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A B S T R A C T

In order to determine fiber volume contents (FVC) of low contrast CT images of carbon fiber reinforced
polyamide 6, a novel thresholding method and a convolutional neural network are implemented with absolute
deviations from experimental values of 2.7% and, respectively, 1.46% on average. The first method is a sample
thickness based adjustment of the Otsu threshold, the so-called ‘‘average or above (AOA) thresholding’’, and
the second is a mixed convolutional neural network (CNN) that directly takes 3D scans and the experimentally
determined FVC values as input. However, the methods are limited to the specific material combination,
process-dependent microstructure and scan quality but could be further developed for different material types.
1. Introduction

Owing to their superior lightweight potential through excellent spe-
cific strength and stiffness, fiber reinforced polymers (FRP) gain market
relevance in engineering materials mostly substituting metals in the
automotive, aeronautic, energy or sports sector [1]. While thermosets
are still more widespread, there seems to be a trend in the field of
matrix systems towards using thermoplastics, since they offer more
advantageous recycling properties [2] and rapid processing [3]. Despite
being more expensive, the use of carbon fibers instead of glass fibers
provides superior mechanical properties concerning most aspects, like
tensile and flexural strength as well as Young’s modulus [4]. Consider-
ing the evaluation of μCT images, which is one of the most common
non-destructive testing (NDT) methods for heterogeneous materials,
carbon fibers embedded in polymers prove to be challenging. With their
smaller diameter (5 μ m–7 μ m) and close proximity to polymer matrix
materials regarding density, reaching both sufficient resolution and
contrast for good distinction between fiber and matrix is difficult [5,6].

While continuous FRP, like unidirectional tapes, show the best
mechanical properties, discontinuously fiber reinforced polymers allow
for high design flexibility at relatively low costs [7]. The latter are
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in general more challenging to characterize, owing to having a more
complex, stochastic microstructure. The complexity of the microstruc-
ture of the material in this work arises both from the extrusion part
(stochastic fiber length distributions) and the compression molding part
of the process (locally differentiating fiber volume contents as well as
fiber orientation distributions) (cf. Section 3).

In order to be able to characterize the microstructure quantitatively
anyway and to create mechanical material models, necessary quanti-
ties for description have developed. Fiber length distributions (FLD)
describe how many fibers of different lengths occur in a specimen. The
fiber length is relevant to the mechanical properties — only above a
certain critical fiber length the maximum stress transfer is possible [8].

The fiber orientation distribution is classically described by means
of three-dimensional fiber orientation tensors (FOT) of second or fourth
order [9–11]. FOT especially affect the isotropy properties. These ten-
sors can be difficult to determine experimentally because removal
of the matrix implies dissolution of the orientation-giving structure.
Accordingly, they are determined from μCT images using structure
tensor-based image analysis [12,13]. Since this evaluation is limited
to a certain sample size due to the necessary resolution, there are
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different approaches to interpolate these local fiber orientation tensors
to determine a more global orientation distribution [5,14–16].

Probably the simplest sounding quantity at first is that of the
fiber volume content (FVC). The percentage of fibers compared to the
matrix in a specimen obviously affects the mechanical properties of that
specimen. In stochastic microstructures, the fiber content varies to a
certain degree throughout a component.

Fiber volume contents can be determined experimentally. Pyrolysis,
i.e. ashing of the matrix and subsequent weighing of the fibers in
comparison to the total mass, is the most common method (also called
thermogravimetric analysis (TGA)). This method works quite reliably
for glass fibers [17], but poses difficulties for carbon fibers [18]. The
authors tested this procedure for the material used in this paper but
encountered problems as well. Either the temperature or the period
of exposure to temperature was too high and the carbon fibers were
externally attacked. Or one of both or both were too small and then
the fibers did not disperse properly because residues of the matrix still
held the fibers together.

Instead, there is also the option of chemically dissolving the ma-
trix through acid, which is a more stable method for carbon fibers
as well. Neither of these methods, however, is a way to determine
FVC for natural fiber reinforced polymers. Natural fibers would be
attacked by both processes [19]. Moreover, these methods have other
disadvantages: Process-related, fiber volume contents also fluctuate
within a sample and exhibit specific characteristics along different
axes (compare ‘‘shell-core effect’’ [5,20–22]). These cannot be detected
by the experimentally destructive determination of the fiber volume
content. Several sections would have to be made in order to obtain
three-dimensional information. A 3D μCT image, on the other hand,
can also provide information about local volume distributions and thus
help to understand process correlations. Furthermore, μCT scans are
often required for fiber orientation analysis anyway, so it would not
mean any additional effort to determine fiber volume contents from
these scans as well.

