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Abstract

Block stacking storage systems are highly adaptable warehouse systems with low invest-

ment costs. With multiple, deep lanes they can achieve high storage densities, but accessing

some unit loads can be time-consuming. The unit-load pre-marshalling problem sorts the

unit loads in a block stacking storage system in off-peak time periods to prepare for upcom-

ing orders. The goal is to find a minimum number of unit-load moves needed to sequence

a storage bay in ascending order based on the retrieval priority group of each unit load.

In this paper, we present two solution approaches for determining the minimum number

of unit-load moves. We show that for storage bays with one access direction, it is possible

to adapt existing, optimal tree search procedures and lower bound heuristics from the con-

tainer pre-marshalling problem. For multiple access directions, we develop a novel, two-step

solution approach based on a network flow model and an A* algorithm with an adapted

lower bound that is applicable in all scenarios. We further analyze the performance of the

presented solutions in computational experiments for randomly generated problem instances

and show that multiple access directions greatly reduce both the total access time of unit

loads and the required sorting effort.

Keywords: Logistics, Reshuffling, Block stacking warehouse, Tree search, Autonomous

mobile robots

1 Introduction

Warehouse systems are constantly adapted to dynamic material flows due to changing cus-

tomer demand or evolving production capacities. Block stacking storage systems are especially

capable of dealing with these challenges thanks to their flexibility, expandability and ease of

setup/breakdown. In block stacking storage systems, unit loads (e.g., pallets or boxes) are

placed on the floor and stacked on top of each other in a grid-based layout. Block storage does

not require the installation of technical infrastructure. This keeps investment costs low and al-

lows companies to quickly react to changing business conditions. Types of block storage systems
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consisting of movable units on the floor include, for example, pallet-based block storage, robotic

mobile fulfillment systems (RMFS), container yards or buffer storage with material transport

trolleys.

Figure 1 shows the basic structure of a block stacking storage system. Each lane of a storage

bay is filled with a sequence of stacks. Only the outermost stacks can be accessed by transport

vehicles like robotic forklifts. In this type of storage system, unit loads can be accessed from

multiple directions, i.e., from an adjacent aisle or cross-aisle. This provides immense flexibility

compared to systems that can only be accessed from the front. However, unit loads can still

be blocked from being retrieved if other unit loads are (i) stored on top of them or (ii) stored

between the unit load and the direction of access (aisle/cross-aisle), and the blocking unit load

has a later retrieval time than the one being removed.

Robot

Aisle

Stack

Unit-load Lane

Figure 1: Example of a single storage bay in a block stacking storage system with a robotic
forklift.

Autonomous mobile robots (AMRs) (more specifically in this work, robotic forklifts) are being

increasingly used to control material handling and storage systems (Fragapane, De Koster,

Sgarbossa, & Strandhagen, 2021). However, most block stacking warehouses are currently still

organized manually. Human operators generally compose warehouses with a fixed layout and

storage zone structure, in which stock keeping units (SKUs) are always placed at defined storage

locations (e.g., a single SKU is always assigned the same lane).

In autonomously organized block stacking warehouses, the advantage of robots is that they

have exact knowledge of the system state, including the storage location of each unit load.

Thus, they naturally support storage policies without a fixed allocation of SKUs to storage

locations (shared storage policy) as well as extensive rearrangement operations. This increases

the storage density by better utilizing the available storage space. Another advantage of AMRs

is that they are operational around the clock. Hence, off-peak hours can be utilized to sort

the system, improving future access and retrieval times. For example, the storage system could

prepare for an expected demand sequence like the loading times of trucks or the production

schedule over the next few days. We introduce this problem for block stacking storage systems

as the unit-load pre-marshalling problem (UPMP). An overview of major decision problems in

autonomously organized block stacking warehouse is provided in Pfrommer and Meyer (2020).

For the UPMP, we assume that the current warehouse configuration with the position and
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retrieval priority group for each unit load is given and that no unit loads enter or leave the

warehouse during planning/rearranging. The allocation of unit loads to a corresponding retrieval

priority group is based on a known or predicted future retrieval time (see also the duration-of-

stay storage strategy Goetschalckx and Ratliff (1990)). The goal is to find a minimum number of

unit-load moves needed to sort a storage bay such that all unit loads can be retrieved according

to their retrieval group without any blockage. Unit loads can only be accessed by AMRs at

the outermost stacks if a free path from at least one of the four cardinal directions is available.

Direct access may be blocked by further unit loads, walls or other obstacles, as well as due to

limitations of the load carriers.

The pre-marshalling problem is a well-known problem in the container stacking (Caserta,

Schwarze, & Voß, 2011; Lehnfeld & Knust, 2014) and steel slab and coil shuffling literature (Ge,

Meng, Liu, Tang, & Zhao, 2020; Tang, Zhao, & Liu, 2012). In the container pre-marshalling

problem (CPMP), all stacks are accessible from the top via a crane. Figure 2 a) illustrates an

example with two stacks containing four unit loads. The UPMP with side access from only one

direction in Figure 2 b) is similar to the CPMP. In a sequence of stacks per lane, the unit loads

at the outermost stacks can be accessed directly. Both examples 2 a) and 2 b) allow direct

access to only two of the eight unit loads (dark-gray). To reach all other unit loads, relocation

of the blocking unit loads on top or in front is necessary. A common setup in warehouses is

the use of pallets and forklift trucks, which allow access from at least two opposite directions,

in many cases even from four directions. Figure 2 c) shows an example of the UPMP, where

three access directions are available and only the back is blocked by a wall. This leads to direct

access to every stack, which speeds up access times and reduces the number of reshuffling moves

necessary to sort the warehouse. To our knowledge, a stacking problem with side access to bays

from up to four access directions has not been studied yet.

a) b) c)

Figure 2: Example storage bays with eight unit loads in the CPMP via crane in a) as well
as side access in the UPMP via one direction in b) and three directions in c). The directly
accessible unit loads are dark-gray.

In this paper, we formally introduce the UPMP and propose solution approaches for finding a

minimum number of unit-load moves to sort a block stacking storage system. We show that
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for the UPMP with one access direction, it is possible to transfer existing solution approaches

from the CPMP. For cases with multiple access directions, we develop a novel two-step solution

approach based on a network flow model and an adapted search procedure that is applicable

in all scenarios with up to four access directions. The proposed tree search methods and lower

bound heuristics based on algorithms from the CPMP (see Tierney, Pacino, and Voß (2017))

solve the UPMP to optimality. Finally, our contribution is complemented by a publicly available

benchmark set and experimental evaluation of the proposed tree search methods.

This paper is organized as follows. We first introduce the UPMP in Section 2. This is followed

by a literature overview in Section 3. Sections 4 and 5 describe our solution approaches for one

and up to four access directions, respectively. In Section 6, we present our UPMP benchmark

dataset and provide the results of our computational experiments. The impact of multiple

access directions are discussed in Section 7. Finally, we conclude and point out future research

directions in Section 8.

2 The unit-load pre-marshalling problem

The UPMP involves sorting a bay of a block stacking storage warehouse until all blockage is

resolved. We assume that no items are going in or out of the warehouse, i.e., the AMRs are

idle. The given bay is fully defined by a set of unit loads and their retrieval groups under a fully

shared storage strategy (SKUs are mixed in stacks and lanes). Blockage occurs if unit loads of

a higher retrieval group are placed in front of a unit load of a lower retrieval group. We define

such unit loads as blocking. The goal is to find a minimum number of unit-load moves to sort a

storage bay such that there is no blockage in the bay. The resulting sequence of moves can be

executed by one or multiple vehicles.

For the UPMP, we make the following assumptions with respect to the technical features of

the block stacking warehouse. Since we only consider a single storage bay, the minimization

of the number of moves is reasonable as an approximation of the sorting effort. We assume

that process times for positioning and handling of AMRs dominate driving times. For larger

warehouse setups with multiple bays, it would also be necessary to take into account travel

times. Furthermore, we assume that robots can only carry a single unit load at a time and

cannot reach over the top of a stack in front. If a stack has multiple tiers, only the top unit

load can be accessed directly. This corresponds to the capabilities of standard industrial forklift

trucks. Increasing the transport capacity to multiple items is a possible modification.

As shown in Figure 3, a storage bay in the UPMP consists of a three-dimensional grid of storage

locations with columns I, rows J and tiers T . Unit loads can only be placed above tier one if

unit loads are stored underneath. Also, bays are filled up and sorted dependent on the access

direction, preventing empty space or gaps in between.

