exactly one fourth-order FOT. Research has brought forth a
large variety of closure approximations. These include early work by Advani and Tucker III
[7], Cintra Jr and Tucker III [31], Hand [33], De Frahan et al. [34] as well as significant ex-
tensions by Han and Im [35], Chung and Kwon [36, 37] and more recent findings [38–41].
Fourth-order FOT obtained by closure approximations should fulfill several requirements.
The obtained tensor A should contract to the second-order FOT A it has been obtained for,
have full index symmetry, reflect the material symmetry of A, and be positive semidefinite,
meaning all eigenvalues of A have to be strictly non-negative. The linear closure (LC) [33]
and quadratic closure (QC) [11] as well as the hybrid closure (HC) [35] are widely applied
due to their simplicity. The formulae are given through

CLC (A) = A
iso + 6

7 sym
(
A′ ⊗ I

)
, (14)

CQC (A) = A ⊗ A, (15)

CHC (A) = 27 det (A)CLC (A) + (1 − 27 det (A))CQC (A) . (16)

More physically-consistent, but computationally more expensive, closure approximations
are, e.g., the invariant-based optimal fitting closure (IBOF) [37] or orthotropic fitted closure
(OFC) [31, 36]. Additionally, closure approaches taking the flow field information into ac-
count such as the so-called exact closure [38] or natural closure [34] have been proposed
and extended in recent years. For comprehensive overviews and investigations of available
closure approximations, the reader is referred to [42]. Most closure methods are constructed
to yield orthotropic fourth-order FOT, thus describing the coefficients d1, d2, d3 in Equation
(12) as functions of α1 and α3. In addition to the aforementioned direct closure methods,
FODF ψ reconstruction methods can be used to post-compute the fourth-order FOT ac-
cording to Equation (3). A noteworthy candidate can be found in Shannon’s [43] maximum
entropy method (MEP) estimating the FODF based on the second-order FOT A, which can
therefore be regarded as indirect closure approximation [14, 44].

2.3 Margin of Closure Uncertainty

While A
iso is constant and A′ is unambiguously given by the associated second-order FOT

A, the residual deviatoric tensor F in Equation (11) maps the identity tensor I onto the null-
space F [I ] = 0. In consequence, F must be constructed on the basis of assumptions when
a closure operation is applied. Since only orthotropic closure schemes will be considered
in the following investigations, F is assumed to possess this material symmetry. Note that
the variety of valid F depends on A itself. The set of admissible orthotropic fourth-order
FOT N ortho is obtained by demanding positive semidefiniteness [12, 27]. Bauer and Böhlke
[27] graphically presented the variety of orthotropic fourth-order FOT and gave an explicit
expression for those orthotropic fourth-order FOT which contract to an isotropic second-
order FOT. However, to the authors’ best knowledge an explicit algebraic expression for the
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Fig. 2 Margin of orthotropic uncertainty
∥∥∥	Fortho

max

∥∥∥ as a function of the second-order FOT’s eigenvalues

λ1, λ2

complete space of N ortho is not given in literature, yet. This gap is closed by the contributions
of this work, as an explicit expression and a brief derivation of all admissible orthotropic
fourth-order FOT is given in Appendix A.

Having identified the limits of admissible fourth-order information potentially identified
by orthotropic closure approximations, scalar measurements for the uncertainty can be for-
mulated. For this work, we propose a strictly-positive margin quantity

∥∥	F
ortho
max

∥∥ defined
as

∥∥	F
ortho
max

∥∥ (A) = max
A1,A2 ∈N ortho

∣∣
A

‖A1 −A2‖ . (17)

A derivation of the explicit expression for
∥∥	F

ortho
max

∥∥ is given in Appendix A. The definition
allows the comparison of fourth-order deviators of dimensions two and three in the orthog-
onal space spanned by {d1, d2, d3}. Additionally, this measure is invariant under any permu-
tations of the basis vectors of the OSC. The graph of

∥∥	F
ortho
max

∥∥ over the orientation triangle
is given in Fig. 2. In loose terms the value of the measure

∥∥	F
ortho
max

∥∥ at given A indicates
how many candidates A exist that contract to this very FOT of second-order. The course
of
∥∥	F

ortho
max

∥∥ is monotonic along the edges with a global maximum at the planar isotropic
state (⊕-marker) and a global minimum of zero for the unidirectional state (�-marker). The
latter is plausible since a unidirectional FODF and therefore all its higher-order moments
are completely described by AUD. Along the transversely isotropic line (depicted in blue)
the isotropic state at λ1 = λ2 = 1/3 (sphere-shaped marker) represents an inflection point.

2.4 Mapping of Fiber Orientation Tensors

Within a virtual process chain, the transfer of data from one discretization to another is a
common task. An example is given by the transfer of FOT data from a flow simulation to
a consecutive structural simulation. Consider two non-congruent discretizations of solution
domains, e.g., unstructured meshes. A mapping operation is carried out to compute data on
a target discretization (·)(Tgt)

I based on data given at specific points of a source discretization
(·)(Src). The data both on the target and the source discretization might be associated with
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Fig. 3 Graphical illustration of
the subdomain approach. The

target domain 

(Tgt)
1 is

subdivided into the subdomains



(Src)
J

∩ 

(Tgt)
1 J = 1,2,3

specific locations (nodes, integration points, . . . ) or specific subdomains (elements). FOT
data is assumed to be an intensive state function. Thus, the subdomain-rule for integration
can be applied to compute the mean value

(·)(Tgt)
I = 1∣∣∣
(Tgt)

I

∣∣∣
∫



(Tgt)
I

(·) d
 (18)

of the I -th subvolume of the target discretization, based on a sum of the intersections of all
N sub-volumes 


(Src)
J of the source discretization which intersect with the target sub-volume



(Tgt)
I of interest by

(·)(Tgt)
I ≈ 1∣∣∣
(Tgt)

I

∣∣∣
∑

J

∫



(Src)
J

∩

(Tgt)
I

(·)(Src) d
. (19)

The size of a subvolume in Equation (19) is depicted by |
| = ∫



1 d
 and the procedure
is visualized in Fig. 3. Assuming the FOT to be piece-wise constant within each subdomain