Despite all these advantages, there is no standardized computational
method known to the authors for reliably determining the fiber volume
content of carbon fiber reinforced polymers. A simple threshold to dis-
tinguish between matrix voxels and fiber voxels turns out to be clearly
too inaccurate [23–25], especially for discontinuously carbon fiber
reinforced polymers. For this reason, this paper deals with a comparison
of methods for the determination of fiber volume contents of carbon
fiber reinforced (CF) polyamide 6 (PA6) produced in the long fiber
reinforced thermoplastic direct (LFT-D) process [26]. Both thermo-
gravimetric analysis, so ashing the matrix, and chemical dissolution of
the matrix in acid followed by volume content determination through
the weighting of the fibers were tested experimentally. For the reasons
mentioned above, only the results of the chemical dissolution are
included in detail in this paper. Furthermore, two computational meth-
ods are presented. For this purpose, high-resolution three-dimensional
computed tomography images of the CF-PA6 samples are acquired. The
novel thresholding method ‘‘average or above’’ (AOA) was developed,
which was validated using the experimental FVC results of the chemical
dissolution of the matrix. In addition, a convolutional neural network
(CNN) was developed to predict the FVC directly from the 3D CT
images, which was trained using the scans and also the acid-based FVC
values.

2. State of the art

Gray value thresholding has been an image processing method
known for years. Multiple different automated thresholding methods
for picture segmentation have been developed; some of the most com-
mon are the one by Otsu in 1979 [27], the moment-preserving method
by Tsai [28] or the mean threshold [29–31]. Pre-implemented thresh-
olding methods in ImageJ have been used to determine the fiber
2

volume content of glass fiber reinforced polymers, e.g. in [32]. How-
ever, Pinter et al. mention that high contrast between matrix and
fiber is required, which is not necessarily given for CFRP. The au-
thors applied conventional thresholding techniques onto the material
at hand showing its inapplicability in this case in the methods (Sec-
tion 4). These common thresholding techniques are still widely used
when determining pores, voids or unsaturated and hence dry fiber
areas in composites [33]. Air inclusions are usually easy to detect
due to their high contrast. Nonetheless, even in the case of entrapped
air, deep learning has shown to outperform conventional thresholding
techniques, especially concerning the detection of small voids or the
detection of voids in volumes with small percentages of porosity [34].
A combination of machine learning (ML) and conventional thresholding
has also shown to be an option for low contrast and noisy X ray
images [35].

Gandhi et al. introduced a new μCT procedure as another thresh-
olding based option for FVC determination for glass fiber reinforced
polymers in 2020 [36]. While they state that the true threshold value
is unknown, they proposed to calculate the threshold value as the
histogram midpoint between the mean value representing the fibers
and the mean value of the background. Subsequently, they performed a
normalization step by dividing the individual fiber volume concentra-
tion of each slice by the average fiber concentration of the entire μCT
data set. They claim that this way the ambiguity in selecting the true
threshold value is resolved. The authors address the impossibility of
application of this technique onto the scans in this work in the methods
as well (Section 4).

For the problem of the reliable determination of the FVC of carbon
fiber reinforced plastics, deep learning (DL) represents a promising
opportunity to improve the status quo. CNNs have shown that they
can handle low contrast images and improve statements resulting from
those [37–42]. Necessary filtering and image processing steps do not
have to be found and applied by the engineer. In particular, deep
learning has been used for the segmentation of low-contrast carbon
fiber composites [43].

3. LFT-D process and material

The material used as the basis for the FVC determination in this
work is carbon fiber reinforced polyamide 6. It is produced in the so-
called ‘‘long fiber reinforced thermoplastic direct (LFT-D)’’ process [26]
(process graphic, e.g., in [5]). This process is characterized by its
inline compounding of the polymer, direct uncut fiber addition, and
subsequent compression molding of the plastificate/initial charge into
a plaque/part. Images of two plaques can be seen in Figs. 1 and 2.
The charge area, where the plastificate was inserted, can be optically
differentiated from the flow area that was filled during the compression
process.

The LFT-D process has the advantage that it is a fast process com-
pared to similar processes for FRP production and as a thermoplastic
matrix is used, the product is recyclable as the matrix can be molten.
The fact that the fibers are added to the polymer mass uncut, and are
only divided into smaller pieces by the shearing of the screw movement,
leads to pronounced fiber lengths distributions and typically slightly
higher aspect ratios that in comparable processes. In general, this pro-
cess causes locally varying characteristics of fiber length, fiber volume
content and fiber orientation exacerbating microstructure characteri-
zation and homogenization/material modeling. This is also due to the
initial charge already having specific porosity and fiber orientation
distributions [44].

