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Chemometric modeling for spectral data is considered a key technology in
biopharmaceutical processing to realize real-time process control and release
testing. Machine learning (ML) models have been shown to increase the accuracy
of various spectral regression and classification tasks, remove challenging
preprocessing steps for spectral data, and promise to improve the
transferability of models when compared to commonly applied, linear
methods. The training and optimization of ML models require large data sets
which are not available in the context of biopharmaceutical processing.
Generative methods to extend data sets with realistic in silico samples, so-
called data augmentation, may provide the means to alleviate this challenge.
In this study, we develop and implement a novel data augmentation method for
generating in silico spectral data based on local estimation of pure component
profiles for training convolutional neural network (CNN) models using four data
sets. We simultaneously tune hyperparameters associated with data
augmentation and the neural network architecture using Bayesian
optimization. Finally, we compare the optimized CNN models with partial
least-squares regression models (PLS) in terms of accuracy, robustness, and
interpretability. The proposed data augmentation method is shown to produce
highly realistic spectral data by adapting the estimates of the pure component
profiles to the sampled concentration regimes. Augmenting CNNs with the in
silico spectral data is shown to improve the prediction accuracy for the
quantification of monoclonal antibody (mAb) size variants by up to 50% in
comparison to single-response PLS models. Bayesian structure optimization
suggests that multiple convolutional blocks are beneficial for model accuracy
and enable transfer across different data sets. Model-agnostic feature importance
methods and synthetic noise perturbation are used to directly compare the
optimized CNNs with PLS models. This enables the identification of wavelength
regions critical for model performance and suggests increased robustness
against Gaussian white noise and wavelength shifts of the CNNs compared to
the PLS models.
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1 Introduction

Driven by the FDA initiative in 2004 (FDA, 2004), process
analytical technology (PAT) has evolved in the past two decades
from niche applications to a frequently applied tool widely used in
the biopharmaceutical research and manufacturing (Read et al.,
2010a; Read et al., 2010b; Ündey et al., 2010; Glassey et al., 2011;
Rüdt et al., 2017b; Sauer et al., 2019; Wei et al., 2022; Wang et al.,
2022). PAT allows to monitor and control processes efficiently and
provides means for real-time release testing or in-process prediction
of product quality attributes (Jiang et al., 2017; Markl et al., 2020).
Optical spectroscopic techniques such as ultraviolet/visible (UV/
Vis), Infrared (IR) and Raman spectroscopy have been shown to
enable real-time monitoring across a wide range of pharmaceutical
processes (Bakeev, 2005; Feidl et al., 2019; Trampuž et al., 2020;
Romann et al., 2022; Rolinger et al., 2023). In combination with
multivariate data analysis, these techniques are, e.g., suitable for
quantifying product and impurity species from process data (Capito
et al., 2013; Brestrich et al., 2016, Brestrich et al., 2018; Rüdt et al.,
2017a), identify unknown sample compositions (Liu et al., 2017;
Wegner and Hubbuch, 2022), or determine product modifications
(Li et al., 2018; Zhang et al., 2019a; Sanden et al., 2019) owing to their
fast and non-invasive characteristics and high selectivity in
protein analysis.

Current approaches to the quantitative analysis of spectroscopic
data heavily rely on multivariate linear regression methods such as
partial least-squares regression (PLS) (Banner et al., 2021). Due to
the linear behavior, these models typically need a limited number of
samples for robust calibration and provide comprehensible metrics
for critical model evaluation and interpretation (Wold et al., 2001).
Machine learning (ML) methods have gradually been applied to the
field of chemometrics and have been shown to sometimes
outperform linear methods on various regression and
classification tasks, employing artificial neural networks (ANNs)
(Long et al., 1990; Santos et al., 2005), Gaussian process regression
(GPR) (Cui and Fearn, 2017; Malek et al., 2018), support vector
machines (SVMs) (Cui and Fearn, 2017), k-nearest neighbor (kNN)
(Wang et al., 2023) or convolutional neural networks (CNNs)
(Acquarelli et al., 2017; Bjerrum et al., 2017; Cui and Fearn,
2018; Blazhko et al., 2021; Passos and Mishra, 2021; Rolinger
et al., 2021; Wang et al., 2023). Next to the increased accuracy,
ML models were found to reduce the amount of preprocessing
needed prior to spectral modeling (Cui and Fearn, 2018; Rolinger
et al., 2021; Tulsyan et al., 2021; Schiemer et al., 2023) and increase
robustness against variability in the data (Cui and Fearn, 2018;
Yuanyuan and Zhibin, 2018). Major obstacles to successfully deploy
these models for process monitoring in biopharmaceutical
operations are the required amount of data for model calibration
(Tulsyan et al., 2019; Banner et al., 2021), the high number of
hyperparameters (Passos and Mishra, 2022) as well as the necessity
for universally applicable diagnostic tools to reduce the black-box
character of these models (Burkart and Huber, 2021).

In other branches of ML, where data is more abundantly
available, nonlinear methods are in many applications state-of-
the-art. Major advances have been made in natural language
processing or image analysis by using generative techniques
such as data augmentation to further increase the amount and
variability of data for building models (Shorten and Khoshgoftaar,

2019; Feng et al., 2021). In Bjerrum et al. (2017), the authors first
introduced a data augmentation method used for chemometric
CNN models based on simple mathematical modifications of the
underlying spectral data to induce artificial offset or slope effects
and wavelength shifts. This method was generalized by Blazhko
et al. (2021) using the theory obtained from extended
multiplicative scatter correction. Both mentioned approaches
solely address the variations in the spectral domain and do not
extract component-specific information for augmenting
experimental data. Other ML approaches have been tested using
generative adversarial networks (GANs) (Wu et al., 2021; Mishra
and Herrmann, 2021; G. McHardy et al., 2023) or variational
autoencoders (VAEs) (Guo et al., 2020), where the different input
data are projected onto so-called latent structures before they are
recombined into in silico representations. Both GANs and VAEs
involve neural network structures and hence increase the overall
complexity of the approach due to additional hyperparameters.
Alternatively, the feature dimension of the experimental data may
be extended by stacking the outputs of multiple preprocessing
methods as proposed in (Mishra and Passos, 2021d; Passos and
Mishra, 2021), however, not addressing the limitation in the
number of samples.

Finding the right architecture for the underlying problem and
tuning the hyperparameters remains a challenging and laborious
task due to a high-dimensional search space and long computation
times compared to linear methods (Feurer and Hutter, 2019). While
several scholars have proposed rather complex architectures
resulting in a large number of trainable parameters (Bjerrum
et al., 2017; Liu et al., 2017; Blazhko et al., 2021) for their
chemometric CNNs, others chose simple architectures employing
solely one convolutional layer to maintain interpretability
(Acquarelli et al., 2017; Cui and Fearn, 2018). Automating the
process of architecture search and hyperparameter tuning, which
is commonly referred to as hyperparameter optimization (HPO),
reduces the amount of manual work needed to build MLmodels and
helps to identify the best overall configuration. Model-based HPO
methods such as Bayesian optimization have been shown to be more
efficient at finding the global optimum for computer vision (Bergstra
et al., 2013) and chemometrics (Passos and Mishra, 2021, 2022;
Rolinger et al., 2021) compared to randomized or grid-based
approaches.

While linear methods such as PLS are well understood andmany
evaluationmetrics exist to assess model quality, MLmodels are often
considered black boxes due to the increased amount of parameters
and different mathematical principles. For CNNs, various
visualization methods exist to understand the trained
convolutions and the corresponding feature importance (Zeiler
and Fergus, 2013; Yosinski et al., 2015). Gradient-weighted class
activation maps (GradCAMs) as proposed in Selvaraju et al. (2020)
have already been applied to chemometrics (Mishra and Passos,
2021b; Passos and Mishra, 2021) to provide quantitative insights
into the contributions of a specific wavelength. However,
GradCAMs are not directly comparable to conventional
evaluation metrics for PLS models such as regression coefficients
or otherwise computed PLS-specific importance metrics. Additive
feature attribution methods such as Shapley additive explanations
(SHAP) (Lundberg and Lee, 2017) or Shapley additive global
importance (SAGE) (Covert et al., 2020a; Covert et al., 2020b)

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Schiemer et al. 10.3389/fbioe.2024.1228846

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1228846


provide model-agnostic frameworks to compute quantitative feature
importance based on multivariate permutations.

