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A B S T R A C T   

Multimodal chromatography has emerged as a powerful method for the purification of therapeutic antibodies. 
However, process development of this separation technique remains challenging because of an intricate and 
molecule-specific interaction towards multimodal ligands, leading to time-consuming and costly experimental 
optimization. 

This study presents a multiscale modeling approach to predict the multimodal chromatographic behavior of 
therapeutic antibodies based on their sequence information. Linear gradient elution (LGE) experiments were 
performed on an anionic multimodal resin for 59 full-length antibodies, including five different antibody formats 
at pH 5.0, 6.0, and 7.0 that were used for parameter determination of a linear adsorption model at low loading 
density conditions. Quantitative structure-property relationship (QSPR) modeling was utilized to correlate the 
adsorption parameters with up to 1374 global and local physicochemical descriptors calculated from antibody 
homology models. The final QSPR models employed less than eight descriptors per model and demonstrated high 
training accuracy (R2 > 0.93) and reasonable test set prediction accuracy (Q2 > 0.83) for the adsorption pa-
rameters. Model evaluation revealed the significance of electrostatic interaction and hydrophobicity in deter-
mining the chromatographic behavior of antibodies, as well as the importance of the HFR3 region in antibody 
binding to the multimodal resin. Chromatographic simulations using the predicted adsorption parameters 
showed good agreement with the experimental data for the vast majority of antibodies not employed during the 
model training. 

The results of this study demonstrate the potential of sequence-based prediction for determining chromato-
graphic behavior in therapeutic antibody purification. This approach leads to more efficient and cost-effective 
process development, providing a valuable tool for the biopharmaceutical industry.   

1. Introduction 

Liquid column chromatography has established itself as a prominent 
technique for the purification of biotherapeutics and is virtually indis-
pensable for the production of monoclonal antibodies (mAb) [1]. Cur-
rent research targets to improve this separation method by combining 
multiple forms of physicochemical interactions into a single chromato-
graphic ligand, referred to as multimodal chromatography [2]. The 
improved ligand structure enables increased selectivity and salt tolerant 
adsorption compared to unimodal interaction resins [3]. 

The increased selectivity of multimodal chromatography originates 
from orthogonal interactions towards the molecule surface, such as 

complex electrostatic and hydrophobic effects and leads to increased 
sensitivity towards molecule characteristics and process conditions [4]. 
However, this increased sensitivity often necessitates a 
molecule-specific process development, which involves extensive 
experimentation for process optimization and characterization to ensure 
adequate product quality and process yield [5]. To expedite this time 
and resource-intensive process development, high-throughput experi-
mentation and in silico tools have been deployed. Mechanistic and sta-
tistical modeling serve as valuable tools for the acceleration, 
optimization, and characterization of chromatography process devel-
opment by either simulating the mass-transport and accumulation 
within the chromatographic column or by capturing convoluted 
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interrelations where mechanistic understanding is scarce [6,7]. While 
reliable mass transfer models for chromatographic simulation exist, 
current isotherm equations struggle to capture the complex adsorption 
and desorption kinetics of multimodal chromatography [8]. Deviations 
of chromatographic simulation from experimental data are frequently 
accounted to the anisotropic shape, charge, and hydrophobicity distri-
bution of the molecule surface, leading to a conformation- and 
orientation-dependency of the adsorption process that is especially 
pronounced for complex multidomain proteins such as mAbs [9,10]. 
Nevertheless, electrostatic, and hydrophobic effects are combined into a 
complex but lumped parameter model to reflect stoichiometric 
displacement [11] or colloidal particle interaction [12] of the 
molecule-adsorber system in a continuum representation, leading to 
semi-mechanistic isotherm equations. Additional factors like dewetting 
phenomena or pH dependence can be incorporated into the mechanistic 
description, further increasing model complexity [13]. Elevated 
complexity and semi-mechanistic model structure increase the difficulty 
in calibrating isotherm parameters as they cannot be directly measured 
but must be fitted to experimental observations [14]. In contrast, model 
applicability is enhanced through simplification, by focusing on either 
electrostatic [15] or hydrophobic effects [16] as the governing form of 
physicochemical interaction. 

To gain a deeper understanding of the multimodal antibody binding, 
various biophysical methods have recently been employed and include: 
thermodynamic modeling of macroscopic observations [17], investiga-
tion of single amino acid substitutions in homologous fragment antigen 
binding (Fab) libraries [18], assessment of full-length antibody domain 
contributions [19–21], and identification of preferred ligand-binding 
regions of the fragment crystallizable (Fc) by using solution-phase nu-
clear magnetic resonance spectroscopy in concert with molecular dy-
namics (MD) simulations [22,23], as well as covalent labeling and mass 
spectrometry [24]. This experimental data can then be correlated with 
physicochemical antibody descriptors to infer quantitative 
structure-property relationships and improve mechanistic interpret-
ability [25,26]. 