Figure 4 shows a simple example of a configuration with I = 3, J = 2 and T = 2 along with

a possible solution of the UPMP with one access direction. Retrieval groups gijt ∈ {1, ..., G}
from one to five are assigned to each unit load in the storage bay at their respective position

(i ∈ {1, ..., I}, j ∈ {1, ..., J}, t ∈ {1, ..., T}). The initial configuration in Figure 4 a) is sorted

according to the retrieval groups by a sequence of two consecutive moves. The unit load of
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Figure 3: State representation of the UPMP.

group 3 cannot be moved in front of the groups 1 and 2 of the other two lanes. So in a first

move, we need to free up a storage location for the blocking unit load of group 3 and reach the

new configuration in Figure 4 b). A second move leads to Figure 4 c). This is the final, sorted

configuration of the bay.
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Figure 4: Example configuration and solution of the UPMP

The main idea of unit-load pre-marshalling is to increase the storage density of storage systems

by sorting them in idle time so that time-consuming relocation moves can be avoided later on in

peak hours. The UPMP is an operational problem, which may arise several times throughout

the day, overnight or less frequently (e.g., on the weekend). Given the proven complexity of

the CPMP, which is NP-hard (see Caserta et al. (2011)), the similar UPMP with one access

direction is also NP-hard. The cases with more than one access direction are a generalization

of the problem and thus also NP-hard.

3 Related work

Relocation problems for sorting a storage system in idle time have been widely studied in many

different domains. Due to their domain-specific nature, we categorize the related decision prob-

lems by the area of application, namely container terminals, the steel industry, block stacking
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warehouses, puzzle-based storage systems, robotic mobile fulfillment systems, and automated

storage and retrieval systems (AS/RS).

3.1 Container terminals

The CPMP is a well-studied problem concerning the reshuffling of a set of containers in a single

storage bay using an overhead crane. A variety of exact and heuristics methods have been used to

solve the CPMP. Methods for solving the CPMP include integer programming (Lee & Hsu, 2007;

Parreño-Torres, Alvarez-Valdes, & Ruiz, 2019), dynamic programming (Prandtstetter, 2013),

constraint programming (Rendl & Prandtstetter, 2013) and several tree search approaches,

which we briefly present in the following as they are the foundation of this paper.

Tree-based approaches using the A* algorithm (Hart, Nilsson, & Raphael, 1968) have been

successful at solving real-world sized CPMP instances to optimality. The three primary ingre-

dients of these approaches are (i) the branching heuristic, (ii) symmetry breaking rules and

(iii) the lower bound heuristic. Expósito-Izquierdo, Melián-Batista, and Moreno-Vega (2012)

introduce an A* approach for the CPMP using a simple lower bound that only counts blocking

items. Bortfeldt and Forster (2012) describe a heuristic tree search procedure that uses a lower

bound based on the ideas of supply (available storage locations) and demand (available storage

locations) for each retrieval priority group. Tierney et al. (2017), Tanaka and Tierney (2018)

and Tanaka, Tierney, Parreño-Torres, Alvarez-Valdes, and Ruiz (2019) build on this bound

and tighten it within an iterative deepening search to reduce memory consumption. Further-

more, Tierney et al. (2017) and Tanaka et al. (2019) propose several branching and symmetry

breaking rules.

In intra-block re-marshalling, the problem scope is expanded beyond a single bay, allowing

containers to move between multiple bays. This problem is not yet well studied, partially

because an assumption of the CPMP is that moving the crane between bays is not possible

or costly for pre-marshalling operations. We refer to the review of Caserta et al. (2011) and

the publication of Covic (2017), who compares different features of existing re-marshalling

algorithms with his own contribution.

3.2 Steel industry

Shuffling problems in the steel industry also bear resemblance to the UPMP. Tang et al. (2012)

categorizes these problems into plate shuffling problems (e.g., König, Lübbecke, Möhring,

Schäfer, and Spenke (2007); Tang, Liu, Rong, and Yang (2002)) and coil shuffling problems

(e.g., Tang, Liu, Yang, Li, and Li (2015); Tang et al. (2012); Zäpfel and Wasner (2006)). The

slab pre-marshalling problem (SPMP) introduced by Ge et al. (2020) deals with sorting steel

slabs during idle times. Unlike the approach of the CPMP where items are sorted according to

their retrieval sequence, the goal in the SPMP is to generate stacks consisting of a single item

group. The integrated optimization of storage and pre-marshalling moves by Ge, Zhao, Sun,

and Dong (2021) combines the SPMP and storage decisions to minimize blocking items in as

few stacks as possible.

6



3.3 Block stacking warehouses

In terms of block stacking warehouses, only the recent publication from Maniezzo, Boschetti, and

Gutjahr (2021) is concerned with pre-marshalling. They analyze the stochastic pre-marshalling

problem, where a future retrieval sequence is not exactly known. Based on historical data,

a statistical model is used to derive a probability distribution for upcoming requests of each

SKU. This is applied to estimate the number of moves in their pre-marshalling algorithms. In

contrast to this work, all stacks are directly accessible. Hence, only blockage within a stack is

considered.

3.4 Puzzle-based storage systems

Stacking problems are similar to the well-known 8 and 15 puzzle problems in artificial intelli-

gence. In Ball (1893), puzzle-based storage systems items are placed in a highly dense grid-based

layout. In this layout, at least one of the locations in the grid must be empty to enable items

retrieval. Items are shuffled between the empty location(s) until a desired goal configuration is

reached. Gue and Kim (2007) provide a comparison of puzzle-based and aisle-based storage.

The analysis of different configurations shows that the moving costs and expected retrieval time

are higher for puzzle-based storage than for classic aisle-based layouts.

3.5 RMFS

An RMFS being increasingly used in practice involves mobile racks (pods) that are moved by

AMRs, and is especially popular in e-commerce fulfillment centers (e.g., Kiva systems Wurman,

D’Andrea, and Mountz (2008)). Merschformann (2018) differentiates between active and pas-

sive repositioning in such systems. Active repositioning involves actively starting a relocation

process, similar to the UPMP when conducted in idle time. Passive repositioning, in contrast,

consists of updating a storage position when pods are returning from a picking station. Blockage

is relevant in RMFS with multi-deep storage bays as shown by Jin, Yang, and Duan (2020) and

Yang, Jin, and Duan (2021). The authors point out that additional working time is required to

relocate obstructing pods.

3.6 AS/RS

Another stream of publications of relocation problems is related to AS/RS. Pre-marshalling in

terms of sorting a warehouse to resolve blockage is only relevant for multi-deep storage setups

(e.g., AutoStore Zou, de Koster, and Xu (2016)). However, in the literature, pre-marshalling

problems for these multi-deep systems have hardly been formulated. An investigation of the

storage location assignment problem with regard to blockage in deep-lane storage for one and

two opposite access directions is presented by Boysen, Boywitz, and Weidinger (2018).

4 Solving the UPMP with a single access direction

We present a search procedure based on the A* algorithm to solve the UPMP with one allowed

access direction to optimality, analogous to the approaches presented by Expósito-Izquierdo
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et al. (2012) and Tierney et al. (2017) for the CPMP. We first describe the A* algorithm

implemented branching rules, followed by the adapted lower bound.

4.1 A* for the unit-load pre-marshalling problem

The A* algorithm uses a best first search guided by a heuristic to solve planning problems.

Starting from an initial bay configuration all possible moves (branches) of each movable unit

load are examined. Iteratively the most promising move that minimizes costs is extended. The

cost estimation heuristic for branch selection is given by f(n) = g(n)+h(n), where n represents

a search node, g(n) is the number of performed moves at node n, and h(n) is a lower bound

on the number of moves needed to reach a configuration from node n without any blocked unit

loads.

Figure 5 illustrates the search procedure with an example based on counting blocking items as a

simple lower bound. Starting from an initial configuration with three blocking items, there are

four possible moves, leading to four nodes all with a search depth of one. These newly generated

nodes are called open nodes, and we calculate f(n) for each one. We explore the node with the

lowest value of f(n), which in this example is the configuration with f(n) = 3. We apply tie

breaking rules and symmetry breaking that is described in more detail later.
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Figure 5: Example of the tree search procedure (simple lower bound as blocking items in dark
gray) similar to the illustration in Tierney et al. (2017)

Algorithm 1 shows the A* algorithm for the UPMP (Tierney et al., 2017). It starts with the

initialization of an empty open list where all unexplored nodes are stored, an open dictionary

mapping the unexplored nodes to f-values and a closed set collecting all previously visited

nodes. Whereas all unexplored nodes are stored in the open list, the closed set stores all

previously visited nodes. The open dictionary is used to improve the lookup of minimum f -

values of already visited configurations. Initially, the open dictionary contains only the starting
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configuration (root node) of the storage bay.