In this manuscript, we develop and implement a novel data
augmentation method for generating synthetic spectral data
based on the local estimation of the pure component profiles.
We further establish a holistic modeling workflow for
chemometric data considering data augmentation, HPO, and
interpretation. The herein calibrated CNN models are
evaluated using three different data sets from protein
chromatography employing UV/Vis spectroscopy as well as
one publicly available data set using IR spectroscopy. Firstly,
the suitability of the proposed data augmentation method to
enlarge small experimental data sets is demonstrated and a
systematic tuning of the method is performed. Secondly, the
optimal configuration of the CNN model is determined by
automated HPO. Thirdly, we assess the interpretability of the
optimized models by quantification of the importance of
individual wavelengths. Finally, the robustness and
transferability of the optimized CNNs are studied by in silico
perturbations and model transfer to external data sets.

2 Materials and methods

The evaluation of chemometric CNNs in this manuscript
involves multiple steps which are performed on the basis of four
data sets. Figure 1 provides an illustrative overview of the individual
steps and the data sets used within each step. In this section, the
methodology for the individual steps is explained in detail.

2.1 Data and equipment

In this study, four data sets based on spectroscopic data were
used for the evaluation of the herein-presented methods. Data sets
1–3 originate from chromatography experiments of which the
experimental details were presented elsewhere (Brestrich et al.,
2016; Brestrich et al., 2018). Data set 4 was presented in
(Blazhko et al., 2021). A summary of the experimental conditions
and the data subsets reserved for training and testing of the
developed models are given in Supplementary Table S1. For data
sets 1–3, the training and test sets were chosen as presented in the
referred literature, where the rationale was to evaluate the trained
models on independent chromatography experiments with varying
process conditions. For data set 4, a random split was used as no
additional information about the underlying experiments was
available. In the following, we will refer to all data points in a
data set as samples. One sample consists of an absorption spectrum
and the corresponding concentration values obtained by fraction
analytics. In data sets 1 to 3, all samples stem from fractions of
chromatography elution peaks.

2.1.1 Data set 1
Experimental procedures for data set 1 can be found in

(Brestrich et al., 2016). The data set consists of 233 samples
stemming from five chromatography experiments with varying
elution conditions. From each experiment, fractions were
collected and analyzed for the concentrations of the three protein
components ribonuclease A (Rib A), cytochrome C (Cyt C), and
lysozyme (Lys). The experiments were monitored by UV/Vis

FIGURE 1
Illustration of the study design. The study can largely be divided into 5 steps: 1) Data augmentation, 2) parameter study, 3) automated HPO, 4) model
interpretability assessment and 5) robustness and transferability evaluation. The round boxes in the bottom left corners indicate which data set was used
for which step. Data set 1 consists of three model proteins, namely Rib A, Cyt C, Lys. Data set 2 and 3 are comprised of mAb size variants and data set
4 stems from samples of corn.
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spectroscopy using a wavelength range of 240 nm–300 nm at a
resolution of 1 nm resulting in 61 features for regression
modeling. This data set involves well-studied model proteins and
therefore serves for method development within this study.

2.1.2 Data set 2
Data set 2 consists of 432 samples stemming from four

chromatography experiments with varying elution conditions.
The experimental procedures for the data set can be found in
(Brestrich et al., 2018). The concentrations of monoclonal
antibody (mAb) monomers and aggregates were obtained by
fraction analytics. For UV/Vis monitoring, a variable path length
spectrometer was used operating at a wavelength range of
240 nm–340 nm at a resolution of 2 nm, resulting in 51 features
for regression modeling.

2.1.3 Data set 3
Experimental procedures for data set 3 can be found in

(Brestrich et al., 2016). The data set consists of 348 samples
stemming from three chromatography experiments with varying
elution conditions. The concentrations of the mAb size variants low
molecular weight species (LMWS), monomers, high molecular
weight species (HMWS)1, and HMWS2 were obtained by
fraction analytics. The experiments were monitored by UV/Vis
spectroscopy using a wavelength range of 240 nm–300 nm at a
resolution of 1 nm, resulting in 61 features for regression modeling.

2.1.4 Data set 4
Data set 4 was obtained from (Blazhko et al., 2021) and consists

of in total of 80 samples from IR spectroscopy. The data was
obtained from analyzing corn samples and the contents of oil,
protein and starch were given as reference values. The spectral
range is 1,100 cm−1 to 2,500 cm−1 at a resolution of 2 cm−1, resulting
in 701 features for regressionmodeling. The training and test subsets
were assigned using a randomized 80:20% split.

2.1.5 Hardware and software
Data analysis was done in Python 3.8. Data augmentation was

performed using numpy (v. 1.19.5), scikit-learn (v. 1.1.1) and scipy
(v. 1.7.3). CNNs were implemented in tensorflow (v. 2.5.0). HPOwas
done in optuna (v. 3.1.0) in connection with aMySQLTM8.0 database
and PyMySQL (v. 1.0.2). SHAP values were computed using shap (v.
0.41.0). All computations were done using a workstation equipped
with AMD Ryzen 9 3900X 12-core processor and 32GB of memory
operating Microsoft Windows 10.

2.2 Data augmentation

Before describing the data augmentation method
mathematically, the motivation is laid out. In spectroscopy, each
molecule is considered to possess a unique spectrum characterized
by well-defined extinction coefficients. However, in practical
scenarios, various factors such as detector saturation, noise,
wavelength shifts, or interfering buffer species can influence the
observed absorption spectra. The proposed data augmentation
method aims to incorporate these effects by local approximations
of the pure component profiles. The method can largely be divided

into three consecutive steps: 1) Concentration density
approximation, 2) subset selection, and 3) spectra generation. An
illustrative overview of the data augmentation method is presented
in Figure 2. Mathematically, a given data set can be described as
X,Y � {(xTi , yTi )} for i ∈ [1, M] with M being the total number of
samples and xTi ∈ R1xN and yTi ∈ R1xP being absorbance spectra
with N wavelengths and concentrations of P components,
respectively. First, the value distribution in Y is approximated for
each column using a kernel-density estimation as implemented in
scipy.gaussian_kde. From the approximated distribution, a random
concentration vector yT* is sampled. The distance between the
sampled vector yT* and all instances in Y is then computed
according to Eq. (1)

d yT* , y
T
i( ) � ‖yT* − yTi ‖l, for i ∈ 1,M[ ] (1)

with l being the order of the vector norm. As a second step, a number
of nLSA samples with the smallest values d(yT* , yTi ) are selected to
form a local subset of available samples with matrices ~X, ~Y. In the
third step, pure-component profiles are estimated based on these
local subsets by solving the linear problem as given by

~X~S � ~Y, (2)
where ~S ∈ RNxP are the estimated pure-component profiles for the
local subsets ~X, ~Y. The solution of (2) is realized by a ordinary
least-squares or non-negative least squares (NNLS) solver to
constrain solutions to positive values as implemented in numpy
or scipy, respectively. Thirdly, an in silico spectrum x* is calculated
by Eq. (3)

x* � ~Sy*. (3)

The motivation behind assembling a subset of samples with
closely similar compositions lies in the pursuit of extracting the
local differences in the pure component estimations between
experimental data points, e.g., induced by concentration
differences or higher noise contents. By focusing on samples
that are closely related in composition, we aim to enhance the
quality of the in silico spectra. As the generation of in silico spectra
is based on local subsets of the available data, the method is coined
local subset augmentation (LSA). A more detailed explanation of
the approach can be found in the Supplementary Section S1. To
add more variation to the synthesized spectrum, a Gaussian white
noise distributed as N (0, σnoise) is added to each feature and a
normally distributed wavelength shift N (0, σshift) is applied to the
entire spectrum xT* . In summary, the LSA method presents several
configurable parameters, namely nLSA, l, σnoise, σshift, and the type
of solver employed to derive the pure-component profiles. These
so-called hyperparameters are automatically tuned using a cross-
validation scheme. The residuals between the in silico and the
measured spectra were used as quality metrics and summarized by
the root mean squared error (RMSE) of reconstruction.
Hyperparameters associated with the LSA method were
screened using a grid-based scheme and the optimal
configuration with regard to the cross-validated reconstruction
error RMSECV was selected. Depending on the data set, the
determined local subset size served as an initial estimate and
was further refined within the optimization procedure described
in Section 2.3.3.