J , Equation (19) simplifies to

(·)(Tgt)
I =

∑
J

∣∣∣
(Tgt)
I ∩ 


(Src)
J

∣∣∣∣∣∣
(Tgt)
I

∣∣∣︸ ︷︷ ︸
:=wJ

(·)(Src)
J . (20)

Based on the introduced assumptions, a specific Euclidean mapping is used hereinafter. The
generally unknown FODFs on the target subdomains 


(Tgt)
I compute to

ψ
(Tgt)
I =

∑
J

wJ ψ
(Src)
J . (21)

The linearity of Eqn. (21) justifies to apply the average scheme directly to all FOTs of order
n since

A
(Tgt)
〈n〉,I =

∫
S2

ψ
(Tgt)
I n⊗n dS =

∑
J

wJ

∫
S2

ψ
(Src)
J n⊗n dS =

∑
J

wJ A
(Src)
〈n〉,J . (22)
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Thus, the tensor coefficients of the second and fourth-order FOT in a global ortho-normal
basis {ei} read

A
(Tgt)
I,ij ei ⊗ ej =

∑
J

wJ A
(Src)
J,ij ei ⊗ ej ,

A
(Tgt)
I,ijklei ⊗ ej ⊗ ek ⊗ el =

∑
J

wJ A
(Src)
J,ijklei ⊗ ej ⊗ ek ⊗ el .

(23)

Throughout this work, we assume the FOT field to be defined over the entire spatial tar-
get domain. Therefore, effective values can be determined by averaging following Equa-
tion (23). In contrast to this averaging operation, interpolation techniques [45] are intended
to increase the resolution of discrete spatial fields. Consequently, interpolation plays an im-
portant role if the source field is obtained experimentally or numerically in terms of discrete
point data with limited resolution [46].

3 Differences Between Fourth-Order Average and Second-Order
Average

Most virtual process chains for discontinuous fiber-reinforced plastics (DiCoFRP) contain
both a FOT-closure operation and a FOT-mapping operation. With respect to the ordering
of these operations, two routes are possible, either the closure is followed by the mapping
or vice versa. Based on those routes the fourth-order average and second-order average
of a fourth-order FOT are introduced. An evaluation of the range of deviations between
those averages is conducted and accompanied by the comparison of the corresponding tensor
glyphs.

3.1 Problem Definition

Usually, at the interface between process simulation and structural simulation, three opera-
tions or steps have to be distinguished:

• Closure of available second-order FOTs in order to obtain corresponding fourth-order
tensors using a generic closure scheme C.

• Mapping of available data from source (Src) to target (Tgt) discretization utilizing a
generic averaging scheme F .

• Homogenization and orientation averaging to receive effective macroscopic properties.

While the homogenization is naturally performed as part of the structural simulation mod-
ule, either as pre-processing operation or during solver runtime, the order of FOT closure
and mapping is arbitrary at first glance. Hence, two conceivable routes remain, which are
depicted in Fig. 4. Starting from second-order FOT A

(Src)
I on the source discretization (light

blue rectangles), the upper row corresponds to the “closing first” method. Herein, the indi-
vidual fourth-order tensors N

(Src)
I are computed using a generic closure technique C. Each

closure yields an individual margin of uncertainty F
(Src)
I , which depends on the underlying

lower-order tensor A
(Src)
I and is symbolized through the semi-opaque gray annuli. Subse-

quently, the results are mapped onto the target discretization (light green rectangles) uti-
lizing a generic mapping technique F . The resulting fourth-order Ā(Tgt)

av4, I tensor is referred
to as fourth-order average. Contrary to this, the lower row of Fig. 4 illustrates the alterna-
tive approach, called “mapping first”. Firstly, the second-order FOT are mapped yielding an



C. Krauß et al.

Fig. 4 Possible routes in virtual process chains. The “closing first” approach is depicted in the upper row.
The bottom row corresponds to the “mapping first” approach

Table 1 Literature review of CAE-chains, corresponding manufacturing process and order of closure and
mapping. In each case the authors decide to follow the “mapping first”-approach, i.e., map second-order FOT
and conduct the closure on the target mesh

Reference Process Mapping Closure Func/Arg

Görthofer et al. [3] SMC MpCCI[47] IBOF Arg

Chen et al. [48] SMC n/a IBOF Arg

Fouchier et al. [49] IM Digimat® MAP IBOF Arg

Dörr et al. [50] GMT MpCCI IBOF Arg

Buck et al. [51] IM Triangularization IBOF Arg

ABAQUS/STANDARD [52] - internal Hybrid Arg

Ogierman and Kokot [53] IM n/a Hybrid Arg

averaged measure Ā
(Tgt)
I . Afterwards, on the target mesh, the closure operation is applied

yielding the second-order average Ā
(Tgt)
av2 ,I with its individual level of uncertainty.

A brief overview of available commercial and academic methodologies reveals, that all
approaches follow the “mapping first” route and perform FOT-closure on the target dis-
cretization after mapping takes place (cf. Table 1). This order appears to be the logical
choice in terms of simplicity, since the number of necessary information drastically increases
with the tensor order. The tensor characteristics can be expressed by 5 for second- and 14
independent scalars for fourth-order FOT, respectively [27]. However, more commonly used
storage of coefficients concerning a global basis using the Voigt or Mandel notation requires
6, respectively 21 scalars per tensor [54], if algorithms are not optimized for symmetry. An-
other evident argument might be the mapping to be less computationally expensive when
applied to second-order tensors.

In the following sections, we consider the problem depicted in Fig. 4. Results on two
source domains 


(Src)
I , I = 1,2 of identical size are mapped onto the target domain 
(Tgt) =



(Src)
1 ∩ 


(Src)
2 , yielding a single value. This minimal example covers the main features of

applications within real simulation chains, where the number of elements can quickly reach
six digits. With the averaging method defined in Equation (19), the fourth-order average
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Ā
av4 and the second-order average Ā

av2 are obtained by

Ā := A(Tgt) = 1

2

(
A

(Src)
1 + A

(Src)
2

)
,

Ā
av2 := Ā

(Tgt)
av2 = C

(
Ā
)
,

Ā
av4 := Ā

(Tgt)
av4 = 1

2

(
C
(
A

(Src)
1

)
+ C

(
A

(Src)
2

))
.