After initialization, the algorithm starts to search for a solution within the main loop and stops

when an optimal solution without any blocking unit loads has been found or when the open list

becomes empty, meaning no solution exists. While nodes are in the open list and the time limit

has not been reached, the node n with the minimum cost estimation f(n) is popped off the

priority queue. If n has already been visited and is in the closed set, then the node is skipped,

as we already know the shortest path to get to it. Otherwise, the node is added to the closed

set and the successor nodes for every possible move of a unit load are calculated, as long as

they are not pruned due to branching rules (see 4.2). Successor nodes are added to the priority

queue and open dictionary if there is not already a node with the same configuration and a

smaller cost in the closed set or open dictionary. This search procedure guarantees an optimal

solution as long as the heuristic used in the cost estimation is an admissible lower bound on the

true cost of the configuration.

Algorithm 1: A* algorithm adapted from Tierney et al. (2017)

Function astar(root):
open ← PRIORITY QUEUE();
open dict ← ∅;
closed ← ∅;
PUSH(open, root);
open-dict(root) = f(root);
while open > 0 and time < timeout do

n ← POP(open);
closed ← closed

⋃
{n};

if blocking(n) = 0 then
return n;

end
successors ← BRANCHING(n);
for s ∈ successors do

if s /∈ closed and (s /∈ open dict or open dict(s) > f(s)) then
PUSH(open, s);
open-dict(s) = f(s);

end

end

end

4.2 Branching

For each iteration of the search, our algorithm calculates all feasible successors of the current

node, i.e., configurations that can be reached by a single move of a unit load from the current

configuration. Some of these configurations make no sense to examine, for example given node

n, we should not reverse the move that brought us to node n. We further use memoization to

remember all seen configurations so that we do not explore the same configuration multiple times

unless we find a cheaper way of reaching a configuration. Tierney et al. (2017) and Tanaka and

Tierney (2018) show that, in the context of CPMP, the use of domain-specific insights allows

9



further improvements for branching, as there are usually many nodes that have the same f

value, thus one needs a way to differentiate between them.

4.3 Lower bound on the number of moves

In this section, we give an overview of the adapted lower bound from the CPMP and provide an

example. The notation is summarized in Table 1. For mathematical proofs of correctness, we

refer to the respective publications. We adopt the classification of possible moves introduced by

Table 1: Adopted notation from Bortfeldt and Forster (2012)

nb(w) Number of blocking (badly placed) unit loads of the lane at column i
d(g) Number of blocking unit loads represents demand of priority group g
D(g) Cumulative demand of a priority group g (d(g) + d(g + 1) + · · ·+ d(G))
s(g) Number of supply slots for priority group g
S(g) Cumulative supply of a priority group g (s(g) + s(g + 1) + · · · + s(G) + H ·

nl,empty;nl,empty–number of empty lanes)
DS(g) Cumulative demand surplus of priority group g (D(g)− S(g))

Bortfeldt and Forster (2012) into bad-good (BG), bad-bad (BB), good-good (GG) and good-

bad (GB) moves. The notation indicates whether a unit load is blocking (bad) or well-placed

(good) before and after a move. BX moves consist of BG and BB moves, whereas GX moves

correspond to GG and GB moves.

In the case of a single access direction, the columns I represent lanes, the rows J refers to the

depth level and T is the number of tiers. Figure 6 a) shows a small configuration with I = 4,

J = 2 and T = 2. Each lane at column i can be translated into an access sequence of unit loads

in Figure 6 b). The tiles represent a storage position with the assigned group gijt ∈ {1, ..., G}
of each unit load. All empty positions are set to gijt = 0. All tiles of blocking unit loads that

block other unit loads are colored in dark-gray.
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Figure 6: A simple example of a configuration for one access direction with a three-dimensional
view on the left a), and translated into an access sequence for each lane at column i on the
right, b). Dark gray colored tiles represent blocking unit loads.

For one access direction, a lane with a length of two stacks J = 2 and two tiers T = 2 results

in a sequence of four storage locations that can be retrieved one after the other. We refer to
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the sequence of storage locations as the fill level). In the first lane at i = 1 of Figure 6 b), the

unit load at position (i = 1, j = 2, t = 2) is blocking, since it has a higher priority group than

the unit load on the storage location below (i = 1, j = 2, t = 1) with g1,1,2 > g1,1,1. All unit

loads that are placed at a storage location before a blocking unit load are also blocking, because

they need to be moved for resolving all blockage. Hence, the unit loads at the positions (i = 2,

j = 1, t = 2), (i = 2, j = 1, t = 1), (i = 2, j = 2, t = 2), (i = 3, j = 1, t = 1) and (i = 4, j = 1,

t = 1) are blocking as well.

4.3.1 Simple lower bound:

A first valid lower bound for the minimum number of item moves simply counts the number of

blocking unit loads of the current bay configuration (see Expósito-Izquierdo et al. (2012); Lee

and Chao (2009)). Since the unit load of higher priority will be retrieved first, at least all unit

loads in front of it must be relocated. In the best case, all unit loads are relocated as BG moves

from badly to well placed. In Figure 6 b), the total count of blocking unit loads is nb = 6.

4.3.2 Extension by Bortfeldt and Forster (2012):

The lower bound for the number of moves from Bortfeldt and Forster (2012) is defined as the

sum of the number of BX and GX moves. The first extension to the simple lower bound is that

to carry out a BG move, it is necessary to have at least one lane without any badly placed unit

loads. Otherwise, at least the lane with the smallest number of badly placed items has to be

moved as a BB move nh = min{nb(s)}. Therefore, the number of BX moves is the sum of the

blocking unit loads (simple lower bound nb) and the minimum number of blocking unit loads

of all stacks nh. In Figure 6 b), all lanes contain badly placed items. Three lanes contain only

one badly placed item. Therefore, nh = 1 and a single additional move is necessary.

The second extension refers to the number of GX moves, which involve moving well-placed

unit loads. By calculating the required slots for badly placed unit loads (demand) as well as

the available slots (potential supply) for each priority group, we derive a cumulative demand

surplus. A slot is a storage location defined by the coordinates w, l and t. The required demand

d(g) is computed by counting the number of badly placed items for each priority group. Table

2 shows d(g) for the example in Figure 6. The cumulative demand D(g) is calculated from the

lowest to highest priority groups.

Once D(g) has been determined, the supply slots s(g) must be computed. The supply slots of

a lane at column i consist of the slots before the last well-placed item that do not need to be

moved. The available slots for the priority group g of the last well-placed item of each lane

are added to the potential supply slots. For the example in Figure 6 b) and Table 2, there are

five potential supply slots, respectively, above g = 4 (lanes 1 and 3) and g = 1 (lanes 2 and 4).

Again, the cumulative values S(g) are calculated.

Finally, the resulting cumulative demand surplus is the difference of cumulative demand sub-

tracted by the cumulative supply, since the unit loads with higher priority can always be stored

on slots with lower priority. A positive cumulative demand surplus means that there are not

enough available slots by just moving badly placed items. In this case, additional GX moves are
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Item
group g

Demand
d(g)

Cumulative
demand

D(g)

Potential
supply

s(g)

Cumulative
potential
supply
S(g)

Cumulative
demand
surplus
DS(g)

5 2 2 0 0 2
4 1 3 5 5 -2
3 2 5 0 5 0
2 0 5 0 5 0
1 1 6 5 10 -4

Table 2: Calculating demand surplus based on the example in figure 6 b)

necessary. The necessary GX moves are calculated by first deriving the maximum demand sur-

plus for all priority groups DS(g∗) = argmax{DS(g)}. In our example in Table 2 the maximum

demand surplus DS(g∗) is 2.

We use the cumulative demand surplus DS(g∗) to calculate the potential GX lanes npi
GX , where

additional slots for unit loads of priority groups g ≥ g∗ can be created. Slots for these priority

groups can be created by relocating correctly placed unit loads of a priority group g < g∗. This

means a potential GX lane must contain correctly placed unit loads of a smaller priority group.