For the investigations carried out, specimens from two different
plaques are used, that were produced in the same way (hence equal
fiber addition, mold temperature, screw speed, etc.). The specimens are
cut out of the plaques through waterjet cutting. The two cutting plans
are superimposed on an image of a plaque in Figs. 1 and 2.
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Fig. 1. Specimen sizes and positions in the first LFT plaque (cut by waterjet technique)
and insertion area of the plastificate at the left (white patterned area). The round
specimens were used for pyrolysis investigations and the rectangular specimens for the
chemical dissolution of the matrix (cf. the results in Table 3).

Fig. 2. Specimen sizes and positions in the second LFT plaque (cut via waterjet). The
results of the FVC measurement after chemical dissolution can be seen in Table 4.

It shall be mentioned that the round specimens in Fig. 1 were meant
for the experimental ashing process, while the rectangular specimens
were used for the chemical dissolution of the matrix. The round spec-
imens had a diameter of 25 mm as this was the size of the crucible,
in which the TGA was carried out. As an acid-based solution was
3

Table 1
Scan parameters of the different plaques. Plaque 1 was scanned on the Zeiss device,
plaque 2 on the Yxlon device.

Parameter Unit Plaque 1 Plaque 2

Voltage kV 100 110
Current mA 0.16 0.13
Voxel size μm 25.98 17.39
Linebinning parameter – – 2
Number of projections – 1450 2220
Exposure/Integration time ms 1000 800

utilized in the end, the specimens in the second plaque are exclusively
rectangular (cf. Fig. 2). Additionally, in plaque 1 (cf. Fig. 1) multiple
sizes of the rectangular specimens are cut: 𝐹𝐿𝐷1 and 𝐹𝐿𝐷10 have
the dimensions 10 mm × 10 mm × 3 mm, 𝐹𝐿𝐷2 and 𝐹𝐿𝐷11 have
the dimensions 20 mm × 20 mm × 3 mm and 𝐹𝐿𝐷3 and 𝐹𝐿𝐷12
have the dimensions 30 mm × 30 mm × 3 mm. Possible implications
of the specimen size on the fiber volume content and fiber length
distribution could thereby be detected. As there were no significant
changes in FVC between the medium sized sample and the biggest
ones, the authors assumed that a size in between (25 mm side length)
should be acceptable as dimension for the specimens of the second
plaque. In order to not cut any long fibers, a fiber length distribution
measurement was also conducted for the differently sized specimens of
plaque 1. The fiber length measurements showed that it is extremely
rare for fiber lengths to exceed 10 mm. Furthermore, the on average
fiber length increased between the smallest and the medium specimen
size but did not in both cases between the medium and the large
specimen size. Hence, a saturation of the influence of the specimen
size on the fiber length can also be assumed. For the reasons of the
FLD measurements, the crucible size of the economically used TGA
and the saturation of the FVC adjustment due to the sample size, the
side length of 25 mm was chosen for the nine specimens in plaque 2.
Additionally, the specimens were extracted from different regions of
the plaques. In plaque 1, the three differently sized specimens are cut
out of the charge area (𝐹𝐿𝐷1 to 𝐹𝐿𝐷3), where the initial plastificate is
inserted, as well as out of the flow area (𝐹𝐿𝐷10 to 𝐹𝐿𝐷12). In plaque
2, the specimens from the charge area are labeled with a C, the ones
from the flow area with a F and the specimens in-between with CF
and a corresponding number, respectively. This way, differences in the
microstructure between charge and flow area can also be considered.

The material constituents, with which the final CF-PA6-LFT-D
plaques were manufactured, are Zoltek PX35 commercial carbon fibers
and a PA6 by the company DOMO.

4. Methods

4.1. μCT scans

The Zeiss Metrotom 800 (cone-beam) μCT system at wbk Institute of
Production Science at KIT with the flat panel detector PaxScan2520V
with 1536 pixel × 1920 pixel was used to scan the specimens of the
first plaque. The resulting projections were reconstructed to a volu-
metric image applying the Feldkamp cone-beam algorithm [45] and
the Shepp–Logan noise reduction filter. Subsequently, the reconstructed
scans were processed in VG Studio Max 3.4.2. The samples of the
second plaque were scanned in an YXLON-CT (Yxlon International
CT GmbH, Hattingen, Germany) precision μCT system at Institute for
Applied Materials (IAM-WK) at KIT with a μ-focus X-ray transmission
tube with tungsten target and a PerkinElmer (Waltham, MA, USA)
Y.XRD1620 flat-panel 2048 pixel × 2048 pixel detector. The scan
parameters for the specimens of the two different plaques are listed
in Table 1.