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Schiemer et al. 10.3389/fbioe.2024.1228846

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1228846


2.3 Convolutional neural networks

CNNs are multivariate regression models, which may be
composed of several convolutional, pooling, fully connected (FC),
dropout, and regularization layers. For a comprehensive, theoretical
overview of CNNs the reader is referred to pertinent literature
(Goodfellow et al., 2016; Rosebrock, 2018).

2.3.1 Neural network architecture
The following design choices in neural network architecture

were made based on existing studies (Cui and Fearn, 2018; Rolinger
et al., 2021; Passos and Mishra, 2022), while aiming to keep model
complexity low in order to reduce computational time during HPO.
It is worth noting that the UV/Vis data mostly used in this study
usually is of lower dimension than Raman or IR spectroscopy data
used in other studies and hence the required model complexity may
be lower. CNNs were constructed from 1 to 3 convolutional layers.
For each convolutional layer, a number of 1–10 convolutional filters
with a customized filter width were defined. After the first and
second convolutional layers, a maximum pooling layer was
implemented using a window size of 2, effectively halving the
number of features generated from the previous layer. As the
convolutional filter width is constrained by the output dimension
of the previous layer, the maximum allowed filter width is adjusted
accordingly after each pooling step. After the convolutional block, a
flattening operation was implemented to concatenate the outputs

from all convolutional filters of the last convolutional layer into a
one-dimensional vector. In the regression block, an FC layer with up
to 100 units was used. The output layer is configured to use a
rectified linear unit (reLU) activation function to restrict the
prediction to positive values. As activation functions for the
convolutional and FC layers, linear and hyperbolic tangent (tanh)
functions were used, respectively. Other options may individually be
chosen and several options were tested within this study. Depending
on the chosen architecture, the number of configurable
hyperparameters may greatly vary and hence a standardized
workflow for optimization is required. The base architectures and
corresponding hyperparameters for training and data augmentation
used for data sets 1 and 2 are listed in Table 1.

2.3.2 Training, cross-validation and testing
In the context of training CNN models, data produced by the

LSA method are denoted in silico data, while experimental data are
split into training and test data as listed in Supplementary Table S1.
For the remainder of the manuscript, we will further refer to
calibration as the process of fitting the CNN model weights and
training as an entire cycle of generating in silico data, fitting the
weights, and evaluation based on the training data.

To train a CNN model, the in silico subset is generated solely
based on the training data, and the CNN model is solely calibrated
on the in silico data. For cross-validation, a similar data setup was
used. Here, the experimental training data is rotated in a leave-one-

FIGURE 2
Visualization of the LSA data augmentation method. The method is based on experimentally derived response data (A) and spectral data (D). Firstly,
the response data distributions are approximated by kernel density functions (B). Second, for a specific sample for which a new spectrum is generated,
vector distances for all instances in the supplied experimental data are computed. The nLSA nearest samples in terms ofmost similar concentration profiles
are then selected (C) to form a representative subset of the sampled concentration vector and posing as the basis to derive the pure component
spectra (E). Given the sampled concentration vector, the pure component spectra are combined into a newly generated sum spectrum (F).
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group-out scheme, i.e., holding out one of the assigned training
experiments. During each rotation, the experimental training data
are split into rotation-specific training and test sets. Again, the in
silico data are generated based on the rotation-specific training data
and are further used to calibrate the CNN model. In both cases,
training and cross-validation, the assigned training data serve to
evaluate the stopping criteria. The CNNmodels were calibrated for a
maximum of 100 epochs using the mean squared error (MSE) of all
responses as the loss function and the stochastic gradient-based
optimizer referred to as Adam (Kingma and Ba, 2015). For all
parameter studies and HPO, the number of generated samples was
set to 105, and model calibration was stopped when the loss of the
assigned validation set did not improve for 4 consecutive epochs
further referred to as patience. Finally, the CNN models were
evaluated on the independent test set, which has not been used
for in silico data generation or cross-validation.

To study the effect of hyperparameters associated with data
generation, CNN architecture, or training on model performance,
hyperparameters were varied in a one-factor-at-a-time scheme while
all other parameters remained constant. Model performance was

measured using the cross-validation error RMSECV across all
response variables and the optimal settings were adapted as the
base configuration for subsequent HPO. This parameter study was
solely conducted with data set 1. The findings for the initial
configuration were then also used for HPO for data set 2.

2.3.3 Hyperparameter optimization
HPO routines were implemented in optuna for data sets 1 and 2.

For both data sets, a combination of a randomized and a tree-parzen
estimator (TPE)-based sampler was used. A random sampling of
hyperparameters in pre-configured ranges was performed for the
first 100 trials when the optimizer switched to the TPE. The TPE can
be used to optimize continuous, discrete, and categorical variables at
the same time using a Bayesian approach based on kernel-density
estimations. For the technical details and the theory of the method,
the reader is referred to Bergstra et al. (2013); Akiba et al. (2019). The
sum of the component-specific cross-validated coefficients of
determination ∑P

i�1R
2
CV, i was used as the objective value.

Automated pruning of unpromising hyperparameter
combinations was configured to set in after 100 trials and was

TABLE 1 Overview of hyperparameters used for data augmentation, CNN architecture and training for data sets 1 and 2.

Category Hyperparameter Base Data set 1 Data set 2

Initial Optimized Initial Optimized

Data augmentation Number of gen. Samples 1e5 1e5 1e5 1e5 1e5

Local subset size 5 11 11 13 12

Distance norm 2 2 2 1 1

Solver type NNLS NNLS NNLS NNLS NNLS

Std. White noise 0.001 0.001 0.001 0.001 0.001

Std. Wavelength shift 0.01 0.01 0.01 0.03 0.03

Model architecture Number of convolutional layers 1 1 2 (1–3) 1 3 (1–3)

Number of conv. Filters 5 5 [2, 7] (1–10) 5 [2, 10, 8] (1–10)

Filter width 9 9 [3, 9] (3–61) 9 [7, 5, 11] (3–51)

Pooling width 2 2 2 2 2

Number of FC units 12 12 29 (5–100) 12 9 (5–100)

Activation function conv. Layer linear linear linear linear linear

Activation function FC units sigmoid tanh tanh tanh tanh

Initialization function weights glorot uniform random uniform random uniform random uniform random uniform

Dropout rate 0 0 0 (0–0.3) 0 0.07

Regularization factor 0 0 0 (10−9–10−3) 0 3.07 × 10−9 (10−9–10−3)

Model training Learning rate 10−3 10−3 10−3 10−3 10−3

Batch size 100 100 100 100 100

Optimizer Adam Adam Adam Adam Adam

Patience 4 4 4 4 4

The base configuration refers to hyperparameter values used during the single-factor parameter study. Data augmentation parameters were derived from tuning of the LSAmethod and a simple

CNN architecture was assumed. The initial configuration refers to settings adapted after the parameter study and served as a comparison for the optimized models. The optimized configuration

refers to values derived from HPO. Here, the square brackets indicate the optimized parameter values. Multiple numbers are given for the determined values for the individual layers. The

parenthesis denote the search spaces during HPO. If no search space is given, the parameter was not included in the optimization. For the convolutional filter width, the allowed maximum filter

width was configured to halve with each additional layer due to the interposed pooling layers.
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triggered when ∑P
i�1R

2
train, i was lower than the median of all

previously reported trials. This effectively reduces the
computation time as cross-validation does not need to be
performed for the pruned trials. The search spaces for the
optimizer were determined based on previously conducted
individual parameter studies and are listed in Table 1. A
MySQLTM database was used to facilitate distributed
computation to accelerate HPO. In total, the optimization was
run over 500 trials. However, the effective number of finished
trials differs due to automated pruning.

Among the top 5 models, the best candidate was selected based
on quantitative metrics such as training and cross-validation
performance as well as qualitative metrics such as model
complexity. The selected model was retrained for 10 repetitions
using a modified patience of 10. The obtained performance metrics
were compared with optimized PLS models as measured by the
normalized error NRMSE � RMSE/yi with yi being the arithmetic
mean of the observed concentration for the respective data subset.
As a second baseline comparison, the optimized CNN models were
trained without any prior data augmentation. Therefore, the models
were trained for 300 epochs and the early stopping criteria were
disabled. The training data were divided randomly into 80/20%
calibration-validation subsets to determine after which epoch the
best performance was achieved.

