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1. Introduction

Globalization, individualization, and the shortening of prod-
uct development cycles are creating new challenges in terms of
changeability [2]. The so-called change drivers, such as fluctu-
ating demand and uncertainty in the supply chains, are increas-
ingly putting pressure on production adaptation. Changeabil-
ity and flexibility are the main enablers for the adaptation of
manufacturing systems under uncertainty [29]. Flexibility rep-
resents the change in predefined corridors without changing the
basic structure of the system [28] and to operate at low cost [9].
Therefore, the term changeability is introduced in the literature,
which is the answer to uncertainty and goes beyond the concept
of flexibility [4]. Wiendahl and Hernández [30] define change-
ability as the potential to efficiently respond to planned and un-
planned changes throughout the factory [30]. The adaptation of
manufacturing is enabled by different change types. Depending
on the selected change type, different costs and different imple-
mentation times arise [31]. The presented concept represents a
new method for the identification of suitable change types to
enable better changeability and flexibility while minimizing the
incurred cost. The basic assumption is that information regard-
ing changeability is to a large degree contained in past data and

can be extracted by frequency analysis to make decisions for
the future. The approach thus assumes that the different change-
ability types can be mapped to frequency components generated
by frequency analysis on demand data.

This article is structured as follows: Section 2 introduces
the current state-of-the-art in enabling changeability, frequency
based resource allocation and frequency based forecasting.
Subsequently, in Section 3 the proposed algorithm and the com-
parison method are presented. An evaluation of the frequency
based forecasting is executed with a case study in Section 5. In
Section 6 the findings are discussed and followed by a subse-
quent summary and outlook in Section 7.

2. Related Work

In the three-part literature review, the general analysis of
changeability is addressed in the beginning. Then, existing
frequency-based analyses in the manufacturing environment are
reviewed and finally, existing frequency-based forecasting re-
search and the fundamentals of ARIMA and LSTM as state-of-
the-art methods are discussed.
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2.1. Changeability evaluation

Changeability evaluation methods are usually multi-stage
evaluation methods, which consider both monetary factors and
non-monetary factors; see Heger [9]. The goal of changeability
evaluation methods is to provide a framework, which defines
the optimal degree of changeability. The field of application
ranges from single reconfigurable machines, see Scholz-Reiter
et al. [20], to global production systems, as introduced in Sud-
hoff [24]. Scholz-Reiter et al. [20] present a concept that, based
on reconfigurable machines and over time, attempts to regulate
throughput while keeping inventory as constant as possible. The
analysis and optimization are done by linear programming and
simulation. Another approach for the monetary assessment of
changeability is presented by Moser et al. [18]. The aim of the
work is the identification of risk-efficient changeability enablers
to achieve the ideal degree of changeability in a production net-
work, based on the steps of reconfiguration analysis, preselec-
tion of enablers, estimation of cost potentials and associated
risks [18]. Sudhoff [24] on the other hand focuses on the im-
pact of mobility as a degree of freedom for the global produc-
tion system under uncertainty. The analysis of changeability is
validated by optimizing investment strategies and considering
opportunities and risks.

Human resource allocation is a part of the changeability lit-
erature in which human resources are used to respond to en-
vironmental influences in the context of flexibility. Human re-
source allocation can be subdivided into different model areas.
Stochastic human resource allocation analyzes turnover behav-
ior of employees and other problems via stochastic formula-
tion; see Robbins and Harrison [19]. Deterministic human re-
source allocation has similarities to existing aggregate produc-
tion planning. The latter type of human resource allocation is
the frequency-based approach, which is discussed in more de-
tail in the next section.

2.2. Frequency concepts for human resource allocation

Frequency analysis considers a function of the form x(t),
with time t as an independent variable, which is designated
in the time domain. This function can be transformed by fre-
quency analysis into the form X(k). Variable k represents a fre-
quency index [25]. When considering finite and discrete values
in the time and frequency domain, the analysis is called Digital
Fourier Transform/Transformation (DFT), which can be often
found in digital systems due to its simplicity [25].