Exemplary 2D images, so-called slices, of those CT scans are shown
in further parts of this work as, e.g., in Fig. 10(b).
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Fig. 3. Drop of a specimen in sulfuric acid in Erlenmeyer flask and dispersion of the fibers.
Source: Courtesy of FIBRE Bremen.
4.2. Chemical dissolution

The chemical dissolution and subsequent weighting and determina-
tion of the FVC was conducted by FIBRE (Bremen). The procedure is
briefly described in the following. In order to chemically remove the
matrix, approximately 50 ml of concentrated sulfuric acid is added to
the samples in an Erlenmeyer flask which is then placed on a hotplate
(cf. Fig. 3).

This is followed by heating until smoke is produced. Subsequently,
the samples have to react for one hour at this temperature. After the
samples have cooled down (‘‘warm to the touch’’), they are mixed with
approximately 25 ml of a 35% hydrogen peroxide solution and heated
until the solution becomes clear and no more gas bubbles rise. The
remaining fibers are put in a new specimen cup and can be used for
the fiber volume content determination via weighting and for the fiber
length distribution determination.
4.3. Computational methods

4.3.1. Application and shortcomings of common techniques
The through-thickness fiber concentration analysis by Gandhi et al.

was mentioned in the state of the art [36]. However, the authors
were unable to apply this procedure to the μCT scans in this work as
the first step of choosing the midpoint threshold is impossible for the
histograms of the CFRP scans as will be elucidated in the next section
(Section 4.3.2) and can be seen in Fig. 6 (only one peak is visible).
The authors did try conventional automatic thresholding methods as
comparison to the methods introduced in this work, which can be seen
in Tables A.5 and A.6 in the Appendix A (Section 8). Therefore, the two
common automatic thresholding methods Otsu (opencv [46]) and mean
(scikit image [47]) were applied, once without filtering the image before
and once with the best-performing filter option of our self-implemented
method (medianBlur with a kernel size of 15 for plaque 1 and 23 for
plaque 2, respectively) applied beforehand. The minimum threshold by
scikit image did not even compile with a ‘‘RuntimeError: Unable to find
two maxima in histogram’’, which confirms the authors’ findings. While
the two thresholding procedures that worked were applied in Python
supporting the subsequent further processing of the values, the exact
same threshold and filtering methods can be applied in ImageJ as well.
The results were far away from the experimental values. It is noticeable
that the results of the pure threshold methods deviate on average
by almost 100% relatively compared to the experimental results. It
is particularly striking that the calculated FVC values are almost the
same for each sample. A purely constant shift of the threshold value
therefore does not appear to make sense, as this would also not cover
the differences between the samples. The use of the median blur at
least significantly improved the results with the Otsu threshold. It
seems that in the case of low contrast CT images of composites with
high fiber volume content, simple thresholding is insufficient for fiber
4

segmentation, which is supported by literature [48].
4.3.2. Novel thresholding method
The novel thresholding method is realized in Python 3.8.7 with the

help of the SimpleITK [49–51], the OpenCV [46] and the NumPy [52]
libraries among others. The scans of the samples are generated as 16 bit
3D images in the .raw and .mhd file format. For all further steps those
scans were converted into 8 bit. Dark slices at the borders resulting
from the specimens not being exactly even-surfaced and further image
errors were cut. Each loaded scan was converted into a 3D array. In
the following, every slice is handled separately; so the authors iterated
through the thickness of the samples and worked on 2D images. At
first, a filter was applied to reduce the noise. The filters tested include
the ‘‘normal’’ blur filter, the median blur filter, the Gaussian blur filter
and the bilateral filter each with various kernel sizes. The kernel size
defines the dimension of the window that is slid across the image and in
which the filter-specific calculation is performed. The performance of
the filters was judged afterwards by comparing the resulting calculated
fiber volume contents with the experimental values. The results of the
specimens of the first plaque can be seen in Table B.7, Tables B.8
and B.9 and the results of the specimens of the second plaque in
Tables C.10 and C.11 in the Appendix A (Section 8). The median
filter with resolution-adapted kernel size performed the best. It works
by creating a kernel of pixels around a central pixel. The values are
sorted and the central pixel gets replaced by the median value. From
the then noise-reduced image, a threshold value was determined by
using the Otsu algorithm. The Otsu algorithm separates an image in
two sections by maximizing the inter-class variance of the grey-level
intensities between those sections:

𝜎2𝑏 (𝑡) = 𝜔1(𝑡) ⋅ 𝜔2(𝑡)
(

𝜇1(𝑡) − 𝜇2(𝑡)
)2 . (1)

𝜔1 and 𝜔2 are the probabilities of the two sections with

𝜔1(𝑡) =
𝑡−1
∑

𝑖=0
𝑝(𝑖) and𝜔2(𝑡) =

𝐿−1
∑

𝑖=𝑡
𝑝(𝑖), (2)

while 𝑝(𝑖) represents the probability for each grey-level intensity. 𝜇1(𝑡) ⋅
𝜔1(𝑡) represents the mean intensity value of the first section (and vice
versa for the second section) with

𝜇1(𝑡) =
𝑡−1
∑

𝑖=0

𝑖 ⋅ 𝑝(𝑖)
𝜔1(𝑡)

and𝜇2(𝑡) =
𝐿−1
∑

𝑖=𝑡

𝑖 ⋅ 𝑝(𝑖)
𝜔2(𝑡)

. (3)

After calculating the Otsu threshold for each slice, it is plotted over
the thickness. In Fig. 4, the plot for specimen 𝐹1 can be seen as an
example.

