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1. Introduction and Basics

Despite the advance of automation, a large number of 
activities remains manual in both assembly and disassembly. 
With a constant increase in complexity in the production 
system [1], humans are still the most flexible resource [2]. At 
the same time, it is crucial that humans and technology are 
considered jointly and that technology is accepted by humans 
[3] so that a beneficial co-existence can be achieved. Humans 
play a central role and it has also been shown quantitatively that 
if humans are actively involved in decision-making or 
planning, better results can be achieved [4, 5]. Of particular 
interest are the competencies of humans, indicating an 

advantage of a skill-based approach [6, 7]. Moreover, different 
approaches include differences in performance with respect to 
employee efficiency [8] or fatigue [9].

However, especially in the representation of production 
systems, human workers are often modelled as an 
unchangeable resource with equal properties [6] not reflecting. 

In Industry 4.0, a large amount of data is generated in 
complex systems. Digital twins offer a possibility to investigate 
complex processes and thus make statements with respect to 
reality [10]. At the same time, digital twins allow the simulation 
of processes and procedures in order to make better decisions, 
sometimes in real time. Based on the aforementioned lack of 
the integration of the human in simulation, to ensure a better, 
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holistic mapping of complex (production) systems, "the 
question is no longer whether to integrate humans as part of 
complex systems, but how to do so" [11]. To integrate humans 
into a digital twin, so-called human digital twins can be used 
[11]. Depending on the scope of consideration, different 
variables, from physiological (e.g. eye movement) to 
personality, are included [12]. This can provide information 
about the current state of the human and thus create a better 
understanding of the human being [11]. 

Thereby, fields with a large number of manual processes are 
of particular interest where humans have the biggest impacts. 
An interesting use case here is the disassembly of end-of-life 
(EOL) products, which is characterized by high uncertainties 
with respect to product type and condition [4] and a variance of 
up to 15% can be observed for the set-up and process time [13]. 
Human-related uncertainties in planning and control are thus 
further exacerbated in the disassembly use case due to product-
related uncertainties. 

In this contribution, a conceptual approach is presented that 
enables consideration of both human-related and product-
related uncertainties and thereby improves control of the 
production system, but at the same time suggests measures for 
improvement of production planning. Based on this, the goal is 
to perform an optimization on the overall system level that 
provides both human welfare and cost-optimal solutions. This 
contribution is structured as follows: In section 2 an overview 
on the current state of the art is provided. In section 3 a 
conceptual approach to address the identified research gap is 
described. To conclude, in section 4 an outlook and the 
description of a case study for validation is provided.  

2. State of the Art

Although the field of disassembly planning is a younger 
field than assembly planning, it is a field of increasing interest.
In the following, exemplary approaches considering the listed
subjects are examined: exemplary publications within the field 
of human digital twins, approaches to planning and control 
with the involvement of the human being, and dynamic models 
for learning about the human in assembly and disassembly. In 
addition, approaches to planning and control including product 
related uncertainties are presented.  

2.1. Human Digital Twin in Production Systems and Human 
in Production System

In different publications models for human digital twins are 
introduced (e.g. [14], [15], [16], [17], [18]), and have also been 
used for production planning and the allocation of tasks [19].
A large number of publications on the human digital twin can 
be located in the field of collaboration between humans and 
machines, robots in particular. For example, [20] created a 
human digital twin aiming at optimizing the collaboration 
between humans and automated guided vehicles (AGV). The 
focus is on the investigation of safety in the collaboration with 
AGV, for which a prediction of the movement of the human is 
of great importance. The presented architecture provides a 

valuable basis, however, planning and control in production are 
only of subordinate importance.

In addition to the digital representation, the human being 
itself is also examined in the production system. [21]
investigate how stress affects the error rate of humans using 
fuzzy logics. First, empirical data was collected for this 
purpose, which was then used to create a simulation. Product 
quality was considered as a key characteristic. However, the 
effects on planning and control were not discussed further at 
this point. [22] suggest a reinforcement learning approach that 
enables a human-oriented control to dispatch tasks amongst 
different workers. However, besides the availability of the 
worker and the task execution time, no further data on the 
human being is captured in order to provide a more precise 
representation. [23] use different reward functions in 
reinforcement learning to reflect different human behavior and 
therefore improve simulation results. However, the human’s 
properties are not considered in detail. 