Despite recent advancements in isotherm discrimination and bio-
physical investigation, current models lack mechanistic insight into the 
multimodal adsorption process and are impeded by an elaborate and 
resource-intensive model calibration. A significant gap remains in 
linking macroscopic adsorption parameters with antibody structure to 
debottleneck the expensive model calibration and enhance mechanistic 
understanding, to facilitate an a priori process development of 

multimodal chromatography [8,27]. 
In this study, we aim to bridge this gap by introducing a multiscale 

modeling approach to predict multimodal chromatographic behavior of 
therapeutic antibodies based on their sequence information, as illus-
trated in Fig. 1. Previous studies have demonstrated the potential of 
multiscale modeling in predicting unimodal interactions within cation 
exchange chromatography for model proteins, both with [28] and 
without [29] pH dependency, as well as mAbs [30]. To the best of our 
knowledge, this is the first approach of predicting adsorption parameters 
of therapeutic antibodies in multimodal chromatography at various pH 
conditions. Our approach involves conducting LGE experiments with a 
multimodal anion exchange resin for a diverse set of therapeutic anti-
bodies, determining linear adsorption parameters, and employing QSPR 
modeling to correlate these parameters with physicochemical de-
scriptors calculated from antibody homology models. The accuracy of 
our multiscale predictions, provide valuable insights into the physico-
chemical aspects of multimodal chromatography by segregating con-
tributions of the adsorption parameters. Ultimately, our multiscale 
approach paves the way for a more efficient and cost-effective devel-
opment process in the purification of therapeutic antibodies. 

2. Material and methods 

2.1. Chromatography resin, buffers, and molecules 

In this study, we employed the multimodal strong anion exchanger 
Capto adhere (Cytiva, Marlborough, USA) for all chromatographic ex-
periments. Model calibration and validation were conducted using a 
prepacked Capto adhere HiScreen column (7.7 × 100 mm, Cytiva) with 
a column volume (CV) of 4.7 mL [31]. 

All chemicals utilized in this study were purchased from Sigma- 
Aldrich Co LLC (Saint Louis, USA). Highly purified water was used for 
buffer preparation, while 1 M hydrochloric acid and 1 M sodium hy-
droxide were employed for pH adjustment. A multicomponent buffer 
system at pH 5.0, 6.0, and 7.0 was used for equilibration, elution, and 
buffer exchange during all chromatographic experiments. This buffer 
system, adapted from Kröner and Hubbuch [32], consisted of 9.1 mM 1, 
2-ethanediamine, 6.4 mM 1-methylpiperazine, 13.7 mM 1,4-dimethylpi-
perazine, 5.8 mM bis-tris, and 7.7 mM hydroxylamine, with the addition 
of 60 mM hydrochloric acid [16]. Furthermore, 1.5 M sodium chloride 
was added to the multicomponent buffer used for equilibration (at inlet 
B), resulting in a total of 1.56 M chloride counterions. Other buffers 

Fig. 1. Multiscale modeling workflow. This figure illustrates how QSPR models predict mechanistic adsorption parameters y from protein descriptors X. These 
parameters are then used in a priori process development through chromatographic simulation f(y). Deviations in these simulations from standard operating 
conditions can guide molecule design to mitigate manufacturing risks. The depicted antibody structure is a modification of PDB entry 1HZH [35]. 
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employed in the chromatographic experiments included 1 M acetic acid 
for column regeneration, 1 M sodium hydroxide for column cleaning, 
and 20 % ethanol for column storage. 

This study utilized a diverse set of 59 full-length immunoglobulin G 
(IgG) derivatives, provided by Boehringer Ingelheim Pharma GmbH & 
Co. KG (Biberach, Germany) as introduced in our previous study [26]. 
This set included 57 human-origin and 2 humanized murine-origin an-
tibodies, exhibiting a broad range of physicochemical characteristics. 
The antibody collection comprised 30 IgG1s, 19 IgG bispecifics with two 
single-chain fragment variables (scFv) appended to each heavy chain 
C-terminus (IgG(H)-scFv), 6 IgG4s, 3 Knob-in-Hole bispecifics (KiH), 
and 1 KiH trispecific with a single scFv attached to the C-terminus of the 
Hole chain (KiH-scFv). Antibody expression was performed using Chi-
nese hamster ovary cell lines. Subsequently, the antibodies were 
captured through protein A affinity chromatography. The protein solu-
tions were then neutralized to pH 5.5, sterile-filtered using a 0.2 µm 
filter, and frozen at − 70 ◦C. Upon thawing, the final load material was 
adjusted to a concentration between 1.25 and 5 g/L, as determined by a 
NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Wal-
tham, USA). Prior to sample application, the load material underwent 
buffer exchange into the equilibration buffer using a 5 mL HiTrap 
Desalting column (Cytiva), following the manufacturer’s instructions. 

2.2. Homology modeling and descriptor calculation 

The antibody structure prediction was conducted using homology 
modeling in Maestro Bioluminate 4.9 (Schrödinger Inc., New York, 
USA). The homology modeling protocol involved a five-stage process 
adapted from Zhu et al. [26], followed by further structure refinement 
based on the protocol of Sastry et al. [33]. The Enhanced Chothia 
numbering scheme [34] was employed, utilizing the human IgG1 1HZH 
[35] as full-length template for all molecules, except for IgG4 subtypes, 
which used 5DK3 [36] instead. Complex bi- and trispecific formats were 
modeled by grafting intra- and intermolecular linkers to append inde-
pendently modeled scFv domains to the full-length mAb structures [37]. 

Subsequently, physicochemical descriptors were calculated using 
Bioluminate at the experimental pH value. A set of 165 unique features 
was calculated for each antibody structure, divided into sequence-based 
(n = 69), structural (n = 59), and patch-specific (n = 37) categories [38]. 
Additionally, a region-specific subset (n*=31) of the initial descriptor 
set was calculated for 37 antibody subdomains. These subdomains are 
specific to the antibody structure and encompass the light and heavy 
chain variable regions (VL, VL_Fv, VH, VH_Fv) focusing on the 
complementarity-determining regions (CDR, CDRL, CDRH) and frame-
work regions (FR, FRL, FRH). These regions consist of individual loops 
(L1, L2, L3, H1, H2, H3) and frameworks (LFR1, LFR2, LFR3, LFR4, 
HFR1, HFR2, HFR3, HFR4). In addition to the variable region, the 
antibody constant regions (CL, CH1, CH2, CH3) and the hinge region 
(Hinge) are considered. The regional descriptors were further expanded 
by incorporating seven custom regions to accommodate the fragment 
variable (Fv), Fab, Fc, and the sum of the constant regions (CR). More-
over, the single-chain fragment variable regions (scFv, VLscFv, VLscFv) 
of the bi- and trispecific formats were taken into account. A more 
comprehensive explanation of the structure prediction and descriptor 
calculation can be found in our previous study [26]. 