Considering the course of the threshold values over the height of the
sample, it is noticeable that the threshold values are the highest in the
center and drop to a much lower level at the borders of the specimen.
Inspecting the scans slice per slice, it is noticeable that there are less
fibers visible in those border areas compared to the central layers of
the sample as can be seen in Fig. 5.

This phenomenon is due to the material flow in the compression
molding process. The process-induced difference between outer layers
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Fig. 4. Example of the threshold values from a sample.

Fig. 5. First slice (a) and center slice (b) of the scan of the specimen F1. The low
amount of fibers and fiber bundles at the border (a) and the contrary high amount in
the center (b) is clearly visible.

and the center of the part is called shell-core effect in injection molding
vocabulary and can be detected considering both fiber volume content
as well as fiber orientation [5,36]. However, this would mean that there
are more lighter gray values representing the fibers and less darker ones
representing the matrix in the center layers, but the threshold value
distinguishing between the two peaks should not shift. This therefore
cannot be the main reason for the course of the threshold values over
the thickness. However, the authors tested to normalize the threshold
values by the average brightness but got little to no improvement on
the final FVC results, which seems to support this conclusion.

A second possible explanation would be that of the beam hardening
effect, a common phenomenon in computer tomography. The further
the beam penetrates the material, the higher the average energy of
the photons, as the low energy photons get scattered easily. However,
uncorrected images typically show increasing gray values towards the
center, hence the rotation axis of the CT. Consequently, this effect
would be contrary to the observed one. Additionally, multiple speci-
mens were scanned occasionally, which would superimpose this effect
on multiple samples.

Considering the histograms, one understands the issue more. In
Fig. 6, exemplary histograms of specimen 𝐹1 are given.

On the left (a), the histogram of the entire specimen is shown, in
the middle (b), one can see the histogram of one single slice rather
towards the border of the specimen and on the right (c), the histogram
of a single slice in the center of the specimen is given. In the entire
histogram at the left, it is apparent that there are not two peaks as
expected. To the contrary, all voxels seem to show grayvalues roughly
fitting to one single normal distribution. This is due to the bad contrast
between carbon fiber and polymer in the CT, which has already been
mentioned before (compare e.g. Fig. 10 at the right (b)), induced by the
closeness of the densities. Additionally, much higher resolutions would
5

be necessary to at least come close to resolving single carbon fibers,
which is not given with the resolutions of these scans. Both of these
facts lead to very noisy images. The Otsu thresholding, respectively any
thresholding method for that matter, therefore cannot work the way it
is supposed to, but calculates some kind of median value of the entire
gray value distribution. Looking at the histogram of the border slice, the
peak intensity is slightly shifted to the left and there is a small shoulder
visible at the left of the distribution. Comparing it with the histogram
of the center slice, the distribution is shifted to the right in this case
and there is a pronounced shoulder at the right of the distribution.
This leads to the rise of the threshold values towards the center of the
scans. As these values are more correct than the low threshold values
calculated at the borders, there is the need of a non-constant adaption
of the threshold values up until the center of the specimens.

Therefore, a two-stage procedure is implemented.
1. The First stage consists of the previously described approach.

A median blur filter is applied to each slice. Afterwards, the
threshold value is determined and saved as 𝑻 𝑂𝑡𝑠𝑢[𝑖], with 𝑖 being
the corresponding slice.

2. At the beginning of the Second stage, the average threshold
value

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑇 =
∑𝑛+1

𝑖=0 𝑻 𝑂𝑡𝑠𝑢[𝑖]
𝑛

(4)

is calculated. Following, a new array 𝑻 𝑛𝑒𝑤 is declared. If 𝑻 𝑂𝑡𝑠𝑢[𝑖]
is smaller than 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑻 𝑛𝑒𝑤[𝑖] will be set equal to 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒.
Otherwise 𝑻 𝑛𝑒𝑤[𝑖] will be set equal to 𝑻 𝑂𝑡𝑠𝑢[𝑖].