2.4 Partial least squares regression

PLS models were implemented in scikit-learn using the non-
linear iterative partial least squares (NIPALS) algorithm. While the
CNNs were used as multi-response models, i.e., predicting all target
species using the samemodel, single-response PLSmodels were used
for each component. Spectral data were preprocessed using a
Savitzky-Golay filter (SGF) and mean-centered. HPO for PLS
models was performed using a grid-based scheme. Therefore, the
number of PLS components (1–10), the order of derivative (0–2) and
the width of the smoothing window of the SGF (3–31) were varied in
pre-configured ranges as stated in parenthesis. The SGF was used
with a second-degree polynomial. The optimal configuration was
chosen using the cross-validated and scaled sum of squared errors
SSECVscaled according to Wold et al. (2001) as given by Eq. (4)

SSECVscaled � ∑M
i�1 ŷi − yi( )2

M − nPLS − 1
, (4)

where ŷi and yi denote the predicted and observed response values
for a sample i, respectively, and nPLS designates the number of PLS
components.

2.5 Feature importance

To quantitatively evaluate the importance of individual
wavelengths, GradCAM and SHAP were employed. While
GradCAM can solely be applied to the CNNs, SHAP is model-
agnostic and can therefore be used to directly compare CNN and
PLS models. For the PLS models, the regression coefficients and
variable importance in projection (VIP) scores were used as
evaluation metrics. Feature importance techniques were solely

employed using the optimized models from HPO for data
set 1 and 2.

2.5.1 Gradient-weighted class activation maps
Guided GradCAM is a response-discriminative localization

technique which was proposed in Selvaraju et al. (2020) and was
implemented according to Rosebrock (2018). GradCAM can be
largely divided into three steps: 1) Computation of backward
gradients with respect to each response variable and the last
convolutional layer for one specific input spectrum, 2) global
average pooling of the computed gradients along the wavelength
dimension to obtain a single weighting value for each filter in the last
convolutional layer, and 3) computation of the GradCAM estimate.
In cases, where pooling layers are used in between convolutional
layers, the localization estimate is of reduced dimension compared
to the original input spectrum and is thus linearly interpolated to
match the original dimension.

2.5.2 Shapley additive explanations
SHAP is a model-agnostic additive feature attribution method

derived from economic game theory and can be used to quantify
feature importance which are in turn referred to as SHAP values. To
compute a SHAP value for a specific wavelength, the absorbance
values in a given data set are randomly permuted and replaced by
absorbance values sampled from a conditional distribution. Every
sample in the given data set is permuted d times and passed through
the regression model to obtain the model prediction for the
permuted input spectrum. The permuted model prediction w(S)
is compared to the prediction using the original data w(S ∪ {i}). The
SHAP value ϕi(w) for a feature i and a permutation cycle w with d
permutations (w1, . . ., wd) is according to Lundberg and Lee (2017)
then defined as Eq. (5)

ϕi w( ) � 1
d

∑
S⊆D\ i{ }

d − 1
|S|( )−1

w S ∪ i{ }( ) − w S( )( ) (5)

where D and S denote the entire feature set and the permuted feature
subset, respectively. To incorporate inter-dependency due to
collinearity between multiple wavelengths, conditional sampling is
performed for multiple wavelengths at the same time and repeated for
a fixed number of permutations. For a deeper overview of the theory
and discrepancies to closely related methods, we refer to (Lundberg
and Lee, 2017; Covert et al., 2020b; Covert et al., 2020a; Belle and
Papantonis, 2021). To compute SHAP values within this study, the
test subsets for data sets 1 and 2 were used to obtain permuted input
spectra. All computationswere done as implemented in shap using the
PermutationExplainer. In total, 105 permutations per input
spectrum were used.

2.5.3 Variable importance in projection
The VIP scores are a common metric to assess variable

importance in PLS models next to the regression coefficients.
According to (Mehmood et al., 2012), the VIP score vj for a
wavelength j ∈ [1, N] is defined as Eq. (6)

vj �

����������������������������������
N∑A

a�1
q2at

T
a ta( ) waj/ wa‖ ‖( )2[ ]/∑A

a�1
q2at

T
a ta( )√√

, (6)
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where wa, qa, and ta denote the loading weights, the y-loadings and
the scores vector corresponding to the PLS component a ∈ [1, A],
respectively. The total number of wavelengths is given by N.

2.6 Robustness and transferability

The robustness and transferability of the LSA method and the
optimized CNN were evaluated by an in silico noise perturbation
study and amodel transfer to two external data sets based onUV/Vis
and IR spectroscopy.

2.6.1 In silico noise perturbation
To compensate for increasingly noisy data, both model types

were evaluated with modified generated data sets with an increasing
level of white noise N (0, σnoise) with σnoise of {0.001, 0.005, 0.01,
0.05, 0.1, 0.5, 1}mAU and an increasing level of axial wavelength
shifts N (0, σshift) with σshift of {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} nm.
We differentiate between models solely being trained on the noise-
free data set and models being retrained for each noise level. The
latter models are referred to as “retrained.”

2.6.2 Model transfer to data set 3
To evaluate model performance on a data set without additional

HPO, the optimized model from data set 2 was transferred to data
set 3. The CNN input and output dimensions were adjusted
according to the experimental data. The CNN models were
trained in the optimized configuration for 10 repetitions and
evaluated against the PLS models which were optimized as
described in Section 2.4.

2.6.3 Model transfer to data set 4
To compare the LSA method to the augmentation method

presented in Blazhko et al. (2021), which will be referred to as
extended multiplicative scatter augmentation (EMSA), both
methods were applied to data sets 2 and 4. The CNN
architecture found for data set 2 was therefore transferred to data
set 4 without additional HPO. To account for the higher dimension
of the IR data, the pooling window size of the first CNN layer was
adjusted to 4 and the number of FC units was raised to 25. The
EMSA method was obtained from Blazhko et al. (2021) and used
with its default configurations. The LSA method was tuned as
described in Section 2.2. IR spectra were preprocessed using a
second derivative SGF with a window size of 19 and second-
order polynomial, as this was reported to improve the
performance of the EMSA method (Blazhko et al., 2021).

3 Results

3.1 Generating highly realistic in silico
spectra from experimental data

The LSA method was used to generate in silico UV/Vis
absorbance spectra based on the assigned training data as
previously described in Section 2.2. To systematically evaluate the
suitability of the proposed data augmentation method and tune the
corresponding hyperparameters, the LSA method was used to

reconstruct the experimental data in a cross-validation scheme.
The reconstruction accuracy for the cross-validation and test
subsets for both data sets as measured by the RMSECV are
displayed in Figures 3A, B, D, E with regard to the local subset
size and the standard deviation of the applied wavelength shift. The
local subset size strongly affects the reconstruction RMSECV and
shows optima at sizes of 5 and 13 samples for data sets 1 and 2,
respectively. In both cases, the RMSECV remains stable for small
wavelength shifts and grows exponentially starting at 0.1 nm. The
Cityblock norm is observed to slightly improve the RMSECV for
data set 2 compared to the Euclidean norm while the overall impact
on RMSECV is considerably small in comparison to the local subset
size. While the Cityblock norm uses absolute differences, the
Euclidean norm is based on squared differences and hence can
affect the selection of local subsets depending on the concentration
ranges in the samples. The residuals for the spectra in the test sets are
displayed in Figures 3C, F and show maximal deviations of 5 and
15% for data sets 1 and 2, respectively, as measured by the maximum
deviation normalized by the maximum absorbance in the
corresponding run. As LSA is based on local subsets of the
experimental data, the pure component profiles differ depending
on the selected data points. Figure 4 shows the local pure component
profiles for all components from data sets 1 and 2 for concentration
samples stemming from the test data. The color of the lines indicates
the concentration of the respective component in the corresponding
sample. The dashed lines indicate the global pure component
profiles using the entire training data for estimation instead of
the local subsets. For all components, the local profiles are
scattered around the global profiles with larger deviations for
samples in extraordinarily high or low concentration regimes.
Particularly for data set 2, these effects are visible for the
aggregate component, where the local pure component profiles
strongly deviate from the global estimates for low concentration
regimes by a factor > 10. Contrarily, for the monomer species low
concentration regimes cause the spectra to capture an increased level
of noise in the data.

In summary, LSA provides a concentration-adaptive data
augmentation method by leveraging variations in the spectral and
concentration domain. The tuned LSA method can generate highly
realistic in silico spectra and can hence be used to augment
experimental data sets.