2.2. Human-involved Planning and Control in (Dis-) 
Assembly

In this subarea a variety of approaches is found, mainly 
focusing on human-robot collaboration. For example, [24]
present an approach to planning in disassembly. Here, the focus 
is on the derivation of the disassembly sequence based on CAD 
models as well as the allocation of tasks to humans and robots. 
Based on this, recommendations are be made for product 
development for future product design. However, the 
considered times of the processes are static for each worker and 
the human does not play a significant role in the allocation
neither is a dynamic model presented for the human. 

Human fatigue has also been considered in the context of 
human-robot-collaboration [25]. Considering the time required 
for a human to disassemble as a dynamic variable related to 
fatigue, the optimal task distribution between human and robot 
changes. The target value of the optimization is the total time 
for disassembly [25].

For the best possible allocation of tasks in assembly, 
including age-appropriate tasks, [7] divide possible tasks into 
four classes based on required expertise and physiological load. 
Aiming at minimizing both cycle time and physiological load 
employees are directly included and asked for their evaluation. 

[4] use a genetic algorithm (NSGA-II) to schedule 
disassembly. Processing times and ergonomics are included 
and a real use case is considered. Nevertheless, this is not 
enriched with a simulation and it is unclear how unknown 
workers and their skills are handled. In addition, uncertainties 
that may be present in EOL products with respect to their state, 
as well as the current state of the human, are not discussed. The 
focus of [26] is on creating a framework for integrating humans 
into an IoT environment and the underlying ontology-based 
data model. This is implemented using the middleware 
CHARIOT. Individual workers in the system are represented 
as agents, which are again supplemented by a so-called task 
dispatcher agent that performs the assignment of tasks to 
humans. In addition to the availability of humans, health data 
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is collected to ensure the worker’s well-being. However, a 
simulative integration of human and product related 
uncertainties is not made.

2.3. Consideration of Uncertainty in Disassembly 

Uncertainties in disassembly relate to a variety of aspects. 
Product condition, time of return as well as quantity are 
uncertain; at the same time, the human behavior is out of 
control. Uncertainties related to product and human are 
considered in the approach of [27]. They assume that human 
expertise is crucial for dealing with product-related 
uncertainty. Based on a heuristic, a disassembly sequence at 
minimum cost is calculated. [28] address product-related 
uncertainty. Times used to perform a task are assumed to be 
unknown. A Monte Carlo simulation is used to select at which 
station which product should be processed. However, the 
relation to humans is not established. [8] formulate a model for 
task allocation in disassembly for whose solution they use a so-
called Discrete Flower Pollination Algorithm is used. Different 
efficiencies of humans are also considered, but these are not 
further broken down in terms of fatigue or stress. Due to the 
high variances in disassembly, the times for disassembly 
operations are considered with high uncertainties (i.e. random 
number). But, no learning approach is used that allows 
successive tightening and improvement of the human model
neither does a simulation exist.

2.4. Learning Approaches in (Dis-) Assembly Planning

Both aspects in manual disassembly, the human and the 
product, are subject to uncertainty. A learning approach can
contribute to conquer these uncertainties. [29] present an 
approach to control in disassembly based on reinforcement 
learning. The competencies as well as aspects such as human 
fatigue are considered in a model-based, analytical way. 
External factors such as uncertainties regarding the arrival of 
components as well as machine failures are also considered. 
With a task allocation based on reinforcement learning
employee fatigue and average lead time can be reduced. 
However, product-related uncertainties are currently not
considered and no (human) digital twin is built to simulate the 
system. [30] consider the assignment problem between human 
and task in assembly. Based on historical data, they predict 
how long a specific worker will take to complete a given task 
based on skill, gender, and age, and thus determine the task 
execution time. The focus is on the selection of workers for 
specific tasks, focusing on task complexity. Fatigue is 
highlighted as essential aspect, but not implemented so far. The 
methodology allows job rotation to be performed in real time.
[31] present a modelling approach to map the learning behavior 
of both, human workers and autonomous robots in a simulation 
model to incorporate and predict productivity increases in the 
decision-making process on a production planning and control 
level. However, their approach is based on a learning curve 
model, which is not coupled and updated by actual production 
data. However, product related uncertainties and simulation are 

