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Abstract: Optical sorters separate particles of different classes by first detecting them while they
are transported, e.g., on a conveyor belt, and subsequently bursting out particles of undesired
classes using compressed air nozzles. Currently, the most promising results are achieved by
predictive tracking, a multitarget tracking approach based on extracted midpoints from area-scan
camera images that analyzes the particles’ motion and activates the nozzles accordingly. However,
predictive tracking requires expert knowledge for setup and preceding object detection. Moreover,
particle shapes are only considered implicitly, and the need to solve an association problem rises
the computational complexity of the algorithm. In this paper, we present GridSort, an image-
based approach that forecasts the scene at the nozzle array using a convolutional long short-term
memory neural network and subsequently extracts nozzle activations, thus circumventing the
aforementioned weaknesses. We show how GridSort can be trained in an unsupervised fashion
and evaluate it using a coupled discrete element—computational fluid dynamics simulation of an
optical sorter. We compare our method with predictive tracking in terms of sorting accuracy
and demonstrate that it is an easy-to-apply alternative while achieving state-of-the-art results.

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Optical sorting is a machine-vision-based technology that
separates a bulk material of particles of different classes
into its components at high throughput rates of several
tonnes per hour. Common applications of optical sorters
are in the mineral (Robben and Wotruba (2019)) and
food industry (Bruce et al. (2021)). There is a substantial
and growing demand arising from the recycling sector
since alleviating the worldwide issue of waste pollution

laws. For example, the European Union’s recycling strategy
stipulates that recycling rates of 70 % for packaging waste
by 2030 and 65 % for municipal waste by 2035 are to be
achieved (Friedrich (2022)). In this context, optical sorting
is regarded as the key player for developing a sustainable
circular economy (Friedrich (2022)).

A typical optical sorter consists of a transport medium,
such as a belt or a chute, that transports the bulk material
to a nozzle array mounted after the transport medium, and

is one of the most urgent problems of contemporary times.
This is also increasingly reflected in new environmental

* The IGF project 20354 N of the research association Forschungs-
Gesellschaft Verfahrens-Technik e.V. (GVT) was supported via the
AiF in a program to promote the Industrial Community Research and
Development (IGF) by the Federal Ministry for Economic Affairs and
Climate Action on the basis of a resolution of the German Bundestag.

a camera that analyzes the particle flow. At the nozzle
array, particles of undesired classes are ejected from the
particle stream with bursts of compressed air. An algorithm
for optical sorting thus has to fulfill the tasks of recognizing
particles of the reject class and activating the nozzles
accordingly, taking, e.g., the particle position, movement,
and shape into account.
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1. Outline of GridSort and the DEM—-CFD model
of the sorter. The bulk solid is fed onto the feeding
chute (1) and then transported by the conveyor belt (2)
to the nozzles (3) while being analyzed by an area-
scan camera with field of view A. The nozzles shoot
particles of undesired classes into the reject hopper (4)
using bursts of compressed air (depicted in blue),
while accepted particles fall into the accept hopper (5).
GridSort takes images A of the area-scan camera as
input and forecasts an already segmented image B
capturing the scene at the nozzle array. Based on this,
nozzles (3) are activated in a postprocessing step.

Fig.

Whereas current state-of-the-art sorters offered by the
industry typically use a line-scan camera that captures
a pixel row at the belt edge, in our previous works
(Pfaff et al. (2015); Pfaff (2019)), we showed that sorting
accuracy can be improved with the help of the predictive
tracking paradigm. Here, a multitarget tracking (MTT)
algorithm is employed on the particle midpoints extracted
from images captured by an area-scan camera mounted
above the belt. The extracted motion information is
then used to precisely activate the nozzles. In predictive
tracking, hard associations between measurements and
predictions are determined in each time step using a
global nearest neighbor approach. This is equivalent to
solving a linear assignment problem, which, in predictive
tracking, is either addressed by the Hungarian or the
auction algorithm (see Pfaff (2019); Maier (2022)). For
predicting and filtering particle states, multiple Kalman
filters, one for each particle, using constant-velocity (CV)
or constant-acceleration (CA) motion models are deployed.
The prediction of the estimated particles’ time of arrival
and location at the nozzle array, also referred to as the
prediction to the nozzle array, is then again accomplished
with motion models inspired by physics, such as CV or CA
models. To this end, the motion models use the estimated
particle states from the Kalman filters. Whereas the
results of predictive tracking show significant improvements
compared with line-scan camera based sorters (Maier et al.
(2021)), there are four major concerns about this approach:

o Assumption of linear and independent particle motion:
Due to the use of independent, linear motion models
for each particle, no complex motion patterns, no
collisions with walls and other particles are covered.
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e Computational complexity grows exponentially with the
number of particles: Solving the association problem
scales with the number of particles n in O(n?), which
constitutes a bottleneck for the usable frame rate.
For example, Maier (2022) showed that even with
GPU accelerated methods, this takes at least several
milliseconds for n > 400.