3.2 Training convolutional networks with
augmented spectral data

To study the effect of hyperparameters associated with data
augmentation, CNN training, and model architecture on predictive
performance, hyperparameters were varied in a one-factor-at-a-time
scheme while all other parameters remained constant. The base
configuration of the CNN for this parameter study can be found in
Table 1. The obtained performance as measured by the predictive
RMSECV for all response variables for data set 1 are displayed
in Figure 5.

Considering the data augmentation hyperparameters in
Figures 5A–C, the kernel-density estimation (KDE) sampling
surpasses the performances obtained by uniform and normal
sampling. The local subet size shows a stable performance for
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Cyt C and Lys between 5 and 15 samples, while the RMSECV for
Rib A is reduced by approximately 25% by increasing nLSA from
5 to 11, reaching a more balanced performance between all three
components. This suggests that it may be beneficial to include the
local subset size during HPO to ensure finding the optimal solution
for all response variables. Hence, the local subset size was
subsequently incorporated during HPO for both data sets 1 and
2. The number of in silico generated samples positively affects
model performance and starts to plateau at 105. As increasing the
number beyond that only minorly affects model performance
while increasing computational time considerably, 105 was
adopted for the base configuration for HPO.

The influence of initialization and activation functions for
convolutional and FC layers are shown in Figures 5D–F.
Initialization only minorly affects model performance with
random uniform providing the best option. While the linear
function performs best for the convolutional layer, non-linear
activation functions show superior accuracy for the FC layers
with tanh and the exponential linear unit (ELU) returning the
lowest RMSECV values for all components. Increasing the
complexity of the CNN by increasing the number of
convolutional layers, the number of FC units, or the size of the
convolutional window, does not directly improve model
performance. Performance gains are not equally distributed
among all response variables and no overall trends can be
extracted as depicted in Figures 5G–I. Regarding the training
parameters, it is suggested that a learning rate of 10−3, a batch

size of 100, and the Adam optimizer provide the best options as
shown in Figures 5J–L.

In summary, it was possible to identify optimal configurations
for hyperparameters for data augmentation and model training.
However, given the high dimensionality of the search space of the
remaining hyperparameters and unequally distributed effects on
model performance it is suggested to use automated HPO to identify
the optimal model architecture for each data set individually.

3.3 Automating hyperparameter search by
Bayesian optimization

As hyperparameter search is a multi-dimensional,
computationally expensive problem, automated HPO was
performed using a TPE-based Bayesian optimizer as
implemented in optuna. The optimizer considers local and global
hyperparameters which enables the solution of optimization
problems with multiple decision levels such as the choice of the
number of convolutional layers and the optimization of a set of
layer-specific hyperparameters. Figure 6 presents the evolution of
objective values with regard to all studied hyperparameters
throughout the optimization process for data set 2 exemplarily.
As shown in Figure 6A, the transition between random and TPE-
based sampling can be captured after 100 trials. The objective values
form a band centered around 1.9 with scattered maxima at 1.93, with
2 being the maximum achievable objective value. The color of the

FIGURE 3
Tuning of the LSA data augmentationmethod for data set 1 (A–C) and data set 2 (D–F). From left to right, the reconstruction RMSE in dependence of
the local subset size, the reconstruction RMSE in dependence of the standard deviation of the wavelength shift and a heatmap of wavelength-specific
residuals for the respective test subsets are shown. The errors in (A, B, D, E) are shown for fixed levels of white noise σnoise = 0.001.
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points indicates the number of the optimization trials with dark blue
being the end of the optimization process. The evolution profiles of
global parameters (cf. Figures 6B–F) suggest an optimum at
3 convolutional layers with less than 25 FC units. Both
regularization methods, governed by the regularization factor and
the dropout rate, were found to positively influence model
performance although weight regularization using a fairly low
regularization factor in the range of 10−8–10−6 was employed in
later trials. In contrast to data set 1, where the local subset size
needed to be adjusted for optimal model performance, here, the
previously determined value was found to be suitable for the given
data set and only varied slightly between 9 and 15 in later trials.
According to Figures 6G–L, the three-layer CNN achieves the
highest accuracy for all components with a convolutional window
size between 1 and 10 for all three layers. The number of
convolutional filters shows no clear optimum for the first and
second layers, while higher counts are found beneficial for the
third layer.

For data set 1, optimal performance with an objective value
close to 2.98 was achieved by employing a two-layer CNN with
2 and 7 convolutional filters, a window size of 3 and 9, and 29 FC
units. Contrarily, dropout and regularization were both found to
be disadvantageous. The evolution plot can be found in the
Supplementary Figure S1. The exact hyperparameters and
visualization of the architecture for both optimized models
can be found in Table 1 and Supplementary Figure S2,
respectively.

The optimized CNN models were retrained for 10 repetitions
using random initialization of the weights and an increased patience
of 10 epochs. The obtained model predictions for training and test
subsets for both data sets are summarized by the NRMSE and
presented in Figure 7. The boxplots show the distribution of errors
for the 10 repetitions as a result of random initilizations and the
stochastic nature of the training process. CNN models using the
initial configuration obtained from tuning the augmentation
method are also included for reference. As a baseline
comparison, the NRMSE obtained from optimized single-
response PLS models are indicated by the dashed lines.
Optimized PLS hyperparameters can be found in Supplementary
Table S1. Additionally, the optimized architectures were trained
without using any prior data augmentation as described in Section
2.3.3. For reference, timely predictions for the optimized CNN and
the PLS can be found in Supplementary Figure S3.

For data set 1 (cf. Figure 7A), initial and optimized CNNmodels
show generally lower NRMSE on average than the PLS models for
the training subset for all components. In the test subset, the
prediction error for Rib A is reduced by up to 50%, while the
test errors for Cyt C and Lys increase. This increase can be attributed
to erroneous predictions of Cyt C and Lys during the elution of Rib
A as can be seen in the timely predictions in Supplementary Figure
S3. The initial CNN architecture performs slightly better on the test
subset than the optimized CNN architecture as indicated by a lower
average and variance. Interestingly, CNN models without prior data
augmentation perform similarly to the PLS models achieving higher

FIGURE 4
Local estimations of the pure component profiles for Rib A (A), Cyt C (B), Lys (C) for data set 1 andmonomer (D) and aggregate (E) species for data set
2. The pure component spectra are shown for each sample in the test data (solid lines) with a local subset size of 11 for the data augmentationmethod and
are colored according to the concentration of the corresponding component with darker colors denote high concentrations. The pure component
spectra estimates using the entire training data are shown as dashed black lines.
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accuracy for Cyt C and Lys and significantly lower accuracy for Rib
A compared to the CNNs using data augmentation. For data set 2,
the optimized CNN model reduces the NRMSE compared to the
initial architecture and the PLS model by up to 50% for the aggregate
species. The accuracy for the monomer species slightly decreases

compared to the PLS model with a 5% increase in the NRMSE. The
reduction for the aggregate species can be attributed to the improved
capture of the onset of the elution peak as can be seen in the timely
prediction profiles in Supplementary Figure S3. In contrast to data
set 1, the optimized CNN without augmentation results in

FIGURE 5
Influence of selected hyperparameters on the predictive cross-validation performance (RMSECV) for each component in data set 1. The selected
hyperparameters can be categorized in three groups: generation parameters (A–C), model parameters (D–I) and training parameters (J–L).
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considerably higher NRMSE than both augmented CNN models
and the PLS. In summary, HPO enabled the automated
identification of the optimal model architecture for data sets

1 and 2, leading to improved quantification of Rib A and mAb
aggregates, respectively, while sometimes reducing the accuracy for
the other species compared to the benchmark methods.