not elaborated. In another approach, [9] use a learning approach 
to identify a critical fatigue level based on variables such as 
task repetitiveness and complexity, human-specific variables 
(skill, BMI, stress, gender, age) and workload. For this purpose, 
a so-called fatigue classifier is used, based on which a job 
rotation can be triggered. For validation, a simulation is used, 
whereby the simulation only refers to the detection of fatigue 
in one use case, but it is not clear to what extent this is a 
sequence simulation over several periods. In other work, the 
optimal time given to an employee for a specific task was 
systematically investigated [32].

2.5. Identification of research gap

Reflecting the listed, representative approaches it is found 
that there is no approach addressing all aspects, product and 
human-related uncertainty to further enhance the quality of a 
simulation to increase the performance of a production system 
on the long term and create the basis for a (human) digital twin
and simulative evaluation. Therefore, a structured approach is 
needed to build such system and thereby improve planning and 
control within a production system. 

3. Methodology

In this section a framework for a conceptual methodology 
for task assignment in production planning considering product 
and worker related uncertainties is described. An overview in 
which the different elements are listed is given in Figure 1. In 
addition, reference is made to the chapters in which the 
elements are discussed.

The proposed methodology allows linking different areas. 
First, the state of the production system is mapped. However, 
the state of the system is learned and continuously improved in 
another loop via a learning module focusing humans. Based on 
a solver, an action is to be executed to further change the 
system. The action space is thereby limited by constraints. 
Actions are distinct into short-term decisions (control) resulting 
from optimization and long-term suggestions (planning) from 
simulation results. This is underpinned by a process simulation 
in which the characteristics of people are considered and thus a 
human digital twin is realized. Data is exchanged between the 
real production system and the digital twin as well as between 

Figure 1 Overview of conceptual approach
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the real production system and the learning module. In the 
following, the individual sub-areas will be presented and thus 
the approach is clarified.

3.1. System State

In the suggested approach the system state is characterized 
by three elements: The human, the product and the production 
system. For all elements, an extendable data model must be 
defined. 

In the model, analogous to previous publication [30], each
human has a dynamic set of skills and knowledge based on 
experience. At the same time, it is assumed that each human in 
the system has a specific stress level. In addition to stress, 
different types of fatigue (cognitive, physical) are to be 
captured. To model these, reference should also be made to 
appropriate sources, which has been used elsewhere ([29]). It 
is assumed that the current position of each human (example
assignment to the machine) is known from shift schedules or 
sensors. Thus, simulation, sensory and questionnaires are used
to determine the factors listed in Table 1. Based on this data, a 
human digital twin for each worker is built. 

Each product that becomes part of the system has a specific 
input state that requires a different treatment in the disassembly 
system [33]. This results in a specific set of tasks that are 
required to complete the job. It is also a subject of research to 
investigate which data has an influence on the processing time 
by human workers. 

The production system is characterized by the existing 
stations, their capabilities, possible buffers and availabilities of 
these. The data for mapping the production system are collected 
based on a real use case. An overview of the data aimed to be 
collected is provided in Table 1.

Table 1. Data captured for state description

Human Product Production 
System

Type of data Skills 

Competencies

Stress

Fatigue

Position

Initial state

Target state

Degree of 
disassembly

Availability

Capabilities

Assistance 
Systems

Machine 
Scheduling 

Buffers

Data 
capturing

Sensors

Simulation 

Tracking

Analysis 

Sensors

Simulation

3.2. Solver

The problem is characterized as a task assignment problem. 
The objective function of the assignment can be described in 
terms of cost or time minimization but also worker well-being, 
creating a multi-objective optimization problem. The decision 
variable can thus be characterized in terms of whether a specific
employee performs a particular task (exemplary notation in 
[7]). The problem is subject to a set of constraints, regardless 

of how the solution is found. The constraints are influenced 
from within the simulation, so that a certain action (i.e. solution
of the optimization problem) is not possible or only possible 
with restrictions over a certain period of time. The action space 
or the control levers of the system can be distinct with regard 
to task allocation, changes to the production system or changes 
with regard to the human being. In terms of task allocation, for 
example, the sequence of components to be processed can be 
adjusted, thus enabling a change within the possible tolerance
that is determined by the demand. In the production system 
itself, different material movements could be made. 