The consideration of resource allocation from the point of
view of frequency analysis is a fairly new approach. Fisel et al.
[7] use discrete Fourier transformation to extract information
from highly periodic and non-periodic demand trajectories. The
goal of their approach is to map three change types: temporary
workers, overtime and subcontracting to demand fluctuations.
A solution has been developed that creates the link between
frequency and change type. Therefore, the frequency band is
divided into low, medium, and high frequencies and mapped
to the 3 change types. This approach considers neither opti-
mization, determining when to make a change, nor any type

of cost function [7]. The approach presented by Echsler Min-
guillon et al. [3] extends the results of [7]. The goal of this ap-
proach is to find a cost-efficient resource allocation using fre-
quency analysis. The input values are historical demand data
and a linear cost function, upper- and lower bounds for the
changeability types and an amplitude for the resources is ap-
plied. The following five resources can be allocated: Overtime,
permanent employees, contract employees, relocation of em-
ployees, outsourcing and no change. Based on serving input
values, the demand is transformed into the frequency domain
using DFT. The problem is formulated as Mixed-integer linear
programming (MILP) and the solution of the allocation is per-
formed in Matlab. After transforming back to the time domain,
an optimization is performed using a slack variable to obtain a
cost-efficient allocation. The approach is applied to highly pe-
riodic data [3]. A graphical representation of the two studies is
shown in Figure 1.

Fig. 1. Comparison of frequency concepts in the literature

2.3. Forecasting using frequency analysis

The use of frequency analysis for forecasting is uncommon
in current research. The work of Beiraghi and Ranjbar [1] at-
tempts to predict the monthly variation of the peak electricity
load in the national power grid using DFT. The concept intro-
duces the use of DFT analysis as input to an autoregressive inte-
grated moving average (ARIMA) model [1]. Also in the energy
sector, [14] developed an approach that applies DFT and after-
ward a neural network predicts the sunshine hours for the next
day. Another example, where DFT is implemented as the basis
for a neural network, can also be found in the research by Shu
and Gao [22]. The approach extracts the five most dominant fre-
quencies in a stock price and uses these values for forecasting
with a a long short term memory (LSTM) network.

3. Frequency-Based (FB) Algorithm for Resource Alloca-
tion

The algorithm is based on using frequencies to determine an
optimal resource allocation. In the first step, a Fourier analysis
is performed. Afterwards for each frequency, the phase angle
is calculated and based on the knowledge of the phase the fore-
casting is determined. In the next step, the extracted frequencies
are assigned with the help of an evolutionary algorithm to the
different change types. Subsequently, each change type and the
associated frequencies are solved separately using a heuristic.
The algorithm is in Figure 2 and described in more detail in the
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following. The algorithm is applied on a rolling basis for each
forecast period.

Fig. 2. Steps of the developed frequency-based (FB) algorithm

3.1. Cost model

The model used to evaluate the costs is a linear resource allo-
cation model with the decision variables employee, subcontract
and change type. The model used is based on the publications
of Wang and Liang [27] and Mokhtari [17]. The mathematical
formulation of the problem is defined as follows:

Cost(u, x) = uemployee ∗ hemployee ∗ cemployee ∗ uovertime+

usubcontract ∗ hsubcontract ∗ csubcontract ∗ uovertime

+ finventory(xinventory) + fbacklog(xbacklog)+
fovertime(xovertime) + fchange(u)

Output(u, t) = uemployee ∗ oemployee ∗ hemployee ∗ uovertime

+ usubcontract ∗ osubcontract ∗ hsubcontract ∗ uovertime

xinventory,t = xinventory,t−1 − xdemand,t + Output(u, t)
(1)

The overall optimization goal is reducing the total costs over
the entire period: min Cost(x, u).

3.2. Frequency-based analysis

The calculation of the Fourier transformation is based on the
discrete Fourier transformation (DFT) over the last n-values.
Due to the day-by-day data and the discrete Fourier transforms,
the frequencies cannot be resolved exactly, so a function con-
sisting of all frequencies is resolved into several frequency in-
tervals after the frequency analysis according to the minima in
the frequency analysis. An example is shown in Figure 3.

Fig. 3. Example for frequency analysis

3.3. Phase detection - Forecast

The calculation of the phase is one of the most elementary
steps in finding an optimal solution. The determination of the

phase per frequency lays the foundation for the forecasting cal-
culation. Because the frequencies cannot be resolved exactly,
a simple calculation via the calculated frequency and ampli-
tude is not possible. The use of the calculated frequency and
amplitude would lead to an unprecise forecast. For this reason,
an evolutionary algorithm is used to determine the phase. For
each frequency, one time period is defined per population from
the past data. The evolutionary algorithm determines an opti-
mal interval section per frequency, which leads to a minimum
Mean absolute percentage error (MAPE) over the entire past
horizon; see Fildes [6]. The selected period can then be used
to determine the phase and to calculate associated forecasts per
frequency. The algorithm is illustrated in Figure 4, note that
the evolutionary algorithm population of individual phase esti-
mates is randomly initialized and evaluated with the root mean
squared error (RMSE).