FIGURE 6
Hyperparameter evolution profiles during optimization for data set 2. The objective values ∑R2 are shown for all trials (A) and each hyperparameter
individually (B–L). The colors of the circles indicate the number of HPO trials with darker shades of blue corresponding to later sampling points. Random
sampling was performed for the first 100 trials after which median pruning and the TPE-based optimization were enabled.
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3.4 Understanding model predictions
through feature importance

To investigate the differences in model performance, model-
specific and model-agnostic importance metrics were used. Figure 8
presents an overview of multiple importance metrics for data set 2.
CNN-specific GradCAM localization maps are shown in Figures 8A,
B. PLS regression coefficients and VIP scores are shown in Figures
8G, H. To enable a direct comparison between the two model types,
SHAP values are illustrated in Figures 8C–F. The left and right
columns correspond to the feature importances for the monomer
and aggregate components, respectively. For the monomer species,
both CNN- and PLS-SHAP values closely resemble the PLS
regression coefficients with wavelengths between 260 and 280 nm
positively contributing to the model output and wavelengths
between 280 and 300 nm being assigned negative values. A
similar behavior can be observed for the GradCAM estimates
with both wavelength ranges being assigned positive importance
as GradCAM is constrained to positive values per definition.
Additionally, GradCAM identifies the border areas at the
beginning and the end of the spectrum as important. The SHAP
values generally confirm those observations for small wavelengths,
whereas wavelengths above 315 nm are shown to not affect the
model output for both the CNN and PLS models. This is in
accordance with the PLS-VIP scores as well as the spectral data

as no absorbance is detected at wavelengths above 315 nm (cf.
Supplementary Figure S4). For the aggregate species, GradCAM
provides a fairly similar profile compared to the monomer species
showing a shift in the importance peak from 280–305 to
300–305 nm. The PLS regression coefficients support this
observation with a maximum of 315 nm for the aggregate
species, while the VIP scores for all wavelengths between 280 and
340 nm are between 0.5–1. Regression coefficients for smaller
wavelengths appear comparably noisy and without any structural
integrity in contrast to the coefficients for the monomer species.
While CNN-SHAP values indicate a similar profile as seen for the
monomer with an inversed importance for wavelengths between
295 and 305 nm, PLS-SHAP suggests a high degree of noise and
considerably lower importance for the previously identified
wavelength region relative to the remainder of the spectrum. As
ameans for comparison, the visualization of the convolutional layers
for data set 2 can be found in Supplementary Figure S5. For each
convolutional layer and each corresponding filter, the convoluted
input spectra for the test set are shown. To emphasize the differences
between the monomer and aggregate components, the samples with
the maximum concentration of monomers and aggregrates are
marked in green and blue, respectively. While the convoluted
signals in layer 1 largely resemble the original input spectra,
more fluctuations between positive and negative outputs are
introduced with layers 2 and 3, with some filters showing fairly

FIGURE 7
Model performance for initial and optimized CNNmodels for data set 1 (A) and data set 2 (B). The normalized error NRMSE for training and test data
are shown on the left and right, respectively. For both data sets, the initial and optimized CNN model were trained 10 times with an elevated patience of
10. The arithmetic mean of the obtained performances is indicated by the solid lines within the boxes. Outliers are shown as diamonds and were defined
as such when the error exceeded 1.5 times the interquartile range. The dashed lines correspond to the NRMSE obtained from an optimized PLS
model using a SGF for preprocessing as a benchmark.
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similar profiles within one layer. Due to the interposed pooling
layers, the resolution of the presented profiles is gradually decreasing
across layers 1 to 3.

In summary, the employed feature importance methods point to
an elevated importance for higher wavelengths for the aggregates
compared to those for the monomer species and identify this area as
critical for differentiation between both species. The filter
visualization further provides insights into the working principle
of the CNNs. Analogous to the presented comparison for data set 2,
the feature importance evaluation and filter visualization for data set
1 can be found in Supplementary Figures S6, S7, respectively.

3.5 Evaluating robustness and transferability

To evaluate the capability of the CNN and PLS models to
compensate for increasingly noisy data, both model types were
retrained using modified generated data sets with 1) an
increasing level of Gaussian noise and 2) an increasing level of
axial wavelength shifts. The model performance as summarized by
the sum of NRMSE for all three components in data set 1 is shown in
Figures 9A, B. It is observed that the PLS model does generally not
reach the same level of accuracy as the CNNmodel being trained on
the generated data. For both cases, 1) and 2), the PLS model error

FIGURE 8
Model-specific and model-agnostic importance measures for data set 2. CNN-specific GradCAM importance values (A, B), SHAP values for CNN
and PLS (C, D) and (E, F), respectively. Each dot in (C–F) corresponds to the feature contribution for one specific model output in the test data set, which
are colored according to the measured absorbance. The absorbances were normalized by the maximum value at 280 nm. PLS-specific regression
coefficients (shown as lines) and VIP scores (shown as bars) are presented in (G, H). The left and right columns correspond to importancemetrics for
the monomer and aggregate species, respectively.
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starts to increase at lower levels of white noise and wavelength shift
than the CNN model. Similarly, when both models are retrained at
each noise level, the CNN model is observed to be more robust
against noisy data and can slightly decrease the model error at a
noise level of 0.01mAU or a wavelength shift of 0.03 nm.

Using the hyperparameters determined duringHPO for data set 2,
the CNNwas trained on data set 3 including data augmentation by the
LSAmethod to assess the generalizability of the identified architecture.
All hyperparameters were obtained from data set 2 and remained

unchanged. Figure 9C presents a comparison of CNN and PLS models
as measured by the NRMSE. The transferred CNN achieves NRMSE
values lower than 0.25 for all components for the training subset and
decreases the observed errors for the monomer, HMWS1 and
HMWS2 species by up to 50%. For the test subset, the variance of
the transferred CNN increases and the error for HMWS1 increases
compared to the PLSmodel. The PLSmodel fails to predict the LMWS
component which was observed to depend on the cross-validation split
used for optimizing the PLS models.

FIGURE 9
Evaluation of CNN robustness and transferability. Comparison of CNN and PLSmodel robustness for increasing noise (A) andwavelength shifts (B) in
spectral data for data set 1 as measured by the normalized error NRMSE. CNN performance after model transfer to data set 3 (C). Comparison of model
performance with data augmentation conducted by the EMSA and LSA method for data set 4 (D).
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Finally, the herein-developed LSA data augmentation method
was compared to the EMSA method (Blazhko et al., 2021). Both
methods were evaluated based on data sets 2 and 4 to assess the
applicability of EMSA on UV/Vis data as well as the transferability
of the LSA method to IR data. Therefore, the optimized CNNmodel
from data set 2 was trained with in silico data from the LSA and the
EMSA method for both data sets 2 and 4. A detailed overview of the
results for both data sets including the performance of PLS models
can be found in Supplementary Table S3. Figure 9D provides a
summary of the obtained performances using the LSA method
versus the EMSA method for data set 4. The LSA method in
combination with a three-layer CNN could successfully be
transferred to data set 4 using IR data. When compared with the
EMSA method as employed in Blazhko et al. (2021), the LSA
method achieves accuracies of +32%, +4%, and −34% in terms of
the relative difference in R2 for oil, protein, and starch content in the
test subset, respectively. However, the training accuracy for the
CNN-EMSA model is considerably higher for all three components
indicating potential overfitting of the model. When applied to data
set 2, the EMSAmethod fails to generate high-quality data to be used
for chemometric modeling resulting in a two-fold increase in RMSE
for both components compared to the LSA method.

In summary, the optimized CNN models in combination with
the LSA method present a more flexible alternative to commonly
used PLSmodels due to their increased robustness against noisy data
and good generalization capability to other UV/Vis spectroscopy
data. They may further be universally applied to other types of
spectroscopic data without prior HPO.

4 Discussion

4.1 Data augmentation

Data augmentation can be used to enlarge experimental data sets
by extracting and recombining information from the collected data.
This is considered to avoid overfitting and thus improve the
generalizability of ML models (Shorten and Khoshgoftaar, 2019).
The herein presented LSA method builds upon this idea and
leverages latent spectral information in terms of pure component
profiles. By employing a local subset selection, these pure
component profiles are locally approximated and flexibly adapted
to the concentration regime of the sample composition for which a
new spectrum is generated. The local subset selection further
induces the mixing of spectral information from different
experimental runs. We consider the designed working principle
beneficial to leverage locally available spectral information. While
other methods solely take variations in the spectral domain into
account, e.g., by modifying the spectra based on variations in model
coefficients (Bjerrum et al., 2017; Blazhko et al., 2021), the LSA
method projects the information to a latent space in the spectral
domain and also accounts for variations in the concentration
domain. This idea is similar to algorithms employed in
variational autoencoding or GANs (Guo et al., 2020; Mishra and
Herrmann, 2021), while maintaining interpretability by employing
simple numerical methods. By using a cross-validation-based
reconstruction approach, we showed that the LSA method can be
tuned by various hyperparameters and is able to reconstruct the