In addition to the descriptors provided by Bioluminate, 62 supple-
mentary global descriptors were calculated to complement the final 
feature set. These custom descriptors combine electrostatic, hydropho-
bic, and topological characteristics of the molecule solvent-accessible 
surface, calculated by MSMS [39] as implemented into the 
open-source tool SURFMAP [40]. SURFMAP provides the electrostatic 
potential calculated by the Adaptive Poisson–Boltzmann Solver [41], 
surface hydrophobicity using the residue-based Wimley-White hydro-
phobicity scale [42], and surface exposure, quantified through circular 
variance calculation [43] to consider surface cavity formation. To 
further characterize the surface topography, the normalized distance to 

the molecule center of mass was calculated for each surface grid point. 
Hereafter, these protein surface characteristics (electrostatic potential, 
hydrophobicity, circular variance, and normalized protein radius), were 
combined and summated, averaged, or binned into positive and nega-
tive contributions. An overview of the custom descriptors is detailed in 
Appendix B, Table B1. The final descriptor set consists of 1374 features 
per molecule, including 227 global descriptors and 1147 local 
descriptors. 

2.3. Chromatographic experimentation 

The chromatographic experiments involved a system and column 
characterization, as well as salt LGE experiments for the standardized 
calibration of the semi-mechanistic chromatography model as per-
formed in our previous study [16]. These experiments were conducted 
using an ÄKTA Avant 25 (Cytiva) preparative chromatography system, 
controlled by Unicorn 7.5 (Cytiva) software, and maintained at a resi-
dence time of 5 min. 

During the system and column characterization, extra-column effects 
and column-specific parameters were assessed by evaluating sensor 
dead volumes, column porosities, and ionic capacity. The character-
ization protocols were based on published protocols of Hunt et al. [44] 
and Huuk et al. [45]. Hereto, pulse injections of tracer solutions were 
applied to the system and the column at set flow rate. Subsequently, salt 
LGEs were performed to elute a total of 59 antibodies. Linear pH gra-
dients performed in a previous study [46] identified a molecule-specific 
pH range in which salt elution was viable, reducing excessive experi-
mentation. Three salt LGEs were then performed per molecule with a 
gradient length of 10, 20, and 30 CV at up to three distinct pH values 
(5.0, 6.0, 7.0). The column was initially equilibrated for 3 CV with 
equilibration buffer. After equilibration, the antibody solution was 
loaded onto the column up to a loading density of 1.0 g/L. Thereafter, 
the antibodies were eluted by linearly decreasing the sodium chloride 
concentration from 1560 to 60 mM within 10, 20, and 30 CV using the 
elution buffer. Retention times of the molecules were determined by 
measuring the first moments of the elution peaks through the UV trace at 
a wavelength of 280 nm, while recording the corresponding conduc-
tivity corrected by sensor dead volume. The column was then subjected 
to a 4 CV regeneration step, a 5 CV cleaning in place procedure, and a 4 
CV storage step. 

2.4. Chromatographic simulation 

Following wet-lab experimentation, the chromatographic behavior 
was numerically simulated using the software ChromX (Cytiva) [47]. 
The column mass transfer was simulated by a transport dispersive model 
[48,49] to account for dispersion and diffusion effects, while the 
adsorption-desorption mechanism was described with a linear adsorp-
tion model introduced by Hess et al. [16], shown in Eq. (1). 

Ki
(
cp,s

)
= K̃

′
eq,iexp

(
Ks,icp,s

)
(1) 

The utilized adsorption model follows an exponential form compa-
rable to the hydrophobic interaction chromatography (HIC) isotherm 
introduced by Mollerup [50] and effectively neglects electrostatic 
attractive contributions that would be observed in ion-exchange oper-
ation. The equilibrium ratio Ki(cp,s) [− ] represents the ratio between the 
adsorbed protein i ∈ [1, n] to the solute protein and is dependent from 
the modulator s ∈ [1,m] concentration within the pore volume of the 

resin bead cp,s [molm− 3]. The modified equilibrium constant K̃
′
eq,i ≈

kads,i/kdes,i [− ] is derived from the law of mass action at thermodynamic 
equilibrium and equals the ratio of the adsorption rate kads,i to the 
desorption rate kdes,i of the protein species from the ligand binding site 
and should be dependent on the ligand density of the resin. The 
salt-protein interaction parameter Ks,i [mol− 1m3] introduced by 
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Mollerup [50] describes the thermodynamic activity of the solute pro-
tein and expresses the excess Gibbs free energy of the thermodynamic 
association during salt-protein interaction. Conceptually, this parameter 
should represent the intermolecular force of hydrophobic interaction 
caused by the salt-protein association. 