The behavior or the condition of the human being can only 
be influenced indirectly. At this point, the use of assistance 
systems for targeted human support [34] or breaks are 
considered as control levers. Alongside with the change in task 
assignment, there is the possibility that the variety of tasks that 
an employee is given to work on increases or decreases in order 
to regulate the cognitive load [35]. The cognitive load is 
individually different and it is necessary to find an optimum for 
a specific person [35].  

3.3. Simulation

The decisions for a specific action made by the solver are 
then examined with a discrete event simulation. The simulation 
therefore fulfills two functions: first, actions chosen by the 
optimization can be validated under the consideration of the 
future development of the system. Second, measures for 
improvement of the overall system (e.g. automation, use of 
assistance systems) can be derived. Here, it is important to 
represent the components analogously to the system state: 
Product, human and machine. The product is subject to 
uncertainty and, analogous to [24], standard times for the 
execution of each task are used at first which are then 
incrementally improved. After execution of the task by a 
certain employee in a certain state, the information about the 
actual processing time is passed on to the learning module (cf. 
section 3.4). In order to enable a better estimation of the 
processing time of future, unknown task execution times based
on product similarity.

The machines and station are mapped so that capacities but 
also disturbances are modeled. Here, common models for 
process simulation are to be used. 

The basis for the initial human model is given by analytical 
models how the execution of a certain task changes the state of 
the human being (e.g. [29]) and thus also to be able to make a 
statement with regard to the fulfillment of future tasks. In the 
course of the analysis, this modeling will be enriched with real 
data and thus tailored to the individual. 

Product-related uncertainties are to be included at this point
as well. For each employee a zone should be defined in which 
a task can be performed depending on the current state. This 
should ensure that even after the task has been completed, any 
tasks that arise in the further course of disassembly can be 
completed satisfactorily from the system's point of view. If this 
is not the case, further solutions are to be investigated 
simulative. A conceptual visualization is provided in Figure 2.
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Here, task 1 would be fine to executed, but with task 2, the 
acceptable fatigue would be surpassed. 

Long term modifications suggested based on simulative 
results could comprise the use of assistance systems to for 
example reduce the cognitive load of an employee or the 
automation of a repetitive, simple process. Thereby, it is 
distinct between process and people related modifications. 

3.4. Learning Module

The learning module is used to "get to know" the person on 
the assembly or disassembly line and thus continuously 
approximate to the real representation of the person and thereby 
a real human digital twin. Thus, the aim is to successively 
improve the models mentioned in section 3.1 on an individual 
level. 

For this purpose, the human worker’s abilities, physical and 
cognitive fatigue and stress are included. At this point, learning 
methods shall be used. As a further input, the product is 
considered with its variation of the product state, the time 
planning given by external factors such as demand, the tasks on 
the product and the target states. Thus, it is to be determined 
data-based, how much time a specific employee needs for a 
certain task. At this point, the acquisition of the relevant data
and the creation of a data model are identified as a major 
challenge. In addition, product-related uncertainties are 
assessed and mapped to employee skills.

3.5. Implications for Production Planning and Control

The approach considered has implications for both planning 
and control. Based on the close coupling between simulation 
(i.e. digital twin), decision and real system, a targeted control 
of the products in the (dis-) assembly system can take place as 
a short-term reaction to changes in the (dis-) assembly system
including for example a reallocation of tasks.

At the same time, possible results, especially those leading 
to entries of "forbidden" actions determined by constraints, can 
be used to derive implications for a possible change with regard 
to capacity in a further step. In particular, for planning the 
aspects of the development of competencies of the employees 
can be considered at this point, as well as the possible provision 
of assistance for the execution of certain tasks.

