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1. Introduction 

In industrial systems, it is often not just individual machines 
that are monitored, but larger machine parks. Intelligent 
systems, such as fault detection models [1], are often trained 
and applied separately for individual machines. Since these 
machine fleets often contain closely related machine units, 
there is a great need for transferability and generalization of 
intelligent industrial systems. In many practice cases the 
hardware, software, machine state or operational conditions 
vary within fleets which typically leads to different data spaces 
and distributions between different machine units [2]. Thus, 
models trained on the training data of the original machine will 
likely fail to perform sufficiently well on other machines of the 
fleet. Even if the machines are performing the same task under 
the same conditions [3], these models must either be trained 
from scratch with new data or at least must be re-trained and 

tuned to perform well on the target machine [4]. Collecting 
sufficient training data and training the models is one of the key 
cost drivers of machine learning projects [5]. For large scale 
applications such separate repetitive training processes for the 
same task on identical or similar machines are highly 
inefficient, while labelled data of the target machine can be 
expensive or even impossible to acquire [6]. 

Previous research on transfer learning approaches targeting 
knowledge transfer, has made strong progress in recent years 
but mainly focuses on theoretical descriptions of mathematical 
models [7]. However, widespread application of transfer 
learning between beams in industry has not yet occurred. In 
particular, the lack of an industry-relevant, far-reaching 
systematization of typical use cases, hinders a structured 
discussion and analysis of underlying real-world transfer 
problems and thus can build a bridge to finding solutions in the 
area of transfer learning.
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The goal of this work is to introduce an industrial perspective 
on transfer learning use cases by introducing a transfer use case 
systematization using the example of gantry kinematics / 
machine tools. Typically occurring transfer use cases should 
thus be systematically and intuitively subdivisible in order to 
serve as a basis for further analyses of the data implications. By 
this, a bridge between industrial and mathematical transfer 
perspective is to be created. 

2. Related work

Leveraging existing learned knowledge for related settings 
or domains is a widely known problem in the industry. In the 
last two decades several transfer related branches of research 
emerged under different terminologies such as context-
sensitive learning, incremental/cumulative learning, inductive 
transfer, knowledge consolidation, knowledge generalization, 
knowledge-based inductive bias, knowledge transfer, learning 
to learn, lifelong learning, meta-learning and multitask learning 
[8, 9].

Transfer learning as a subgroup of machine learning recently 
attracted significant interest in literature. These approaches aim 
to transfer the knowledge from one or more previous tasks to a 
target task based on mathematical methods [8]. Transfer 
learning problems are commonly categorized either solution-
based with regards to the transfer strategy or problem-based 
with regards to feature and label availability or with regards to 
the similarity of source and target input feature spaces [8, 9].

Typical transfer learning applications include for example 
text and natural language processing [10, 11], computer vision 
and image processing [12, 13], healthcare [14, 15], forensic 
applications [16], automated planning [17], WiFi localization 
[18], software defect prediction [19], classification for 
computer aided design (CAD) [20], production [21] and human 
activity recognition [22]. 

While research in transfer learning indicates a great potential 
in mathematical transfer methods, it has not yet reached the 
industrial practice of machine tool applications on a wide scale 
[23]. As different use cases arise as motivation and application 
for transfer approaches, [23] propose a high-level 
differentiation of base transfer use cases to reflect the industrial 
transfer motivation: Cross-phase, cross-state, cross-entity and 
cross-domain transfer, while cross-state and cross-entity 
transfer can be grouped as cross-environment transfer. [24]
differentiates three different types of industrial transfer and 
generalization use cases: The transfer from one operational 
condition to another, the transfer from a single system to a 
whole fleet and the transfer from synthetic simulation models 
to real physical systems. While the basic idea of systemizing 
industrial transfer use cases raised first interest, the literature 
does not allow for a practical and intuitive differentiation of 
transfer use cases between different machine tool scenarios as 
well as a derivation of typical implications concerning potential 
transfer solution methods.

