
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uiie21

IISE Transactions

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uiie21

Efficient continuous piecewise linear regression
for linearising univariate non-linear functions

John Alasdair Warwicker & Steffen Rebennack

To cite this article: John Alasdair Warwicker & Steffen Rebennack (06 Feb 2024): Efficient
continuous piecewise linear regression for linearising univariate non-linear functions, IISE
Transactions, DOI: 10.1080/24725854.2023.2299809

To link to this article: https://doi.org/10.1080/24725854.2023.2299809

Copyright © 2024 The Author(s). Published
with license by Taylor & Francis Group, LLC.

View supplementary material

Published online: 06 Feb 2024.

Submit your article to this journal

Article views: 272

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uiie21
https://www.tandfonline.com/journals/uiie21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2023.2299809
https://doi.org/10.1080/24725854.2023.2299809
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2023.2299809
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2023.2299809
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2023.2299809?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2023.2299809?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2299809&domain=pdf&date_stamp=06 Feb 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2299809&domain=pdf&date_stamp=06 Feb 2024

Efficient continuous piecewise linear regression for linearising univariate
non-linear functions

John Alasdair Warwicker and Steffen Rebennack

Stochastic Optimization, Institute of Operations Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

ABSTRACT
Due to their flexibility and ability to incorporate non-linear relationships, Mixed-Integer Non-Linear
Programming (MINLP) approaches for optimization are commonly presented as a solution tool for
real-world problems. Within this context, piecewise linear (PWL) approximations of non-linear con-
tinuous functions are useful, as opposed to non-linear machine learning-based approaches, since
they enable the application of Mixed-Integer Linear Programming techniques in the MINLP frame-
work, as well as retaining important features of the approximated non-linear functions, such as
convexity. In this work, we extend upon fast algorithmic approaches for modeling discrete data
using PWL regression by tuning them to allow the modeling of continuous functions. We show
that if the input function is convex, then the convexity of the resulting PWL function is guaran-
teed. An analysis of the runtime of the presented algorithm shows which function characteristics
affect the efficiency of the model, and which classes of functions can be modeled very quickly.
Experimental results show that the presented approach is significantly faster than five existing
approaches for modeling non-linear functions from the literature, at least 11 times faster on the
tested functions, and up to a maximum speedup of more than 328,000. The presented approach
also solves six benchmark problems for the first time.

ARTICLE HISTORY
Received 14 June 2023
Accepted 19 December 2023

KEYWORDS
Piecewise linear function;
continuous function;
function fitting; piecewise
linear regression; convex
function

1. Introduction

Many real-world optimization problems are today formu-
lated and solved as large-scale Mixed-Integer Non-Linear
Programming (MINLP) problems, including problems from
the fields of scheduling (Yue and You, 2013) and energy
(Geißler et al., 2012). Despite a number of recent advance-
ments in solution techniques and software (see e.g., Lee and
Leyffer (2011)), MINLP problems still require vast computa-
tional resources to solve. Hence, fast, approximate solutions
are often sought.

One such approach is to utilize advancements in the
computation and solution of Mixed-Integer Linear
Programming (MILP) problems. This is achieved by approx-
imating the non-linearities present in the MINLP through
Piecewise Linear (PWL) functions. This allows complex
non-linear and non-convex programming problems to be
(approximately) solved quickly using standard MILP techni-
ques (Feijoo and Meyer, 1988; Geißler et al., 2012;
Rebennack and Kallrath, 2015a,2015b; Rebennack, 2016a).
Geißler et al. (2012) showed it is possible to solve MINLP
problems using only MILP techniques when the non-linear-
ities are approximated by PWL regression functions as
opposed to polynomial regression functions. As an example,

Gunnerud and Foss (2010) modeled the non-linearities
within a real-time optimization model of process systems
from the field of engineering, allowing MILP techniques to
be used. They also found error bounds on the optimal solu-
tion to the original MINLP model.

PWL functions are known in the field of statistics as
splines of order 2, with a continuity requirement at the
knots (breakpoints). As opposed to standard parametric
polynomial regression models, fitting data with a PWL func-
tion can be advantageous due to the removal of the compli-
cating non-linearity present in the data, and providing
analytical insights into the underlying pattern, while main-
taining accurate models. Such approaches have been used in
the fields of healthcare (Wagner et al., 2002), energy and
power systems (Guan et al., 2018), network flow studies
(Muriel and Munshi, 2004) and engineering (Gunnerud and
Foss, 2010), amongst others. Furthermore, PWL functions
are commonly used in the field of data envelopment analysis
to fit frontiers to data, since their adaptability in incorporat-
ing convexity constraints allows the retention of important
features of the data set (Charnes et al., 1978). Such
approaches extend to applications in energy fields
(Hwangbo et al., 2018; Ding, 2019).

Copyright � 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/
4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in
any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

CONTACT John Alasdair Warwicker john.warwicker@kit.edu
Supplemental data for this article can be accessed online at https://doi.org/10.1080/24725854.2023.2299809.

IISE TRANSACTIONS
https://doi.org/10.1080/24725854.2023.2299809

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2299809&domain=pdf&date_stamp=2024-02-06
http://orcid.org/0000-0002-6274-2638
http://orcid.org/0000-0002-8501-2785
https://doi.org/10.1080/24725854.2023.2299809
https://doi.org/10.1080/24725854.2023.2299809
http://www.tandfonline.com

Alongside using PWL functions, a recent trend for solv-
ing the univariate curve fitting problem is to utilize non-
parametric and semi-parametric approaches from statistical
learning (Hastie et al., 2009). Non-parametric methods, such
as kernel smoothing, approximate the data using a weighted
moving average approach, where the kernel (i.e., the window
function) is used to define the weights. A further example is
smoothing splines, which provide a trade-off in the quality
of the fit as well as its smoothness. These splines typically
use cubic polynomials, where the smoothness requirement is
explicit at the intersection of adjacent segments (known as
knots, or breakpoints) (Wang, 2011).

One disadvantage of these approaches is an assumption of
a sufficiently large data set, since typically neighboring data
points are used in the calculation of the regression function
value. For smaller data sets, there is a higher likelihood of
overfitting, and hence, parametric approaches are typically
favored. Furthermore, whereas non-parameteric approaches
for fitting functions to data typically lead to more accurate
approximations, the linearity present in PWL functions is
better suited for approximating pre-existing functions in the
context of mathematical programming models, due to their
effectiveness at retaining shape-based features of the approxi-
mated function. In this context, non-parametric models do
not produce solutions satisfying the MINLP constraints.
Hence, in the remainder of this article, we consider the prob-
lem of finding the best (shape-constrained) PWL regression
function for the context of solving MINLP problems.

Although the linearity significantly simplifies the prob-
lem, there are still difficulties involved in finding optimal
PWL functions, such as ensuring the continuity of the con-
nected linear segments, and calculating optimal breakpoint
locations (i.e., where the linear segments intersect). Recently,
the PWL regression problem has been approached from an
optimization perspective (Toriello and Vielma, 2012;
Goldberg et al., 2014; Goldberg et al., 2021). Kallrath and
Rebennack (2014) presented non-convex Non-Linear
Programming (NLP) approaches for computing tight
over- and underestimators for fitting PWL functions to con-
tinuous functions. Rebennack and Kallrath (2015b) further
presented three non-convex NLP models, alongside two heu-
ristics, to fit PWL functions within a given error tolerance.
Exact MILP approaches have been presented to optimally fit
PWL functions to discrete data, which implicitly model the
breakpoint locations (where adjacent linear segments of the
PWL function intersect) (Kong and Maravelias, 2020;
Rebennack and Krasko, 2020); an experimental analysis sug-
gested the formulation from Rebennack and Krasko (2020)
is faster. Similar approaches have been utilized for machine
learning problems, including clustering and clusterwise lin-
ear regression (Warwicker and Rebennack, 2023a). These
models become Mixed-Integer Quadratically-Constrained
Programs (MIQCPs) if the aim is to minimize the sum of
the squares of the residuals (i.e., the L2 metric). The
approach by Rebennack and Krasko (2020) was also
extended to model continuous functions with continuous
PWL functions, which uses an adaptively refined

discretization of the function into a series of data points,
using the refinement strategy presented by Rebennack and
Kallrath (2015b).

Traditionally, however, such problems were solved exactly
using incremental algorithms from Computer Science, taking
advantage of the inherent nature of the problems to solve
them quickly. The advantage of such methods is that due to
the proven polynomial runtimes, even large problems can be
solved very quickly. In particular, Imai and Iri (1986) pre-
sented a fast algorithm for PWL regression, where the goal
is to fit a PWL function with minimal breakpoints such that
the maximal error (i.e., using the L1 metric) is within a
given tolerance (known as the min-B problem) - a small
extension by Hakimi and Schmeichel (1991) ensured the lin-
ear runtime of the algorithm. This was the basis of the
Oðn2Þ implementation for fitting a PWL function with a
given number of breakpoints with minimal error (known as
the min-n problem) presented by Wang et al. (1993) (an
Oðn log nÞ algorithm for this problem was later presented by
Goodrich (1995)). These methods, however, cannot be sim-
ply extended to deal with outliers, or for other distance met-
rics. We discuss these methods in more detail in Section A
of the appendix.