(24)

A relative measure of deviation is introduced via

‖	A‖rel := ‖Āav4 − Āav2‖
‖Aiso‖ with ‖Aiso‖ =

√
5

5
. (25)

We visualize FOT in terms of a tensor glyph. A parametric representation of this glyph is
obtained by the FOT’s projection on the unit-triad

a (n) = A
[
n⊗3

]
n ∈ S2. (26)

3.2 Averaging Commuting Fiber Orientation Tensors

We investigate the problem depicted in Fig. 4 with the first source FOT A
(Src)
1 being fixed

to either full isotropy, planar isotropy or unidirectionality, and the second source FOT
A

(Src)
2 (α1, α3) taking arbitrary values within the set of commuting second-order FOT N com,

i.e., being a function of α1 and α3. We consider the quadratic, hybrid and IBOF closure
approximations. For each of those closures combined with every FOT defined by the tu-
ple (α1, α3), we calculate the deviation of second-order and fourth-order average following
Equations (25) and (24). The results of the numerical experiments are depicted in Fig. 5 as
contour courses of 	‖A‖rel over the admissible range of (α1, α3), which is indicated by the
black dashed lines in each subplot.

We draw two conclusions from Fig. 5: Firstly, the co-domain of deviations is remark-
ably large, ranging from zero to one between two unidirectional states in Fig. 5 (right col-
umn). Secondly, for all references the IBOF closure (upper row) yields the lowest deviations
	‖A‖rel. The left column in Fig. 5 shows the case of isotropic reference tensor. For each of
the three closures considered, the maxima are located at the three edges of the triangles rep-
resenting unidirectional states with differing principal axis. Both, quadratic closure (mid-
dle row) and IBOF closure (upper row) appear to increase monotonically with increasing
separation from the reference FOT Aiso. The local minima are located on the transversely
isotropic lines connecting isotropic and planar isotropic states. In contrast, the hybrid clo-
sure (lower row) exhibits significant non-monotonic behavior, which can be visualized best
on the planar edges with local maxima at the planar isotropic states. The same observation
is discovered, if the reference tensor is fixed at a planar isotropic state (cf. Fig. 5 (middle
column)). Here the global maxima are found at the opposing unidirectional state, e.g., if
Aref = 1

2 (v1 ⊗ v1 + v2 ⊗ v2), the relative deviation 	‖A‖rel becomes maximal at v3 ⊗ v3.
Fig. 5 (right column) depicts the results for a unidirectional reference FOT. Analogous to
both previously discussed cases, 	‖A‖rel positively correlates with increasing distance to
the reference state with maxima recurring at the opposing unidirectional state. The relative
variance between hybrid and quadratic closure is low. To give an example of the influ-
ence of the tensor shape, respectively anisotropy, tensor glyphs for the edge-case of two
unidirectional second-order FOT with different principal axis p are studied in Fig. 6. The
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Fig. 5 Contours of the relative deviation between second-order average Ā
av2 and fourth-order average Ā

av4

over the admissible range of commuting second-order FOT N com

Fig. 6 Tensor glyphs for
resulting Ā candidates with
A1 = v1 ⊗ v1, A2 = v2 ⊗ v2.
The dashed lines indicate the
planes of symmetry

second-order volume average Ā = 1
2

(
v⊗2

1 + v⊗2
2

)
yields planar isotropic FOT, which outputs

a planar isotropic fourth-order average when processed by a closure method. This behavior
is visualized by means of the top row in Fig. 6 leading to disc-shaped tensor glyphs. The
different diameters are due to the quadratic and hybrid closure violating the normalization
condition I

S · A = 1, which is a known drawback [40]. In contrast, all closure schemes
considered yield unidirectional FOT of fourth order C

(
p⊗2

)= p⊗4. Thus, the fourth-order
average Āav4 computes to 1

2

(
v⊗4

1 + v⊗4
2

)
preserving structural information. The correspond-

ing tensor glyphs in the bottom row of Fig. 6 exhibit two distinct maxima in the original
unidirectional directions v1 and v2.
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4 Consistency of Closure Schemes

The previous studies have revealed notable differences between second-order and fourth-
order averages. Section 4.1 proves that the second-order average may yield mathematically
and physically inconsistent results within the subspace of commuting transversely isotropic
FOT. In Sect. 4.2, we study the subspace of commuting planar FOT.

For the following examples, we define a valid average fourth-order tensor as a special
case of Eqn. (21) through the following theorem:

Theorem 4.1 Given two second-order FOT A1 and A2 and corresponding weights w1 ∈
[0,1] , w2 = 1−w1, an averaged fourth-order FOT Ā is only valid, if it could be constructed
from some FODF ψ̄ = w1ψ1 + w2ψ2 via Ā = ∫

S2 ψ̄ n⊗4 dS, with A1 = ∫
S2 ψ1 n⊗2 dS and

A2 = ∫S2 ψ2 n⊗2 dS.

4.1 Transversely Isotropic Fiber Orientation Distributions

In this section, we focus on transversely isotropic FODF which represent a subspace of all
possible FODF. A transversely isotropic FODF ψ (n) is isotropic within each plane perpen-
dicular to a distinct axis v1, i.e., ψ (v⊥) = ψ⊥ holds with constant value ψ⊥ for all directions
v⊥ with v⊥ · v1 = 0. The second and fourth-order moments can be parameterized following
[14, 27] by

Atv (α) =
∫
S2

ψ (n)n⊗2 dS = Aiso + α F tv, (27)

A
tv (α,ρ) =

∫
S2

ψ (n)n⊗4 dS = A
iso + α sym

(
F tv ⊗ I

)+ ρ F
tv (28)

with the second-order structure tensor F tv = v1 ⊗ v1 − 1/2 (v2 ⊗ v2 + v3 ⊗ v3) and the
irreducible fourth-order structure tensor Ftv = F

ortho (d1 = d2 = −4, d3 = 1). The convex set
N tv is defined as the unity of all positive semidefinite transversely isotropic FOT and gives
bounds to the linear coefficients α and ρ [55] by

N tv =
{
A

tv (α,ρ)