hold-out test set of the experimental data with a maximum error of
roughly 5% and 15% for data sets 1 and 2, respectively. While pure
component profiles for samples within the center of the
experimental data range showed slight variations around the
global estimates, samples with exceptionally low or high
concentration regimes were shown to incorporate more noise or
considerably diverge from the global estimates. The shape and
magnitude of the estimated profiles is dependent on the selected
subsets. For low-concentrated samples, the selected spectra exhibit a
low signal-to-noise ratio potentially causing distortions in the
spectral shape or numerical inflation of the estimated profiles.
Whereas for high-concentrated samples, the density of similar
data points is lower resulting in local adaptations of the pure
component profiles. In the case of data set 2, there are several
samples almost solely containing monomer or aggregate species due
to the working principle of the underlying separation process the
data is taken from.When one component concentration is close to 0,
the estimation algorithm will numerically inflate the component’s
profile and hence a higher absorption is observed. The described
handling of different concentration regimes is considered to
introduce more variance in the in silico data. Although the
estimates obtained for the extreme data points are not realistic,
their impact is considered to be low. It was further observed that the
local subset size determined by the tuning method did not provide
the optimal value in the case of data set 1. This may be explained by
the low absorbance signal by Rib A causing a reduced influence on
the reconstruction error compared to Cyt C and Lys (Hansen et al.,
2011; Rüdt et al., 2019).

When comparing the LSA and the EMSA method for training
CNNs, it was observed that CNN-EMSA models tend to overfit the
training data, potentially caused by solely depending on variations in
the spectral domain. Whereas the CNN-LSA model resulted in
consistent training and test performances. When applied to UV/
Vis data, the CNN-EMSA models were not able to achieve the same
level of accuracy as the CNN-LSA models. As the scatter correction
method, on which EMSA is based, is routinely used with vibrational
spectroscopy data (Martens and Stark, 1991; Afseth and Kohler,
2012), the lower accuracy may be explained by insufficient accuracy
of the estimated model or an overestimation of the variations in the
UV/Vis spectra. However, it should be noted that the EMSAmethod
was used with its default configuration (Blazhko et al., 2021) and
may potentially be tuned to be applicable to UV/Vis data.

Many studies published in the literature do not use any type of
data augmentation before chemometric modeling with CNNs
(Acquarelli et al., 2017; Cui and Fearn, 2018; Malek et al., 2018;
Zhang et al., 2019b). This can either be realized by using comparably
large data sets in combination with simple model architectures, e.g.,
in Cui and Fearn (2018) or by longer training on the same data
(Zhang et al., 2019b). For the herein evaluated data sets, training
CNNs without prior data augmentation resulted in unbalanced
model performance with regard to all components which was
comparable to the performance of the PLS model. On the one
hand this suggests that non-linear models such as CNNs do not
necessarily improve the accuracy compared to PLS models. In
theory, the CNNs without augmentation have little leverage over
PLS models as they are potentially overparameterized given the
number of available training data. On the other hand this suggests
that data augmentation effectively helps to extract more information
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from the data to enable more accurate multi-response modeling.
This may especially be beneficial in cases where one of the target
components contributes a comparably weak spectral signal or when
all target components exhibit highly similar spectral profiles. While
data set 1 comprises proteins with clearly differentiable UV/Vis
absorbance spectra (Hansen et al., 2011), the size variants of a mAb
are more challenging to distinguish (Brestrich et al., 2018). Based on
the given results, we hypothesize that by augmenting spectral data,
minor differences in spectral profiles or signals from
underrepresented components can be amplified and therefore
increase regression performance. Other spectroscopic methods
such as IR or Raman can provide higher selectivity depending on
the analytes and hence the benefits of data augmentation should be
studied in more detail for those spectroscopic methods. Blazhko
et al. (2021) pointed out that for the classification of yeast and mould
species using IR data, the usage of data augmentation positively
affected the classification performance.

In conclusion, the combination of CNNs and data augmentation
via the LSA method provides a flexible, generally applicable
approach for chemometric modeling of multiple quality
attributes. Given the findings mentioned above, it would further
be interesting to study the effect of spectral mixing introduced by the
LSA method with data sets considerably larger than the ones used
within this study, possibly including data from multiple
spectrometers, target proteins, or cell lines.

4.2 Model architecture and hyperparameter
optimization

Finding the optimal configuration for complex ML models such
as CNNs is challenging due to the high-dimensional search space
and potentially long computation times (Feurer and Hutter, 2019).
In this study, automated HPO based on Bayesian optimization has
been used to optimize CNN configurations for data sets 1 and 2.
Here, the aim was to maximize the predictive accuracy of the CNN
models, while keeping model complexity low. To weight all response
variables, i.e., molecular species, equally, the optimizer used the sum
of R2 of the cross-validation residuals. While equal weighting of all
components may also be realized by other evaluation metrics, the
sum of R2 was chosen to provide a simple figurative metric. During
the optimization, the structure of the neural network was varied
simultaneously with other hyperparameters such as the local subset
size nLSA as well as regularization parameters, namely the
regularization factor and the dropout rate. In general, increasing
the number of convolutional layers implicitly increases the number
of hyperparameters to optimize as each layer is assigned an
individual set of parameters. At the same time, the intermediate
number of features is reduced by the pooling layers thus potentially
reducing the number of units in the FC layer.

For data set 1, the identified architecture using two
convolutional layers was found to achieve only marginally
improved performance compared to the initial configuration. For
the second data set, the optimized configuration could improve the
initial configuration considerably with regard to the contaminating
aggregate species. The ineffectiveness observed for data set 1 may be
caused by a suboptimal splitting of the experimental runs or non-
exhaustive exploration of the search space as well as potential

overfitting on the training subset. It should however be noted
that the achieved accuracy lies above 0.97 in terms of the R2 for
all components and the differences between the studied models are
considered marginal. In the context of chemometrics, TPE-based
Bayesian optimization has previously been applied to the HPO of
CNNs (Passos and Mishra, 2021; Passos and Mishra, 2022). While
previous studies have used pruning and optimization based on the
simple training-validation splits, the herein-used cross-validation
approach is considered more robust and less prone to overfitting
(Rolinger et al., 2020). A collection of more detailed practical
remarks for using HPO can be found in Supplementary Section S2.

Furthermore, it is unclear from previous studies which
hyperparameters should be included during HPO. While Passos
and Mishra (2021) vary the depth of the regression block by
incorporating more FC layers, an increased number of
convolutional layers was found beneficial within this study.
Additionally, it was found that critical hyperparameters requiring
optimization are the number of filters in each convolutional layer,
the convolutional window size per layer, and the number of FC units
in the regression block. Increasing the number of filters increases the
model’s capacity to learn complex features from the input data.
However, a larger number of filters potentially requires a higher
number of FC units and thus can cause slower training time
(Szegedy et al., 2015). The convolutional window size determines
the size of the receptive field, which affects the model’s ability to
capture relevant features from the input data (Goodfellow et al.,
2016, chap. 9). Smaller sizes capture local features, while larger sizes
capture more global features (Gu et al., 2018). Here, the optimal
window sizes were found to be as small as 3 for the first
convolutional, with a general increasing trend for additional
layers. With regard to CNN design choices, multiple suggestions
have been made in literature including simple architectures with
only one convolutional layer (Acquarelli et al., 2017; Cui and Fearn,
2018), or more complex models using multiple FC layers and a
comparably high number of convolutional kernels (Bjerrum et al.,
2017; Passos and Mishra, 2021, Passos and Mishra, 2022). Whereas,
others adapted design choices made for widely applied computer
vision architectures such as the so-called vgg-block design (Blazhko
et al., 2021) or inception modules (Zhang et al., 2019b) or even tried
to combine the convolutional block with other types of regression
models such as Gaussian process regression (Malek et al., 2018).
Given the variety of studied architectures, it is difficult to draw a
conclusion on which architecture works best for which type of
spectroscopic data as they are often combined with prior
preprocessing. Transferring the model architecture identified for
data set 2 to data sets 3 and 4 in this study, was found suitable for
modeling UV/Vis and IR spectroscopic data. The CNN with three
convolutional and one FC layer, using weight and dropout
regularization, was shown to work well with previously unknown
data sets. Especially for data sets with few available experiments or
samples, the transfer of CNN architectures is preferred over
potentially unstable HPO. It has been shown that multiple
factors may affect the successful transfer of chemometric CNNs
(Mishra and Passos, 2021c; Mishra and Passos, 2021a), leading to a
high degree of freedom in HPO.