Recently, similar algorithmic approaches have been pre-
sented for the min-B problem, which use optimal greedy
strategies that seek to iteratively maximize the length of
each linear segment (Ngueveu, 2019; Codsi et al., 2021).
However, the resulting PWL regression functions are not
guaranteed to be continuous (i.e., they are Non-Necessarily
Continuous (NNC)) if the function being modeled is non-
convex. Since removing the continuity requirement results
in a significantly easier problem (Chen and Wang 2013), we
focus our discussion on continuous PWL regression.

We summarize the most important works for univariate
PWL fitting in Table 1.

In this article, we present exact algorithms for optimally
fitting PWL regression functions to continuous data. Our
main contributions are as follows:

1. We embed the linear time algorithm presented by Imai
and Iri (1986) within the framework for fitting continu-
ous functions presented by Rebennack and Kallrath
(2015b), and prove it finds globally optimal continuous
PWL regression functions in finite time.

2. We prove that if the input function is convex (concave),
then the resulting PWL regression function will also be
convex (concave).

3. Regarding its performance, we show that our presented
algorithm is very fast by identifying function character-
istics that affect the runtime of the presented algorithm
the most.

4. We present experimental results that show the pre-
sented model is much faster than state-of-the-art mod-
els for approximating continuous functions with
continuous PWL regression functions.

5. We show that the presented approach solves six bench-
mark problems for the first time.

2 J.A. WARWICKER AND S. REBENNACK

https://doi.org/10.1080/24725854.2023.2299809

The rest of this article is structured as follows. In Section
2, we discuss the implementation of algorithms for function
fitting from the literature. In Section 3, we discuss how these
algorithms can be used to model continuous functions,
including convex ones. In Section 4, we discuss how runtime
bounds on the algorithm to model continuous functions can
be found under mild assumptions. In Section 5, we present
a detailed experimental analysis of our model and compare
its performance with the state-of-the-art. We conclude with
a discussion on the presented algorithms and present some
ideas for future work.

2. Efficient algorithms for PWL regression for
discrete univariate data

Throughout this article, the we refer to the set f1, :::, ng
as ½n�:

Suppose we are given a set of n ordered data points of
the form ðxi, yiÞ 2 R

2, 8i 2 ½n�: The goal of PWL regression
is to find a function f : ½x1, xn� ! R, whose graph is a con-
nected polygonal line that best approximates the data points,
according to a given distance metric. This polygonal line is
made up of a number of connected linear segments which
intersect at breakpoints. Note that compared with previous
works which consider non-necessarily continuous functions
(Ngueveu, 2019; Codsi et al., 2021), this article considers a
PWL function as a continuous PWL function.

The simplest metric to consider is the maximum absolute
difference metric (or L1 metric), whereby the quality of
the fit of the PWL function is measured by the maximum of
the absolute (vertical) distances to each data point (i.e., the
residuals). Regarding this problem, polynomial time algo-
rithms have been presented for the following variants:

1. Min-B Problem - For a given error tolerance n > 0,
find an approximating PWL function within the given
accuracy with minimal number of breakpoints.

2. Min-n Problem - For a given number of breakpoints
B> 0, find an approximating PWL function with the
lowest error bound.

Since we mostly consider algorithms for the min-B prob-
lem, we discuss that in detail in the following subsection.
We discuss algorithms for the min-n problem in Section A
of the appendix.

2.1. Min-B problem - A OðnÞ time algorithm

The first linear time algorithm for the min-B problem was
presented by Imai and Iri (1986), taking inspiration from
the algorithm presented by Aggarwal et al. (1989) that finds
a minimal vertex polygon that is nested between two convex
polygons. For a given set of points pi ¼ ðxi, yiÞ 2 R

2

(8i 2 ½n�) and a given error tolerance n > 0, the resulting
PWL function must be contained within a tunnel, which is
formed by translating the data points above and below by n
(that is, consisting of the points pþi ¼ ðxi, yi þ nÞ and p−i ¼
ðxi, yi − nÞ to create the upper and lower sections fþ :¼
fpþi ji 2 ½n�g and f − :¼ fp−i ji 2 ½n�g respectively); see
Figure 1. The tunnel forms a (closed) polygon.

Table 1. State-of-the-art approaches for univariate PWL function fitting. ? represents the fastest shown available approaches for fitting data points with the L1
metric (Imai and Iri, 1986), with outliers (Warwicker and Rebennack, 2023b), and with higher-order metrics (Rebennack and Krasko, 2020); fitting continuous func-
tions with non-necessarily continuous PWL functions (Codsi et al., 2021), and continuous PWL functions (this paper).

Approach Model Type Optimality Input

Imai and Iri (1986)� Algorithmic Global (L1) Data points
Hakimi and Schmeichel (1991) Algorithmic Global (L1) Data points
Toriello and Vielma (2012) (Convex) MILP / MIQCP Global Convex Data points
Goldberg et al. (2014), Goldberg et al. (2021) (Nonconvex) MINLP Global Data points
Kallrath and Rebennack (2014) (Nonconvex) NLP Global (L1) Continuous function
Rebennack and Kallrath (2015b) (Nonconvex) NLP Global (L1) Continuous function
Ngueveu (2019) AlgorithmicþMILP Global NNC (L1) Continuous function
Rebennack and Krasko (2020)� (Convex) MILP / MIQCP Global Data points /

Algorithmic (MILP) Global Continuous function
Kong and Maravelias (2020) (Convex) MILP / MIQCP Global Data points /

Algorithmic (MILP) Global Continuous function
Codsi et al. (2021)� Algorithmic Global NNC (L1) Continuous function
Warwicker and Rebennack (2023b)� (Decomposed) MILP Global (L1) (Outliers) Data points
This paper� Algorithmic Global (L1) Continuous function

Figure 1. The tunnel formed by translating the polygonal function f above and
below by n:

IISE TRANSACTIONS 3

https://doi.org/10.1080/24725854.2023.2299809

Hakimi and Schmeichel (1991) further noted that if the
resulting PWL does not extend beyond the points on
the upper and lower section of the given tunnel (formed by
the translation), an optimal PWL function is still guaranteed,
even if it exceeds the given error bound between data
points. In either case, the linear time algorithm works the
same.

Let an edge of the tunnel be defined as a line connecting
some point on the upper section of the tunnel to some point
on the lower section of the tunnel (see e.g., the line ½pþ1 , p−1 �
in Figure 2). For a given edge, the visibility polygon is the
set of points in the tunnel that can be reached in a straight
line from any point on the edge without exiting the tunnel
(such points are visible from the edge), and the invisibility
polygon is the remaining set of points in the tunnel (i.e.,
those that cannot be reached in a straight line from the edge
without exiting the tunnel). The border between the two
sets (i.e., where the two polygons touch) is defined as the
window from the given edge to the end line ½pþn , p−n � (see
e.g., the line ½rþ, r−� in Figure 2). That is, the set of points
between the edge and its window (inclusive) is exactly the
visibility polygon. Each breakpoint on the approximated
PWL function is found on the intersection of a given edge
with the line connecting it to its window (see e.g., the
starred point in Figure 2).

Algorithm 1 describes the process of the linear time algo-
rithm. Starting from the initial window (the line ½pþ1 , p−1 �), if
the exit ½pþn , p−n � of the polygon is not visible (see line 6), the
algorithm computes the next window (line 7). Then, the
remaining polygon (used as a basis for the next steps) is
updated and a point on the approximated PWL function is
calculated (lines 8-10). If the exit is visible, the final two
points on the PWL function are computed (lines 11-12). For
a more detailed pseudocode, which includes the calculations
of the windows and intersecting points, see Imai and Iri
(1986) and Hakimi and Schmeichel (1991). Notably, the
breakpoints are only calculated when the convex hulls

formed from the set of data points in the upper and lower
sections, calculated from the previous breakpoint (or starting
data point) up until the current point, intersect.

We note that interpolating between any two pairs of data
points to find extreme values for the gradients will provide
bounds on the gradient of the segments of the PWL func-
tions found by Algorithm 1, as well as extreme values for
the intercepts (see e.g., Rebennack and Krasko (2020)). That
is, breakpoints are only calculated at the intersection of the
two convex hulls, which avoids arbitrarily large gradient val-
ues. These extreme bounds are hereafter referred to as ½C, �C�
for the gradient and ½D, �D� for the intercept.

