KIT | KIT-Bibliothek | Impressum | Datenschutz

Linked Papers With Code: The Latest in Machine Learning as an RDF Knowledge Graph

Färber, Michael ORCID iD icon 1; Lamprecht, David 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we introduce Linked Papers With Code (LPWC), an RDF knowledge graph that provides comprehensive, current information about almost 400,000 machine learning publications. This includes the tasks addressed, the datasets utilized, the methods implemented, and the evaluations conducted, along with their results. Compared to its non-RDF-based counterpart Papers With Code, LPWC not only translates the latest advancements in machine learning into RDF format, but also enables novel ways for scientific impact quantification and scholarly key content recommendation. LPWC is openly accessible at https://linkedpaperswithcode.com and is licensed under CC-BY-SA 4.0. As a knowledge graph in the Linked Open Data cloud, we offer LPWC in multiple formats, from RDF dump files to a SPARQL endpoint for direct web queries, as well as a data source with resolvable URIs and links to the data sources SemOpenAlex, Wikidata, and DBLP. Additionally, we supply knowledge graph embeddings, enabling LPWC to be readily applied in machine learning applications.


Verlagsausgabe §
DOI: 10.5445/IR/1000168683
Veröffentlicht am 28.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000168683
Erschienen in Proceedings of the ISWC 2023 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice co-located with 22nd International Semantic Web Conference (ISWC 2023)
Veranstaltung ISWC 2023 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice (2023), Athen, Griechenland, 06.11.2023 – 10.11.2023
Verlag CEUR-WS
Seiten Art.-Nr.: 467
Serie CEUR workshop proceedings ; 3632
Vorab online veröffentlicht am 01.02.2024
Externe Relationen Abstract/Volltext
Schlagwörter Scholarly Data, Open Science, Ontology Engineering, Machine Learning
Nachgewiesen in Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page