This procedure can be seen in the flowchart in Fig. 7.
After that, a binary image is created from each slice 𝑖 by using the

threshold value 𝑻 𝑛𝑒𝑤[𝑖]. From these binary images, the FVC for each
slice can be calculated by determining the percentage of the pixels with
a non zero value. The comparison of 𝑻 𝑂𝑡𝑠𝑢 and 𝑻 𝑛𝑒𝑤 can be seen in
Fig. 8.

The effects of this two-stage approach can be viewed in Fig. 9. This
empirical procedure was only one among multiple ones tested by the
authors, but the one that showed the best results.

4.3.3. Convolutional neural network
Input data and data processing. The convolutional neural network is im-
plemented in Python 3.6.8 with the help of inter alia the NumPy, Scikit-
image [47] and SimpleITK packages. Tensorflow [53] and Keras [54]
were used as AI framework. The calculations were performed on CPUs
provided by the bwHPC cluster 2. For the CNN, the 16 bit scans
are loaded directly into the Python script for further processing. In
contrast to the thresholding method, the scans are handled as 3D arrays
without a loop iterating through the slices. A comprehensive set of
uniformization methods is applied so that the neural network’s training
algorithms solely train the network on the intended differences between
the scan data.

For the data loading, uniformization and augmentation, the Python
libraries of SimpleITK, Keras and Numpy provide a large variety of
useful methods. However, since the data is processed in 3D, a range
of processing methods had to be custom-made. Those helper functions
can be found in the Github repository as well. The steps used to process
the scans are as follows:

1. Cutting
First, the scans were cropped individually to the actual core
material volume to avoid noise at the edges of the scan volume
(cf. Fig. 10).
The individual amount of cut back slices per specimen can be
taken from Table 2.

2. Resizing
All data used to train the CNN should be of the same shape so
that one input size of the network can be established. Further-
more, reshaping all arrays into cubes adds an additional possible
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Fig. 6. Comparison between the histograms of the entire specimen 𝐹1 (a), a border (b) and a middle slice (c) (after having applied the median filter).
Fig. 7. The process of the novel thresholding procedure. At first, the threshold value
for each of the 𝑛 images is calculated with the Otsu algorithm and stored in 𝑻 𝑂𝑡𝑠𝑢.
Afterwards, the average threshold value 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 across all slices is determined. Then,
the threshold value 𝑻 𝑂𝑡𝑠𝑢[𝑖] for each image 𝑖 is compared to 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒. The larger of the
two values is then stored in 𝑻 𝑛𝑒𝑤 as 𝑻 𝑛𝑒𝑤[𝑖].

axis to rotate the data by without changing its shape. That
allows for an additional augmentation step and thus doubles the
amount of input data after augmentation.
6

Fig. 8. Example of the threshold values from a sample. The blue line represents 𝑻 𝑂𝑡𝑠𝑢,
the orange line 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and the green line represents 𝑻 𝑛𝑒𝑤. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 9. Comparison between the original image (a) and the binary image after the first
(b) and second stage (c).

To reshape the cuboid scans into cubes, the transform()-method
from the scikit-image library was used. The target size of the
cubes was constrained by the computing power available at the
bwHPC cluster. Iterative trials showed that it was capable of
executing the script stably up to a cube size of 100 × 100 × 100
voxels, which was thus selected as array dimension.

3. Augmentation
Neural networks require extensive amounts of data to improve
their training process. Since only a small amount of scans are
available (14), multiple stages of 3D-image augmentations were
used to enlarge the input data set.
In the first step, every scan was rotated by 90◦ and added to
the data set with the same FVC as its original. Since the cuboid
shape of the transformed data allows for rotation about three
independent axes, the process was repeated for the remaining
two orthogonal axes. Solely rotating by multiples of 90◦ ensures
that no data is lost at the edges by leaving the scope of the
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Fig. 10. Exemplary slice near the top of the 𝐹𝐿𝐷2 scan (a) showing marking and
uneven surface conditions in contrast to (b) a slice of the same scan 10 layers deeper
into the material.

arrays. Furthermore, it is computationally much more efficient
than a rotation by a random angle since only the array indexes
need to be interchanged.
After multiplying the data set by a factor of 4 by adding rotations
of the original scans, all scans are then flipped in a second
step. Similarly to the first step, copies of the original scans are
mirrored at one plane and then added to the data set with the
same FVC as their originals. The process is repeated for the two
remaining normal planes, further multiplying the data set by a
factor of 8.
Overall, by combining three rotations and three mirroring steps,
the amount of input data can be multiplied by a factor of (1 +
𝑛𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠) ⋅ 2

𝑛𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = (1 + 3) ⋅ 23 = 32. Therefore, the 14 original
scans multiply to a data set of 448 samples. More combinations
are possible but they lead to exact duplicates of arrays which
can be obtained using the method above. I.e. two consecutive
90◦ rotations about one axis equal two reflections about two
different planes.