Algorithm 1: Idea behind the OðnÞ algorithm for the min-B
problem (Imai and Iri, 1986)

Input: Function f defined by p1 ¼ ðx1, y1Þ, :::, pn ¼ ðxn, ynÞ,
error bound n > 0
Output: Approximated function q1, :::, qm

1 for j ¼ 1 to n do
2 pþj ðxj, yj þ nÞ; p−j ðxj, yj − nÞ;
3 P1 polygon p−1 :::p

−
n p
þ
n :::p

þ
1 ;

4 e1 ½pþ1 , p−1 �;
5 i 1;
6 while ½pþn , p−n � is not visible from ei in polygon Pi do
7 eiþ1 window from ei to ½pþn , p−n � in polygon Pi;
8 Piþ1 polygon invisible from ei containing ½pþn , p−n � in

polygon Pi;
9 qi point of intersection of line containing eiþ1 and

the edge ei;
10 iþþ;
11 m iþ 1;
12 find a point qm−1 on edge ei and a point qm on edge
½pþn , p−n � which are visible from each other in poly-
gon Pm−1;
13 Return q1, :::, qm;

This algorithm could be extended to fit NNC PWL func-
tions based on the ideas presented by Ngueveu (2019) and
Codsi et al. (2021). The idea would be to take the points of
the approximating PWL function as the furthest-right point
of each computed window. Then, a new window would be
formed by the vertical extension from the current point,
and the process would reset (i.e., in each iteration, the seg-
ment of maximum length is found). For our applications in
the remainder of this article, we consider Algorithm 1 as we
are interested in fitting continuous PWL regression
functions.

In Figure 3, we present an application of Algorithm 1
to the DebrisFlow data set, which is commonly used in
applications of PWL regression (McCoy et al., 2016;
Krasko and Rebennack, 2017). After a translation of the
data onto ½0, 1� � ½0, 1�, we set the error bound to n ¼ 0:1
(i.e., an accuracy level of 10%). We present the upper and
lower bounds of the data, as well as the calculated win-
dows (dotted lines) and the final resulting PWL fuction (as
a dashed line), which has four breakpoints (the starred
points).

Figure 2. The window visible from the initial edge of the polygon. The starred
point (at p−1) is the first calculated point of the approximating PWL function.

4 J.A. WARWICKER AND S. REBENNACK

3. Applications to fitting continuous univariate
functions

Algorithm 1 fits a minimal-breakpoint, n-optimal PWL
function f : ½x1, xn� ! R to a given discrete data set, defined
by a set of n tuples pi ¼ ðxi, yiÞ 2 R

2, for i 2 ½n�:
This methodology can easily be extended to approaches

fitting PWL functions to continuous functions using the
adaptive discretization method presented by Rebennack and
Kallrath (2015b), which is an iterative approach with the
goal of fitting a PWL function to within some error, mini-
mizing the number of breakpoints used. Their presented
method iteratively refines a set of discrete data points that
are used to approximate the continuous function, and fits
the set of data points with a PWL function in each iteration.
Rebennack and Krasko (2020) used this framework, where
their presented MILP model is used in each iteration to cal-
culate the PWL function. A further approach by Kazda and
Li (2021) used a similar adaptive discretization method
hybridized with a difference-of-convex approach. Since these
models solve the min-n problem, we adapt the algorithm to
utilize min-B algorithms (in particular, Algorithm 1).

3.1. Fitting continuous univariate functions

Let f ðxÞ : ½X , �X � ! R be a given (univariate) continuous
function. A PWL function approximating f(x) is a continu-
ous function pðxÞ : ½X , �X � ! R with B � 2 breakpoints such
that some distance function E between f ð�Þ and pð�Þ is opti-
mized. For a given f ð�Þ and pð�Þ, and for a given set of
breakpoints fXbreak

1 , :::,Xbreak
B g, this can be calculated by

solving the following problem:

EðpðxÞÞ : ¼ max
x2 X , �X½ �

pðxÞ − f ðxÞjj

¼ max
b2f1, :::,B−1g

max
xs2 Xbreak

b ,Xbreak
bþ1½ �

pðxsÞ − f ðxsÞjj (1)

This problem decomposes into B – 1 box-constrained,
global, univariate optimization problems.

For a given accuracy e > 0, the problem of fitting a min-
imal-breakpoint PWL function pð�Þ to a function f ð�Þ
involves solving the following problem, where the value of E
is calculated as above in (1):

B? : ¼ min B
s:t: Eðpð�ÞÞ < e

pð�Þ is a B�breakpoint PWL function on X , �X
� �

with slope 2 C, �C
� �

and intercept 2 D, �D
� �

: (2)

Consider some a priori discretization of the continuous
function f ð�Þ, in which a given number of data points are
used as a discretization of the domain ½X , �X �: Then,
Algorithm 1 can be used to fit a n-optimal PWL function
for this discretized data set. Depending on the accuracy E
between the resulting PWL function pð�Þ and the continuous
function f ð�Þ, we can refine the discretization until E
reaches the desired accuracy.

Definition 1. A finite set I ¼ fXi j i 2 ½n�g is a discret-
ization of the nonempty compact interval ½X , �X � � R if

X ¼ X1 < ::: < Xi < Xiþ1 < ::: < Xn ¼ �X :

A discretization I of ½X , �X� is a refinement of the discret-
ization Î if Î � I :

For a given discretization I of ½X , �X �, let pI ðxÞ be the
minimal breakpoint, n-optimal PWL function (possibly
found by Algorithm 1). The maximum difference between
the continuous function f(x) and pI ðxÞ (denoted EðpI ðxÞÞ
for the PWL function pI ðxÞ) is likely to be greater than n,
but never smaller.

Suppose we have that our error tolerance on the calcula-
tion of EðpI ðxÞÞ is some small constant a > 0: In order to
ensure that we achieve an optimal PWL function within
some given accuracy e > 0, we can calculate a n-optimal
PWL function in each iteration (using Algorithm 1) where
we set n ¼ e − a: Then, if for our chosen accuracy e, the fol-
lowing holds:

EðpI ðxÞÞ − n 	 a, (3)

then pI ðxÞ is an e-optimal PWL function for f(x) using B
breakpoints minimizing the maximum difference.

Figure 3. An example of Algorithm 1 on the (translated) DebrisFlow data set (McCoy et al., 2016; Krasko and Rebennack, 2017), with n ¼ 0:1:

IISE TRANSACTIONS 5

We summarize the min-B problem for continuous func-
tions in Algorithm 2.

Algorithm 2: Modeling a continuous function with a min-
imal breakpoint PWL function with maximum error e

Input: Continuous function f ðxÞ : ½X , �X � ! R, global toler-
ance a > 0, maximum error tolerance e > a > 0
Output: Minimal breakpoint PWL function p(x), with B?

breakpoints and maximum global error E 	 e
1 Initialise: Choose some initial discretization I ¼ I init

with jI initj � 2;
2 PWLR: Use Algorithm 1 to compute a minimal break-

point PWL function pI ðxÞ (with e.g., B break-
points) for I with maximum error n ¼ e − a;

3 Evaluate: Using pI ðxÞ, solve the global optimization
problem (1) to (a/2)-optimality to
obtain EðpI ðxÞÞ;

4 Check Optimality: if EðpI ðxÞÞ − n 	 a=2 then
5 pðxÞ ¼ pI ðxÞ, E ¼ EðpðxÞÞ,B? ¼ B, STOP
6 else
7 Refine discretization I and GOTO 2

Typically, we set a ¼ e=5, which gives a good trade-off
between the time required to solve the global optimization
problem (1) in Step 3, and the overall runtime of the
algorithm.

Remark 1. We now discuss the correctness of the solution
with regards to problem (2) for a given continuous function
f. For an optimal solution to Algorithm 2 (i.e., with final
discretization, say Iopt), let the e-optimal PWL approxima-
tion of f that is found (say popt) have Bopt breakpoints. We
know that Bopt is minimal for the data set Iopt from
Algorithm 1, see e.g., Hakimi and Schmeichel (1991).

Suppose there exists an e-optimal PWL function (say p?)
for the given continuous function f with B? breakpoints,
where B? < Bopt: Clearly, p? would also be e-optimal for the
data set Iopt (since Iopt only consists of points from f).
However, this contradicts the optimality of Algorithm 1.
Hence, we know that Algorithm 2 outputs an e-optimal
PWL function for the continuous function f with minimal
breakpoints. w

Step 1 of Algorithm 2 requires an initial discretization of the
continuous function. A natural choice is the equidistant
placement of data points along the continuous function;
that is,

I init ¼ Xi :¼ X þ ði − 1Þ �
�X − X
jI initj − 1

j 8i 2 jI initj½ �
()

:

The initial choice of the size of the discretization (jI initj)
is also important. For a given accuracy n, Algorithm 1
should be able to calculate the given PWL function such
that B < jI initj (otherwise the initial computational effort is
wasted). This is dependent on the continuous function. We
also note that heuristic approaches to finding well-fitting
initial discretizations could lead to improvements in the

efficiency of the overall algorithm - we leave this problem
for future work.