3. Transfer use case systematization and implications for 
transfer approaches

To allow for a structured differentiation about industrial 
transfer use cases on machine tools a clear differentiation of 
transfer dimensions is required. These dimensions are meant to 
characterize the similarity or difference between the source and 
target machine. This goes beyond the purely technical 
description of the machine, as would be possible, for example, 
on the basis of the mechatronics concept with its subareas of 
mechanics, electronics and information technology [25]. A 
complete machine system context description of machine tools 
is described by the semantic models for fleet ontology proposed 
by [26] and [27]. Building on this terminology for 
characterizing machine fleets, the machine system context 
scope can be defined by the following three context 
dimensions: The technical context, the usage context, and the 
environmental and operational context. The terminology and 
denotation of the three contextual dimensions is further 
congruent with the fleet characterization of [28]. A high-level 
use case systematization for transfer problems in the machine 
tools domain can be described as follows. While technical 
context can include the most basic case of a machine transfer 
between related machine tools, the fleet transfer can be 
distinguished as a large-scale variation including additional 
characteristics as for example knowledge integration. Synthetic 
transfer is a special case of the technical dimension, where 
knowledge is transferred from simulations and virtual machine 
models to a physical machine unit. The usage context transfer 
dimension describes transfer problems in which a transfer is 
justified on the basis of different machine missions or tasks. 
Finally, the transfer dimension of environmental and 
operational conditions includes transfer situations in which a 
transfer is justified due to different environmental or 
operational conditions such as degradation state or machine 
wear. Hybrid forms of the transfer dimensions can occur in 
many use cases. As a result, it is now possible to differentiate 
and delineate the difference dimensions between machines, 
enabling clear structured differentiation of problem settings 
and further in-depth systemizations. Figure 1 illustrates the 
three context dimensions as well as the described transfer type 
characterization.

Since in industrial applications there are no exactly identical 
source and target systems, e.g. due to manufacturing tolerances 
alone, this usually leads to changed data situations which has 
negative influence on the performance of industrial systems [2]
[29]. Furthermore, the data availability for the source and target 
machines is often limited. Since the knowledge of a trained 
model of the source machine is to be transferred, consequently, 
access to labelled source machine data can be considered as 
given. On the other hand, as motivated, labelled data are 
typically not available for the target machine, since the 
generation and the labelling of data is costly and often not even 
possible [6]. In contrast, unlabelled data of the target machine 
can usually be generated in a short time without great effort, 
for example by means of test or even reference runs widely 
used in the industry [30].
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As motivated, focus of this work is on the transfer between 
technically different but related machines while the influence 
of the technical similarity of the machines is primarily 
considered. The usage context and most environmental and 
operating conditions can be controlled and kept constant and 
are therefore considered secondary, while the authors 
emphasise that in some applications non-controllable 
environmental and operational influences such as degradation 
development need to be considered as additional influences on 
transfer scenarios. Figure 1 illustrates the transfer focus of the 
introduced problem setting based on the described transfer 
dimension terminology.

4. Introduction of a machine tool transfer use case 
systematization

The differentiation according to different transfer contexts 
now allows a differentiation of dimensions which characterize 
the differences between machine tools. However, this is not yet 
sufficient for a sufficiently complete discussion and 
differentiation as well as a deeper transfer analysis of different 
concrete use cases. In particular, the question to what extent 
two machines differ in the technical context entails very far-
reaching implications and is not yet sufficiently defined to 
derive further conclusions for the transfer of intelligent 
systems. This is particularly important in order to generate a 
general understanding of the problem among the various actors 
involved and to be able to clearly distinguish which concrete 
transfer situation and which typical implications are present in 
the respective case. 

Therefore, a systematization is necessary that divides 
practice-relevant use cases into classes based on the degree of 
technical differences and thus allows a comprehensible 
gradation of the transfer problem. The breath of the 
systematization of the motivated cross-machine transfer use 
cases is intended to range from the basic extreme case of 
transfers between identical machines to an extreme case of 
different machines. However, for the feasibility of a successful 
transfer project, a certain degree of relatedness between the 
machines must be assumed. In addition, the systematization 

should allow a distinction with regard to the process 
functionality of the machines, i.e., the ability to functionally 
execute the same machine tasks.

4.1. Terminology and criteria for a transfer use case 
systematization 

To further differentiate different transfer use case scenarios 
in the technical context dimension it is necessary to introduce 
a practical technical description of the similarity of machines. 
The technical characterization of a unit on machine level or
component level can basically be caried out by classifying the 
exact equipment series type and its related properties [27]. For 
the differentiation on the introduced abstraction levels, a 
similarity terminology is required to compare different units. 
[31] suggest considering systems as identical when the systems 
consist of the same critical equipment, [27] propose to use three 
qualitative similarity terms to differentiate units: Identical, 
similar and heterogeneous. Identical equipment (machine level 
or component level) is defined by the identical series type, 
whereby the technical properties of the machines must 
implicitly be theoretically identical. Machines or components 
are considered to be different with regards to the technical 
context if they deviate mechanically, software-wise, 
electrically/electronically, or in any other mechatronics 
discipline. The advantage of the described concepts is that the 
terminology used is generally known and that industry 
practitioners are able to handle it in practice due to its 
intuitiveness. 