The correctly placed unit load of the smallest priority group of each lane corresponds to the

outermost correctly placed item. Empty lanes are not potential GX lanes, since their supply is

already fully taken into account with the highest priority group and no additional slots can be

created. The necessary number of GX lanes must be at least ni
GX = max(0, [DS(g∗)/(J · T )])

with a maximum of J · T available slots per lane, if a whole lane has to be cleared. This is a

slight modification compared to the approach for the CPMP with only T slots per stack. The

number of potential GX lanes npi
GX must be greater or equal than the necessary number of

GX lanes ni
GX to find a feasible solution. If this is the case, the lanes are sorted by ng∗(i) in

ascending order. ng∗(i) is the number of correctly placed unit loads with priority group g < g∗

of a lane at column i. In our example of Figure 6 b), lanes 1, 2 and 3 contain one correctly

placed item and lane 4 contains two correctly placed items smaller than g∗ = 5. This leads to

the number of potential GX lanes npi
GX = 4 and we get the sorted list of correctly placed items

that have to be moved [1, 1, 1, 2]. The lower bound for the number of GX moves is calculated

by nGX =
∑ni

GX
j=1 ng∗(i). For the example in figure 6 b), we round the result of max(0, [2/(2∗2)]

up to ni
GX = 1 and derive nGX =

∑1
j=1 n

g∗(i) = 1.

Further improvements for cases in which the lower bound can be increased have been proposed

in Tanaka and Tierney (2018) and Tanaka et al. (2019). These improvements can be transferred

analogously, but due to their complexity we omit them from this study.

5 Novel approach for solving the UPMP with multiple access

directions

In storage bays with multiple access directions, each stack can generally be accessed from any

allowed access direction. Multiple access directions are beneficial and challenging at the same

time. An advantage of multiple access directions is that potentially fewer relocation moves are

12



required to sort the storage bay until each unit load can be accessed from one access direction

without blockage. However, difficulties are a tremendous increase in the branching factor as

well as the solution space and a higher complexity for configuration assessment.

To overcome these challenges, we propose a solution approach in which we initially determine

the access direction for each stack and fix this direction until the pre-marshalling process is

finished (access direction fixing). This allows us to benefit from a significantly reduced number

of required moves and, at the same time, achieve fast runtimes. Access direction fixing makes

also sense from a practical point of view. We will discuss this together with the implications of

our assumption at the end of the section.

For solving the UPMP with multiple access directions, we present a novel two-stage algorithm

shown in Figure 7. First, a network flow model is used to initially determine the access di-

rection fixing for each stack that minimizes the number of blocking items. This configuration

is transformed into a representation of virtual lanes similar to the single access direction case

and is used throughout the search. A virtual lane consists of 1 to max(I, J) successive stacks

in a row/column with a defined access direction. Since the length of each virtual lane can

be different, we introduce an adapted lower bound with a mixed-integer programming (MIP)

formulation to determine the minimum number of required reshuffling moves.

Sequence of moves to sort the storage

Virtual lane representation

Conversion of
the state to

virtual lanes

Input

Output /
Input

Result

Tree search with adapted lower
bound for the calculation of

necessary GX moves based on a 
MIP formulation

Network flow model
to determine the

access direction for
each stack

State Access 
directions

Step 1

Step 2

Figure 7: Illustration of the main components of our solution approach with the respective
input and output.

Step 1: Access Direction Fixing

We first describe the components of the mathematical model for calculating the access direction

for each stack and then provide an example based on Figure 8. Our model captures the grid-

based layout of a block stacking storage system and considers simple rules of feasible AMR

movements. Table 3 shows the sets, parameters, and decision variables that we use throughout

this section. Figure 8 a) shows a simple example of the configuration with I = 3 columns, J = 3

rows and two tiers T = 2. Figure 8 b) translates the example into the associated top view.

Each tile of the grid represents a stack S1 to S9 with a tuple of stacked unit loads (tier 2, tier

1).

In our model, each stack is represented by a vertex with a directed edge from and to the adjacent

stack vertices for any allowed access direction. For each of the allowed access directions (up to
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Figure 8: Example of a bay configuration with four access directions in a). Translated into a
top view in b), each tile in the grid represents a stack with a tuple of multiple tiers. Hyphens
indicate empty storage locations.

Table 3: Notation of the network flow model

Sets and Indices

s, t Indices of network vertices
d Index of the neighbor vertex for a cardinal access direction

({north, south, east, west})
n Index of an orthogonal neighbor vertex of xd,s
E Set of all edges
Ex Set of edges excluding edges from the origin o
V x Set of vertices excluding the origin o
Eorigin Set of edges from origin o
V origin Set of vertices of origin o
V inner Set of inner vertices

Parameters

cs,t Cost of visiting vertex t from vertex s
bs ∈ N Demand at vertex s (1 for each stack that has to be vis-

ited)
S ∈ N Supply provided at origin o (equal to the number of

stacks)

Variables

fs,t, ft,s Flow from source s to destination t and vice versa
xs,t ∈ {0, 1} Equals 1, if a stack is accessed via source s to destination

t
xd,s ∈ {0, 1} Equals 1, if stack s is accessed via the edge of access

direction d
xs,n ∈ {0, 1} Equals 1, if the outgoing edge from stacks s to an orthog-

onal neighbor n is used

four) a vertex is added with edges pointing to the vertices of stacks that are placed at the edge

of the bay. Finally, a vertex representing the origin o is connected to vertices for each access
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direction. The capacity of edges is unlimited and the assigned costs represent the incremental

difference of blocking items between accessing the previous and the current stack in a lane. To

avoid holes, i.e., items in front of empty locations, we add a cost of one for any hole that may

be created. Holes are detrimental as they lead to less free storage locations in front of the items

and, therefore, to infeasible configurations.

Supply is provided at origin o for all of the stacks’ vertices. Each vertex representing a stack

must be visited once, and thus has a demand of 1. The intermediate vertices for the access

directions have zero demand. Edges between vertices that are directly accessible by an access

direction are not necessary, since the minimum costs in terms of blocking items are guaranteed

through access from the respective direction. The optimization objective is to minimize the

costs of accessing all stack vertices (demand) from supply vertex o via intermediate vertices for

the available access directions. The result is a defined access configuration with a minimum

number of blocking unit loads.

The mathematical formulation of our network flow model is:

min
∑

(s,t)∈E

cs,txs,t (5.1)

fs,t ≤ Pxs,t ∀(s, t) ∈ E (5.2)

∑
(s,t)∈Ex

fs,t −
∑

(t,s)∈Ex

ft,s = bs ∀s ∈ V x (5.3)

∑
(s,t)∈Eorigin

fs,t = P (5.4)

∑
(d,s)∈E

xd,s +
∑

(s,n)∈E

xs,n ≤ 1 ∀s ∈ V inner (5.5)

xs,t ∈ {0, 1}, fs,t ≥ 0 ∀(s, t) ∈ E (5.6)

The objective in term (5.1) is to minimize the movement costs for accessing all stacks. We use

the binary variable xs,t to indicate whether an arc is used or not. The idea is that we want to

count the number of blocking items only once, even if the stacks behind are accessed through

the same stack. Constraints (5.2) ensures no arc flow exceeds the total amount of supply S.

Constraints (5.3) and (5.4) ensure flow conservation for all vertices with a demand of zero and

above, as well as flow conservation for supply in the origin o. We require Constraints (5.5) to

avoid the AMRs turning within the grid. The constraints say that flow on orthogonal neighbor

edges is not allowed for all inner vertices. Inner stacks are all stacks that cannot be directly

accessed by one of the access direction vertices. We note that the number of constraints to
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avoid turning increases with the grid size (up to eight per inner stack). If the AMRs are able to

move around corners in the grid, these constraints can be neglected. Our mathematical model is

similar to a min-cost flow formulation, however, we use binary variables instead of flow variables

in our objective function because the costs should only be considered once and add additional

constraints in (5.5) for AMR movements.

Example We now consider the example given in Figure 8 and derive a representation for the

network flow model. All stacks represented by tiles are translated into vertices S1 to S9 in the

network flow representation in Figure 9 a). For each access direction a vertex N , S, W and E

is added, as well as a vertex for the origin o. Edges between the outermost stacks of the bay

for any allowed access direction are not necessary. These stacks can be directly accessed from

the respective direction. Each edge is assigned costs that are equal to the incremental cost of of

accessing the corresponding vertex. In our example, accessing stack S2 from W costs one due

to one blocking item. Now accessing stack S5 from stack S2 would add another two blocking

items, as both items of stack two would have to be moved plus the top item of stack S5. Supply

is provided at origin o for all stacks (in our example: 9 vertices). Each stack must be visited

once and therefore has a demand of 1. The intermediate vertices for the access directions have

zero demand. Figure 9 b) illustrates a solution for a lower bound of blocking unit loads showing

only used edges.
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Figure 9: Network flow scheme for the example with four access directions of Figure 8 in a) and
a possible solution with fours blocking items in b). Each arc is labeled with its cost.