Step 2 requires the implementation of Algorithm 1 on
the data set I , to compute a minimal breakpoint PWL func-
tion pI ðxÞ with maximum error n. By setting n ¼ e − a, we
ensure that the optimality check in step 4 is successful
when EðpI ðxÞÞ − n 	 a:

Step 3 requires the evaluation of the PWL function using
global optimization techniques. If the function f ð�Þ is differ-
entiable, then gradient descent techniques can be employed.
This is due to the fact each linear segment b 2 ½B� of the
PWL function is differentiable (with gradient given by
cb 2 ½C, �C�), and the sum (or difference) of two differenti-
able functions is always differentiable. Furthermore, if the
function f ð�Þ is convex (or concave) over a given segment,
then this step can be solved quickly if the changes in con-
vexity of the function are known (Nesterov and
Nemirovskii, 1994); in particular, in time Oð1=aÞ if solved
to an accuracy of a. We prove this formally in Section 4.

Step 4 determines whether or not the given PWL
approximation is optimal (for the chosen accuracy e). If not,
the set of data points I needs to be refined (line 7 of
Algorithm 2), which crucially affects the computational per-
formance. By adding too many data points, the number of
iterations is reduced, yet the complexity of the PWL regres-
sion is increased (since it runs in OðjIjÞ time). We use the
refinement strategy suggested by Rebennack and Krasko
(2020), which utilizes the solution of the global optimization
problem (1). For each of the B – 1 box-constrained, global,
univariate problems (b 2 ½B − 1�), the term

max
xs2 Xbreak

b ,Xbreak
bþ1½ �

pðxsÞ − f ðxsÞjj

is known from solving (1). Therefore, since this is an abso-
lute value problem, the solution to (1) includes calculating
the terms

Eþb :¼ max
xs2 Xbreak

b ,Xbreak
bþ1½ �

pðxsÞ − f ðxsÞ;

E−b :¼ min
xs2 Xbreak

b ,Xbreak
bþ1½ �

pðxsÞ − f ðxsÞ:

Let xþb and x−b be the arguments of the optimal solutions
to the above two equations, respectively. In the refinement
step on line 7 of Algorithm 2, we add xþb and x−b to I if the
following hold (respectively):

Eþb �
5n
6
; − E−b �

5n
6
: (4)

Hence, we are adding at most 2ðB − 1Þ new data points
in each iteration, where B is the number of breakpoints in
the current PWL function.

We establish the finiteness of Algorithm 2 in Theorem 1,
which is based on Rebennack and Krasko (2020, Theorem
3). Since Algorithm 2 makes use of Algorithm 1 (for the
min-B problem), the final steps of the proof of Theorem 1
differ to those presented by Rebennack and Krasko (2020),
since the accuracy of the modeled PWL function in each
iteration is guaranteed.

6 J.A. WARWICKER AND S. REBENNACK

Theorem 1. Let f ðxÞ : ½X , �X � ! R be a continuous function
on ½X , �X � 6¼ ;, and let bounds on the slope ½C, �C� and inter-
cept ½D, �D� be given. Then Algorithm 2 computes a continu-
ous e-optimal PWL function approximation of f,
pðxÞ : ½X , �X� ! R with slope 2 ½C, �C� and intercept 2 ½D, �D�,
in a finite number of iterations if the refinement strategy
admits an arbitrarily small distance between consecutive data
points.

Proof. As a first statement, we state that the refinement
strategy allows discretizations I with arbitrarily small distan-
ces between consecutive data points. That is, for every
constant ĥ > 0, there exists a discretization Î with
maxi2½jÎ j−1�fXiþ1 − Xig 	 ĥ, where Xi is defined as in
Definition 1 for the given Î : Such a discretization will
always be constructed by Algorithm 2, if it does not con-
verge before.

As a second statement, for a fixed I , the difference
between f ð�Þ and pI ð�Þ in the interval ½Xi,Xiþ1� is bounded
by

jf ðxÞ − pI ðxÞj 	 nþ �C � ðXiþ1 − XiÞ
þ supfjf ðuÞ − f ðvÞj : Xi 	 u, v 	 Xiþ1g:

The right-hand side term n is given by the solution to
Algorithm 1. �CðXiþ1 − XiÞ is the extreme value which any
PWL function can take (the upper bound on the slope �C is
ensured by Algorithm 1), and the right-most term is the
modulus of continuity. Because f ð�Þ is continuous over the
compact interval ½X , �X �, it is also uniformly continuous on
½X , �X � according to the Heine–Cantor theorem.

Combined, the first and second statements imply that for
every a > 0, there exists an ĥ > 0 and a finite discretization
Î such that

�C � ðXiþ1 − XiÞ þ supfjf ðuÞ − f ðvÞj : Xi 	 u, v 	 Xiþ1g
	 a, 8i 2 Î n �X : (5)

For Î , we obtain: EðpÎ ðxÞÞ ¼ jf ðxÞ − pÎ ðxÞj 	 nþ a:
Hence, by setting n ¼ e − a in Algorithm 2, we have that:
jf ðxÞ − pÎ ðxÞj 	 e, and hence pÎ ðxÞ is an e-optimal minimal
breakpoint continuous PWL function that is computed in
finitely many iterations.

However, note further that since for a given Î , we calcu-
late EðpÎ ðxÞÞ to within an accuracy of a=2: Since the first
and second statements imply that (5) also holds for an arbi-
trary accuracy a=2, then if EðpÎ ðxÞÞ ¼ jf ðxÞ − pÎ ðxÞj 	
nþ a=2 holds, we are guaranteed that pÎ ðxÞ is an e-optimal
minimal breakpoint continuous PWL function (which is
computed in finitely many iterations). w

Note that the discussed refinement strategy above (i.e.,
(4)) allows arbitrarily small distances between data points
where computed PWL functions violate the fitting criteria.
As such, the presented refinement strategy is valid and leads
to a finitely convergent algorithm for fitting continuous
PWL functions to continuous univariate functions.
Furthermore, the bounds on the slope and intercept can be
calculated in the same way presented by Rebennack and

Krasko (2020) (i.e., by considering extreme slopes interpo-
lated between the data points).

As a further point, we note that since applying Algorithm
2 provides an e-optimal PWL approximation of a given con-
tinuous function f, an approximating polygon can be con-
structed that fully contains f by translating the PWL
function above and below by e.

3.2. Fitting convex functions

If the input function is convex, it is important that the
resulting PWL function is also convex for optimization pur-
poses in order to preserve the favorable property of convex
functions, e.g., for problem minimization (Horst et al.,
2000). Furthermore, convex PWL functions have the special
property whereby the function value is given by the max-
imum value among all of the linear segments (Rebennack,
2016b, Lohmann and Rebennack, 2017). That is, the func-
tion value yi at data point i 2 ½I� satisfies

yi ¼ max
b2 B−1½ �

cbXi þ db 8i 2 I½ �:

This is a desirable property that can be exploited when
approximating non-linear functions.

We now discuss how Algorithm 2 performs when the
function being modeled is convex. We restrict our discus-
sion in this section to convex functions; however, we note
that analogous results apply also for concave functions.

Theorem 2 shows that if the function f is convex, then
the PWL function found by Algorithm 2 is also guaranteed
to be convex.

Theorem 2. Let f ðxÞ : ½X , �X � be a continuous, convex func-
tion on ½X , �X � 6¼ ;. Then, the e-optimal PWL function pðxÞ :
½X , �X � ! R approximating f that is outputted by Algorithm 2
will also be convex on ½X , �X �:

Proof. For a convex function f, let p :¼ fpj j j 2 ½n�g denote
the set of data points used to approximate the function. The
function formed by connecting adjacent data points in p
with a straight line maintains the same convex relationship
as the function f. If further data points from f are included
in the set, the same convex relationship will hold. Hence, if
we are able to show for such a set of data points that
Algorithm 1 outputs a convex PWL function, this will prove
the theorem statement and guarantee the convexity of the
resulting PWL function found by Algorithm 2.

Consider the PWL function found by Algorithm 1 for
such a data set. Algorithm 1 only adds a new breakpoint to
the PWL function when the convex hulls of pþ :¼ fpþj j j 2
½n�g and p− :¼ fp−j j j 2 ½n�g intersect. These convex hulls
are updated iteratively in each iteration i 2 ½n�: We define
the upper (and lower) convex hulls (of a convex hull) to be
those data points on the hull that lie above (or below) the
straight line connecting its leftmost and rightmost points
respectively. Note that the leftmost and rightmost points are
part of both the upper and lower convex hulls. In particular,
in iteration i (3 	 i 	 n), the lower convex hull of pþ will
contain all points of pþ (i.e., pþ1 , :::, p

þ
i), while the upper

IISE TRANSACTIONS 7

convex hull of p– will consist of a straight line connecting
p−1 and p−i : The calculation of the convex hulls restarts
whenever a breakpoint is calculated; however, the lower con-
vex hull of pþ will consist of all the data points that are cur-
rently being considered, while the upper convex hull of p–

will consist of the first and last data point. Therefore, any
intersection will occur when the upper convex hull of p–

overlaps into the lower convex hull of pþ (and not the other
way around).