4.2. Transfer use case systematization for machine tools

Based on the described differentiation dimensions and the 
terminology, a series of qualitative interviews with 
representative industry experts was conducted to collect data of 
typical industry transfer use cases on machine tools, their 
commonalities and relevance. Through a subsequent clustering 
of the evaluated data and further interviews, a categorization of 
five cross-machine transfer use case classes (short: transfer 
class) for application machines could be derived, covering the 
range from technically identical machines to different but 
functionally related machines based on a differentiation at 
machine and component level.

Transfer class 1 denotes the base transfer case of a 
replication between machines. This means that the underlying 
transfer application is here to be transferred between two 
technically identical machines with identical components. 
Since this transfer class covers theoretically identical 
machines, the machine process functionality is also identical 
between the machines. Based on industry experts, this class is 
the most common and relevant transfer case, which occurs, for 
example, when machine manufacturers equip not customized 
identical units with fault detection applications, which needs to 
be transferred from a trained source machine to technically 
identical target machines. Transfer class 2 describes, like the 
class 1, a replication however with the difference that one or 
more underlying components are different, which do not have 
an influence on the machine process functionality. This means 

Fig. 1 Systematization of transfer dimensions based on the technical context, 
usage context and environmental and operational condition transfer
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that this replication with component variation is less restrictive 
than transfer class 1 but does not allow the machines to perform 
differently. This transfer class is particularly relevant because 
machine manufacturers may have to change components within 
a machine series type. Opposed to transfer class 2, class 3 
describes a transfer between machines with identical machine 
series types, while variation occurs on component level, which 
changes the machine process functionality. The differentiation 
from transfer class 2 is based on the fact that the component 
difference between source and target machine has an influence 
on the observable behaviour or the functionality of the 
machine. This leads to the fact that although the underlying 
machine series type is identical, the machine has a different 
machine process functionality. Transfer class 4 describes the 
transfer case between two related machines of different size or 
scale, while the basic construction design of the machine is 
identical or similar. Finally, transfer class 5 concludes the 
systematization of the cross-machine transfer cases and 
represents the extreme case of the largest possible deviation 
between two machines considered in this systemization. Beside 
different underlying components series types, also a variation 
of the machine series type is present. The latter goes beyond 
size scaling and allows a complete variation of the machine 
type with the only restriction that the latter must be functionally 
related. This ensures the transfer potential. Consequently, the 
machine process functionality is considered to be different. 
Figure 2 illustrates the five described transfer use case classes 
for machine tools.

5. Technical differences between machines and derivation 
of data implications

Based on the systematization of machine tool transfer use 
cases the question arises which typical implications at the 
technical level can be expected and thereby which transfer 
approaches are applicable. The main goal hereby is to describe 
typical changes between source and target machines on a 
technical level to derive potential data differences between the 
source and target machines. Due to the high industry relevance 
and the comparatively simple comprehensibility of the transfer 
problem of the transfer use case class 1: Replication, the 

derivation of implications is described below with a focus on 
this use case class.

5.1. Derivation of typical technical differences for transfer 
use cases

By methodically creating cause-and-effect diagrams, which 
elaborate possible factors influencing the technical differences 
between the source and target machine for each transfer use 
case class, implications on the data situation can be derived. 
This technique is based on Ishikawa diagrams which were 
introduced by [32] and adapted for appropriate influencing 
factors to reflect the technical context relevant for this work. 
The implications on the underlying data of the source and target 
machine need to be structured along different criteria and 
dimensions to appropriately describe the data. For this, in the 
first step an intuitive technical description of the data is chosen, 
which covers the structure of the data, the data behavior, the 
local instance, data noise, and data labels, in order to capture a
complete data picture.

For the example of transfer use case class 1: Replication, the 
main causes for a difference between source and target machine 
can be reduced to causes of the machine realization and non-
controllable environmental and operational conditions. This 
follows directly from the definition of the use case class, which 
includes use cases where the basic machine and component 
series types are identical. The machine realization includes all 
influences connected to the production, assembly, control and 
calibration of the machines. Those factors can typically cause 
differences in the data of a source and target machine. In a 
naive technical description, this would result in a deviation of 
the local data instances, for example a shift of the time series 
data on the X- or Y-axis.

5.2. Derivation of data implications for transfer use cases

Subsequently, this intuitive technical description can be 
translated into a mathematical data description, which is used 
in the most common transfer learning literature. Thereby the 
technical practitioner perspective and the mathematical 

Fig. 2 Transfer use case class systematization based on the differentiation on machine and component series type
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perspective are connected following generally known 
mathematical terminology as shown in Figure 3. 