∣∣∣− 1

3
≤ α ≤ 2

3
, ρmin (α) ≤ ρ ≤ ρmax (α)

}
(29)

with

ρmin (α) = 1

8
α2 − 1

42
α − 1

90
, ρmax (α) = 1

56
α + 1

60
. (30)

If, and only if, two transversely isotropic A commute, the deviatoric distributors F tv and
F

tv are constant. Taking the volume average Ā of two commuting transversely isotropic
fourth-order FOT reduces to averaging the parameters α and ρ, i.e.,

Ā= 1

V

∫
v

A dv = A
iso + 1

V

∫
v

α dv
6

7
sym

(
F tv ⊗ I

)+ 1

V

∫
v

ρ dvFtv (31)

for the continuous, and

Ā =
∑

I

cIAI = A
iso +

∑
I

cI αI

︸ ︷︷ ︸
:=ᾱ

6

7
sym

(
F tv ⊗ I

)+∑
I

cI ρI

︸ ︷︷ ︸
:=ρ̄

F
tv (32)
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for the subdomain-wise constant case, respectively. The volume fractions cI sum up to one.
As a direct consequence, the compact representation of the two closure-related fourth-order
candidates, fourth-order average and second-order average, follows as

Ā
av4 =A

iso + ᾱ
6

7
sym

(
F tv ⊗ I

)+∑
I

cI ρC (αi)

︸ ︷︷ ︸
:=ρ̄av4

F
tv, (33)

Ā
av2 =A

iso + ᾱ
6

7
sym

(
F tv ⊗ I

)+ ρC (ᾱ)︸ ︷︷ ︸
:=ρ̄av2

F
tv, (34)

where ρC represents the result of the closure. To be a valid candidate, Ā has to be a member
of N tv defined in Equation (29), i.e., ρmin (ᾱ) ≤ ρ̄ ≤ ρmax (ᾱ). If the chosen closure yields
valid FOT for all α, the second-order average Ā

av2 automatically fulfills this constraint.
The same applies for the fourth-order average Ā

av4 since N tv is convex and the arithmetic
average is represented by a straight line in this set. However, a stricter constraint is given by
the convex set N tv

average(α1, α2) ⊆ N tv defined by

N tv
average(α1, α2) =

{
A

tv(α, ρ)

∣∣∣ (α, ρ) ∈ conv
({

(α1, ρ
min(α1)), (35)

(α1, ρ
max(α1)),

(α2, ρ
min(α2)),

(α2, ρ
max(α2)),

})}

with the operator conv(·) constructing the convex hull of a given set of points. Retrieving
Theorem 4.1, the constraints forming the set in Equation (35) follow directly from the lin-
earity of the orientation average. The construction of the set N tv

average(α1, α2) can easily be
extended to more than just two information on FOT of second-order. This stronger constraint
does not impose a restriction to the relative volume fraction cI ∈ [0, 1] and is visualized in
Fig. 7 for the example depicted in Fig. 4 with A1 = Aiso + α1F

tv and A2 = Aiso + α2F
tv.

The tensors A1 and A2 in Fig. 7 are obtained from α1 and α2 by the IBOF closure and
represented through an up-pointing triangle and down-pointing triangle, respectively. The
extrema of ρ(αI ) yield the extremal fourth-order FOT A

m
I with I = 1,2 and m = min,max

which represent edge-points of the set N tv
average(α1, α2) (dark gray area) in Fig. 7. For the

depicted problem the second-order average Ā
av2 is located outside of N tv

average(α1, α2) and

therefore is not admissible. In contrast, the fourth-order average Ā
av4 (diamond marker) is

valid and located halfway on the straight line connecting A1 and A2. The findings implicate
that the IBOF closure is indeed not self-consistent with regard to volumetric subdomain
composition. In loose terms, this translates to the following statement: If the second-order
FOT A1 and A2 of two subdomains are determined exactly, hence the admissible FOT Ā
of the union of those subsets is also exactly determinable. The IBOF closure of Ā how-
ever, can yield a physically impossible result. For the special case of transversely isotropic
second-order FOT, Müller and Böhlke [14] concluded that the deviations between the clo-
sures IBOF, MEP, and ORF schemes are negligible. Thus, it has to be expected that those
also suffer from lacking self-consistency.

The difference between fourth-order average and second-order average by means of the
linear coefficient ρ as a function of the parameter α of two equally weighted second-order
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Fig. 7 Location of the fourth-order average and second-order average of transversely FOT in relation to the
sets N tv and N tv

average(α1, α2). In the depicted case of α1 = −1/5, α2 = 11/20 the second-order average

Āav2 is invalid

FOT is presented in Fig. 8(a). The graph is symmetric to the line α1 = α2 since the label-
ing order is arbitrary. A higher distance between the two basic values with respect to the
parameter α yields higher deviations between the values ρ̄av4 and ρ̄av2, reaching a maxi-
mum for the average of a unidirectional (α = 2/3) and planar-isotropic state (α = −1/3).
Fig. 8(b) visualizes the validity of the second-order average ρ̄av2 for all possible combina-
tions of α1, α2. All pairs inside the blue domain yield valid, i.e., physically possible, results.
Fig. 8(b) highlights in red all combinations, which violate the subdomain self-consistency.
The black dot marks the example shown in Fig. 7.