The kinetic material balance of the multimodal adsorption process at 
low load density conditions can be expressed by Eq. (2), following the 
kinetic notation often employed in chromatographic simulation [14,51]. 

kkin,i
∂qp,i

∂t
(x, t) = K̃

′
eq,iexp

(
Ks,icp,s

)
cp,i(x, t) − qp,i(x, t) (2) 

The kinetic adsorption model describes the time t [s] and location x ∈

[0, Lc] [m] dependent binding of the protein to the chromatographic 
resin. Within the pore phase of the resin, the exchange of the unbound 
protein concentration cp,i [molm− 3] with adsorbed protein concentration 
qp,i[molm− 3] is expressed, as depicted in Fig. 1. Consistent with Hahn 
et al. [52], the kinetic coefficient is defined as kkin,i = k− 1

des,i [s molm− 3]. 
Linear adsorption parameters were determined according to the 

protocol recently published by Hess et al. [16], based on the theoretical 
foundation of Yamamoto et al. [53]. The estimation method relies on 
linear modulator gradients and requires the determination of the 
normalized gradient slope GH [molm− 3], defined in Eq. (3). 

GH =
cF

s − cI
s

VG
(1 − εb)Vcol (3) 

The slope of the gradient is given by the initial cI
s [molm− 3] and the 

final cF
s [molm− 3] salt concentrations at the start and the end of the 

gradient, divided by the linear gradient volume VG [m3]. The slope is 
than normalized by considering the interstitial porosity of the column 
bed εb [− ] and the volume of the column Vcol [m3]. According to Yama-
moto [54], the salt concentration at the peak maximum cR

s,i [molm− 3] and 
GH are employed in an equilibrium chromatography model, which 
considers the zone movement of the components through the eluting 
column, shown in Eq. (4). 

GH =

∫
cR

s,i

cI
s

dcs

K̃
′
eq,iexp

(
Ks,ics

)
+ Ksec,i − Ksec,s

(4) 

Eq.(4), includes Eq. (1) and is integrated between the peak and the 
initial salt concentration. Furthermore, the distribution coefficients Ksec,i 

= εp,i [− ] and Ksec,s = εp,s [− ] are considered, denoting the fraction of the 
pore volume accessible to the protein and the salt component at non- 

interacting conditions. The adsorption parameters K̃
′
eq,i and Ks,i can be 

numerically estimated when inserting the first moments of the elution 
peaks from the salt LGEs into Eq. (4). In this study, the first moments 
were set equal to the peak maxima due to peak symmetry and were 
determined by using the python package SciPy [55]. Lastly, the kinetic 
parameter kkin,i is estimated by simultaneously curve fitting the three 
LGE experiments for each molecule and pH value, as described by Hahn 
et al. [51]. 

2.5. Multiscale model development and evaluation 

In this study, we developed a multiscale model for predicting 
adsorption parameters from protein sequences using quantitative 
structure-property relationship modeling. Due to high dimensionality of 
the antibody-specific descriptor set (n = 1374) and the small dataset size 
(m = 59), descriptor preprocessing, dimensionality reduction, and 
model evaluation were required. The QSPR workflow was implemented 
using Python 3.9.12 and scikit-learn 1.0.2 [56], and modified from our 
previous study [26]. Gaussian process regression (GPR) was employed 
for non-linear predictions and heteroscedastic uncertainty estimation 
[57,58]. 

GPR, is rooted in Bayesian inference, and operates on the assumption 

that similar input variables (X) will yield similar target values (y). The 
primary objective of GPR is to identify a Gaussian distribution of map-
ping functions, commonly referred to as a kernel. This kernel is used to 
predict the target variable from the input features with minimal un-
certainty, leveraging prior knowledge of their interrelationship. Once 
the joint distribution of mapping functions is updated or conditioned 
based on the training information, the model generates predictions 
derived from the mean of this updated distribution. The uncertainty, on 
the other hand, is represented by the distribution’s standard deviation. 
This process allows GPR to make accurate predictions while providing 
an individual measure of confidence in each prediction. 

According to the Bayesian framework, the adsorption parameters 
were predicted by conditioning a prior distribution of functions P(y(x))
with the training data D = {y, X} to derive the posterior distribution 
P(y(x)|D ) using the Bayesian update rule, shown in Eq. (5). 

P(y(x)|D )∝P(y|y(x),X)P(y(x)) (5) 

A mixed covariance function was chosen as the prior by multiplying 
a linear kernel with a Matérn class kernel and subsequently adding a 
white noise kernel [56,58,59]. Posterior conditioning was achieved by 
maximizing the likelihood P(y|y(x),X) through minimization of log 
(marginal likelihood) using the l-BFGS-B algorithm [59]. 

The QSPR workflow begins with data preprocessing, where irrele-
vant descriptors were discarded, and several operations are performed 
to account for structural diversity of the IgG-like molecules. Further-
more, inaccurately determined adsorption parameters with a p-value 
above 0.1 are removed from the data set according to a two-sided Wald 
test proving the linearity of the initial parameter determination [16]. 
Thereafter, the dataset is randomly divided into 80 % training and 20 % 
test data, scaling the descriptors by their standard deviation (SD), and 
centering them based on the training data, while the adsorption pa-
rameters are transformed with the natural logarithm to assure normality 
of the target distribution. Two QSPR models are then created for both 
adsorption parameters using an identical workflow, training, and test 
set. Due to the strong correlation between the two adsorption parame-

ters K̃
′
eq,i and Ks,i, a chained regression is performed, with K̃

′
eq,i pre-

dictions serving as possible feature for the Ks,i parameter model, which is 
referred to as multioutput model. Dimensionality reduction is conducted 
by removing invariant descriptors, discarding low variance features, 
sorting remaining descriptors based on F-test results, removing collinear 
features, and selecting the 20 highest scoring features. Recursive feature 
elimination is then conducted using feature permutation importance 
[60]. Permutation importance is calculated as the average increase in 
model deviation when assessing model performance after shuffling a 
single feature one hundred times while keeping the remaining features 
constant. Model evaluation involved assessing overall model reliability 
and performance, feature interdependence, sensitivity, and contribu-
tion. Goodness of fit and prediction are inspected, and a 95 % confidence 
interval estimated. Fivefold cross-validation with ten repetitions is used 
for internal validation, while model reliability is analyzed through 
y-scrambling and MAE calculation [61]. Lastly, feature interdepen-
dence, sensitivity, and contribution are assessed using pairwise re-
lationships, feature permutation importance, and partial dependence 
[60,62,63]. 