4. Use Case Implementation

The results will be validated using a demonstrator in the 
Global Production Learning Factory of the wbk Institute of
Production Technology. Especially in the context of 
electromobility, an increase in production volume is to be 
expected. It is therefore necessary to develop EOL strategies 
for these products. 

The component of interest is the axis of an electric vehicle
or a part of it, so that the handling of the component is 
facilitated. It is planned to build a complete workstation that 
can be used to demonstrate the application. The key questions 
to be answered in the course of the implementation are the type 
of information that is beneficial in terms of improving planning 
and control for the employees and what added value can be 
achieved with it. At the same time, it will be investigated how
a human digital twin can be usefully integrated into a discrete 
event simulation. Thereby, the focus is on the sensor-based 
capturing of the human being.

5. Conclusion and Future Work

In this paper, a conceptual approach to disassembly control 
and planning was presented. Humans are the most flexible 
resource in the production system, but at the same time are 
subject to the highest uncertainty. In addition, there is a high 
level of product-related uncertainty in disassembly. With the 
presented approach both aspects shall be analyzed equally and 
linked via a learning approach. Thus, an improvement of 
planning and control under a high amount of uncertainties shall 
be enabled. Using a universal data model, the current system 
state shall be modeled, which acts as input for an optimization 
problem. Promising approaches are thereby mathematical 
optimization or reinforcement learning (e.g. [36]). A 
simulation-based evaluation of the selected action is then 
performed, in the course of which a digital twin is extended to 
include the human worker and product-related uncertainties. 
The model of the human being is continuously improved with 
data from reality via learning approaches, thus also ensuring 
that the individual is fully considered so that real-time control 
can be generated. For future planning of the system, measures 
such as the inclusion of assistance systems or automation are 
derived. 

The validation of the approach is planned using an example 
from electromobility performing a case study in the learning 
factory Global Production at wbk Institute of Production 
Science.

In addition to the practical realization of the approach, it 
may also be of interest to investigate it in combination with, for 
example, adaptive automation. Furthermore, it seems 
promising to investigate which methods can be used for 
learning on small amounts of data. In a large number of 
approaches, collaboration between humans and machines is in 
focus, and the suggested approach could also be for this field, 
where an accurate prediction of human performance is 
essential. Questions arising on the data and employee 
protection must be treated with care.

Figure 2 Impact of task execution on fatigue



Julia Dvorak  et al. / Procedia CIRP 120 (2023) 958–963 963

Acknowledgements

This research and development project is funded by the 
German Federal Ministry of Education and Research (BMBF) 
within the “The Future of Value Creation – Research on 
Production, Services and Work” program (funding number 
02J21E130) and managed by the Project Management Agency 
Karlsruhe (PTKA). The author is responsible for the content of 
this publication.

References

[1] Liebrecht, C., Kandler, M., Lang, M., Schaumann, S., Stricker, N., 
Wuest, T. u. Lanza, G.: Decision support for the implementation of 
Industry 4.0 methods: Toolbox, Assessment and Implementation 
Sequences for Industry 4.0. Journal of Manufacturing Systems 58 
(2021), S. 412–430

[2] Parsa, S. u. Saadat, M.: Human-robot collaboration disassembly 
planning for end-of-life product disassembly process. Robotics and 
Computer-Integrated Manufacturing 71 (2021), S. 102170

[3] Kandler, M., May, M. C., Kurtz, J., Kuhnle, A. u. Lanza, G.: 
Development of a Human-Centered Implementation Strategy for 
Industry 4.0 Exemplified by Digital Shopfloor Management. In: 
Andersen, A.-L., Andersen, R., Brunoe, T. D., Larsen, M. S. S., 
Nielsen, K., Napoleone, A. u. Kjeldgaard, S. (Hrsg.): Towards 
Sustainable Customization: Bridging Smart Products and 
Manufacturing Systems. Lecture Notes in Mechanical Engineering. 
Cham: Springer International Publishing 2022, S. 738–745

[4] Siew, C. Y., Chang, M., Ong, S. K. u. Nee, A.: Human-oriented 
maintenance and disassembly in sustainable manufacturing. 
Computers & Industrial Engineering 150 (2020), S. 106903