There are two separating lines formed by the convex
hulls, which are calculated as the longest straight lines that
connect points on different hulls (i.e., upper to lower, and
lower to upper) that do not fall inside either hull - see Imai
and Iri (1986) for a formal definition. At some point
between the two end points, these lines intersect.

Recall that the initial window consists of the line con-
necting the points pþ1 and p−1 : When the two convex hulls
intersect, the breakpoint is calculated as the intersection of
the current window and the relevant (upper or lower) sepa-
rating line. Since the nature of the overlap of the two convex
hulls will always be the same, the nature of the relevant sup-
porting line will always be the same. In particular, the
breakpoint will always be found on the rightmost point of
the window, exactly where it intersects with the lower tun-
nel. Any line connecting the breakpoints that coincide with
the lower tunnel will be convex by definition.

The above only holds while the final window is not vis-
ible from the current window. For the penultimate break-
point, since the previous breakpoint will be on the lower
tunnel, the convexity of the PWL function will not be
affected up until this breakpoint. The final breakpoint is
found on the window ½p−n , pþn �, and therefore the convexity
will be maintained since the slope of the PWL function con-
necting the final two breakpoints is guaranteed to increase
in comparison to the previous slope, due to the convex
nature of the data points. w

Corollary 1. Let f ðxÞ : ½X , �X � be a continuous, convex func-
tion on ½X , �X � 6¼ ;: Then, there exists an e-optimal convex
PWL function p : ½X , �X� ! R approximating f.

Note that for a given convex function f, there may also
be e-optimal PWL functions approximating f that are not
convex.

Figure 4 shows an example of Algorithm 1 applied to a
data set taken from the convex function x2 on the interval
½−3:5, 3:5� (with n¼ 1). From this, it can be noticed that
from a given window, the next window is exactly the inter-
section of the points in the tunnel that are visible and not
visible from the rightmost point of the window (i.e., the cal-
culated breakpoint). Therefore, the interior windows coin-
cide with the segments of the calculated PWL function.

4. Runtime bounds for fitting continuous functions

Algorithm 2 makes use of the linear time algorithm
(Algorithm 1) presented by Imai and Iri (1986) and refined
by Hakimi and Schmeichel (1991). It is further possible that

there are classes of functions, or requirements on the input,
where the runtime of Algorithm 2 can be bounded. The effi-
cient piecewise linearization of such function classes would
allow faster solution times when using MILP approaches to
solve complicated MINLP problems in which these functions
are inherent.

Algorithm 2 receives as input a continuous function f :
½X , �X � ! R, alongside a domain it is defined over. That is,
we are able to evaluate the function f at any point over its
given domain. In order to provide guaranteed runtime
bounds for Algorithm 2, we require bounds on the following
actions:

1. The runtime required to solve the global optimization
problem (1).

2. The number of iterations of Algorithm 2.

In order to bound the runtime of solving the global opti-
mization problem (1), we require assumptions on two fur-
ther aspects of the function f. First, that the function f is
Lipschitz continuous, and second, that we know the change-
in-convexity points (i.e., the points at which the convexity of
the given function changes). In order for the bound pre-
sented in Lemma 1 to hold, we assume such points are
given as input if f is non-convex; otherwise, there are none.

Lemma 1. Let f ðxÞ : ½x0, xn� ! R be a Lipschitz-continuous
function with K � 0 change-in-convexity points. If the K
change-in-convexity points of f are known, then each iteration
of Algorithm 2 applied to the function f takes time at most

O nþ Bþ K
a

� �

if the global optimization problem (1) is solved to ða=2Þ-opti-
mality, where B is the number of breakpoints found by
Algorithm 1 for the given discretization I (with jI j ¼ n data
points).

Proof. Consider an iteration of Algorithm 2 (i.e., steps 2-7).
The linear runtime of step 2 was proved by Imai and Iri
(1986) and Hakimi and Schmeichel (1991). The refinement
of the discretization in step 7 considers the addition of at
most 2ðB − 1Þ new data points. Since B 	 n (typically,
B
 n), this step will also take time at most OðnÞ:

Figure 4. Algorithm 1 applied to the convex function x2, with n¼ 1.

8 J.A. WARWICKER AND S. REBENNACK

We can bound the runtime of the global optimization
problem in step 3 if we know that each of the B – 1 box-
constrained problems in (1) considers the difference between
a linear function and a convex function (or a concave func-
tion; for brevity, we refer only to convex functions in the
following text). Note that in the case of a concave function,
we can consider the term −ðpðxsÞ − f ðxsÞÞ in the objective of
the optimization problem (1) instead, which will be convex.

In particular, if we know that each segment of f is convex,
the optimization problem (1) reduces to solving two prob-
lems (for Eþb and E−b as defined in Section 3.1). One requires
solving a global convex optimization problem (since the dif-
ference between a convex function and linear function is con-
vex) to ða=2Þ-optimality, which can be done in Oð1=aÞ time
for Lipschitz-continuous functions (see e.g., Nesterov and
Nemirovskii (1994)). The second is the maximization of a
convex function over an interval, which is trivial.

In order to know whether or not a given segment of f is
convex or concave (without a complicated mathematical ana-
lysis), we need to know the change-in-convexity points of f
(which can be given as input to Algorithm 2). Such points can
then be used to separate the B – 1 box-constrained problems
in (1) into a total of K þ B − 1 convex optimization problems,
which can each be solved in Oð1=aÞ time. Therefore, step 3 of
Algorithm 2 can be solved in time OððBþ KÞ=aÞ: Hence,
each iteration of Algorithm 2 will take time at most

O nþ Bþ K
a

� �
:

w

For the majority of functions, we expect that K 	 B 	 n:
Therefore, a more conservative bound for the runtime found
by Lemma 1 is Oðn=aÞ:

In order to bound the total number of iterations required
by Algorithm 2 to find an optimal PWL approximation of
the given function, we can find a bound on the number of
data points required for an optimal PWL approximation by
a provably worse algorithm. Since we know that at least one
new data point is added in each iteration if the optimal
approximation has not been found, this number will also be
a bound on the number of iterations required. Lemma 2
presents this bound as a function of the termffi

max½x0, xn�jf 00ðxÞj
p

, which we assume we have access to; this
is only necessary to present the given result, and is not
required as input for Algorithm 2 in order to find the
approximating PWL function.

Lemma 2. Let f ðxÞ : ½x0, xn� ! R be a twice-differentiable
function, where

ffi
max½x0 , xn�jf 00ðxÞj

p ¼ OðgÞ holds for some
function g, and let Dn ¼ xn − x0 be the length of the interval
over which f is defined. Then, Algorithm 2 requires at most

O Dn � gffiffiffi
n
p

� �

iterations before a n-optimal PWL function approximating f
is found.

Proof. The maximum absolute difference between the
approximated PWL function and the continuous function f
(found by the global optimization problem in step 3)
decreases in every iteration of Algorithm 2. The final set of
data points leading to the optimal PWL function will include
the data points from the initial discretization, the data points
on the continuous function that led to the maximum error
from previous iterations, and possibly some more.

The discretization of the continuous function f in step 1
of Algorithm 2 begins with a simple linear interpolation
(i.e., taking equally distributed data points from the continu-
ous function). It is possible that the number of data points
in the initial discretization is enough such that an optimal
PWL function can be found in a single iteration by
Algorithm 1 in step 2. Let Ninit be the minimal number of
data points needed such that the initialized discretization
produces an optimal PWL function with regards to the
stated error bound in the first iteration.

For our given choice of jIinitj
 Ninit, we know that the
number of data points in the final set leading to an optimal
PWL function will be fewer than Ninit, by the design of the
refinement in line 7 of Algorithm 2 (i.e., that points on f
leading to the maximum error from previous iterations are
included in the data set for future iterations).

Therefore, we require a bound on the number of (equally
spaced) data points such that an approximation using these
data points is optimal (i.e., a bound on Ninit). This in turn
will give a bound on the number of iterations required to
find an optimal approximating PWL function, since we
know that at least one data point is added in each iteration
before the optimal is found.

Consider a number of equally spaced data points taken
from the continuous function f. A linear interpolation
between the data points will be a worse approximation of f
than the solution found by Algorithm 1. Hence, a bound on
the number of data points required such that the linear
interpolation leads to an optimal PWL function will also
bound the number of iterations required by Algorithm 2 (by
reusing the same logic as above).

If the given function f is twice-differentiable, then the
error of interpolating between the points xi and xj (for any
xi < xj 2 ½x0, xn�), denoted by RT, is bounded by

jRT j 	
ðxj − xiÞ2

8
� max
xi	x	xj

f 00ðxÞjj

by Rolle’s theorem (see e.g., Meijering (2002)).
Since we assume an equal distribution of the n data

points, we have that hn ¼ xiþ1 − xi is constant for any con-
secutive data points. In particular, let Dn ¼ xn − x0 be the
length of the interval ½x0, xn� over which f is defined. Then,
for a given number of data points n, we have that hn ¼
Dn=n and we are searching for n such that

jRT j 	 ðDn=nÞ2
8

� max
xi	x	xj

f 00ðxÞj 	 n − aj

holds. That is,

IISE TRANSACTIONS 9

n2 � D2
n

8ðn − aÞ � max
xi	x	xj

f 00ðxÞj j

) n � Dnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðn − aÞp �

ffi
max

xi	x	xj
f 00ðxÞjj

r
¼ n̂:

This value of n̂ is an upper bound on the number of data
points required such that Algorithm 1 can find an optimal
PWL approximation of f in step 2 of Algorithm 2.
Furthermore, since at least one new data point is added in
each iteration (if the optimal solution has not been found),
n̂ is an upper bound on the number of iterations required
to find an optimal PWL function.