3. Results and discussion 

3.1. Elution behavior of antibodies and antibody formats 

LGE experiments were conducted using a multimodal anion ex-
change resin to evaluate 59 full-length antibodies across various formats 
and three pH values (5.0, 6.0, 7.0). The antibodies were eluted by lin-
early decreasing the sodium chloride concentration. An inverse rela-
tionship between salt concentration and molecule retention was 
observed, indicating a hydrophobically driven adsorption process. Fig. 2 
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presents the ionic strength [M] at peak elution during a 30 CV gradient, 
arranged in ascending order based on pH 5.0 retention (decreasing ionic 
strength indicates increased multimodal retention during negative salt 
LGEs). Despite the structural similarities among the examined formats, 
antibody elution varied significantly, ranging from 1.347 [M] for IgG1 
(24) at pH 6.0 to 0.069 [M] for IgG1 (16) at pH 5.0. This variability 
within the structurally conserved IgG1 antibodies indicates a weak 
format-dependent elution behavior. In contrast to the weak format- 
dependent elution behavior, a strong relationship was observed be-
tween antibody retention and elution pH, with retention increasing 
under elevated pH conditions. While most antibodies exhibited minimal 
variation in retention between pH 5.0 and 6.0, a substantial increase in 
retention was observed from pH 6.0 to 7.0. Similar observations have 
been reported for model proteins on a cation exchange resin [29] and a 
mAb on multimodal-cation exchange resins [20]. These findings were 
attributed to multiple, pH-dependent binding domains on the protein 
surface, leading to an altered protein binding orientation [64]. The 
pronounced pH dependency of antibody elution resulted in selectivity 
reversals, exemplified by IgG1 (13) and IgG-scFv (3), enclosed in a 
dashed box shown in Fig. 2. Upon further examination of pH trends, all 
antibodies eluting at a salt concentration above 0.7 [M] at pH 5.0 dis-
played a retention decrease from pH 5.0 to 6.0, followed by a larger 
increase from pH 6.0 to 7.0. Conversely, antibodies eluting below 0.7 
[M] demonstrated a monotonous increase in retention with rising pH. 
The observed phenomena suggest a pH dependency in the multimodal 
chromatographic retention that is sensitive to salt concentration. To 
further elucidate these observations, additional experimentation will be 
required. 

Following the gradient elution experiments, the equilibrium constant 

K̃
′
eq,i and salt-protein interaction parameter Ks,i of the multimodal 

adsorption model were calculated using Eq. (4). Initially, 118 parameter 
pairs were determined from 59 molecules at various pH levels. Out of the 
initial parameters, 103 parameter pairs from 55 molecules met the ac-
curacy requirements as defined by the p-value in the parameter deter-
mination workflow, detailed in SubSection 2.5 and listed in the 
Appendix B, Table B4. Fig. 3. displays the natural logarithm of the 
scattered parameter pairs, providing format and pH information (a), as 
well as the distribution of training and test sets (b). Unimodal histo-
grams of the adsorption parameters suggest an approximately normal 
distribution of the transformed parameters, framing the joint data as 
marginal axes. The parameter pairs appear to be broadly distributed and 

format independent. The logarithmic parameter log(K̃
′
eq,i) ranges from 

− 3.848 [-] for IgG1 (1) at pH 5.0 to 1.814 [-] for IgG1 (24) at pH 7.0 

(K̃
′
eq,i: 0.021 - 6.132 [-]). Conversely, the parameter log(Ks,i) ranges from 

− 0.251 [-] for IgG1 (11) at pH 6.0 to 3.229 [-] for IgG1 (1) at pH 5.0 
(Ks,i: 3.229 - 25.243 [-]). A strong negative correlation between the two 
parameters is evident, with a Pearson correlation coefficient p of 
− 0.837. Parameter correlation has been observed in similar adsorption 
equations and is an inherent feature of the model structure used, which 
can impede parameter estimation [16,65]. Upon closer examination of 
the scattered adsorption parameters, a cluster of IgG4 antibodies is 

noticeable at higher log(K̃
′
eq,i) and lower log(Ks,i) values. This observa-

tion may indicate a format-specific relationship between the IgG4 
structure and the multimodal elution behavior, as previously reported 

[26]. Furthermore, a strong and positive pH dependency of the log(K̃
′
eq,i)

values is indicated by perpendicular bands of parameter pairs at con-

stant pH on the log(K̃
′
eq,i) plane. This pattern could imply electrostatic 

contributions to the equilibrium constant within the multimodal 
adsorption model. This hypothesis is supported by the strong and 

negative correlation of log(K̃
′
eq,i) values with the calculated net charge of 

the protein surface, as shown in Appendix A, Fig. A3, Subfigure (a8), 
with a Pearson correlation coefficient of − 0.767. Consequently, a 
reduced positive surface charge at higher pH levels could decrease 
electrostatic repulsion towards the partially cationic ligand, thereby 
increasing the adsorption-to-desorption ratio, as expressed by the 

equilibrium constant K̃
′
eq,i. However, a similar pH dependency was not 

observed for the salt-protein interaction parameter Ks,i. 