4. Split
Before being fed into the neural network, the data, consisting
of CT scan arrays coupled with their respective, experimentally
observed FVC values, are split into a training and a validation
set. The larger training set is used for the initial tuning of the
network’s parameters similar to [55].
In between each training epoch, the validation set is used to
verify the model’s performance on unseen data, which prevents
overfitting and allows for an estimation of the model’s ability to
generalize beyond the training set. More details on the training
process are discussed in the Network training process paragraph
below.

Network architecture. A special characteristic of the network imple-
mented in this work is the direct input of a 3D scan along with a
singular scalar value representing its corresponding FVC making it
a mixed network. However, the output of the network is only the
predicted FVC as a singular value between 0 and 1 for a given scan.

For image processing tasks, the conventional type of neural network
is a convolutional neural network (CNN).

The model architecture in this work consists of several layers of
convolutions, pooling, dense, and dropout layers. Overall, the neu-
ral network can be divided into two stages: The feature extraction
stage, where the convolution is happening and the subsequent fea-
ture processing stage, where the extracted features are mapped to a
corresponding output.

The input layer takes in a 3D tensor of depth, width, and height,
representing the CT-scan data, as a single channel since the CT-scans
7

Table 2
Overview of the original scan data. The resolution is given in terms of the absolute
amount of voxels in each dimension. The numbers below ‘‘Front/Back cut’’ refer to the
amount of slices removed during data pre-processing.

Scan FVC Original scan
resolution

Front
cut

Back
cut

𝐹𝐿𝐷1 22.3% 122 × 386 × 386 5 10
𝐹𝐿𝐷2 25.5% 128 × 780 × 780 12 12
𝐹𝐿𝐷3 28.6% 148 × 1168 × 1162 35 35

𝐹𝐿𝐷10 17.9% 130 × 391 × 395 9 14
𝐹𝐿𝐷11 24.0% 135 × 777 × 772 16 16
𝐹𝐿𝐷12 26.6% 132 × 1164 × 1167 13 15

𝐹1 23,1% 168 × 1424 × 1425 0 0
𝐹2 22,1% 165 × 1421 × 1425 4 0
𝐹3 23,1% 165 × 1416 × 1428 0 0

𝐶𝐹1 25,6% 171 × 1403 × 1415 1 5
𝐶𝐹2 22,3% 161 × 1422 × 1421 4 0
𝐶𝐹3 22,8% 165 × 1406 × 1415 0 0

𝐶1 26,4% 165 × 1409 × 1421 2 4
𝐶2 23,1% 155 × 1414 × 1421 0 4
𝐶3 23,8% 161 × 1406 × 1425 0 4

are in gray scale. Furthermore, the single scalar value for the FVC is
passed along. The subsequent convolutional layer that extracts features
from the input data is followed by a max-pooling layer that downsam-
ples the output of the convolutional layers to reduce the dimensionality
of the data and capture the most important features. In this case, a
2 × 2 × 2 max-pooling layer follows the convolution, where out of the
23 = 8 voxels only the largest value is passed on to the next layer. This
way, an 87.5% reduction of data is achieved without a major loss of
relevant information since for feature extraction, the precise location
of certain features is less relevant. Furthermore, the strongest features
are enhanced more as only the highest value inside the kernel area is
passed on.

After the convolutional and max-pooling layers, the output is passed
through several dense layers with rectified linear unit (ReLU) activa-
tion function. In the case of this study, where FVC percentages are
evaluated, any negative values are implausible and get filtered out
automatically this way. These layers enable the model to learn complex
relationships between the input and output. Dropout layers are added
after each dense layer to prevent overfitting.

The further one advances into the network during the analysis, the
less relevant spacial information becomes, since the ultimate objective
is to compute a single scalar, that describes the entirety of a scan.
A Global Average Pooling Layer transforms the 3D output of the
dense layers into a single-row vector. Its dimensionality corresponds
to the amount of feature maps which the feature extraction stage feeds
forward. This technique and the choice of Global Average vs. Global
Max Pooling was inspired by Zunair et al. [56] and improved the
performance of the CNN.

Finally, the output layer is a dense layer with a sigmoid activation
function. Its output represents the predicted fiber volume content (FVC)
of the CT-scan.

The final network architecture can be seen in Fig. 11. The param-
eters that define the shape of all layers used were determined using
parameter sweeps, which are discussed in the Network optimization
paragraph below. The graphic was made with the help of the latex code
published in [57].