4.2 Planar Fiber Orientation Distributions

In this section, we focus on planar FODF which represent a subspace of all possible FODF.
We require fibers of a planar FODF to be located solely within a plane spanned by the
vectors v1 and v2. Following Bauer and Böhlke [27], the second- and fourth-order FOT of a
planar FODF can be expressed by

Apl (α) =
(

1

2
+ 3

4
α

)
v⊗2

1 +
(

1

2
− 3

4
α

)
v⊗2

2 , (36)
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Fig. 8 Deviations of fourth-order averaged and second-order averaged coefficient ρ (left) and regions of
validity for pairwise combinations of α1, α2 for transversely isotropic FODFs

A
pl (α, d1, d8) =A

iso + 6

7
sym

((
Apl (α)

)′ ⊗ I
)

+ F
pl (α, d1, d8) . (37)

The planar harmonic structure tensor

F
pl (α, d1, d8) = F

(
d1, d2 = −15α − 6

140
, d3 = 15α − 6

140
, d4...d7 = 0, d8, d9 = −d8,

)
. (38)

is defined as a special case of the triclinic one defined in Equation (12). The linear co-
efficients d1, d8 define the degree of orthotropy and triclinity respectively [27]. Bauer and
Böhlke [27] derived an explicit representation of the set N pl containing all admissible planar
fourth-order FOT, which is re-formulated in [44]. The lengthy expressions are not repeated
in this context but rather a visualization of the body of admissible parameter combinations
for −2/3 ≤ α ≤ 2/3 is given in Fig. 9. Analogous to the transversely isotropic edge case (cf.
Sect. 4.1) closure-related fourth-order and second-order averages are directly applied to the

linear coefficients d1, d8. The resulting closure-related valid set N pl
average

∣∣∣
A

follows as convex

union by

N pl
average(α1, α2) (39)

=
{
A

pl(α, d1, d8)

∣∣∣ (α, d1, d8) ∈ conv
({

{α1,−4/35 ≤ d1 ≤ dmax
1 (α1) , dmin

8 (α1, d1) ≤ d8 ≤ dmax
8 (α1, d1)},

{α2,−4/35 ≤ d1 ≤ dmax
1 (α2) , dmin

8 (α2, d1) ≤ d8 ≤ dmax
8 (α2, d1)},

})}
.

Using the same style and nomenclature as in the previous section, the consistency of the
closure is inspected graphically. Fig. 9 shows the set N pl (light gray body) in the parameter
space spanned by α, d1 and d8. For constant second-order information α, the admissible
values of d1 and d8 form a disc in the parameter-space. According to Equation (39), the
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Fig. 9 Location of fourth-order average and second-order average of planar FOT

Table 2 Statistical entities for the planar averaging case: A1 = v⊗2
1 , A2 = v⊗2

2 . The vector-valued Dirac

distribution is defined as: δ (n,v) := 1
2 (δ (n − v) + δ (n + v))

Domain Assumption ψ Second-order FOT A Fourth-order FOT A


1 exact δ (n,v1) := ψ1 v⊗2
1 v⊗4

1

2 exact δ (n,v2) := ψ2 v⊗2

2 v⊗4
2


1 ∩ 
2 exact 1
2 (ψ1 + ψ2) 1

2

(
v⊗2

1 + v⊗2
2

)
1
2

(
v⊗4

1 + v⊗4
2

)


1 ∩ 
2 Āav2 1
2

(
v⊗2

1 + v⊗2
2

)
Apl.iso


1 ∩ 
2 Āav4 1
2

(
v⊗2

1 + v⊗2
2

)
1
2

(
v⊗4

1 + v⊗4
2

)

closure-related valid space N pl
average (α1, α2) forms a convex hull bounded by the admissi-

ble ranges at α1,2, which is depicted in dark-gray color. Admissible orthotropic FOT A
pl

are located on the plane d8 = 0. Since the regarded IBOF-closure exclusively yields or-
thotropic results, the investigations can be reduced to the subset N pl,ortho, which circumfer-
ence is indicated by the black dash-dotted line in Fig. 9. The course of the IBOF-closure
d IBOF

1 (α) (blue bold line) is axis-symmetric to the isotropic state at α = 0. The derivation
of the closure-related average candidates Ā

av2 and Ā
av4 follows Sect. 4.1. The limitations

of the transversely isotropic case occur here as well. It is possible to find combinations
{α1, α2} that yield invalid second-order averages, such as the example depicted in Fig. 9.
Fig. 10(a) gives the quantified difference between fourth-order average and second-order
average by means of the linear coefficient d1 as a function of the parameter α of two
equally weighted second-order FOT. Parameter combinations {α1, α2} resulting in invalid
second-order average Ā

av2 are located in the red domain in Fig. 10(b). To emphasize the
argumentation, the extreme case A1 = Apl (α = 2/3) = v⊗2

1 , A2 = Apl (α = −2/3) = v⊗2
2 is

considered in Table 2. For the unidirectional cases, the FODF, and thus all corresponding
higher-order FOT, can be reconstructed from the second-order FOT. The fourth-order av-
erage results as moment of the exact averaged FODF. On the contrary, the second-order
average is planar isotropic, which would indicate an FODF possessing deviators of order
six and above at most. Obviously, this distribution deviates from the exact one. That is,



C. Krauß et al.

Fig. 10 Deviations of fourth-order averaged and second-order averaged coefficient d1 (left) and regions of
validity for pairwise combinations of α1, α2 for planar FODFs

∫
S

1
2 (ψ1 + ψ2) n⊗4 dS �= Ā

av2. The previously discussed graphical access reveals the same

interrelation. The convex set N pl
average (2/3,−2/3) degenerates to a single fourth-order tensor

A =A
pl.iso = A

pl (α = 0, d1 = −4/35), which coincides with the fourth-order average Ā
av4.

5 Implications for Mechanical Homogenization

We identify implications of the outlined closure inconsistency in terms of second-order av-
erages on linear elastic material homogenization.

5.1 Two-Step Homogenization Following Tandon & Weng and Tucker

Effective mechanical properties of inhomogeneous materials may be approximated by mean
field homogenization. Orientation-averaged mean field homogenization methods combine
the analytical solution by Eshelby [56] with an orientation averaging methods, e.g., fol-
lowing Advani and Tucker III [11]. For the following investigations, we use the two-step
mean field homogenization approach originally proposed by Tandon and Weng [26] (TW).
In the mechanical context, this method is restricted to spheroidal isotropic inclusions in an
isotropic matrix. For common glass-fiber-reinforced polymers these assumptions apply [20].
The effective stiffness of interest C̄ is regarded as linear mapping of volume-averaged elastic
strains 〈ε〉 onto volume-averaged stresses 〈σ 〉, such that the Equation 〈σ 〉 = C̄ [〈ε〉] holds.
The fiber volume content cf is a one-point characteristic of the microstructure and enters
the homogenization method of Tandon and Weng [26] within a first homogenization step
leading to the transversely isotropic stiffness tensor C̄tv

TW with the transversely isotropic axis
p by

C̄
tv
TW (p) = � (cf,p,Cfiber,Cmatrix) (40)

with the isotropic stiffness of the fibers Cfiber and the matrix Cmatrix, respectively. Within
a second homogenization step, this transversely isotropic stiffness is orientation averaged
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following Advani and Tucker III [11] based on the fiber orientation tensor A, reflecting the
orientation of the fibers within the microstructure, representing another one-point character-
istic. In consequence, the anisotropic effective stiffness of the composite C̄TW (A) follows
in its irreducible form as

C̄TW (A) = 〈C̄tv
TW〉S2 (A) =

∫
S2

ψ (n) C̄tv
TW (n) dS (41)

= b1 P1 + b2 P2 + b3 J3

[
A′]+ b4 J4

[
A′]+ b5 F.