3.2. QSPR modeling of thermodynamic adsorption parameters 

To realize the multiscale model, pH sensitive and molecule-specific 
parameters of the multimodal adsorption model had to be predicted 
from antibody structure. QSPR modeling was employed to correlate 103 
parameter pairs from 55 molecules at three distinct pH values with 1374 
global and local physicochemical descriptors, calculated from antibody 
homology models. 

Initially, the data set was randomly divided into 80 % training (n =
44) and 20 % testing (n = 11) molecules. To prevent sharing structural 
information between the training and testing sets, different pH condi-
tions of the molecules were grouped accordingly. Fig. 3(b) displays the 

scattered distribution of the logarithmic equilibrium constant log(K̃
′
eq,i)

and salt-protein interaction parameter log(Ks,i) for the training and 
testing data. The parameter pairs of the test set molecules, including 

Fig. 2. Peak salt concentration of molecules in LGE elution experiments. The ionic strength at peak elution is shown for all molecules during 30 CV long negative 
sodium chloride gradients at pH 5.0, 6.0, and 7.0, arranged in ascending order based on pH 5.0 retention. A limited number of pH conditions were evaluated for some 
mAbs, as determined by linear pH gradients from a previous study [26]. The dashed black box highlights the pH-dependent selectivity reversal, exemplified by IgG1 
(13) and IgG-scFv (3). 
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IgG1, IgG4, and IgG-scFv formats at pH 5.0, 6.0, and 7.0, are evenly 
distributed within the training data, as listed in Table 1. Two consecu-
tive QSPR models were built from the training data for the two 

adsorption parameters. The prediction of log(K̃
′
eq,i) served as a potential 

input feature for the subsequent log(Ks,i)model. This multioutput model, 
also known as chained regression, aimed to enhance the accuracy of the 
log(Ks,i) predictions, given their strong correlation displayed in Fig. 3. 
During the two-staged feature selection, informative descriptors were 
identified by reducing the initial 1374 descriptors to seven for the 

log(K̃
′
eq,i) model and five for the log(Ks,i) model, as can be assessed by the 

results of the recursive feature elimination shown in Appendix A, 
Fig. A1. 

After model training, the two QSPR models were externally validated 
by predicting 22 parameter pairs of the test set molecules at multiple pH 
values, as listed in Table 1. The goodness of fit to the training data and 

the prediction accuracy for the test data is shown for log(K̃
′
eq,i) (a) and 

log(Ks,i) (b) in Fig. 4. High training accuracy was achieved for both 
logarithmic adsorption parameters, with R2 values of 0.933 and 0.941 

for log(K̃
′
eq,i) and log(Ks,i), respectively. The test set predictions exhibited 

reasonable accuracy, with Q2 values of 0.834 and 0.835, and mean ab-
solute errors (MAE) of 0.453 and 0.237 for the logarithmic parameters. 
Minor deviations in model prediction could originate from inaccuracies 
in the underlying descriptor models or adsorption parameter determi-
nation. Experimental parameter uncertainties from the standardized 

calibration workflow of up to 91 % for K̃
′
eq,i determination and 20 % for 

Ks,i determination had to be accounted for, as observed for IgG-scFv (6) 
at pH 6.0, listed in Appendix B, Table B4. Improving the standardized 
calibration workflow to increase data quality could significantly 
enhance the model predictions. However, the 95 % confidence interval 
(CI95) of the training and test set predictions captured the model de-
viations, demonstrating the reliability of GPR to capture model uncer-
tainty based on its training data. The reliability of the two QSPR models 
was further emphasized by the results of the internal model validation 

with a cross-validated Q2 of 0.815 and 0.835 for log(K̃
′
eq,i) and log(Ks,i), 

as well as the results of y-scrambling, shown in Appendix A, Fig. A2. The 
absence of systematic model deviations was indicated by homoge-
neously dispersed residuals, as shown in the lower sections of Fig. 4, (a) 
and (b). 

After validation of the QSPR models, an inspection of the descriptor 
contributions to the model predictions was conducted. The descriptor 
contributions were expressed through their partial dependencies, a 
method for examining non-linear feature interactions within a multi-

variate model. Fig. 5 displays the partial dependencies for log(K̃
′
eq,i) (a) 

and log(Ks,i) (b), which capture the target relationships depicted in 
Appendix A, Fig. A3 and Fig. A4. In brief, a single factor perturbation is 
performed by marginalizing all features except one and permutating it 
within the full feature range. Recording the output predictions yields the 
partial dependence of the descriptor. Additionally, feature permutation 
importance was calculated for each descriptor, as displayed on the upper 
right of the subfigures. Permutation importance measures model dete-
rioration by shuffling individual features, enabling an assessment of the 
feature significance within a multivariate model. 

In general, the partial dependencies of the test set molecules shown 
in Fig. 5 were comparable to the training data for both QSPR models, 
covering dense regions within the feature space as indicated by the 
decile lines on the bottom of the subfigures. The descriptors of the 

log(K̃
′
eq,i) model primarily exhibited linear relationships towards the 

target variable and consisted of global (a1, a2, a7) and local (a5, a6) 
charge characteristics that emphasize the antibody variable region (a3, 
a4). In contrast, the descriptors of the log(Ks,i) model displayed non- 
linear contributions and considered the molecule’s global hydropho-
bicity, expressed by a supplemented descriptor (b4). The descriptors of 

the log(Ks,i) model displayed similarities to the log(K̃
′
eq,i) descriptors (b2, 

b3, b5) and even included the log(K̃
′
eq,i) predictions (b1), which is un-

surprising given the strong mutual correlation between the adsorption 
parameters discussed earlier. Moreover, the significance of the HFR3 
region, an area in-between the H2 and H3 loop of the antibody variable 
region, was identified for both adsorption parameters (a3, b2). A 
detailed derivation of the utilized descriptors is given by Sankar et al. 
[38] and in Appendix B, Table B1. 