o Assumption of invariant particle shape projections:
In current implementations, only the last measured
projection of the particle shape onto the belt (in the
following referred to as the extent of the particle) is
relevant for the nozzle activation. Thus, it is assumed
that particle extents do not change compared with
the last recorded measurement. However, this is a
simplification since they can change due to rotations.

e High complexity and sensitivity w.r.t. the choice of
hyperparameters: The sorting software needs to cope
with various tasks (object detection and classification,
MTT, prediction to the nozzle array), each of which
represents a potential source of error. Each part relies
on hyperparameters, which must be chosen carefully.
Fine-tuning these parameters must be done in advance
and requires expert knowledge, making the setup
costly and the algorithm difficult to adapt to changing
scenarios.

Therefore, we propose a novel approach called GridSort
that directly forecasts the scene at the nozzle array as
an image in an end-to-end fashion without the need to
solve an association problem and extract the particles’
centroids. The core of our proposed solution consists of a
convolutional long short-term memory (ConvLSTM) based
neural network that directly processes image sequences
recorded by an area-scan camera and predicts an already
segmented image as it would be captured at the position
of the nozzle array P time steps ahead (see Fig. 1).
Based on this intermediate result, the approach calculates
nozzle activations in a minor postprocessing step, thereby
automatically considering the particle extents. The use
of a ConvLSTM network is inspired by similar tasks in
environment prediction for autonomous driving. Here, one
usually tries to predict the future occupancy of a grid
representing the ego vehicle’s surroundings based on input
sequences of grid maps encoding, e.g., LIDAR or camera
measurements (Dequaire et al. (2018); Mohajerin and
Rohani (2019); Itkina et al. (2019); Lange et al. (2021)). In
particular, we use the grid predictor model neural network
architecture proposed by Schreiber et al. (2019) and adapt
it to our scenario.

Our contributions are: We propose an approach for grid-
based sorting using a ConvLSTM network. We demonstrate
how the network can be trained in an unsupervised fashion,
making use of the intermediate result, i.e., the network
output, as a segmented image. We thus avoid parameter
tuning as required for predictive tracking and laborious
labeling of training data. We test the approach on a coupled
discrete element—computational fluid dynamics (DEM-
CFD) simulation of a sorter, demonstrating suitability
for optical sorting. Thus, an alternative approach to
predictive tracking is proposed, which for the first time
allows forecasting particle extents across multiple time
steps (see Fig. 2).
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Fig. 2. Comparison of predictive tracking and GridSort.
In predictive tracking, the particles’ predicted time of
arrival ¢} and location y} are calculated solely based
on extracted midpoints from an object detector. The
extracted particle extent and class information from
time step k is included when activating the nozzles,
even though it is possibly outdated because a particle
may have changed its orientation when reaching the
nozzle array. GridSort alleviates this by forecasting
an already segmented image capturing the scene at
the nozzle array P time steps ahead. PN abbreviates
prediction to the nozzle array.

2. RELATED WORK
2.1 Predictive Tracking and DEM-CFD for Optical Sorting

Since its emergence, several improvements have been
proposed for predictive tracking. Pfaff (2019) proposed to
incorporate orientation estimation in the MTT to improve
the association quality. Although in principle possible, the
predicted particle orientations were not used for more
precise activation of the nozzles, e.g., by taking into account
predicted particle extents. Recent developments allow for
more accurate tracking and prediction to the nozzle array
using recurrent neural networks and multilayer perceptrons
that replace the Kalman filters and the linear motion
models (Pollithy et al. (2020); Thumm et al. (2022)).