Suppose
ffi
maxxi	x	xj jf 00ðxÞj

q
¼ OðgÞ for some function g.

Since we set a < n, we have the following bound on the
number of iterations:

n̂ ¼ O Dn � gffiffiffi
n
p

� �
:

Typically, we do not expect g to be too large (for
example, for a quadratically constrained function f, we will
have g ¼ Oð1Þ).

Overall, we bound the runtime of Algorithm 2 in
Theorem 3.

Theorem 3. Let f ðxÞ : ½x0, xn� ! R be a continuous, twice-
differentiable function with K known change-in-convexity
points, where

ffi
max½x0 , xn�jf 00ðxÞj

p ¼ OðgÞ holds for some func-
tion g. Let Dn ¼ xn − x0 be the length of the interval over
which f is defined. Then, the runtime required by Algorithm 2
to find a n-optimal continuous PWL approximation of f is
bounded by

O Dn � gffiffiffi
n
p � n? þ B? þ K

n

� � !
,

where B? is the number of breakpoints in the optimal PWL
function for the given discretization of n? data points.

Proof. The number of data points n? in the final set of data points
is an upper bound on the value of n from Lemma 1, while B? is an
upper bound on the number of breakpoints. Hence, by Lemma 1,
the runtime of each iteration of Algorithm 2 is bounded from
above by Oðn? þ ðB? þ KÞ=aÞ ¼ Oðn? þ ðB? þ KÞ=nÞ if the K
change-in-convexity points are known, since we have a ¼ HðnÞ:
By Lemma 2, the total number of iterations before Algorithm 2
finds an optimal PWL function is bounded from above by
O Dn � g=

ffiffiffi
n
p� �

: Therefore, the overall runtime of Algorithm 2 is
found bymultiplying the two terms. w

Theorem 3 suggests that the main factors that determine
the efficiency of Algorithm 2 are the length of the domain
interval, the desired accuracy, and how many data points
are required to fit the model well. Regarding the latter point,
this further suggests that complicated functions (i.e., those
with multiple inflection points and local optima) would take
longer to model due to the increased complexity of the
required PWL function, whereas simple functions (i.e.,
quadratically constrained functions, and convex functions
which require no extra input) can be modeled very quickly.

5. Computational results

In order to assess the effectiveness of Algorithm 2, we
implemented the algorithm in Cþþ. The global optimiza-
tion problems are solved using the locally biased variant of
the DIRECT algorithm (Gablonsky and Kelley, 2001) which
is a global solver embedded within Cþþ using the NLopt
optimization software (Johnson, 2021) with standard solver
settings. The experiments in this section were run on an
Intel 3.00GHz machine with 16GB of RAM.

5.1. Continuous functions

Firstly, we present computational results for 15 different
univariate, continuous functions taken from the literature
(Rebennack and Kallrath, 2015b; Rebennack and Krasko,
2020). The functions and their domains are listed in Section
B of the appendix. In Figures 5 and 6, we present the func-
tions alongside an e-optimal, minimal breakpoint PWL
which models the function (with e ¼ 0:1).

We consider four values for e (0.1, 0.05, 0.01 and 0.005).
We compare Algorithm 2 with the runtimes for the MILP
models presented by Kong and Maravelias (2020)
Rebennack and Krasko (2020), and the decomposition
approach presented by Warwicker and Rebennack (2023b)1

(we implemented these models ourselves with the suggested
settings), as well as presenting the results from Rebennack
and Kallrath (2015b).

Firstly, in Table 2, we present the optimal number of
breakpoints for the resulting PWL function found by
Algorithm 2 for each of the 40 tested instances across the
first 10 functions. We compare this with the state-of-the-art
results presented by Rebennack and Kallrath (2015b) and
Rebennack and Krasko (2020). In particular, we note that
Algorithm 2 is able to solve six of these benchmark instan-
ces for the first time.

In Table 3, B? shows the minimum number of break-
points required for the PWL function for each instance. The
next four columns show the computational results of this
article. We present the number of iterations of Algorithm 2,
the overall runtime (as well as the overall time taken by
Algorithm 1 (Local) and the global optimizer (Global) for
each run). The next three columns present comparative run-
time results from the literature, whereas the final column
presents the speedup of Algorithm 2 compared with the
fastest of the three compared algorithms.

From Table 3, we see that Algorithm 2 is significantly
faster than the state-of-the-art algorithms in each of the 40
instances; it is at least 11 times faster on each instance, up
to a maximum speedup of over 328,000. In particular, it is
able to find an optimal solution in less than 1 second for
all but one case when n � 0:01: Since the optimization
performed by Algorithm 1 is incredibly fast compared to
the MILP approaches, we note that the results are

1Note that the advantage of the approach from Warwicker and Rebennack
(2023b) is for outlier detection; nevertheless, we present a comparison with
the presented decomposition approach without any outlier detection
embedded.

10 J.A. WARWICKER AND S. REBENNACK

https://doi.org/10.1080/24725854.2023.2299809

constrained only by the global optimizer, which is also
very fast.

There are nine instances where none of the three compared
algorithms are able to find the optimal PWL function (either
due to exceeding the time limit or available memory). However,
Algorithm 2 is able to find the optimal PWL function in all of
these cases within 10.58 seconds. For instances where both algo-
rithms are able to find a solution within the given time limit,
Algorithm 2 is on average more than 36,000 times faster than

the approach from Rebennack and Krasko (2020), more than
79,000 times faster than the approach from Kong and
Maravelias (2020), and more than 6700 times faster than the
approach from Warwicker and Rebennack (2023b).

Figure 7 shows the fraction of instances that are solved
within a given time limit for the four compared approaches.
For any time budget (above 0.001 seconds), Algorithm 2 is
able to solve a greater fraction of instances within the time
limit, and is able to solve all instances to optimality within

Figure 5. Univariate continuous functions and e-optimal (e ¼ 0:1) minimal breakpoint PWL functions. Breakpoint locations are marked as black dots.

IISE TRANSACTIONS 11

10.58 seconds. Within this time budget, the other three
approaches are only able to solve up to 27.5% of the given
instances. Therefore, we can clearly see the significant
improvement presented by Algorithm 2 for fitting PWL
regression functions to univariate continuous functions.

5.2. Convex functions

Table 5 in Section C of the appendix presents a comparison
of Algorithm 2 with the approach for fitting convex PWL

functions presented by Toriello and Vielma (2012). For this
comparison, we consider the convex and concave functions
1, 2 and 11-15 from Figures 5 and 6 (whose functions and
domains are listed in Section B of the appendix).

Again, we see that Algorithm 2 is significantly faster than
the state-of-the-art approach. There are seven instances
where the approach from Toriello and Vielma (2012) is
unable to find the optimal solution within the given time
limit, whereas Algorithm 2 solves all of these instances
within 5.56 seconds. In particular, Algorithm 2 is at least

Figure 6. Univariate continuous functions and e-optimal (e ¼ 0:1) minimal breakpoint PWL functions (cont.). Breakpoint locations are marked as black dots.

12 J.A. WARWICKER AND S. REBENNACK

https://doi.org/10.1080/24725854.2023.2299809
https://doi.org/10.1080/24725854.2023.2299809

Table 2. Optimal number of breakpoints required for the given accuracy. MF94 refers to the function from Maranas and Floudas (1994). RK15 and RK20 refer
respectively to the results from (Rebennack and Kallrath, 2015b; Rebennack and Krasko, 2020). Boldface indicates instances that are solved for the first time in
this article.