Fig. 4. Algorithm step for phase detection and forecasting

3.4. Resource assignment

The idea behind the algorithm is that every frequency is as-
signed to a change type. Specifically, this means that low fre-
quencies are automatically assigned to the change type em-
ployee and high frequencies are assigned to overtime. Another
influencing factor is the amplitude, small amplitudes are fil-
tered out and high amplitudes are assigned according to the
best fitting change type. The optimal selection of the assign-
ment of change type and frequency is done by an evolutionary
algorithm. Each population represents an assignment for all fre-
quencies and based on the assignment the costs are calculated
via an heuristic. Therefore, the fitness is selected according to
the minimum total cost over the forecasting range. The clas-
sification is performed for each forecasting step since the fre-
quencies change over the solution period and therefore the best
assignment must be determined at each forecasting cycle. The
algorithm is illustrated in Figure 5.

Fig. 5. Algorithm step for assigning a frequency to a change type
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3.5. Frequency-based heuristic

The heuristic calculates the concrete number of employees,
subcontracts, and overtime for the given forecast values. The
overall goal of the heuristic is the minimization of the inven-
tory, based on the standard heuristics from Jacobs et al. [12].
The only difference is that each change type with the frequency
is evaluated separately in descending order based on the change
rate. In this case, the number of employees is determined first
and the open inventory due to integer values is transferred to
the next change type, the subcontractors. By this procedure, a
minimization of the inventory is ensured despite separate con-
siderations of the change types. The process is visualized in
Figure 6.

Fig. 6. Heuristic procedure for the frequency-based concept

4. Comparison Methods

4.1. ARIMA

The first comparison algorithm is based on the forecast us-
ing ARIMA and the heuristic proposed in Jacobs et al. [12]. To-
gether with Exponential Smoothing, ARIMA, which stands for
Autoregressive (AR) integrated (I) moving average (MA), is a
widely applied forecasting method [15]. ARIMA describes the
autocorrelation of data combined with differencing and moving
average [11]. The mathematical representation of the degree of
similarity between a given time series and a lagged version is
called autocorrelation [11]. The formulation of AIMRA for the
first derivative is:

y′t =c + ϕ1 ∗ y′t−1 + ... + ϕp ∗ y′t−p

+ θ1 ∗ ϵt−1 + ... + θq ∗ ϵt−q + ϵq
(2)

This ARIMA Model is often given in the following form:
ARIMA(p, d, q), where p is the order of autoregressive parts, d
the degree of differentiating involved and q the order of moving
average part. By extending seasonal covariates, ARIMA will
also be able to detect seasonal trends [26]. For the determina-
tion of the resource allocation based on ARIMA, in the first
step. The optimization algorithm for the parameter set is based
on Akaike Information Criterion [21] and the differencing test
Kwiatkowski-Phillips-Schmidt-Shin [13]. Akaike Information
Criterion describes how well the calculated model fits the gen-
erated data. The best-selected model according to the Akaike
Information Criterion is the one that has the best maximum

likelihood estimate and uses the fewest independent variables
[21]. The null hypothesis Kwiatkowski-Phillips-Schmidt-Shi
test calculates whether the observable series oscillates station-
ary around a deterministic trend [13]. After the optimal ARIMA
parameter set is defined, the forecast for the next ten days is per-
formed, Afterward, the implemented heuristics determine the
best resource allocation.

4.2. LSTM

Besides ARIMA, which is based on autocorrelation, a fore-
casting method based on a neural network is used. A long short
term memory (LSTM) network is an extension of recurrent neu-
ral networks (RNN) and enables the storage of past information
over a long period. A recurrent neural network is a special case
of a neural network aiming at forecasting the next step in a se-
quence based on the previous observed steps [23]. For this, past
values are remembered to learn from the observations to pre-
dict future trends. The storage of the information happens in
the hidden layer and the name recurrent comes from the recur-
rent performance of the same tasks for each element in the input
vector [32]. Since RRN are not able to learn long time series,
the LSTM has been developed [23]. Compared to a recurrent
network, the LSTM offers the following advantages: First, it
solves the vanishing gradient problem of RNN. Additionally,
it allows predicting non-linear trends based on large parame-
ter sets with high dimensionality due to the non-linear activa-
tion function in each layer [5]. LSTM is widely used and finds
application among others in language model tasks and speech
recognition [8, 10]. The structure of a single LSTM cell con-
sists of three types of gates and is composed of input, forget,
and output gates [5]. In the forget layer irrelevant information
is filtered, relevant information is used in the next step to up-
date the state value and the output gate provides the link to the
outside [5]. A comparison of ARIMA and LSTM in various
publications including Fan et al. [5], May et al. [16] and May
et al. [15] show that LSTM outperforms ARIMA on average
across different data sets [5, 16, 15, 23].