DEM-CFD was used to simulate optical sorters in Pieper
et al. (2018); Bauer et al. (2023) and showed high consis-
tency with experiments on real sorters. Bauer et al. (2022)
optimized the sorting setup for various belt velocities and
showed that higher belt velocities can improve the accuracy
under certain material feed conditions. DEM—CFD resolves
contacts of particles with other particles, other components
of the sorter, and the fluid field surrounding the particles
in detail and in high temporal resolution. The discrete
element method (DEM) relies on the fundamental laws
of classical mechanics, i.e., Newton’s law of motion and
Euler’s equation to infer the motion of particles from
applied forces and torques. Concurrently, in computational
fluid dynamics, the Navier—Stokes equations are solved
numerically to account for fluid forces imposed by relative
velocities between the air and the particles. Here, drag
models are commonly used to estimate the fluid forces on
the particles.

2.2 Grid-based Tracking and Prediction

Grid-based tracking and prediction approaches are popular
in the autonomous robot and driving community, where
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they are employed, e.g., for motion prediction of road users
in the vicinity. In grid-based tracking, the region of interest
is usually discretized into rectangular grid cells, mostly
using a two-dimensional birds-eye-view representation of
the scene. Each cell value then encodes the occupancy
or class of an object that covers the corresponding cell,
thus avoiding the need to solve an association problem
in MTT. On the top level, grid-based approaches can
be divided into those using Bayes-filter-based methods
encoding handcrafted motion models and those using
deep neural networks learned on large data sets. Methods
belonging to the first category usually deploy the Bayesian
occupancy filter (Chen et al. (2006)) and variants thereof.
Whereas such approaches allow for uncertainties in the
prediction and proved to be useful for tracking and short-
term prediction tasks, they usually suffer from blurring in
the predictions because of inaccuracies of the hand-crafted
motion models and accumulation of system noise on long-
term prediction tasks. For those tasks, deep neural networks
based on recurrent convolutions show promising results.
The first publications on applying recurrent convolutions to
occupancy grid tracking and prediction is the deep tracking
article series by Dequaire et al. (2018). More recently,
Schreiber et al. (2019) proposed an encoder—decoder
architecture called grid predictor model, where the input
sequence is first scaled down by an encoder convolutional
neural network (CNN) with three layers to deep low-
resolution feature maps and then fed into four ConvLSTM
layers before being upscaled to the output shape by a
four-layer non-recurrent upscaling CNN. Moreover, to
prevent blurring of the output image, the authors proposed
using skip connections, which may also contain recurrent
ConvLSTMs, between the encoder and decoder layers. With
this architecture, the grid predictor model was able to
precisely predict future object motion in traffic scenarios
up to 20 time steps ahead when fed with an input sequence
of the same length. Mohajerin and Rohani (2019) applied
a similar encoder—decoder ConvLSTM network as part of
a difference learning approach on lidar grid maps. Another
branch of related work focuses on the ConvLLSTM network
PredNet by Lotter et al. (2017), previously used for video
prediction, that was applied for grid prediction by, e.g.,
Itkina et al. (2019) on the KITTTI lidar dataset. Most
recent, Lange et al. (2021) used attention mechanisms on
the input and hidden state sequence of PredNet to highlight
import features. They showed that one is thereby able to
adequately predict up to 2.5 s into the future when fed with
lidar measurements arriving at 10 Hz in challenging and
highly dynamic scenarios.

3. GRID-BASED SORTING MODEL

Our GridSort approach takes an RGB input image directly
from the area-scan camera at each time step k and, after
preprocessing, feeds a sequence of the latest N input images
Xi N1y -5 Xp € REmXWinx3 into the ConvLSTM-based
neural network predictor (see Fig. 3). The ConvLSTM
network then outputs a prediction for the Pth time step
in the future Y;, p € (0,1)HereaxWoreaX3 in the form of
a segmented image in the vicinity of the nozzle array.
Here, the components y;;, of Y; p, with Z?:l Yin =1,
encode the probability P (y;; = ¢;) that the discrete random
variable y;;, which describes the class membership of
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Fig. 3. Input sequence, ConvLLSTM-based neural network architecture, and the forecasting for the scene at the nozzle array.
The input sequence of the latest N (preprocessed) RGB images is fed into a ConvLSTM network in encoder—decoder
architecture, where they are first compressed by an encoder CNN (left part) using three convolutional layers and
then processed by four ConvLSTM layers (middle part). The last predicted feature map for k + P is then upsampled
by the decoder CNN, consisting of three layers (right part). A 1 x 1-convolutional layer with softmax activation
subsequently yields the predicted image Y, p that encodes the class membership probabilities of each pixel.

the cell indexed ij, belongs to the class ¢; indexed by
I € {1,2,3}. Note that the choice of three channels in
the model output Yj p reflects that in a sorting task, we
usually have three classes (eject particles, accept particles,
and background). In the following, we first describe our
neural network’s architecture and then explain in detail how
the nozzle activations are calculated from the network’s
predictions. !