Fig. 3. Adsorption parameter-pair distributions from salt LGE experiments. a) 
Scatterplot showing antibody format- and pH-specific adsorption parameters, 
and b) Scatterplot presenting the distribution of model training and testing 
data, including pH information. The marginal axes of each subplot exhibit the 
unimodal histogram for each logarithmic adsorption parameter. The Pearson 
correlation coefficient (p) between both adsorption parameters is displayed in 
the upper right corner of the joint axes. 
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Interpreting the descriptor contributions of the adsorption parame-

ters, the back-transformed equilibrium constant K̃
′
eq,i may capture an 

exponential electrostatic effect of positive repulsion or reduced negative 
attraction of the entire protein surface towards the anionic multimodal 
resin with emphasis on the antibody variable region. This effect is 
indicated by strong negative electrostatic descriptor correlations and 
importance in Fig. 5 (a1, a2, a5, a6, a7) and was already speculated 
about in SubSection 3.1. Interestingly, the results of our previous QSPR 
study [30] conducted for cation exchange chromatography, identified 
similar features for predicting the logarithmic equilibrium constant of 

the stoichiometric displacement model [66,67]. This finding could 
indicate the generalizability of the identified antibody characteristics to 
be relevant for other chromatographic resins utilizing electrostatic in-
teractions. Therefore, improvements to the multimodal adsorption 

model should incorporate a pH extension of the K̃
′
eq,i parameter, already 

introduced for ion exchange adsorption models [44,68]. Conversely, the 
salt-protein interaction parameter Ks,i suggests a more complex mech-
anism, potentially lumping multiple characteristics of significant bind-
ing domains into a single parameter. One such characteristic is the 
average surface hydrophobicity calculated after Wimley and White [42], 

Table 1 
Observed and predicted thermodynamic model parameters of test set molecules after back transformation.  

Molecule pH Observed K̃
′
eq,i [ − ] Predicted K̃

′
eq,i [ − ] Residual K̃

′
eq,i [%]

Observed Ks,i [M] Predicted Ks,i [M] Residual Ks,i [%]

IgG1 (3) 5.0 0.044 0.073 67.434 16.239 12.782 − 21.287 
6.0 0.124 0.157 26.094 16.452 12.188 − 25.918 

IgG1 (14) 5.0 0.469 0.406 − 13.375 3.617 3.558 − 1.649 
6.0 3.538 1.346 − 61.954 1.950 2.597 33.196 

IgG1 (20) 5.0 0.209 0.278 32.769 6.987 6.489 − 7.130 
6.0 0.449 0.818 82.156 6.923 6.004 − 13.278 

IgG1 (22) 5.0 0.914 1.199 31.247 4.337 7.558 74.274 
IgG1 (28) 5.0 0.171 0.273 59.693 6.976 5.496 − 21.213 

6.0 0.385 0.921 139.177 6.536 3.374 − 48.377 
IgG1 (30) 5.0 0.132 0.152 14.642 4.118 4.200 2.008 

6.0 0.380 0.457 20.211 3.143 3.112 − 0.992 
7.0 2.054 2.222 8.200 2.760 2.312 − 16.243 

IgG4 (6) 5.0 2.233 1.492 − 33.199 1.366 1.809 32.455 
IgG-scFv (6) 5.0 0.028 0.036 30.259 14.698 11.399 − 22.443 

6.0 0.028 0.087 206.069 22.055 13.005 − 41.032 
IgG-scFv (11) 6.0 0.149 0.092 − 37.920 12.564 15.669 24.712 
IgG-scFv (15) 5.0 0.053 0.070 31.117 9.742 9.608 − 1.382 

6.0 0.147 0.226 53.548 10.008 7.507 − 24.993 
IgG-scFv (18) 5.0 0.091 0.074 − 18.133 9.050 10.110 11.716 

6.0 0.531 0.168 − 68.399 7.183 9.867 37.356  

Fig. 4. Evaluation of adsorption parameter fit and prediction (R2, Q2). a) Logarithmic equilibrium constant log(K̃
′
eq,i) model, and b) Logarithmic salt-protein 

interaction parameter log(Ks,i) model. The top section of each subfigure compares predicted and experimentally derived adsorption parameters for the molecules 
in the random training and testing data post-logarithmic transformation. An ideal model is depicted by a straight line, indicating zero error between predicted and 
experimental observations. The 95 % confidence interval (CI95) of prediction is calculated for each molecule. The figure’s lower section presents a residual plot, with 
the y-axis normalized to the absolute deviation of model prediction. 
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which has recently proven to be a reliable predictor for HIC retention 
[69] and should be included as a standard descriptor in future QSPR 
studies. Lastly, the significance of the HFR3 region for antibody binding 
to multimodal resins has not yet been reported previously and warrants 
investigation in future studies. 