Here, P1 denotes the identity on second-order spherical tensors, P2 the identity on symmetric
traceless second-order tensor, while J3 and J4 are isotropic tensors of order six. A′ and
F represent the deviators of A in accordance with Eqn. (11). The scalar coefficients bi

can be obtained from the tensor coefficients of C̄tv
TW. The authors chose the representation

(41) to point out the linearity of the orientation average in F. It should be noted, that the
orientation average of the unidirectional stiffness tensor mathematically corresponds to a
Voigt-like averaging [57, 58]. Different approaches such as performing orientation average
on strain-localization tensor approximations or effective unidirectional compliance tensors
(Reuss-like) exist [44, 59].

5.2 Structural Bounds for the Strain Energy

The strain energy density W (C,n) of a hyperelastic material with stiffness tensor C induced
by a virtual unidirectional unit strain ε0 = n ⊗ n with n ∈ S2 is

W (C,n) = 1

2
(n ⊗ n) ·C [n ⊗ n] . (42)

If for a given microstructure with transversely isotropic material symmetry, only the second-
order FOT Atv = Aiso + αF tv is known, the corresponding strain energy, which is based on
the effective stiffness of the microstructure, e.g., approximated by Equation (41), is sub-
jected to uncertainty, due to the missing fourth-order FOT information. As the fourth-order
FOT information is restricted to those FOT which contract to the given second-order FOT,
i.e., A ∈ N tv

∣∣
ᾱ
, valid values of the strain energy are bound by

W
(
C̄TW (A) ,n

) ∈
{
W
(
C̄TW (A) ,n

) |A ∈ N tv
∣∣
ᾱ

}
︸ ︷︷ ︸

:=W tv
∣∣
ᾱ

∀n ∈ S2. (43)

We consider a microstructure, which is the union of two sub microstructures. Both sub
microstructures are assumed to be transversely isotropic and have commuting second-order
FOT defined by α1 and α2, respectively. The admissible range of the strain energy density
of the union microstructure is restricted (cf. Sect. 4.1) to

W
(
C̄TW (A) ,n

) ∈
{
W
(
C̄TW (A) ,n

) |A ∈ N tv
average (α1, α2)

∣∣∣
ᾱ

}
︸ ︷︷ ︸

:=W tv
average

∣∣
ᾱ

⊆ W tv
∣∣
ᾱ

(44)

∀n ∈ S2.

The strain energy densities corresponding to Āav2 and Āav4 are denoted W̄ av2 and W̄ av4,
respectively.
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Table 3 Elastic material properties of fiber and matrix. The glass fiber and polypropylene (PP) polymer
matrix are assumed to be isotropic

Young’s modulus Poissons’s number Volume fraction

Glass fibers [60] 72.0 GPa 0.22 25.0%

PP matrix [14] 1.705 GPa 0.36 75.0%

Fig. 11 Valid ranges of W , W̄ av2

and W̄ av4 as a function of the
polar angle ϑ . Due to the
orthotropic symmetry the
non-redundant range of ϑ is
restricted to the interval [0,π/2]

5.3 Validity of Effective Material Properties

The bounds introduced in the previous section are demonstrated for numerical values of
isotropic mechanical properties of the fibers and matrix taken from literature and listed
in Table 3. For the example depicted in Fig. 7 and marked in Fig. 8 with α1 = −2/10,
α2 = 11/20, ᾱ = 7/40 the strain energy is computed for the effective stiffness C̄ based on
either the fourth-order average Ā

av4 or the second-order average Ā
av2. The unit vector n is

parameterized with a single polar angle ϑ such that n (ϑ) = cos (ϑ)p‖+sin (ϑ)p⊥. The unit
vector p‖ corresponds to the symmetry axis of both the stiffness of the first homogenization
step C̄

tv
TW and the fourth-order FOT A. The direction p⊥ denotes an arbitrary perpendicular

unit vector. The resulting strain energy densities are visualized in Fig. 11. The domain of
possible values for all positive semidefinite A is depicted by the region filled in light gray
color. This area encapsulates valid energy densities due to averaging (dark gray). The ranges
degenerate to points under specific angles, i.e., the strain energy density has to take the exact
value for any valid Ā. Those angles directly follow from Eqn. (41) representing the roots of

the quartic form F
tv ·n⊗4 (ϑ). Under loading angles ϑ̂ with tan

(
ϑ̂
)

= ± 1
3

√
36 ± 6

√
30, the

part of ĈTW being linear in the fourth-order deviator F does not contribute to the strain en-
ergy density W , irrespective of the specific value of the material invariant b5. This hard con-
straint is fulfilled by both W̄ av2 and W̄ av4. However, for all remaining unit strain directions
the quantity W̄ av2 (ϑ) is located in the exterior of the average-related strain energy density
bounds. Therefore, the orientation averaged stiffness C̄TW

(
Ā

av2
)

is invalid as it represents
a material behavior, that cannot be associated with the given second-order FOT informa-
tion of the sub-volumes. The qualitative observation of W̄ av2 violating the bounds can be
reproduced for any combination of elastic properties. The findings implicate that the invalid
results of Āav2 propagate through the orientation average and yield non-physical stiffness
tensors. This is a direct consequence of the orientation average 〈·〉S2 being linear in both its
argument and A (cf. Equation (41)).
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6 Summary and Conclusions