After the access direction for each stack is determined, the configuration is represented as

virtual lanes and fixed for the search procedure. Figure 10 a) shows the grid representation

with thick black lines to illustrate the virtual lanes. In Figure 10 b) these lanes are transformed

into a representation of one access direction. The corresponding access directions are specified

underneath the stacks.
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Figure 10: Example from Figure 8. Thick black lines illustrate the virtual lanes in a). In b)
these lanes are transformed into a representation of one access direction.

Step 2 - Tree search in virtual lanes

For the lower bound heuristics, we build on the adapted lower bound for one access direction:

We use the same procedure as for one direction to calculate the BX moves as well as to derive

the demand, supply and the demand surplus DS(g∗) and g∗. After the demand surplus DS(g∗)

has been calculated, the next step is to determine the necessary number of GX lanes nGX . This

cannot be calculated in the UPMP via ni
GX = max(0, [DS(g∗)/(J ·T )]), since the length of each

virtual lane can be different. Also calculating the number of GX moves via nGX =
∑ni

GX
j=1 ng∗(i)

is problematic. It could make sense to select a lane that is more costly in terms of GX moves

than another lane, but at the same time frees up more space. In fact, we need to select the

lanes where a minimum number of GX moves is necessary to free up enough space for DS(g∗).

Therefore, we use a MIP formulation that minimizes the number of moves. The notation is

shown in Table 4.

Table 4: Notation of the MIP model

Sets and Indices

L Number of virtual lanes (l ∈ {1, ..., L}) with well-placed
items of a priority group g < g∗)

Parameters

kl Cost of moving all well-placed items with a priority group
g < g∗

pl Potentially freed space of lane l calculated via the length
of each lane l minus the well-placed items with g >= g∗

Decision variables

yl ∈ {0, 1} Binary decision variable, if virtual lane l is selected to be
emptied
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Parameter
type

l1 l2 l4 l5 l6 l7 l8

kl 1 1 1 1 1 1 1
pl 2 1 2 4 2 2 1

Table 5: kl and pl for each lane l of the example.

The MIP model to calculate GX moves is:

min
∑
l∈L

klyl (5.7)

∑
l∈L

ylpl ≥ DS(g∗) (5.8)

yl ∈ {0, 1} ∀l ∈ L (5.9)

The objective function in term (5.7) minimizes the sum of costs of the selected lanes. Con-

straint (5.8) ensures that the space requirement is fulfilled, which means that the sum of freed

up storage slots must be equal or higher than the demand surplus DS(g∗).

Applying the proposed lower bound on the example of Figure 10, we get four BX moves. For

the demand surplus, DS(g∗) = 1 and g∗ = 3. Next, we calculate the costs kl to empty each

lane, as well as the potentially freed up space pl of each lane l. Table 5 shows the results of kl

and yl for each lane of our example. The lanes l with no well-placed items of a priority group

g < g∗ are not considered because no additional space for g∗ can be created. Therefore, lane l3

can be neglected.

In this simple example, any lane besides l3 would free up the required one storage location for

items with g >= g∗. Since the costs are for all lanes the same, one of them can be chosen at

random. We add one GX move to the lower bound and get an estimation of overall five moves

to sort the storage.

5.1 Impact of access direction fixing

As indicated at the beginning of the section, in our problem definition we fix the access directions

for each stack over the course of the search. Restricting the solution space might increase the

required number of moves in certain situations. We show this effect based on two examples in

Figure 11 and 12.

The example in Figure 11 a) shows the result of the network flow model for corner access from

south and west. The unit load of priority group 2 at stack S7 is blocked by two unit loads in

the stacks S8 and S9. However, this blockage could be resolved by a single move if the access

directions are not fixed. Figure 11 b) shows possible places to relocate the load in stack S8

(light-gray crosshatch) when accessing it from the west. This allows access to the load in stack

S7 from the south without any blockage by passing over the empty stack S8. Thus, stack S8 is

accessed from two different access directions over the course of the pre-marshalling operation.
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Placing an item at S2 or S5 is, however, problematic, as this leads to a hole as the empty stack

S8 cannot be directly accessed anymore. Additional rules to prevent holes are necessary, but

this limits the use of available storage locations.
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Figure 11: The example in a) shows a configuration with access direction fixing illustrating two
blocking unit loads in bold red. In b) all blockage is resolved by moving the unit load of stack
S8 (box with thick purple lines) to a possible location indicated with crosshatched tiles and a
light gray number.

Figure 12 a) is another example with three access directions, where the items at stack S12 and

at stack S18 are blocked. The network flow model would propose to relocate two blocking items

in front (e.g., S7 and S19), but again, as shown in 12 b), a solution is possible via a single move

in case there is no access direction fixing. The item from stack S13 can be moved via west or

south access to the light-gray crosshatched locations. Stacks S12 and S18 can be accessed via

stack S13 from the south and west. The difficulty is to maintain this access over time: When

placing a unit load at stack S13, it must be ensured that it does not block any other unit loads

in both access directions.
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Figure 12: Example in a) shows a configuration with access direction fixing illustrating two
blocking unit loads in bold red. In b) all blockage is resolved by moving the unit load of stack
S13 (box with thick purple lines) to a possible location indicated with a crosshatched tile and
a light gray number.

These two examples show that fixing the access directions may require additional moves com-
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pared to solutions where a stack can be visited from several access directions over time. This

means that the network flow model is not a valid lower bound without access direction fixing.

However, real-life use-cases benefit from access direction fixing due to easier traffic management

and a more stable and coherent configuration, especially for changes of priorities and incoming

unit loads. To assess the share of instances, where additional moves are required compared to

the network flow model further investigation is required.

6 Computational experiments

The goal of our analysis is to evaluate the effects of different access directions and assess the

performance of the proposed solution approaches for the UPMP. Therefore, we introduce a pub-

licly available dataset at https://doi.org/10.5281/zenodo.6791321 and present the results

in terms of the number of solved instances, runtime, and total moves. We further analyze the

the gap of our lower bound at the root node, as well as provide insights into the value of multiple

access directions. We conduct our computational experiments on AMD EPYC 7401P CPUs at

2.45 GHz. Our algorithms are implemented in Python applying Gurobi 9.5 with the default

parameters for both the network flow model and the MIP. The execution time for each instance

is limited to one hour of CPU time.

6.1 Instance generator and dataset

We develop an instance generator for the UPMP that places unit loads in a storage bay depend-

ing on the defined access directions. In addition to allowing up to four access directions (north,

south, east and west), we vary the number of columns, rows and tiers of the storage bay, as

well as the fill percentage. The instance sizes are inspired by real-world block stacking storage

systems in production and logistics. We model five priority groups that can occur with uniform

probability. We place unit loads in the storage bay successively at random and generate a new

instance for each possible combination. During this procedure, it is necessary to consider the

defined access directions to provide free storage locations that are directly accessible and avoid

gaps. The generated instances may be infeasible, especially for high fill percentages. We gener-

ate a dataset with 1650 instances in which there are ten instances for each possible combination

of the parameters shown in Table 6.

The access variants (combinations of possible access directions) are:

• north (referred to as single)

• north and west (referred to as corner)

• north and south (referred to as opposite)

• north, south and west (referred to as three)

• all directions (referred to as four)

Besides the sizes with a quadratic footprint shown in Table 6 other rectangular footprints are

possible but omitted from this study due to limited space. The dimensions start at a 3x3x1
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Parameter Value

Access directions {single, corner, opposite, three, four}

Size (L x W x T)
{3x3x1, 4x4x1, 5x5x1, 6x6x1, 7x7x1,
8x8x1, 9x9x1, 10x10x1, 3x3x2, 4x4x2

5x5x2}
Fill percentage {40%, 60%, 80%}

Table 6: Varied parameters of the generated benchmark dataset

Access
variant

No.
solved

No. in-
feasible

No.
timeout

single 162 8 70
corner 202 0 38

opposite 219 0 21
three 232 0 8
four 237 0 3

Table 7: Results summary for a single tier, showing the number of instances solved, proved
infeasible and unsolved (in total 240 instances: 10 instances for 8 sizes and 3 fill levels).

footprint (L x W x T) up to a size where we reach the limit of solvability due to timeouts for

all access variants. A maximum 10x10x1 footprint for a single tier (overall 1200 instances: 10

instances for 5 access variants, 8 sizes and 3 fill levels) and a 5x5x2 footprint for two tiers

(overall 450 instances: 10 instances for 5 access variants, 3 sizes and 3 fill levels) results in up

to 100 or respectively 50 storage locations for a single storage bay. This covers a large amount

of real scenarios of small storage systems with a single bay.