3.3. Chromatographic process prediction 

To validate the multiscale modeling method, the predicted adsorp-

tion parameters K̃
′
eq,i and Ks,i of the test set molecules were employed in 

chromatographic simulations and compared against the measurement 
data. A macroscopic transport dispersive model was utilized for the 
chromatographic simulation, as implemented in our previous study 

[16], with kkin,i being determined by curve fitting to the experimental 
chromatograms. The results of the system and column characterization, 
as well as mass transfer parameters are provided in Appendix B, 
Table B2 and Table B3. Fig. 6 presents an overlay of the simulated and 
the measured elution of IgG1 (30) at pH 5.0, 6.0, and 7.0 during three 
different salt gradients with gradient lengths of 10, 20, and 30 CV, as 
shown in Subfigure a) to c). IgG1 (30) was selected for representation as 
the only test set molecule with experimental data available at all pH 
values. The chromatograms of the remaining test set molecules can be 
found in Appendix A, Fig. A5 to Fig. A14. A good agreement between the 
experimental and the simulated UV traces is evident in Fig. 6 across all 
operating conditions. Interestingly, the retention of IgG1 (30) was 
overpredicted at pH 5.0 and 6.0 and underpredicted at pH 7.0. Upon 

Fig. 5. Analysis of model features’ partial dependence and permutation importance for training and testing data. (a) Logarithmic equilibrium constant log(K̃
′

eq,i)

model, and (b) Logarithmic salt-protein interaction parameter log(Ks,i) model. Each subfigure illustrates the model’s response to feature permutations within their 
normalized range. The partial dependence (PD) displays the average target prediction for each feature. Permutation importance (PI) for target prediction is presented 
in the top-right corner of each subplot. Decile lines at each subplot’s base indicate the frequency of feature values in the dataset. 
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evaluating the observed and predicted adsorption parameters in Table 1, 
an underprediction of the salt-protein interaction parameter Ks,i at pH 
7.0 of − 16.2 % is evident in comparison to the other pH conditions, 
which explains the deviating model simulations. On the other hand, the 
chromatographic simulations appeared less sensitive to the equilibrium 

constant K̃
′
eq,i, as previously observed by Altern et al. [14] employing a 

similar adsorption equation. The Ks,i underprediction might be associ-
ated with the strong increase of antibody retention from pH 6.0 to 7.0, as 
discussed in SubSection 3.1. This increase could result from a transition 
of significant binding domains on the protein surface towards the 
multimodal ligands, which are challenging to be captured using static 
physicochemical descriptors and could translate to deteriorated model 
predictions. MD simulation of protein-ligand interaction could be one 
way of resolving this limitation as demonstrated by Banerjee et al. [70], 
but are currently not feasible for large multi-domain proteins. The 
validation of the remaining test set molecules, displayed in Appendix A, 
Fig. A5 to Fig. A14, revealed good agreement for all antibodies and 
process conditions, except for IgG1 (22) and IgG1 (28) at pH 6.0, as 
shown in Fig. A8 and Fig. A9. Notably, IgG1 (22) and IgG1 (28) also 
constituted the largest deviations in Ks,i predictions, with residuals of 
74.3 % and − 48.4 % listed in Table 1, explaining the offset to the 
experimental chromatograms. 

In conclusion, the presented multiscale model effectively predicts 
chromatographic behavior for a diverse set of therapeutic antibodies in a 
linear adsorption regime based solely on sequence information. More-
over, the incorporation of pH-sensitive descriptors into a mechanistic 
adsorption model enables the prediction of a broad range of chro-
matographic operating conditions, representing a significant step to-
wards a priori process development for multimodal chromatography. 

4. Conclusion 

In this study, we successfully demonstrated the potential of a mul-
tiscale approach to predict the chromatographic behavior of a broad 
variety of therapeutic antibodies based solely on sequence information. 
LGE experiments were conducted on the multimodal resin Capto adhere 
for 59 full-length antibodies including five different formats and mul-
tispecific functionality. Multimodal adsorption parameters were deter-
mined across multiple pH values, consisting of the equilibrium constant 

K̃
′
eq,i and the salt-protein interaction parameter Ks,i in a linear adsorption 

regime. QSPR modeling was employed to associate the adsorption pa-
rameters with physicochemical descriptors calculated from antibody 
homology models. The predicted adsorption parameters were incorpo-
rated into a semi-mechanistic chromatography model and validated 
experimentally. 

The results revealed a strong correlation between antibody retention 
and elution pH as well as molecule specific interactions to the multi-
modal resin while the importance of the antibody format appeared less 
significant. The QSPR models exhibited high training accuracy and good 
test set prediction accuracy. The descriptor contributions of the 
adsorption parameters suggested the equilibrium constant to capture the 
electrostatic effects of the protein surface towards the anionic multi-
modal resin, while the salt-protein interaction parameter could repre-
sent a more intricate mechanism involving global surface 
hydrophobicity and significant binding domains. These finding could be 
generalizable to other chromatographic modes given the similarity of 
the selected antibody characteristics to previous QSPR studies. The 
chromatographic process predictions of the test set molecules showed 
good agreement with experimental data over a wide range of antibody 
formats and operating conditions. 

This multiscale approach, incorporating pH-sensitive descriptors 
into an adsorption model, enables the prediction of multiple chro-
matographic operations and pH conditions (e.g., linear gradient, step 
gradient, or flow through chromatography). Thus, the presented model 
facilitates a priori process development for a variety of therapeutic an-
tibodies in multimodal chromatography. As the underlining adsorption 
model is limited to low-loading density conditions, the multiscale model 
predictions are particularly useful for earlier rather than later stages of 
process development by specifying likely operating windows. 

Increasing the amount of high-quality data and exploring the tran-
sition of significant binding domains on the protein surface could lead to 
potential model improvements. Future research should explore methods 
of quantifying the interaction of significant binding domains in multi-
modal chromatography like the impact of the HFR3 region or the role of 
adjacent surface patches in antibody binding. Next to these model im-
provements our results could facilitate the development of improved 
adsorption models for multimodal chromatography. Given the 
complexity of multimodal chromatography, our multiscale approach 
can serve as a template for unraveling complex physicochemical phe-
nomena using structural information. 
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