Mapping and closure of fiber orientation tensors are identified as the two main steps inter-
linking the process simulation and structural simulation of discontinuous fiber-reinforced
polymers components. An analytical expression for the set of admissible orthotropic fourth-
order FOT is derived. This set is utilized to quantify the orthotropic uncertainty of closure
approximations based on second-order FOT. The scalar uncertainty measure is maximum for
isotropic second-order moments and vanishes for the unidirectional state. The terms second-
order average and fourth-order average are introduced to distinguish two possible routes
linking process and structural simulations. Second-order average indicates mapping before
closure whereas fourth-order average indicates closure before mapping. For three distinct
reference FOT, the deviation between the second-order and fourth-order average is com-
puted by means of the tensor norm for varying second-order FOT. The norm of the differ-
ence is remarkably large, especially if the two basic values exhibit large structural variances.
In the edge case of two unidirectional states with different principal axis, the norm of devi-
ations has been found to exceed the norm of the isotropic fourth-order FOT. Tensor glyphs
reveal that the second-order average does favor more isotropic states, while the fourth-order
average tends to preserve more structural information. For transversely isotropic orienta-
tion states with homogeneous principal direction, an inconsistency has been detected. The
second-order average yields impossible and thus invalid results for specific combinations
of second-order FOT. Such an inconsistency is also present among commuting planar FOT.
Using the average FOT of fourth order in the context of orientation averaging of stiffness
tensors illustrates how invalid statistical information in form of the FOT average produces
invalid material behavior, which is indicated by means of the elastic energy density.

The main findings and contributions of this work are

• The set of admissible orthotropic fourth-order FOT is given analytically. This extends the
work of Bauer and Böhlke [27] and enables further investigations.

• Changing the order of closure and averaging within virtual process chains, significantly
affects the obtained fourth-order FOT. The deviations vanish if the considered FOT of
second-order are structurally similar.

• The magnitude in deviation is lower for the IBOF closure compared to quadratic and
hybrid closure schemes.

• Second-order averages of transversely isotropic FOTs may yield invalid results, while the
fourth-order average is valid in all cases.

• For a planar FOT, both fourth-order average and second-order average are valid in all
cases, if the projectors of basic values are identical. Apart from this subset, invalid states
are also feasible in the case of second-order averages.

• Orientation averages of a linear elastic stiffness based on invalid fourth-order FOT yield
non-physical strain energy.

The findings justify the following statement: If only the FOT of second-order is available
within a virtual process chain, the closure should be applied on the source discretization.
Subsequently, the obtained fourth-order FOT can be mapped onto the target discretization
guaranteeing valid results. However, the closure-related uncertainty remains still large and
is usually restricted to orthotropic states. Additionally, the work considers exclusively the
special-case of commuting tensors. An extension towards the general, non-commuting, case
is favorable for a holistic approach to this problem. This would comprise cases, in which
the averaging yields different symmetries for the second-order and fourth-order averages.
With increasing computational performance, micro- and meso-models in process simula-
tions, e.g., [61], are favorable, since those allow the direct computation of fourth-order FOT.
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Appendix A: The Set of Admissible Orthotropic Fiber Orientation
Tensors

We sketch a brief derivation to obtain an explicit formulation of the set of admissible or-
thotropic fourth-order FOT in terms of the linear deviator coefficients α1, α3, d1, d2, d3. Our
procedure is based on the theorem comprehensively proved in reference [12] for two and
three spatial dimensions:

Theorem 7.1 Let A be a real-valued fourth-order tensor. If A is completely symmetric, nor-
malized in the sense of Aiijj = 1, and generates a non-negative quadratic form V ·A [V ] ≥
0, ∀V ∈ Sym, A is an admissible fiber orientation tensor. The inverse implication holds.

By construction via Equation (11) complete index symmetry and normalization of a
fourth-order FOT are trivially fulfilled. A tensor A suffices V · A [V ] ≥ 0, ∀V ∈ Sym, if
its coefficient matrix Aξζ in an orthonormal Mandel basis is positive semi-definite. Definite-
ness is characterized by Sylvester’s law of inertia: For a positive semi-definite matrix, all
principal minor determinants have to be non-negative. In this case, all roots of the charac-
teristic polynomial det

(
Aξζ − λδξζ

)
are non-negative.

The coefficient matrix of an arbitrary orthotropic FOT is explicitly given in [27, Equation
(78+82)]. We will use the more general form:

Aortho
ξζ =

⎡
⎢⎢⎢⎢⎢⎢⎣

a d e 0 0 0
b f 0 0 0

c 0 0 0
2f 0 0

2e 0
2d

⎤
⎥⎥⎥⎥⎥⎥⎦

with Mξζ :=
⎡
⎣a d e

b f

c

⎤
⎦ , (45)

where a, . . . , f are functions of α1, α3, d1, d2 and d3. As first order minors, the coefficients
d, e, f must be non-negative. Those inequalities directly yield the lower limits of d1, d2

and d3, which are already stated in [27, Equation (79-81)]. Since 2d,2e and 2f are also
roots of the characteristic polynomial, the upper coefficient bounds can be derived from the
submatrix Mξζ alone. Again, we demand positive semi-definiteness for Mξζ . Hence, all the
following inequalities must hold mutually:

a ≥ 0, b ≥ 0, c ≥ 0, (46)

ab − d2 ≥ 0, ac − e2 ≥ 0, bc − f 2 ≥ 0, (47)

det (M) = abc − af 2 − be2 − cd2 + 2def ≥ 0. (48)

The third-order (3o) bounds follow by applying simple algebraic manipulation: We use
det
(
Mξζ

) ≥ 0 to find d
max, 3o
3 , det

(
Mξζ

)∣∣
d3=dmin

3
≥ 0 for d

max, 3o
2 , and

det
(
Mξζ

)∣∣
d2=dmin

2 ,d3=dmin
3

≥ 0 for d
max, 3o
1 . Similarly, first-order bound d

max, 1o
i and second-

order bounds d
max, 2o
i for i ∈ [1,2,3] result from the inequalities comprised in Equation (46)

and (47), respectively. A long but basic algebraic comparison shows that

d
max, 3o
i ≤ d

max, 2o
i and d

max, 3o
i ≤ d

max, 1o
i , i ∈ [1,2,3], α1,3 ∈ N com (49)
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Fig. 12 Graphical representation of the admissible ranges of parameter combinations d1,2,3 according to
the first-order bounds (Eqn. (46)), to the second-order bounds (Eqn. (47)) and to the third-order bounds
(Eqn. (48)) for a given isotropic second-order FOT, i.e. α1 = α3 = 0

in the admissible range of α1,3 (cf. Equation (9)) Thus, Equation (48) is a sufficient condi-
tion. For graphical interpretation, Fig. 12 depicts the admissible parameter combinations of
d1,2,3 for the special case of fixed values α1 = α3 = 0.