[5] Finco, S., Battini, D., Delorme, X., Persona, A. u. Sgarbossa, F.: 
Workers’ rest allowance and smoothing of the workload in assembly 
lines. International Journal of Production Research 58 (2020) 4, 
S. 1255–1270

[6] Liu, M., Fang, S., Dong, H. u. Xu, C.: Review of digital twin about 
concepts, technologies, and industrial applications. Journal of 
Manufacturing Systems 58 (2021), S. 346–361

[7] Katiraee, N., Calzavara, M., Finco, S. u. Battini, D.: Consideration of 
workforce differences in assembly line balancing and worker 
assignment problem. IFAC-PapersOnLine 54 (2021) 1, S. 13–18

[8] Wang, K., Li, X., Gao, L. u. Li, P.: Modeling and Balancing for 
Disassembly Lines Considering Workers With Different Efficiencies. 
IEEE transactions on cybernetics 52 (2022) 11, S. 11758–11771

[9] Rao Pabolu, V. K. u. Shrivastava, D.: A dynamic job rotation 
scheduling conceptual framework by a human representing digital 
twin. Procedia CIRP 104 (2021), S. 1367–1372

[10] Grieves, M. u. Vickers, J.: Digital Twin: Mitigating Unpredictable, 
Undesirable Emergent Behavior in Complex Systems. In: Kahlen, F.-
J., Flumerfelt, S. u. Alves, A. (Hrsg.): Transdisciplinary Perspectives 
on Complex Systems. Cham: Springer International Publishing 2017, 
S. 85–113

[11] Bomström, H., Annanperä, E., Kelanti, M., Xu, Y., Mäkelä, S.-M., 
Immonen, M., Siirtola, P., Teern, A., Liukkunen, K. u. Päivärinta, T.: 
Digital Twins About Humans—Design Objectives From Three 
Projects. Journal of Computing and Information Science in 
Engineering 22 (2022) 5

[12] Miller, M. E. u. Spatz, E.: A unified view of a human digital twin. 
Human-Intelligent Systems Integration 4 (2022) 1-2, S. 23–33

[13] Kampker, A., Triebs, J., Hollah, A. u. Unruh, A.: Remanufacturing of 
electric vehicles: Challenges in production management. MATEC 
Web of Conferences 312 (2020), S. 2012

[14] Ariansyaha, D., Buerkle, A., Al-Yacoubb, A., Zimmer, M., 
Erkoyuncu, J. A. u. Lohse, N.: Towards a Digital Human 
Representation in an Industrial Digital Twin. SSRN Electronic Journal 
(2020)

[15] Graessler, I. u. Poehler, A.: Integration of a digital twin as human 
representation in a scheduling procedure of a cyber-physical 
production system. 2017 IEEE International Conference on Industrial 
Engineering and Engineering Management (IEEM). IEEE 2017, 
S. 289–293

[16] Montini, E., Bettoni, A., Ciavotta, M., Carpanzano, E. u. Pedrazzoli, 
P.: A meta-model for modular composition of tailored human digital 
twins in production. Procedia CIRP 104 (2021), S. 689–695

[17] Montini, E., Cutrona, V., Bonomi, N., Landolfi, G., Bettoni, A., 
Rocco, P. u. Carpanzano, E.: An IIoT Platform For Human-Aware 
Factory Digital Twins. Procedia CIRP 107 (2022), S. 661–667

[18] Sparrow, D., Basson, A. u. Kruger, K.: Human Digital Twin for 
Integrating human workers in Industry 4.0. International Conference 
on Competitive Manufacturing (2019)

[19] Graessler, I. u. Poehler, A.: Intelligent control of an assembly station 
by integration of a digital twin for employees into the decentralized 
control system. Procedia Manufacturing 24 (2018), S. 185–189

[20] Löcklin, A., Jung, T., Jazdi, N., Ruppert, T. u. Weyrich, M.: 
Architecture of a Human-Digital Twin as Common Interface for 
Operator 4.0 Applications. Procedia CIRP 104 (2021), S. 458–463