3.1 Model Architecture

We build upon the grid predictor model proposed
by Schreiber et al. (2019). Whereas its original version
was used to predict a sequential output, we change the
architecture to only output a single image at each model
call. Therefore, we process the whole sequence until the last
ConvLSTM layer, but then return only the last output in its
output sequence. Additionally, we omit the skip connections
between the encoder and decoder CNN, as our results have
shown that the model capacity without skip connections is
sufficient for our task. The final layer is a 1 x 1-convolutional
layer with softmax activation, directly outputting the class
probabilities Y}, p. We choose to work with an input image
shape Hi, X Wi, for the ConvLSTM network of 132 x 408 px
and a predicted image shape Hpred X Wprea of 88 x 408 px.
The encoder CNN compresses the image to 11 x 34 px while
increasing the number of channels to 64. In total, our model
has 3362435 trainable parameters.

In the preprocessing, we resize the input image and
standardize each of its channels to have a mean of zero
and unit variance using feature-wise standardization with
mean and variance determined on the whole data set. For
postprocessing, we first change the size of the predicted
image Y;, p to a task-specific Hout X Wous and then
transform the predicted class probabilities to one-hot-
encoded predicted classes Yy p € {0, 1} HoutxWourx3 fyy
taking the argmax along the class dimension, thus using
the most likely class. In the following, we refer to Yi4p as
the output of the model.

3.2 Extracting Nozzle Activations

For training and deployment, P and H,,; are to be chosen
such that P reflects the average particle travel time from

L Our source code is available at https://github.com/KIT-ISAS/
TrackSort_Grid-based/tree/IFACWC2023

the end of the area-scan camera field of view (FOV) to
the nozzle array and H,; is broad enough to account for
variations in the travel times as well as in the particle
extents. From Y4 p, nozzle activations are calculated by
first extracting the axis-aligned bounding boxes of the
particles to be ejected. The y-coordinates of the bounding
box edges are then directly used to determine which nozzles
to activate. For calculation of the activation time ¢} and
duration At} at time step k (both in time steps but as a
floating number), the bounding box length in x-direction [P
and the x-coordinate of its center point & are transformed
to a time by dividing by an average particle velocity v3é

xN —cFP

(in pixels per time step) according to ¢} = Tgx +P+k
and At} = vé—sg, where x denotes the pixel position of the
nozzle array. Note that it is not possible here to use particle

individual velocities as this would require associations over
the last predicted frames, which we want to avoid.

4. DATA SETS

We use two distinct data sets for both training and
evaluation. The first one consists of area-scan images
recorded on the real-world lab-scale optical belt sorter
described in Pfaff (2019); Maier (2022) whereas the second
one stems from artificial data generated by the DEM—
CFD model of the same optical sorter presented in Bauer
et al. (2022).2 The recorded material in both cases is
construction and demolition waste, consisting of a mixture
of brick and sand-lime brick.

4.1 Real Bulk Material Data Set

Recorded mass flows were 10, 15, and 20 gs~!. The mixing
ratios range from 50:50 to only one material each. The belt
has a width of 140 mm and its velocity is approximately
1ms~t. Images were taken by an Allied Vision Bonito CL-
400 color camera at a frame rate of 192 fps and a resolution
of 2320 x 1726 px. The data set consists of 22 sequences,
each of which correspond to one mass-flow-mixing-ratio
pair. Each sequence comprises 7900 images, resulting in
approximately 40 s of recorded material.

2 Our data sets are available at https://doi.org/10.5281/zenodo.
7801882, https://doi.org/10.5281/zenodo. 7782405
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Fig. 4. Example illustration of the impact of the number of
input images N and the time step difference to predict
to P. The first row shows the images with division
as described in Sec. 5, i.e., the upper part marks the
region that is used as input to the ConvLSTM network,
the shaded middle part represents the prediction gap
that is invisible during training, and the lower part
shows the segmented target at the vicinity of the
virtual nozzle array (depicted by the dotted line).
a) demonstrates an appropriate choice for N and P
since the majority of the particles in the target images
are visible in all three input images as illustrated by
the displayed example sequence. The higher N in b) is
of no value because the particles in the target images
have not yet appeared in the first frames of the input
sequences. In c¢), the higher P leads to less motion
information the network can work with compared
with a). In d), due to a too small N, information
about the motion of the particles in the target images
is not present at all in the input sequences.