Finally, each admissible orthotropic FOT of order four is a member of the set N ortho given
by

N ortho =
{
A

ortho (A, d1, d2, d3) | A = Aiso + α1F 1 + α3F 3 ∈ N comm,

dmin
1 (α1, α3) ≤ d1 ≤ dmax

1 (α1, α3) ,

dmin
2 (α1, α3) ≤ d2 ≤ dmax

2 (α1, α3, d1) ,

dmin
3 (α1, α3) ≤ d3 ≤ dmax

3 (α1, α3, d1, d2)
}

(50)

with

dmin
1 (α1, α3) = 1

14
(2α3 − α1) − 1

15
, (51)

dmin
2 (α1, α3) = − 1

14
(α1 + α3) − 1

15
, (52)

dmin
3 (α1, α3) = 1

14
(2α1 − α3) − 1

15
, (53)

dmax
1 (α1, α3) = (−225α2

1 + (−45α3 + 36)α1 + 45α2
3 − 72α3 + 28) (54)

/(210α1 − 420α3 + 280),

dmax
2 (α1, α3, d1) = [ − 75600α3

1 (55)

+ (−66150d1 + 113400α3 + 49680)α2
1 + (28350α2

3

+ (264600d1 − 49680)α3 − 63000d1)α1 − 33075α3
3

+ (−264600d1 + 31050)α2
3 + 69300d1α3 + 41160d1 − 3136 ]
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/ [ 66150α2
1 + (132300α3 + 63000)α1

+ 66150α2
3 + 264600d1 + 6300α3 − 41160 ] ,

dmax
3 (α1, α3, d1, d2) = [ − 33075d1α

2
1 + 132300d1α1α3 − 132300d1α

2
3 (56)

− 33075d2α
2
1 − 66150d2α1α3 − 33075d2α

2
3

− 18900α3
1 + 28350α2

1α3 + 28350α1α
2
3

− 18900α3
3 − 132300d1d2 − 12600d1α1 + 25200d1α3

− 12600d2α1 − 12600d2α3 + 12420α2
1 − 12420α1α3

+ 12420α2
3 + 11760d1 + 11760d2 − 784 ]

/ [ 132300α2
1 − 132300α1α3 + 33075α2

3 + 132300d1

+ 132300d2 − 25200α1 + 12600α3 − 11760 ] .

Appendix B: Topography of the Space of Orthotropic Fourth-Order
Fiber Orientation Tensors

We study the topography of the space of orthotropic fourth-order fiber orientation tensors
N ortho. For an arbitrary but constant second-order fiber orientation tensor A, the Hessian
Determinant of dmax

3 and thus the intrinsic curvature vanishes except at one singular point.
Thus, the set N ortho

∣∣
A

can be topographically interpreted as an intrinsically flat cone in the
{d1, d2, d3}-space, which is sliced by the orthogonal planes di = dmin

i for i ∈ [1,2,3]. This
is confirmed by the graphical discussion in the work of Bauer and Böhlke [27]. The apex of
the cone �dapex can be found at the singularity location of the gradient of dmax

3

�dapex (α1, α3) =
⎡
⎣d

apex
1

d
apex
2

d
apex
3

⎤
⎦=

⎡
⎣

1
4α2

3 − 1
4α3α1 − 4

21α3 − 1
2α2

1 + 2
21α1 + 2

45− 1
2α2

3 + 5
4α3α1 + 2

21α3 − 1
2α2

1 + 2
21α1 + 2

45− 1
2α2

3 − 1
4α3α1 + 2

21α3 + 1
4α2

1 − 4
21α1 + 2

45

⎤
⎦ . (57)

The symmetry axis of the cone passes through �dapex and the central point �dcenter with

�dcenter (α1, α3) =
⎡
⎣dcenter

1
dcenter

2
dcenter

3

⎤
⎦=

⎡
⎣dmin

1 (α1, α3)

dmin
2 (α1, α3)

dmin
3 (α1, α3)

⎤
⎦ . (58)

Appendix C: Scalar Distance Between Harmonic Orthotropic
Fourth-Order Tensors

We study the distance between two orthotropic fourth-order fiber orientation tensors A1

and A2 which contract to a given second-order fiber orientation tensor A, i.e., A1 [I ] =
A = A2 [I ] or equivalently Ai ∈ N ortho

∣∣
A

for i ∈ [1,2]. Such tensors differ solely by their
harmonic fourth-order parts Fi with i ∈ [1,2], see Equation (11). The difference 	F =
F2 −F1 of two orthotropic harmonic structure tensors F1 and F2 can be expressed by 	F =
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F
ortho (	d1,	d2,	d3) based on the differences 	di of the tensors scalar coefficients di for

i ∈ [1,2,3], defined in Equation (13). The Frobenius norm of 	F = F2 − F1 is given by

‖	F‖ =
√

8
(
	d2

1 + 	d2
2 + 	d2

3

)+ 2 (	d1	d2 + 	d1	d3 + 	d2	d3) (59)

and is maximized for the pair F1 = F
ortho

( �dapex
)

and F2 = F
ortho

( �dcenter
)

with �dapex

and �dcenter defined in Equation (57) and (58), respectively. Thus, the scalar measurement∥∥	F
ortho
max

∥∥ (A) follows as

∥∥	F
ortho
max

∥∥ (A) = [ 1458α4
1 − 2916α3

1α3 + 4374α2
1α

2
3 − 2916α1α

3
3 (60)

+ 1458α4
3 − 1134α3

1 + 1701α2
1α3 + 1701α1α

2
3

− 1134α3
3 − 162α2

1 + 162α1α3 − 162α2
3 + 120 ]/18.
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