The application of LSTM for resource allocation start with
learning the LSTM model based on existing past values. Before
learning and predicting with the LSTM model, every value is
scaled to a number ranging from 0 to 1. After learning, the past
50 demand data are used for forecasting the next ten days. The
forecasting result is then applied for the calculation of the re-
source allocation with the same heuristic used with the ARIMA
comparison method. Thus, the two comparison methods differ
mainly in the generation of the forecast and the respective input
vector for the generation of the forecast, illustrated in Figure 7.

5. Case Study

The evaluation of the designed frequency-based (FB) algo-
rithm is compared with the comparison methods ARIMA and
LSTM on the basis of three seasonal data sets including noise.
The noise is based on Gaussian noise with a variance, given as
RMSE between 25 and 200. The exemplary data sets used are
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Fig. 7. Algorithm steps of the two comparison methods

shown in Figure 8. The objective of the analysis is to compare
the total costs and the forecasting error via MAPE across the
different methods.

Fig. 8. Exemplary view of the applied data

The results are visualized in Figure 9. The analysis results
are shown per time series and consider the average costs per
noise level and evaluation type.

Fig. 9. Comparison of the developed FB algorithm with the comparison method

The analysis based on three time series shows that FB out-
performs ARIMA for all evaluations presented. The three time
series are shown in 8 and each of these time series is based
on three frequencies with different phases. The difference in
MAPE between FB and ARIMA lies between 10%-15%, which
means that depending on the data set, the cost of using ARIMA
is between 5-15% higher than the FB algorithm. The higher to-
tal costs are mainly related to the consistently worse forecasting

result. A worse forecasting result leads to an increased inven-
tory. Since inventory is one of the key costs that can be mini-
mized, the overall cost increases with a higher inventory. Costs
related to the workforce level and the resulting costs are nearly
identical for forecast and evaluation data because the number
of producing parts is nearly identical due to the seasonal data.
The differences between LSTM and FB are smaller because the
forecasting error difference is smaller. When analyzing the re-
sults, it can be seen that LSTM and FB produce quite similar
results for low noise data and with increasing noise FB outper-
forms LSTM. Furthermore, it is noticeable that the selection of
the FB plays a greater role in the comparison of FB and LSTM.
The forecasting results for time series 2 are very identical, while
for time series three there are more significant differences.

6. Discussion

The comparison of the FB algorithm with the comparison
methods LSTM and ARIMA shows that for seasonal data in-
cluding noise, the forecasting error is lower for the FB algo-
rithm. For ARIMA, the result is significantly worse for all cases
in terms of MAPE and total cost. When using LSTM, the per-
formance of the FB algorithm increases with increasing noise.
There are cases for LSTM with low noise, where LSTM pro-
vides the best solution due to the better forecast, which leads
to lower inventory costs and finally lower total cost. The ad-
vantage of the algorithm is the good independence from noise
compared to the comparison algorithms for seasonal data sets.

Furthermore, the use of the frequency-based approach al-
lows a better traceability of the results. By splitting the de-
mand data into the different frequencies, it is easier to under-
stand which periodic trends are reflected in the solution. The
biggest limitation of the algorithm is the limitation to seasonal
data sets. The integration of trends is not possible at the current
time. Furthermore, due to the discrete analysis and the resulting
inaccuracy, a forecasting error of around four percent remains
even for seasonal data without noise.

7. Summary & Outlook

The increasing complexity in supply chains leads to new
requirements regarding fluctuation of demand and the possi-
bility to react to changes with the appropriate change type.
The developed algorithm determines the relevant frequencies
by frequency analysis and calculates the forecast. By decom-
position into frequencies, individual change types are assigned
to the different frequencies. Therefore, the currently developed
frequency-based algorithm represents a proof of concept and
lays the foundation for further research. The current investiga-
tion is based on seasonal data with Gaussian noise which shows
good results regarding cost-minimal resource allocation com-
pared to the state-of-the-art ARIMA and LSTM.

In the next step, an adaptation of the concept for trend data,
other types of noise and data with ramp-up will address a
wider range of applications and real-world use cases. In a much
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broader sense, stronger integration of control methods for fil-
tering and sorting frequencies could allow a more mature use
of frequency in problem-solving. Current prediction and classi-
fication are based primarily on the use of Generic Algorithms
and are performed largely in the time domain. The idea behind
the frequency-based algorithm is to take advantage of the ben-
efits of frequency analysis in terms of parameter reduction, and
better ability to filter.
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