4.2 DEM Data Set

The data set contains mid-points, radii, and classes of
spheres that build sphere clusters, with each cluster mod-
eling a particle. Input images are generated by rendering
the sphere clusters in the FOV of the simulated area-
scan camera. The particles have diameters from 4 to
8mm. The simulated mass flows were 70gs~! for sand-
lime brick and 30gs™! for brick. The belt velocity is
approximately 1.1 ms~!. Data is recorded at 2000 fps and
covers a simulated time period of 120s.

5. UNSUPERVISED TRAINING PROCEDURE

In this section, we describe our unsupervised training
procedure, which is based on the observation that labeled
images can be obtained with only little effort using classical
image segmentation methods. We train one model each for
the real bulk material and the DEM data set.

5.1 Unsupervised Training Data Generation

In principle, one could directly use images from a camera
mounted above the nozzle array, capturing the images
for ground truth generation. However, as this requires
additional hardware, we propose an alternative method
that exploits the concept of a wvirtual nozzle array, as
previously introduced by Pfaff et al. (2015). Here, for
ground truth generation, a virtual line in the recorded
area-scan image is considered as the nozzle array and
the input image processed by the network is cropped
accordingly while maintaining the distance between the end
of the (now artificial) camera FOV and the (now virtual)
nozzle array. Note that the concept of a virtual nozzle
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implies the assumption of only small deviations between the
particle motion on the belt and during free flight (particle
motion itself can still be very complex). However, it enables
creating training and test data directly from the previously
introduced data sets.

For this, we first divide the images into three parts
(see Fig. 4). The upper part is used as the actual input
image, whereas the lower part is used to create a labeled
ground truth for training the ConvLSTM network. The
intermediate part of the image is not used as it represents
the prediction gap in the sorting system, i.e., the part after
the camera FOV and in front of the nozzle array. The
lower part is segmented into the three classes brick, sand-
lime brick, and background using color-based segmentation
in HST color space as described in Maier et al. (2021);
Maier (2022) in the case of real-world data and by directly
exploiting the given class label in the case of DEM data.
When deploying the trained model to a real sorting task,
we restrict the camera FOV to the same height as for the
training input image and shift it according to the distance
between the beginning of the prediction gap and the virtual
nozzle array, i.e., it is shifted so that the virtual and actual
nozzle array positions match.

For both data sets we use a fraction of approximately
0.46, 0.37, and /6 of the original image height as input
image, prediction gap, and target image, respectively.
When assuming that the nozzle array xy is located in the
middle of the target image, this corresponds to a distance
between the end of the area-scan camera FOV and xpy
of approximately 78.4 mm for the real-world data set and
58.6 mm for the DEM data set. The latter corresponds to
precisely the same value as in the DEM-CFD model by
Bauer et al. (2022). For creating input and target images
for the DEM data, we only use each 10th image, to achieve
a frame rate comparable to that of the real-world data. An
input sequence length N = 10 and P = 10 are applied for
training, which lead to valid predictions for both data sets.
Note that the choice of NV and P heavily depends on the
average particle velocity (see Fig. 4 for an explanation of
the influence of N and P). Additionally, depending on the
computation time of the algorithm and the time for nozzle
activation, a small P may lead to a too small ¢, —k that
cannot be realized by the sorting system.

5.2 Training Settings

We train our models with categorical cross entropy loss,
Adam optimizer with learning rate a« = 0.0001, and
exponential learning rate decay with a decay rate of 0.8
per epoch. In total, the model is trained for 50 epochs. To
account for the class imbalance in the data sets, during
loss calculation, we weight the loss for each pixel with a
weighting factor equal to three divided by the total number
of pixels of this class in the target image. We use 80 % of
the image data for training and another 10 % for validation
and testing. As no overfitting could be observed so far, we
refrain from using early stopping or dropout.

6. EVALUATION

Our evaluation consists of two parts. First, we evaluate the
prediction accuracy of our ConvLLSTM network on an offline
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Fig. 5. Qualitative comparison of prediction and ground truth of the proposed ConvLSTM network applied to the image
forecasting and segmentation task. Red encodes sand-lime brick, yellow brick, and blue background.

prediction task using the two data sets presented previously.

Second, we simulate a sorting task with GridSort using the
DEM-CFD simulation model of Bauer et al. (2022) and
compare it with predictive tracking.