[21] Kong, F. S., Kong, X. D., Wu, H. Y., Zhang, Y. X. u. Fang, P. D.: 
Simulation Modeling of Production System Considering Human 
Behavior. 2020 IEEE International Conference on Industrial 
Engineering and Engineering Management (IEEM). IEEE 2020, 
S. 123–127

[22] Overbeck, L., Hugues, A., May, M. C., Kuhnle, A. u. Lanza, G.: 
Reinforcement Learning Based Production Control of Semi-automated 
Manufacturing Systems. Procedia CIRP 103 (2021), S. 170–175

[23] May, M. C., Overbeck, L., Wurster, M., Kuhnle, A. u. Lanza, G.: 
Foresighted digital twin for situational agent selection in production 
control. Procedia CIRP 99 (2021), S. 27–32

[24] Belhadj, I., Aicha, M. u. Aifaoui, N.: Product disassembly planning 
and task allocation based on human and robot collaboration. 
International Journal on Interactive Design and Manufacturing 
(IJIDeM) 16 (2022) 2, S. 803–819

[25] Li, K., Liu, Q., Xu, W., Liu, J., Zhou, Z. u. Feng, H.: Sequence 
Planning Considering Human Fatigue for Human-Robot Collaboration 
in Disassembly. Procedia CIRP 83 (2019), S. 95–104

[26] Şahinel, D., Akpolat, C., Görür, O. C., Sivrikaya, F. u. Albayrak, S.: 
Human modeling and interaction in cyber-physical systems: A 
reference framework. Journal of Manufacturing Systems 59 (2021), 
S. 367–385

[27] Tang, Y. u. Zhou, M.: Fuzzy-Petri-net based disassembly planning 
considering human factors. 2004 IEEE International Conference on 
Systems, Man and Cybernetics (IEEE Cat. No.04CH37583). IEEE 
2004, 4195-4200 vol.5

[28] Bentaha, M. L., Battaïa, O. u. Dolgui, A.: A sample average 
approximation method for disassembly line balancing problem under 
uncertainty. Computers & Operations Research 51 (2014), S. 111–122

[29] Joo, T., Jun, H. u. Shin, D.: Task Allocation in Human–Machine 
Manufacturing Systems Using Deep Reinforcement Learning. 
Sustainability 14 (2022) 4, S. 2245

[30] Pabolu, V. K. R., Shrivastava, D. u. Kulkarni, M. S.: Modelling and 
prediction of worker task performance using a knowledge-based 
system application. International Journal of Production Economics 254 
(2022), S. 108657

[31] Wurster, M., Exner, Y., Kaiser, J.-P., Stricker, N. u. Lanza, G.: 
Towards planning and control in cognitive factories - A generic model 
including learning effects and knowledge transfer across system 
entities. Procedia CIRP 103 (2021), S. 158–163

[32] Rao Pabolu, V. K., Shrivastava, D. u. Kulkarni, M. S.: A Dynamic 
System to Predict an Assembly Line Worker’s Comfortable Work-
Duration Time by Using the Machine Learning Technique. Procedia 
CIRP 106 (2022), S. 270–275

[33] Riggs, R. J., Battaïa, O. u. Hu, S. J.: Disassembly line balancing under 
high variety of end of life states using a joint precedence graph 
approach. Journal of Manufacturing Systems 37 (2015), S. 638–648

[34] Gorecky, D., Schmitt, M., Loskyll, M. u. Zuhlke, D.: Human-machine-
interaction in the industry 4.0 era. 2014 12th IEEE International 
Conference on Industrial Informatics (INDIN). IEEE 2014, S. 289–
294

[35] Bornewasser, M., Bläsing, D. u. Hinrichsen, S.: Informatorische 
Assistenzsysteme in der manuellen Montage: Ein nützliches Werkzeug 
zur Reduktion mentaler Beanspruchung? Zeitschrift für 
Arbeitswissenschaft 72 (2018) 4, S. 264–275

[36] Wurster, M., Michel, M., May, M. C., Kuhnle, A., Stricker, N. u. 
Lanza, G.: Modelling and condition-based control of a flexible and 
hybrid disassembly system with manual and autonomous workstations 
using reinforcement learning. Journal of intelligent manufacturing 33 
(2022) 2, S. 575–591