Data Set Accuracy B� RK20 RK15 Data Set Accuracy B� RK20 RK15

(1) x2

x 2 ½−3:5, 3:5�
0.1 9 9 9 (6) 2x2 þ x3

x 2 ½−2:5, 2:5�
0.1 12 12 12

0.05 13 13 13 0.05 16 16 16
0.01 26 26 26 0.01 35 ½32,1� [16,35]
0.005 36 36 36 0.005 48 ½41,1� [16,48]

(2) ln ðxÞ
x 2 ½1, 32�

0.1 4 4 4 (7) e−x sin ðxÞ
x 2 ½−4, 4�

0.1 15 15 [5,15]
0.05 5 5 5 0.05 20 20 [5,20]
0.01 10 10 10 0.01 44 [35, 1] [5,44]
0.005 14 14 14 0.005 62 ½36,1] [5,62]

(3) sin ðxÞ
x 2 ½0, 2p�

0.1 6 6 6 (8) e−100ðx−2Þ
2

x 2 ½0, 3�
0.1 5 5 5

0.05 6 6 6 0.05 6 6 [5,7]
0.01 14 14 14 0.01 12 12 [5,12]
0.005 18 18 18 0.005 15 15 [5,15]

(4) tanhðxÞ
x 2 ½−5, 5�

0.1 4 4 4 (9) 1:03e−100ðx−1:2Þ
2

þe−100ðx−2Þ2
x 2 ½0, 3�

0.1 8 8 8
0.05 6 6 6 0.05 10 10 [8,12]
0.01 10 10 10 0.01 22 22 [8,22]
0.005 14 14 14 0.005 28 28 [8,29]

(5) sin ðxÞ=x
x 2 ½1, 12�

0.1 4 4 4 (10) MF94
x 2 ½0, 2p�

0.1 17 17 [4,17]
0.05 6 6 6 0.05 22 22 [4,23]
0.01 10 10 10 0.01 46 [43, 1] [4,46]
0.005 13 13 13 0.005 67 ½51,1] [4,67]

Table 3. Experimental results. MF94 refers to the function from Maranas and Floudas (1994). RK20, KM20, and WR22 refer respectively to the results from
Rebennack and Krasko (2020), Kong and Maravelias (2020), Warwicker and Rebennack (2023b). † indicates that the optimal solution could not be found within
86,400 seconds (i.e., 1 day). ? indicates the approach failed due to exceeding the memory limit (16GB). Speedup represents the ratio of the fastest approach to
Algorithm 2; a value > 1 indicates that Algorithm 2 is fastest.

Time (s)

Data Set Accuracy B? Iter Local Global Overall RK20 KM20 WR22 Speedup

(1) x2

x 2 ½−3:5, 3:5�
0.1 9 4 0.001 0.002 0.013 14.60 25.68 10.38 798
0.05 13 7 0.003 0.033 0.080 167.59 2019.83 159.98 2000
0.01 26 7 0.002 0.246 0.263 † † ? > 328, 517
0.005 36 8 0.012 5.51 5.56 † † ? > 15, 540

(2) ln ðxÞ
x 2 ½1, 32�

0.1 4 4 – 0.002 0.005 0.193 0.336 0.909 39
0.05 5 4 – 0.001 0.008 0.629 1.11 2.23 79
0.01 10 6 – 0.094 0.121 51.53 230.63 115.96 426
0.005 14 7 – 1.96 1.99 988.48 4957.97 208.96 105

(3) sin ðxÞ
x 2 ½0, 2p�

0.1 6 3 – – 0.010 0.138 0.344 0.720 14
0.05 6 3 – 0.008 0.017 0.775 1.75 2.32 46
0.01 14 5 – 0.118 0.133 239.97 9881.03 325.08 1804
0.005 18 7 – 2.46 2.49 † † ? > 34, 699

(4) tanhðxÞ
x 2 ½−5, 5�

0.1 4 3 – – 0.011 0.198 0.274 0.607 18
0.05 6 3 – 0.007 0.014 0.147 2.20 1.76 11
0.01 10 4 – 0.076 0.084 15.61 90.83 187.52 186
0.005 14 5 – 1.36 1.38 286.88 689.77 532.05 208

(5) sin ðxÞ=x
x 2 ½1, 12�

0.1 4 4 – – 0.001 0.103 0.091 0.253 103
0.05 6 4 – 0.001 0.002 0.566 0.323 0.617 283
0.01 10 5 – 0.069 0.081 18.22 30.89 14.31 177
0.005 13 7 0.002 1.43 1.47 123.07 990.69 179.45 84

(6) 2x2 þ x3

x 2 ½−2:5, 2:5�
0.1 12 4 – – 0.003 56.82 494.09 222.31 18,940
0.05 16 5 – 0.010 0.019 1807.48 30,213.70 431.77 22,725
0.01 35 4 0.002 0.353 0.385 † † ? > 224, 416
0.005 48 5 0.015 7.60 7.65 † † ? > 11, 294

(7) e−x sin ðxÞ
x 2 ½−4, 4�

0.1 15 6 0.001 – 0.018 8179.06 † 656.77 36,487
0.05 20 7 – 0.030 0.065 26,038.26 † 1845.62 28,394
0.01 44 7 0.014 0.641 0.702 † † ? > 123, 077
0.005 62 12 0.017 9.89 9.95 † † ? > 8683

(8) e−100ðx−2Þ
2

x 2 ½0, 3�
0.1 5 4 – – 0.007 0.224 1.05 1.00 32
0.05 6 4 – 0.002 0.009 1.41 1.64 1.34 149
0.01 12 4 0.001 0.104 0.122 176.68 2122.90 192.58 1448
0.005 15 6 – 2.16 2.18 18,964.50 † 473.52 217

(9) 1:03e−100ðx−1:2Þ
2

þe−100ðx−2Þ2
x 2 ½0, 3�

0.1 8 6 – – 0.009 1.56 4.71 18.13 173
0.05 10 4 – 0.005 0.011 31.78 65.98 23.34 2890
0.01 22 5 – 0.207 0.229 18,564.82 35,682.20 2854.95 12,467
0.005 28 6 0.003 4.57 4.61 46,852.98 † 3854.62 834

(10) MF94
x 2 ½0, 2p�

0.1 17 7 0.001 0.001 0.034 621.73 2835.53 353.03 10,383
0.05 22 5 0.001 0.102 0.187 7431.55 5015.80 1215.60 6501
0.01 46 6 0.024 1.20 1.28 † † ? > 67, 500
0.005 67 10 0.011 10.53 10.58 † † ? > 8166

IISE TRANSACTIONS 13

19 times faster for each instance, and up a maximum of
328,000 times faster (on the same instance as described in
Section 5.1). On instances where the state-of-the-art
approach is able to find the solution within the time limit,
Algorithm 2 is on average more than 6900 times faster.

Figure 8 shows the fraction of instances that are solved
within a given time limit for the two approaches. Again,
we see that for any time budget (above 0.001 seconds),
Algorithm 2 is able to solve a greater fraction of instan-
ces, and is able to solve all instances within 5.56 seconds.
Within this time budget, the approach by Toriello and
Vielma (2012) is only able to solve 36% of the instances.
Therefore, it is clear that Algorithm 2 is significantly bet-
ter for fitting convex PWL functions to continuous
functions.

6. Conclusions

We have proposed an efficient algorithm to model continu-
ous functions using continuous PWL regression functions.

This algorithm implements the linear time algorithm for
PWL function fitting by Imai and Iri (1986) within the
adaptive discretization framework presented by Rebennack
and Kallrath (2015b). We adapt the framework to account
for the slightly modified PWL fitting algorithm, which seeks
to minimize the number of breakpoints required to fit the
function within a given error tolerance.

We have shown that if the function being modeled is
convex, then the presented algorithm is guaranteed to out-
put a convex PWL function. Under certain conditions, we
have shown that the runtime of our presented algorithm can
be bounded by a function of the domain length of the func-
tion being modeled, the desired accuracy, and the number
of data points in the discretization. In particular, this gives
some insight into the function characteristics that lead to
faster runtimes, which is useful when applying MILP techni-
ques to solve complicated non-linear programs.

Experimental results have shown that the presented
model is significantly faster than five state-of-the-art models
which fit continuous PWL functions, up to several orders of
magnitude faster. Future work should implement this algo-
rithm in real-world settings as well as considering higher
dimensional approaches.

Acknowledgments

We would like to thank Prof. Dr. Peter Sanders for introducing us to
the relevant algorithms. We would also like to thank the editor for the
insightful suggestions, and the work of the reviewers.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) [Grant 445857709].

Notes on contributors

John Alasdair Warwicker completed a master’s degree in mathematics
from Loughborough University and a PhD in theoretical computer sci-
ence from the University of Sheffield. Since 2019, he has been working
as a Research Associate at the Institute of Operations Research at
Karlsruhe Institute of Technology, in the chair of Stochastic
Optimization. His research interests lie on the border of discrete math-
ematics, computer science, operations research and machine learning.
Specific areas of interest include the intersection of optimization and
machine learning, and analyses of heuristics, hyper-heuristics and
matheuristics.

Steffen Rebennack completed a degree in mathematics at Heidelberg
University, and a master’s degree in industrial & systems engineering
at the University of Florida. He also obtained a PhD in industrial &
systems engineering from the University of Florida, before working at
the Colorado School of Mines as an assistant professor and an associate
professor. Since 2017, he has been working as chair professor for the
Stochastic Optimization group in the Institute of Operations Research
at Karlsruhe Institute of Technology. His research interests include sto-
chastic and large-scale global optimization problems, with a focus on
applications in power systems analysis.

ORCID

John Alasdair Warwicker http://orcid.org/0000-0002-6274-2638

Figure 7. Continuous functions: g refers to the fraction of instances solved to
optimality within the given time (logarithmic scale).