While HPO has shown great potential for improving the
performance of chemometric models in this study and several
other cases (Brunel et al., 2021; Passos and Mishra, 2021), further
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studies are needed to investigate which CNN architectures are the
most suitable for different types of spectroscopic data such as UV/
Vis, IR, and Raman spectroscopy. In this regard, the authors
advocate for a large-scale HPO study using multiple data sets at
the same time. Such research could help identify the most viable
CNN architectures for chemometrics in terms of accuracy,
generalizability, and robustness, and pave the way to dedicated
pre-trained models for biotechnological applications. Pre-trained
models facilitate easier transfer from case to case by computationally
less expensive transfer learning (Mishra and Passos, 2021c).

4.3 Model interpretability

Explainability of machine learning models has become an
important topic of research in recent years (Belle and
Papantonis, 2021; Burkart and Huber, 2021). In the context of
spectroscopy, it is critical to understand which elements of the
spectral data are rendered important and contribute to the model’s
predictions. In this study, an interpretability assessment compared
the predictions of CNNs with PLS models. Four feature importance
metrics were used to compare the models: Guided-GradCAM,
SHAP values, PLS regression coefficients, and PLS VIP scores.

The results for data set 2 showed that three of four methods were
able to identify a small wavelength region that was relevant for
differentiating between the two target components. For data set 1,
the distinction between the three target components was less
pronounced as the importance profiles for Cyt C and Lys were
found to be fairly similar for CNN and PLS models. For Rib A, it was
possible to resolve clear differences between both model types which
supports the improved performance of the CNN model. In general,
the studied methods differ in their level of directness in assessing the
importance of individual wavelengths. Established methods such as
GradCAM or other visualization methods for CNNs (Zeiler and
Fergus, 2013) are generally applicable to all types of model
architectures (Selvaraju et al., 2020) and enable a fast inspection
of the chemometric model. In other studies (Mishra et al., 2021;
Passos and Mishra, 2022), it has been shown that GradCAM was
able to identify the most suitable section of features from a
preprocessing-based extension method. However, as the variable
importance is computed from the feature maps of the final
convolutional layer, it is directly influenced by previous
normalization and pooling operations causing lower resolution
profiles or potentially distorted peak locations (Blazhko et al.,
2021). Similar to GradCAM, PLS VIP scores provide a positively
constrained importance metric. In combination with the PLS
regression coefficients, the VIP scores are a commonly applied
metric to evaluate the chemical information used by the PLS
model (Goldrick et al., 2020; Wei et al., 2022) or conduct
variable selection (Mehmood et al., 2012). While the regression
coefficients display positive and negative attributions, the VIP scores
help determine which variables mostly contribute to the prediction.
Despite their practicality, the VIP scores are specific to PLS models
and do not contain any information about the variable sensitivity.

Other chemometric studies exist where SHAP estimation was
used to identify the most important variables for various
chemometric models (Haghi et al., 2021; Mahynski et al., 2022;
Guindo et al., 2023). By using SHAP values in this study, it was

possible to identify the most relevant features in a direct comparison
with the PLS model. Using SHAP or other closely related feature
removal-based importance quantification techniques is
computationally more expensive than analyzing regression
coefficients or GradCAM importance (Covert et al., 2020a).
Especially for spectroscopic data, where multiple wavelengths are
highly correlated, permutation-based feature importance techniques
should be handled carefully by ensuring a sufficient number of
permutations and permuting a coalition of wavelengths rather than
single wavelengths (Štrumbelj and Kononenko, 2014). By using a
single-wavelength approach based on infinitesimal perturbations in
Cui and Fearn (2018), the studied CNNs were observed to have
increased robustness compared to PLS models. A similar single-
wavelength perturbation approach was used in Schiemer et al.
(2023) to perform automated variable selection for a Gaussian
process regression model for monitoring an antibody-drug
conjugation reaction.

Next to the identification of important features, removal-based
methods such as SHAPmay also be used to determine the sensitivity
of specific features (Covert et al., 2020b) which could potentially be
applied to detect failures in chemometric models. In the future, it
would be interesting to employ suchmethods in real-time during the
optimization or maintenance of chemometric models. When new
data are available from a manufacturing process, individual feature
contributions may be beneficial to identify potential process or
model failures and hence trigger model updating mechanisms
(Nikzad-Langerodi et al., 2018; Krause et al., 2021; FDA, 2023).
In summary, we consider the usage of multiple orthogonal variable
importance methods crucial to build explainable and robust
chemometric models, and to ensure that the most relevant
structural and chemical information present in the spectroscopic
data are used for prediction.

4.4 Robustness

Spectral data are often corrupted by noise or baseline and peak
shifts (Bjerrum et al., 2017; Blazhko et al., 2021). Routinely applied
operations to counteract these effects are among others spectral
smoothing, derivation, or corrections (Anderson et al., 2020;
Tulsyan et al., 2021). Spectral data may contain different levels of
noise or baseline effects due to new data being recorded with a
different spectrometer (Mishra and Passos, 2021a), biological
variability (Tulsyan et al., 2021) or as part of a technology
transfer to another site (Christler et al., 2021).

To evaluate the robustness of CNNs compared to PLS models,
an in silico noise perturbation study was performed. In summary, the
CNNs were found to be more robust against increasing noise and
wavelength shifts than PLS models. CNNs have been shown to be
less susceptible to noise in images and electrocardiograms
depending on the architecture used (Rodríguez-Rodríguez et al.,
2021; Venton et al., 2021). In general, the increased robustness may
be attributed to various features inherent to CNNs, such as
convolution operations and in-built regularization. Each input is
transformed by a convolution operation followed by a non-linear
activation and a max-pooling operation. By stacking multiple
convolutional blocks in sequence, a funnel-like structure is
created which is considered to increase robustness. Secondly,
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regularization methods like dropout and weight regularization can
lead to increased robustness (Krizhevsky et al., 2017). In
chemometrics, Cui and Fearn (2018) have shown that using
dropout reduced noise in the trained weights of their CNNs,
while Mishra and Passos (2021a) could show that tuning the
regularization factor led to improved performance on newly
acquired data.

In summary, the CNNs used in this study appear to be more
robust against different sorts of noise compared to PLS models,
whereas it is not clear which of the mentioned aspects are the main
contributors to the robustness of the model. It is thus suggested to
evaluate the robustness of chemometric models in an independent
study specifically designed for that purpose.

5 Conclusion

This study demonstrates the augmentation, optimization, and
interpretation of CNNs for process monitoring using spectroscopic
data. The herein proposed LSA data augmentation method was
shown to generate realistic in silico spectra for three data sets based
on UV/Vis spectroscopy of model proteins and mAb size variants,
and one data set based on IR spectroscopy. By augmenting CNN
models with the in silico data, the prediction accuracy for the
detection of mAb size variants could be improved by up to 50%
compared to conventional PLS models.

Through automated optimization, the neural network architecture
and the configuration of othermodel elements could be simultaneously
tuned to maximize model performance. The combined optimization
led to neural network structures with multiple convolutional blocks
similar to previously published models, while most of the accuracy
boost could be attributed to the data augmentation approach for UV/
Vis spectroscopy data. Transferring the optimized architecture without
prior HPO to a data set with multiple mAb size variants resulted in
comparable or superior accuracy compared to PLS models, proving
good generalizability of the optimized CNNmodel. Although the CNN
model in combination with the LSA data augmentation method
provided promising results for four data sets, further studies are
required to validate the applicability of the LSA method to cases
where more background effects are present such as IR or Raman
spectroscopy data. Finally, the optimized CNN and PLS models were
directly compared with regard to the importance of different
wavelength regions and robustness against spectral noise. While
model-agnostic methods such as GradCAM and VIPs were able to
provide specific importance estimates for the CNN and PLS models,
respectively, SHAP was able to resolve differences between the two
model types directly and suggested an improved capability to
discriminate between mAb size-variants. Additionally, the studied
CNNs appear to be more robust against synthetic white noise and
peak shifts in the spectral data. However, this property should be
evaluated in more detail with real data involving biological and spectral
variability.

In summary, this study expands on previous works on CNNs for
chemometrics and proves the applicability of the suggested methods
for the quantification of model proteins and mAb size variants. The
deployment of the demonstrated workflow is considered to improve
the accuracy, generalizability, and scalability of chemometric models
used for process monitoring and control.
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