6.2 Runtime and number of instances solved

Table 7 provides an aggregated summary of the number of instances solved over all sizes and fill

levels for a single tier. The detailed results are provided in Appendix A.1. The access variants

are ranked in ascending order according to the number of solved instances, which represent all

feasible solutions. In terms of infeasible instances, we are only able to verify infeasibility for

instances of a single access direction and very small sizes when the fill level is at 80%. We

anticipate that there are some infeasible instances for other access variants as well, but we are

unable to prove this within the timeout. Timeouts occur when we reach the limits of solvability

for each access direction.

Figure 13 shows lineplots with the amount of up to ten solved instances (left column) and

boxplots (without outliers) illustrating the runtime in seconds (right column) for each fill level

(rows). Each plot provides the results for all access variants (legend) for each size of the dataset

(x-axis).

The amount of solved instances goes down with increasing size and fill levels. With only a single

access direction we can not solve all instances at a fill level of 40% (infeasible and timeout),

however with four access directions, we solve all instances up to a fill level of 80% and size

10x10x1. Compared to single access, the runtimes for the access variants with multiple access

directions stay at a very low level. The overall mean runtime decreases from 71.42 seconds
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Figure 13: Overview of solved instances for a single tier and their runtimes for each fill level
over the bay sizes calculated by L x W x T.

for single access, to 56.07 seconds for corner, to 31.31 seconds for three, to 8.31 seconds for

opposite and 7.72 seconds for four access directions. Note that the number of solved instances,

including larger sizes, increases for multiple access directions. The maximum runtime for four

access directions up to a size of 9x9x1 is 30.43 seconds. Even for 10x10x1 where not all instances

could be solved anymore, we do not exceed 187.16 seconds.

At the 80% fill level, finding a solution becomes more difficult: more infeasible configurations

appear due to a limited amount of empty storage locations and, on average, more required

moves are necessary to sort the block storage. For a single access direction we encounter four

infeasible instances of sizes 3x3x1 and 4x4x1 (see also Table 10). The size 5x5x1 is the only

size where all instances for each access direction can be solved. The reason for this is that the

80% fill level leaves 5 empty locations for premarshalling, which is sufficient to clear a full lane.

At the size 10x10x1, using three access directions results in six instances solved, and using four

access directions does not allow for solving all instances. This overview shows in particular

that enabling multiple access directions allows many more instances to be solved than using a

single access direction. Furthermore, the higher numbers of directions lead to comparatively

low runtimes.

Table 8 presents a short summary of the results for two tiers. Detailed results are again provided

in Appendix A.1. Our experiments show that adding additional tiers in a scenario with a fully
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Access
variant

No.
solved

No. in-
feasible

No.
timeout

single 55 10 25
corner 67 0 23

opposite 82 0 8
three 84 0 6
four 87 0 3

Table 8: Results summary for two tiers showing the number of solved, infeasible and unsolved
instances (in total 90 instances: 10 instances for 3 sizes and 3 fill levels)

shared storage strategy is very demanding. Already at a size limit of 5x5x2, we are not able to

solve all instances with any access variant. Nevertheless, multiple access directions improve the

situation: The number of solved instances increases from 55 for a single access direction to 87

out of 90 for four access directions.

Figure 14: Overview of solved instances with two tiers and their runtimes for each fill level over
the bay sizes calculated by L x W x T.

Figure 14 shows the plots for solved instances and their runtime for two tiers. For a fill level
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Access Directions
Mean Root Node
Gap 1-tier in %

Mean Root Node
Gap 2-tier in %

single 7.89 20.95
corner 0.86 3.67

opposite 0.15 3.31
three 0.00 0.94
four 0.00 0.07

Table 9: Root node gaps of our proposed lower bound to the optimal solution.

of 40%, all instances are solved with overall very low runtimes. The runtimes are even slightly

increasing with the amount of access directions due to an increased branching factor (more

virtual lanes). For higher fill levels, the runtime is decreasing with an increasing amount of

access directions due to less moves that are required. For two tiers, we are able to solve all

instances up to size 4x4 and 80% fill level with two opposite, three and four access directions.

Finding a solution for corner access is already difficult for very small instances, since an unsorted

stack in the back corner may lead to an infeasible instance that cannot be solved if not enough

empty storage slots are available. Even though we are only able to solve rather small instances,

the improvement of multiple to a single access direction is evident as a single direction fails to

solve any instance with 80% fill level. The overall mean runtimes improve from 101.19 seconds

for single access, to 93.82 seconds for corner, to 60.80 seconds for three, to 57.03 seconds for

opposite to 11.62 seconds for four access directions.

6.3 Root node analysis

Table 9 provides an analysis of the performance of our approach in the root node. We compare

the lower bound heuristics for the root node with the exact result of required moves for all

solved instances. For a single tier, the root node gap decreases from 7.89% for a single access

direction to 0.00% for three and four access directions. In the case of two tiers, the root node

gap decreases from 20.95% to 0.07% for four access directions. This remarkable decrease in gap

is likely due to generally fewer required moves, a larger action and solution space, as well as

shallow virtual lanes. In case of two access directions, the lower bound for opposite directions is

slightly more accurate than for the corner case. Reason are generally less moves and also more

shallow virtual lanes for opposite directions.

6.4 Required number of moves

Figure 15 shows box plots for the number of required moves for each access direction and all

fill levels for size 5x5x1. This is the only size where all instances could be solved without any

infeasible instances or timeouts. We provide box plots for all other sizes in Appendix A.2,

but note that the general trend of the results are the same as seen here. The plots clearly

illustrate the big advantage of multiple access directions compared to a single access direction.

Unsurprisingly, the number of required moves goes down for each additional access direction

that is available, but the amount of decline is significant even for just a single extra access

direction. Furthermore, high fill levels are especially challenging as they require many moves to
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1

Figure 15: Box plots (without outliers) for size 5x5x1 showing the number of moves for each
access variant over all fill levels. This is based on the solved instances shown in Figure 13.

1

Figure 16: Box plots (without outliers) for size 5x5x2 showing the number of moves for each
access variant over all fill levels. This is based on the solved instances shown in Figure 14.

sort, but there are not many free storage locations available.

The same footprint for the two tier 5x5x2 instances in Figure 16 shows, in general, a similar

picture as for a single tier. However, in contrast to the single tier instances, not all instances

could be solved (see Figure 14). The main issue with multiple tiers is that the likelihood of

encountering an unsorted stack grows with the size of the instance, and this can require several

unit load movements to fix before the rest of the stacks can be dealt with.

7 Impact of multiple access directions for operations

The main advantage of block stacking storage systems under a fully shared storage policy is to

achieve high storage densities. However, high storage density comes at the cost of decreased

accessibility due to blockage. Our results clearly show that this disadvantage can be significantly

mitigated if up to four access directions are supported both technically by the load carriers and

algorithmically in the control system. As discussed in the following, the number of access

directions immensely impact the system in three dimensions of (1) efficiency and feasibility, (2)

layout decisions, and (3) traffic management.
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Efficiency and feasibility Our results show that the required number of moves to sort a

storage bay drop considerably with an increasing number of access directions. This becomes

especially visible at high fill levels. The main reasons are (1) an increased number of directly

accessible unit loads, (2) a decrease in average lane depth (less blocking unit loads and better

free slots), and (3) variable determination of lane depth and configuration (increased flexibility

to access unit loads).

Our experiments show clearly that only using a single access leads to a large number of infeasible

instances at high fill rates. Thus, single access is more suitable for scenarios where no sorting is

necessary. Increasing the number of tiers also leads to a much higher number of moves, as well

as many infeasible instances. Hence, we recommend to allow mixing of SKUs in lanes but not

within a stack (pure stacks).

Layout decisions Access directions have a direct impact on layout decisions. Indeed, our

study results clearly suggest that when planning an aisle configuration, planners should consider

the use of multiple access directions. Of course, this results in a trade-off between aisle- and

storage-space (fast access and travel times versus a high space utilization). Further access

directions might require additional aisle space, but can enable deeper bays without suffering

bad access times. Another aspect to be considered during layout decisions are the different

results for two sided access: If possible, an access from two opposite directions is preferable to

corner access as the pre-marshalling results in less moves. Reason is that in the opposite setup

lanes are always divided in two parts and, hence, are shorter on average. Furthermore, in an

opposite access direction setup for vehicle operations no access from crossing directions needs

to be considered and most standard load carriers support opposite access (e.g., pallets).