Figure 8. Convex functions: g refers to the fraction of instances solved to opti-
mality within the given time (logarithmic scale).

14 J.A. WARWICKER AND S. REBENNACK

Steffen Rebennack http://orcid.org/0000-0002-8501-2785

References

Aggarwal, A., Booth, H., O’Rourke, J., Suri, S. and Yap, C.K. (1989)
Finding minimal convex nested polygons. Information and
Computation, 83(1), 98–110.

Charnes, A., Cooper, W.W. and Rhodes, E. (1978) Measuring the effi-
ciency of decision making units. European Journal of Operational
Research, 2(6), 429–444.

Chen, D.Z. and Wang, H. (2013) Approximating points by a piecewise
linear function. Algorithmica, 66(3), 682–713.

Codsi, J., Ngueveu, S.U. and Gendron, B. (2021) LinA: A faster
approach to piecewise linear approximations using corridors and its
application to mixed-integer optimization. https://hal.science/hal-
03336003/.

Ding, Y. (2019) Data Science for Wind Energy. CRC Press, Taylor &
Francis Group LLC.

Feijoo, B. and Meyer, R.R. (1988, March) Piecewise-linear approxima-
tion methods for nonseparable convex optimization. Management
Science, 34(3), 411–419.

Gablonsky, J.M. and Kelley, C.T. (2001) A locally-biased form of the
direct algorithm. Journal of Global Optimization, 21(1), 27–37.

Geißler, B., Martin, A., Morsi, A. and Schewe, L. (2012) Using piecewise
linear functions for solving MINLPs, in Mixed Integer Nonlinear
Programming, Volume 154, pp. 287–314. Springer, New York, NY.

Goldberg, N., Kim, Y., Leyffer, S. and Veselka, T.D. (2014) Adaptively
refined dynamic program for linear spline regression. Computational
Optimization and Applications, 58(3), 523–541.

Goldberg, N., Rebennack, S., Kim, Y., Krasko, V. and Leyffer, S. (2021)
MINLP formulations for continuous piecewise linear function fit-
ting. Computational Optimization and Applications, 79(1), 223–233.

Goodrich, M.T. (1995) Efficient piecewise-linear function approxima-
tion using the uniform metric. Discrete & Computational Geometry,
14(4), 445–462.

Guan, Y., Pan, K. and Zhou, K. (2018) Polynomial time algorithms and
extended formulations for unit commitment problems. IISE
Transactions, 50(8), 735–751.

Gunnerud, V. and Foss, B. (2010) Oil production optimization—a
piecewise linear model, solved with two decomposition strategies.
Computers & Chemical Engineering, 34(11), 1803–1812.

Hakimi, S. and Schmeichel, E. (1991) Fitting polygonal functions to a
set of points in the plane. CVGIP: Graphical Models and Image
Processing, 53(2), 132–136.

Hastie, T., Tibshirani, R., Friedman, J.H. and Friedman, J.H. (2009)
The Elements of Statistical Learning: Data Mining, Inference, and
Prediction, Volume 2. Springer, New York, NY.

Horst, R., Pardalos, P.M. and Van Thoai, N. (2000) Introduction to Global
Optimization. Kluwer Academic Publishers, Dodrect, Netherlands.

Hwangbo, H., Johnson, A.L. and Ding, Y. (2018) Spline model for wake
effect analysis: Characteristics of a single wake and its impacts on
wind turbine power generation. IISE Transactions, 50(2), 112–125.

Imai, H. and Iri, M. (1986) An optimal algorithm for approximating a
piecewise linear function. Journal of Information Processing, 9(3),
159–162.

Johnson, S.G. (2021) The NLopt nonlinear-optimization package.
http://github.com/stevengj/nlopt.

Kallrath, J. and Rebennack, S. (2014) Computing area-tight piecewise
linear overestimators, underestimators and tubes for univariate
functions, in Optimization in Science and Engineering, pp. 273–292.
Springer, New York, NY.

Kazda, K. and Li, X. (2021) Nonconvex multivariate piecewise-linear
fitting using the difference-of-convex representation. Computers &
Chemical Engineering, 150, 107310.

Kong, L. and Maravelias, C.T. (2020) On the derivation of continuous
piecewise linear approximating functions. INFORMS Journal on
Computing, 32(3), 531–546.

Krasko, V. and Rebennack, S. (2017) Two-stage stochastic mixed-inte-
ger nonlinear programming model for post-wildfire debris flow haz-
ard management: Mitigation and emergency evacuation. European
Journal of Operational Research, 263(1), 265–282.

Lee, J. and Leyffer, S. (2011) Mixed Integer Nonlinear Programming.
Springer, New York, NY.

Lohmann, T. and Rebennack, S. (2017) Tailored Benders decompos-
ition for a long-term power expansion model with short-term
demand response. Management Science, 63(6), 2027–2048.

Maranas, C.D. and Floudas, C.A. (1994) Global minimum potential
energy conformations of small molecules. Journal of Global
Optimization, 4(2), 135–170.

McCoy, K., Krasko, V., Santi, P., Kaffine, D. and Rebennack, S. (2016,
Aug) Minimizing economic impacts from post-fire debris flows in
the Western United States. Natural Hazards, 83(1), 149–176.

Meijering, E. (2002) A chronology of interpolation: From ancient
astronomy to modern signal and image processing. Proceedings of
the IEEE, 90(3), 319–342.

Muriel, A. and Munshi, F.N. (2004) Capacitated multicommodity net-
work flow problems with piecewise linear concave costs. IIE
Transactions, 36(7), 683–696.

Nesterov, Y. and Nemirovskii, A. (1994) Interior-Point Polynomial
Algorithms in Convex Programming. SIAM, Philadelphia, PA.

Ngueveu, S.U. (2019) Piecewise linear bounding of univariate nonlinear func-
tions and resulting mixed integer linear programming-based solution
methods. European Journal of Operational Research, 275(3), 1058–1071.

Rebennack, S. (2016a) Computing tight bounds via piecewise linear
functions through the example of circle cutting problems.
Mathematical Methods of Operations Research, 84(1), 3–57.

Rebennack, S. (2016b) Combining sampling-based and scenario-based
nested Benders decomposition methods: application to stochastic dual
dynamic programming. Mathematical Programming, 156(1), 343–389.

Rebennack, S. and Kallrath, J. (2015a, October) Continuous piecewise
linear delta-approximations for bivariate and multivariate functions.
Journal of Optimization Theory and Applications, 167(1), 102–117.

Rebennack, S. and Kallrath, J. (2015b) Continuous piecewise linear
delta-approximations for univariate functions: computing minimal
breakpoint systems. Journal of Optimization Theory and
Applications, 167(2), 617–643.

Rebennack, S. and Krasko, V. (2020) Piecewise linear function fitting
via mixed-integer linear programming. INFORMS Journal on
Computing, 32(2), 507–530.

Toriello, A. and Vielma, J.P. (2012) Fitting piecewise linear continuous
functions. European Journal of Operational Research, 219(1), 86–95.

Wagner, A.K., Soumerai, S.B., Zhang, F. and Ross-Degnan, D. (2002)
Segmented regression analysis of interrupted time series studies in
medication use research. Journal of Clinical Pharmacy and
Therapeutics, 27(4), 299–309.

Wang, D.P., Huang, N.F., Chao, H.S. and Lee, R.C.T. (1993) Plane
sweep algorithms for the polygonal approximation problems with
applications, in Algorithms and Computation, pp. 515–522. Springer,
Berlin, Heidelberg.

Wang, Y. (2011) Smoothing Splines: Methods and Applications. CRC
Press, Taylor & Francis Group LLC.

Warwicker, J.A. and Rebennack, S. (2022) A comparison of two
mixed-integer linear programs for piecewise linear function fitting.
INFORMS Journal on Computing, 34(2), 1042–1047.

Warwicker, J.A. and Rebennack, S. (2023a) A unified framework for
bivariate clustering and regression problems via mixed-integer linear
programming. Discrete Applied Mathematics, 336, 15–36.

Warwicker, J.A. and Rebennack, S. (2023b) Generating optimal robust
continuous piecewise linear regression with outliers through combina-
torial Benders decomposition. IISE Transactions, 55(8), 755–767.

Yue, D. and You, F. (2013) Sustainable scheduling of batch processes
under economic and environmental criteria with minlp models and
algorithms. Computers & Chemical Engineering, 54, 44–59.

IISE TRANSACTIONS 15

https://hal.science/hal-03336003/
https://hal.science/hal-03336003/
http://github.com/stevengj/nlopt

	Efficient continuous piecewise linear regression for linearising univariate non-linear functions
	Abstract
	Introduction
	Efficient algorithms for PWL regression for discrete univariate data
	Min-B problem - A O(n) time algorithm

	Applications to fitting continuous univariate functions
	Fitting continuous univariate functions
	Fitting convex functions

	Runtime bounds for fitting continuous functions
	Computational results
	Continuous functions
	Convex functions

	Conclusions
	Acknowledgments
	Funding
	Orcid
	References