6.1 Offline Prediction

Predicted images and corresponding targets are displayed
in Fig. 5 for qualitative comparison. Predictions show
good alignment with the ground truth, especially for the
DEM data. For a quantitative evaluation, we calculate
the pixel-wise confusion matrix of the three classes, as
displayed in Tab. 1. The results show high accuracies
for all classes with values between 89 % and 98 %. Again,
the accuracy for DEM data is higher than for real-world
data. We hypothesize that this is due to imprecise class
segmentations in the ground truth images, since creating
a pixel-accurate ground truth at the objects’ borders is
often an ambiguous task for real-world images. The mean
inference time for one call of the ConvLSTM network is
around 58 ms. 3

6.2 DEM-CFD Sorting Simulation

For the sorting simulation, we use the same DEM-CFD
model of the sorter, settings, and particle models as used
to create the DEM data set. For deployment of the trained
network, we apply the shifting and shortening of the
camera FOV as described in Sec. 5. In order to account
for mechanical and pneumatic inertia, a nozzle is blocked,

e., it cannot be activated, for 3.5 ms before and after each
activation. For v2V8  we use the value of the belt velocity,
ie,1l.lms!

We consider two different scenarios for evaluating the
sorting accuracy. Scenario S1 uses precisely the same mass
flows as the DEM data set. Scenario S2 has a much higher
mass flow of 500 gs~! and a mixing ratio of 70 % sand-lime
brick and 30 % brick. The ConvLSTM network trained on
the DEM data set was also applied to S2. In both scenarios,
we consider brick as material to be ejected. Each simulation
lasts 30s. GridSort is compared with predictive tracking
using Kalman filters with CV motion models for both
prediction in MTT and to the nozzle array. For evaluation,
we consider the true negative rate TNR = TN/ (FP + TN)
and the true positive rate TPR = TP/ (TP + FN), where

positive particles are those that should not be ejected.

A high TNR indicates a high purity of the non-ejected
fraction, whereas a high TPR indicates a high purity of
the ejected fraction.

The results are given in Tab. 2. GridSort achieves very
similar TNRs and TPRs compared with predictive tracking,
although not outperforming it. As expected, the accuracies
of both approaches are lower on the high mass flow scenario

3 Evaluated on an NVIDIA GeForce RTX 2080 Ti.

Table 1. Pixelwise class accuracies of the pro-

posed ConvLSTM network. BR, SL, and BG

abbreviate brick, sand-lime brick, and back-
ground, respectively.

(a) Real-world data (b) DEM data

Predicted Predicted
BR SL BG BR SL BG
= BR 0.96 4.8x107° 0.037 0.97 0.004 0.03
g SL  0.00026 0.89 0.11 0.0086 0.96 0.028
< BG 0.015 0.014 0.97 0.017 0.0068 0.98

Table 2. Comparison of sorting accuracies.

predictive tracking GridSort
S1 S2 S1 S2
TNR 0.982 0.956 0.975  0.953
TPR 0.937 0.751 0.922  0.695

S2 than on S1 (see Bauer et al. (2022) for a detailed
discussion). Surprisingly, although never trained on S2,
GridSort was still able to perform similarly to predictive
tracking. In summary, with a TNR of 97.5 % and a TPR
of 92.2% for S1, GridSort can be considered as highly
accurate.

7. CONCLUSION

We proposed GridSort, a new approach for optical sorting
that determines nozzle activations by forecasting a seg-
mented image of the scene at the nozzle array based on a
sequence of area-scan images. For forecasting, we proposed
a ConvLSTM-based neural network inspired by the grid
predictor model of Schreiber et al. (2019). We demonstrated
that the network can be trained in an unsupervised fashion
using the concept of a virtual nozzle array, i.e., by shifting
and shortening the input image so that the target image
can be observed by the area-scan camera. This eliminates
both the tedious and costly manual labeling of training
data as well as a setup phase requiring expert knowledge
as needed by existing algorithms. Our proposed method
shows high image forecasting and sorting accuracies up to
97 % on high mass flow scenarios as evaluated with the
help of a DEM—CFD simulation of an optical belt sorter.
It is therefore a valuable alternative to state-of-the-art
predictive tracking, as it is the first approach that also
allows forecasting particle extents, is potentially able to
predict non-linear particle motion behavior, and its run
time is almost independent of the number of particles.
Future work may focus on applying GridSort to a real
sorter, for example, by using appropriate hardware to meet
the real-time requirements and experimentally adjusting
the deflection windows to account for systematic biases
arising from, e.g., the model and the influence of fluid
forces.
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