Operational control Arrival and retrieval times of unit loads can be stochastic. For scenarios

with high uncertainty for the in- and outbound flow sequence, the higher number of directly

accessible unit loads and the higher number of access direction options in a multiple access

scenario is advantageous as less sorting effort results.

Furthermore, the concept of virtual lanes is beneficial for the vehicle management. As we build

only contiguous virtual lanes, no crossing paths of vehicles—as illustrated in the examples of

Section 5.1—can occur. Hence, vehicle management does not need to consider collision avoid-

ance within the bay.

In general, our results indicate that multiple access directions can greatly increase sorting effi-

ciency for high-density systems, and we suspect that this will hold true also when for storage

and retrieval operations. However, further investigations are needed to confirm the value of

multiple access directions in a more general intralogistics setting.

8 Conclusion and future research

We introduce the UPMP for sorting block stacking storage systems in idle time. Solving the

UPMP allows organizations to increase the storage density of their block stacking storage, while

still ensuring fast access times. This enables new kinds of compact layouts for many types of
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storage systems that consist of movable floor units, like pallet-based block storage, RMFS,

container yards, material transport trolleys and many more.

Our solution approach sorts storage bays with any combination of up to four access directions to

minimize the number of moves. In the case of the UPMP with a single access direction, we show

that the solution approach from the CPMP can be directly applied. For any combination of

multiple access directions, we present a novel two-step approach that fixes the access directions

for each stack throughout the pre-marshalling process and allows for solving real-world sized

instances with up to 81 storage locations without any timeouts within a limit of one hour.

The experiments show that multiple access directions significantly reduce the required number

of moves and allow solving much more instances with faster runtimes, especially for high fill

levels. Our detailed comparison of access directions and tiers provides valuable insights for the

development and layout design of highly dense block storage systems.

In a next step, several future research directions are possible. Our search procedure and adapted

lower bound heuristic proves to be strong with a very low root node gap for multiple access

directions. However, further improvements to accelerate the search are possible (see e.g., Tanaka

and Tierney (2018); Tanaka et al. (2019); Tierney et al. (2017)).

Furthermore, future work is required to increase the applicability of our approach to a variety

of use cases. Extending the scope to large, multi-bay warehouses would require adjusting the

objective of minimizing the number of moves to also consider travel time or distance (e.g.,

Parreño-Torres, Alvarez-Valdes, Ruiz, and Tierney (2020)). Finally, heuristic approaches have

had significant success for the CPMP, and could be also useful for solving large instances of the

UPMP.
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A Appendix

A.1 Detailed results for each parameter set

This section contains the results for all parameter sets in tabular format. Table 10 gives the

results for single tier variants, Table 11 for the two tier variants, both having the same headers:

The first three columns contain the bay size, the access variant, and the fill level respectively.

Column four to six give the number of solved instances, the number of infeasible instances,

and the number of instances for which a timeout occurred. The sum corresponds to the total

number of instances which is ten in all cases. The last three columns give the mean number

of moves, the mean number of visited nodes during the A* search, and the mean total runtime

over both phases of the algorithm over the number of solved instances (excluding the number

of infeasible instances). If no solution could be found for any of the the instances the last three

columns contain a dash (-).

Size

(L x W x T)

Access

variant

Fill

level

No.

solved

No. in-

feasible

No.

time-

out

Mean

moves

Mean

visited

nodes

Mean

run-

time

3x3x1 single 40% 10 0 0 0.40 1.40 0.00

3x3x1 single 60% 10 0 0 1.80 3.10 0.01

3x3x1 single 80% 6 4 0 4.50 9.17 0.03

3x3x1 corner 40% 10 0 0 0.10 1.10 0.00

3x3x1 corner 60% 10 0 0 0.50 1.50 0.01

3x3x1 corner 80% 10 0 0 1.10 3.30 0.02

3x3x1 opposite 40% 10 0 0 0.00 1.00 0.00

3x3x1 opposite 60% 10 0 0 0.00 1.00 0.00

3x3x1 opposite 80% 10 0 0 0.30 1.30 0.00

3x3x1 three 40% 10 0 0 0.00 1.00 0.00

3x3x1 three 60% 10 0 0 0.00 1.00 0.00

3x3x1 three 80% 10 0 0 0.10 1.10 0.00

3x3x1 four 40% 10 0 0 0.00 1.00 0.00

3x3x1 four 60% 10 0 0 0.00 1.00 0.00

3x3x1 four 80% 10 0 0 0.00 1.00 0.00

4x4x1 single 40% 10 0 0 2.00 3.10 0.02

4x4x1 single 60% 10 0 0 5.60 17.30 0.10

4x4x1 single 80% 6 4 0 9.50 572.83 1.71

4x4x1 corner 40% 10 0 0 0.60 1.60 0.01

4x4x1 corner 60% 10 0 0 1.70 2.70 0.04

4x4x1 corner 80% 10 0 0 3.70 28.90 0.50

4x4x1 opposite 40% 10 0 0 0.30 1.30 0.01

4x4x1 opposite 60% 10 0 0 0.80 1.80 0.02

4x4x1 opposite 80% 10 0 0 1.80 2.80 0.03

4x4x1 three 40% 10 0 0 0.00 1.00 0.00

4x4x1 three 60% 10 0 0 0.70 1.70 0.03
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Size

(L x W x T)

Access

variant

Fill

level

No.

solved

No. in-

feasible

No.

time-

out

Mean

moves

Mean

visited

nodes

Mean

run-

time

4x4x1 three 80% 10 0 0 1.10 2.10 0.02

4x4x1 four 40% 10 0 0 0.00 1.00 0.00

4x4x1 four 60% 10 0 0 0.20 1.20 0.01

4x4x1 four 80% 10 0 0 0.70 1.70 0.02

5x5x1 single 40% 10 0 0 3.40 4.40 0.06

5x5x1 single 60% 10 0 0 8.10 25.30 0.29

5x5x1 single 80% 10 0 0 16.80 13700.10 93.17

5x5x1 corner 40% 10 0 0 1.60 2.60 0.09

5x5x1 corner 60% 10 0 0 3.00 4.60 0.20

5x5x1 corner 80% 10 0 0 6.80 104.50 4.78

5x5x1 opposite 40% 10 0 0 0.90 1.90 0.06

5x5x1 opposite 60% 10 0 0 2.30 3.30 0.17

5x5x1 opposite 80% 10 0 0 4.30 5.30 0.22

5x5x1 three 40% 10 0 0 0.90 1.90 0.09

5x5x1 three 60% 10 0 0 1.30 2.30 0.12

5x5x1 three 80% 10 0 0 1.70 2.70 0.11

5x5x1 four 40% 10 0 0 0.10 1.10 0.02

5x5x1 four 60% 10 0 0 0.80 1.80 0.10

5x5x1 four 80% 10 0 0 1.30 2.30 0.12

6x6x1 single 40% 10 0 0 7.40 17.20 0.38

6x6x1 single 60% 10 0 0 14.20 495.70 10.79

6x6x1 single 80% 4 0 6 23.25 19879.75 297.37

6x6x1 corner 40% 10 0 0 3.30 4.30 0.38

6x6x1 corner 60% 10 0 0 6.40 7.40 0.77

6x6x1 corner 80% 9 0 1 11.00 4536.78 368.82

6x6x1 opposite 40% 10 0 0 1.30 2.30 0.19

6x6x1 opposite 60% 10 0 0 3.10 4.10 0.52

6x6x1 opposite 80% 10 0 0 7.70 63.40 6.18

6x6x1 three 40% 10 0 0 1.10 2.10 0.25

6x6x1 three 60% 10 0 0 3.30 4.30 0.75

6x6x1 three 80% 10 0 0 4.50 5.50 0.77

6x6x1 four 40% 10 0 0 0.30 1.30 0.09

6x6x1 four 60% 10 0 0 1.20 2.20 0.41

6x6x1 four 80% 10 0 0 2.70 3.70 0.53

7x7x1 single 40% 10 0 0 10.80 53.50 2.27

7x7x1 single 60% 10 0 0 18.50 2600.10 103.96

7x7x1 single 80% 0 0 10 - - -

7x7x1 corner 40% 10 0 0 7.20 8.20 1.76

7x7x1 corner 60% 10 0 0 10.60 11.60 2.75
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Size