While the output space ϒ includes all possible labels, the 
input feature space χ is the space of all existing feature vectors. 
For a given input feature vector X or label vector Y, P(X) resp. 
P(Y) denotes the marginal probability of one specific outcome 
in the presence of all possible outcomes of the other random 
variable. A domain D is defined by two components, the feature 
space χ and a corresponding marginal probability distribution 
P(X). For a given domain D, a task T is defined by two 
components: A label space ϒ, and a decision function f, where 
f learns the relationship from the sample vector and label pairs 
{x_i, y_i}. For a given X and Y, P(X|Y) denotes the conditional 
probability of one specific outcome for the random variable X, 
given a outcome for random variable Y. The terminology 
definitions are based on the research surveys from [8] and [9].

In the exemplary case of transfer use case class 1: 
Replication, this potential difference in the local data instance 
can cause different marginal input distributions. For example, 
a Y-axis offset of the respective time series will result in a 
shifted input distribution, while the other mathematical data 
characterization categories are not influenced. 

Since this work focuses on the group of use cases 
characterized by transfer between machine tools with the same 
task, it follows from the definition of the task T that the label 
space γ as well as the conditional probability distribution 
P(Y|X) between source and target problem can be assumed to 
be identical. Basically, two groups of use case can be identified: 
Transfer class 1 and 2 are characterized by a difference of the 
marginal input distribution, which is due to the difference of 
the local instance of the basic data behaviour. Transfer class 3, 
4 and 5, on the other hand, have additionally different feature 
spaces in the source and target domains due to possible changes 
in the data structure and the data behaviour influenced by this. 
This can be caused by many factors, for example additional 
data streams that occur due to a process component variation 
which then leads to different features increasing the input 
feature space χ_T. Since the domain D by definition consists of 
the feature space χ and the corresponding marginal distribution 
of the features P(X), this means that D_S≠D_T applies for all 
five transfer classes. Table 1 summarizes the derived typical 
data implications of the different machine tool transfer use case 
classes. The identified differences between source and target 

problem setting shown in Table 1 now allow a specification of 
the transfer learning need by the actual expected mathematical 
description differences. As intended, this provides the basis for 
the necessary understanding of the problem at the data and 
model level and identifies the starting point for possible 
solutions. The latter must aim at resolving the difference of the 
feature spaces or, depending on the transfer class, also the 
difference of marginal distributions for the case of this work.

Table 1. Mathematical description of data differences in the transfer problem 
setting between source and target problem

Class 1 Class 2 Class 3 Class 4 Class 5

Input 
feature 
space 

Identical Identical Different Different Different

Label space Identical Identical Identical Identical Identical

Marginal 
Input 

distribution 
Different Different Different Different Different

Marginal 
label 

distribution 
Identical Identical Identical Identical Identical

Conditional 
distribution Identical Identical Identical Identical Identical

5.3. Industry relevance and practicability

The application of the systematization was validated during 
an in-depth collaboration with two representative German 
machine tool manufacturers. As producer of different related 
machines, the initial motivation is the rollout of intelligent 
systems such as fault detection [33] to identic machine tools 
which can be also described as a transfer between exactly 
identical machines. Based on the description of the underlying 
problem situation the machine tool manufacturers were able to 
select the present category characteristics on machine and 
component level. By applying the introduced use case 
systematization, it was then possible to clearly identify the 
underlying transfer use case class 1: Replication and thereby 
establish a common understanding of the problem situation for 
all parties. The later revealed that a precise description and 
terminology helped to reduce the complexity of the present use 
case. Further, the derived typical data implications of the 

Fig. 3 Derivation of data implications based on technical cause-effect diagrams of machine tools
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transfer use case class served as starting point to precise and 
delimit the solution space for applicable transfer approaches 
and thereby facilitated the implementation of transfer learning.

6. Conclusions

The goal of this article was to establish an industrial 
perspective on knowledge transfer use cases on machine tools 
and thereby facilitate the application of state-of-the-art transfer 
learning approaches. Therefore, a novel transfer use case 
systematization for machine tools was introduced for the first 
time based on widely known machine fleet terminology. 
Thereby, typically occurring transfer use cases can be clearly 
differentiated and allow for a structured discussion about 
different problem settings and to serve as a basis for further 
analyses of the data implications. Subsequently, implications 
on the data situation of the source and target machine were 
derived and systematized based on the technical differences of 
the machines. By this, a bridge between industrial and 
mathematical transfer perspective was established allowing for 
the derivation of clear criteria on potential transfer learning 
approaches. Further, the industrial relevance and practicability 
of the introduced machine tool transfer use case systemization 
was illustrated. 

Integrating the presented use case systemization into a 
coherent user assistance system can enable industrial users to 
find concrete transfer learning approaches for the respective 
transfer setting. Furthermore, extending the motivated problem 
focus to further applications beyond machine tools can add 
significant value.
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