(L x W x T)

Access

variant

Fill

level

No.

solved

No. in-

feasible

No.

time-

out

Mean

moves

Mean

visited

nodes

Mean

run-

time

7x7x1 corner 80% 5 0 5 16.20 4683.60 1107.87

7x7x1 opposite 40% 10 0 0 1.80 2.80 0.65

7x7x1 opposite 60% 10 0 0 6.00 9.90 3.13

7x7x1 opposite 80% 10 0 0 11.60 122.90 35.53

7x7x1 three 40% 10 0 0 2.00 3.00 1.02

7x7x1 three 60% 10 0 0 4.40 5.50 2.16

7x7x1 three 80% 10 0 0 8.60 14.30 6.33

7x7x1 four 40% 10 0 0 1.30 2.30 0.82

7x7x1 four 60% 10 0 0 2.50 3.50 1.66

7x7x1 four 80% 10 0 0 5.60 6.60 2.85

8x8x1 single 40% 10 0 0 13.40 1916.70 137.25

8x8x1 single 60% 7 0 3 25.57 12340.14 823.97

8x8x1 single 80% 0 0 10 - - -

8x8x1 corner 40% 10 0 0 8.10 9.10 3.49

8x8x1 corner 60% 10 0 0 14.20 28.50 12.57

8x8x1 corner 80% 2 0 8 22.00 82.50 21.61

8x8x1 opposite 40% 10 0 0 4.60 5.60 2.72

8x8x1 opposite 60% 10 0 0 9.70 10.70 6.06

8x8x1 opposite 80% 8 0 2 16.25 257.38 76.50

8x8x1 three 40% 10 0 0 4.30 5.30 3.85

8x8x1 three 60% 10 0 0 6.70 7.70 5.94

8x8x1 three 80% 8 0 2 13.75 510.75 306.57

8x8x1 four 40% 10 0 0 2.70 3.70 3.52

8x8x1 four 60% 10 0 0 5.20 6.20 6.79

8x8x1 four 80% 10 0 0 9.20 10.20 7.97

9x9x1 single 40% 9 0 1 17.89 205.33 42.39

9x9x1 single 60% 3 0 7 30.33 1540.67 154.91

9x9x1 single 80% 0 0 10 - - -

9x9x1 corner 40% 10 0 0 10.50 11.50 7.38

9x9x1 corner 60% 9 0 1 21.56 22.56 16.15

9x9x1 corner 80% 1 0 9 36.00 3515.00 1529.92

9x9x1 opposite 40% 10 0 0 5.60 6.60 5.33

9x9x1 opposite 60% 10 0 0 14.00 15.20 13.94

9x9x1 opposite 80% 2 0 8 22.00 43.00 24.12

9x9x1 three 40% 10 0 0 5.10 6.10 7.58

9x9x1 three 60% 10 0 0 12.50 13.50 21.43

9x9x1 three 80% 8 0 2 18.38 82.62 133.51

9x9x1 four 40% 10 0 0 4.00 5.00 8.59

9x9x1 four 60% 10 0 0 8.50 9.50 22.32
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Size

(L x W x T)

Access

variant

Fill

level

No.

solved

No. in-

feasible

No.

time-

out

Mean

moves

Mean

visited

nodes

Mean

run-

time

9x9x1 four 80% 10 0 0 14.60 15.60 19.42

10x10x1 single 40% 7 0 3 22.14 240.57 39.09

10x10x1 single 60% 0 0 10 - - -

10x10x1 single 80% 0 0 10 - - -

10x10x1 corner 40% 10 0 0 16.20 17.20 16.78

10x10x1 corner 60% 8 0 2 30.00 41.62 43.20

10x10x1 corner 80% 0 0 10 - - -

10x10x1 opposite 40% 10 0 0 8.70 9.70 13.22

10x10x1 opposite 60% 9 0 1 18.89 21.44 31.16

10x10x1 opposite 80% 0 0 10 - - -

10x10x1 three 40% 10 0 0 7.30 8.30 16.85

10x10x1 three 60% 10 0 0 17.70 18.70 41.91

10x10x1 three 80% 6 0 4 28.50 334.67 441.85

10x10x1 four 40% 10 0 0 6.40 7.40 22.71

10x10x1 four 60% 10 0 0 11.20 12.20 39.44

10x10x1 four 80% 7 0 3 18.86 31.14 65.20

Table 10: Results for a single tier rounded to the second decimal
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Size
(L x W x T)

Access
variant

Fill
level

No.
solved

No. in-
feasible

No.
time-
out

Mean
moves

Mean
visited
nodes

Mean
run-
time

3x3x2 single 40% 10 0 0 4.80 10.20 0.04
3x3x2 single 60% 10 0 0 9.80 296.70 0.64
3x3x2 single 80% 0 10 0 - - -
3x3x2 corner 40% 10 0 0 1.80 2.80 0.02
3x3x2 corner 60% 10 0 0 4.70 6.90 0.07
3x3x2 corner 80% 5 0 5 9.00 144.60 1.51
3x3x2 opposite 40% 10 0 0 1.20 2.20 0.02
3x3x2 opposite 60% 10 0 0 3.30 4.70 0.06
3x3x2 opposite 80% 10 0 0 4.60 14.90 0.20
3x3x2 three 40% 10 0 0 0.90 1.90 0.02
3x3x2 three 60% 10 0 0 2.20 3.20 0.04
3x3x2 three 80% 10 0 0 5.20 21.10 0.32
3x3x2 four 40% 10 0 0 1.10 2.10 0.03
3x3x2 four 60% 10 0 0 1.70 2.70 0.04
3x3x2 four 80% 10 0 0 2.80 3.80 0.06
4x4x2 single 40% 10 0 0 8.40 93.80 0.65
4x4x2 single 60% 10 0 0 16.50 31331.60 183.02
4x4x2 single 80% 0 0 10 - - -
4x4x2 corner 40% 10 0 0 5.30 6.50 0.17
4x4x2 corner 60% 10 0 0 9.60 69.30 3.12
4x4x2 corner 80% 5 0 5 14.00 16817.60 553.42
4x4x2 opposite 40% 10 0 0 3.00 4.00 0.14
4x4x2 opposite 60% 10 0 0 6.80 8.10 0.37
4x4x2 opposite 80% 10 0 0 13.00 4141.80 137.62
4x4x2 three 40% 10 0 0 3.00 4.00 0.20
4x4x2 three 60% 10 0 0 4.90 5.90 0.33
4x4x2 three 80% 10 0 0 10.30 3987.20 204.97
4x4x2 four 40% 10 0 0 2.50 3.50 0.22
4x4x2 four 60% 10 0 0 4.90 5.90 0.42
4x4x2 four 80% 10 0 0 7.30 60.90 4.16
5x5x2 single 40% 10 0 0 13.50 3028.70 46.02
5x5x2 single 60% 5 0 5 24.00 47003.40 652.39
5x5x2 single 80% 0 0 10 - - -
5x5x2 corner 40% 10 0 0 9.40 11.30 0.79
5x5x2 corner 60% 7 0 3 15.00 3305.43 495.75
5x5x2 corner 80% 0 0 10 - - -
5x5x2 opposite 40% 10 0 0 6.30 7.30 0.71
5x5x2 opposite 60% 10 0 0 11.10 221.10 32.85
5x5x2 opposite 80% 2 0 8 21.00 13519.50 1478.46
5x5x2 three 40% 10 0 0 6.00 7.00 1.00
5x5x2 three 60% 10 0 0 10.00 11.00 3.09
5x5x2 three 80% 4 0 6 16.25 6282.00 751.99
5x5x2 four 40% 10 0 0 4.90 5.90 1.24
5x5x2 four 60% 10 0 0 7.70 8.70 3.54
5x5x2 four 80% 7 0 3 13.14 629.71 130.59

Table 11: Results for two tiers rounded to the second decimal
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A.2 Box plots for the number of moves for all sizes

This section contains boxplots for the number of moves for differentiated by setup. Figure 17

contains the results for the single tier instances, Figure 18 the results for the two tier instances.

The results are differentiated by the size of the bays on the x-axis (L x W x T), the fill level in

the row, and by the considered access directions using colors.

Figure 17: Box plots (without outliers) for a single tier showing the number of moves for each
access variant for all sizes and each fill level. This is based on the solved instances shown in
Figure 13.
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Figure 18: Boxplots (without outliers) for two tiers showing the number of moves for each access
variant for all sizes and each fill level. This is based on the solved instances shown in Figure 14.
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