Network training process. The CNN described so far is initialized with
random weights in all of its layers. Therefore, the initial predictions
for the scans of the training set will also be random and are unlikely
to show any causal relation to their actual FVC values. In order to
tune the weights in a way that enables the network to make reasonable
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Fig. 11. Final architecture of the CNN used in this paper.
Fig. 12. Course of the BCE loss over prediction values �̂� between 0 and 1 for a true
value of 𝑦 = 0.24.

predictions, a training algorithm is used. The training can be divided
into two main steps: model compilation and model fitting. During the
model compilation step, the configuration parameters are set up. The
chosen loss function for this task is binary cross-entropy (BCE). The BCE
loss also referred to as log loss or negative log probability is defined as
follows

𝑙 (𝑦, �̂�) = −
(

𝑦 log (�̂�) + (1 − 𝑦) log (1 − �̂�)
)

, (5)

with 𝑦 being the true term (0 or 1) and �̂� being the predicted probability
(between 0 and 1) [58,59]. In the perfect case of the model exactly
predicting 0 or 1 correctly, the loss amounts to zero. However, in this
paper the true term 𝑦 is not only zero or one, but a continuous value in
between. While this is not what the BCE loss was originally intended
for, it worked better than other popular loss functions that are not
intended for binary input (and output) such as MSE/MAE or regular
cross entropy. Literature also suggests that it works in practice [60,61],
so the authors used the BCE loss in this work. However, it shall be noted
that binary cross entropy is asymmetric in the case of the ground truth
not being a binary value and the minimum loss is not zero anymore. As
an example for 𝑦 = 0.24, which is roughly the average FVC in this case,
the minimum loss for �̂� = 𝑦 = 0.24 amounts to 0.5511 (cf. Fig. 12). This
will be relevant when judging the loss plot in the results (Section 5).

The optimizer selected for this task is Adam. It is an adaptive
8

learning rate optimization algorithm that adjusts the learning rate
Fig. 13. Illustration describing the training of weights in neural networks inspired
by [63,64].

dynamically during training, which helps to converge to an optimal
solution faster. Because of its computational efficiency and little mem-
ory requirement [62], it is a popular choice for training deep neural
networks due to its efficiency and effectiveness in updating the param-
eters of the model. Additionally, the mean squared error (MSE) is used
as a metric to evaluate the performance of the model during training.
It measures the average squared difference between the predicted and
true values. Therefore, it provides insight into the overall accuracy of
the predictions of the model along the training process.

After model compilation, the model is fitted to the training data us-
ing the model.fit() function from Tensorflow. This method implements
the general process of machine learning using the parameters set in
the compilation process: Using the weights provided at that stage in
the network, all training scans are passed through the network. The
resulting scalars (the predictions) are subsequently compared to the
actual FVC values of the respective specimens. The loss function, which
was specified earlier, takes both the prediction and the real value as
its arguments and computes a loss score. The selected optimizer then
adjusts the weight in the layers according to the performance of the
score, before the entire process is repeated by the set amount of epochs
specified in the beginning. Fig. 13 describes this process visually.

Alongside the training set, the validation set is being evaluated with
the same model and loss function simultaneously. Finally, a loss plot
such as Fig. 17 is generated using the training and validation loss
values. The plot shows both as a function of the number of epochs.
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Table 3
FVC in % for specimens of the first plaque determined
through acid-based dissolution of the matrix.
Specimen FVC

𝐹𝐿𝐷1 22.3%
𝐹𝐿𝐷2 25.5%
𝐹𝐿𝐷3 28.6%

Average 25.5%

𝐹𝐿𝐷10 17.9%
𝐹𝐿𝐷11 24.0%
𝐹𝐿𝐷12 26.6%

Average 22.9%

This visualization helps to monitor the convergence and performance
of the model during training, where a decreasing loss indicates that the
model is learning and improving over time.

Furthermore, this method also takes over the task of shuffling the
input data and splitting it into training and validation sets, for which a
ratio of 2/3 to 1/3 was set. The number of training epochs is set to 40,
indicating the number of times the entire training data set is passed
through the model during training. Once the model is trained, it is
used to predict the fiber volume content for the test data. The deviation
between the predicted values and the true labels is then plotted, as seen
in Fig. 18.

Network optimization. The CNN required a lot of parameters to be de-
fined. The authors started with values provided in similar literature [55,
64] and adapted them to the problem at hand. Most parameters were
defined by so-called parameter sweeps. Instead of single values, the
parameters were provided with a list of values, which were looped
through. By changing two parameter values at once, one can find the
combination with the best performance. As an example, the amount of
filters in a 3D convolutional layer is eligible in Keras. The best amount
of connected dense-dropout layers was also unclear. Hence, lists for the
amount of filters in the convolutional layer 𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = {2, 4, 8, 16, 32} as
exponential values to the basis 2 in order to cover a greater field and a
list for the amount of dense-dropout layers 𝑛𝑑𝑑−𝑙𝑎𝑦𝑒𝑟𝑠 = {1, 2, 3, 4, 5} was
iven to the network instead of singular values of these parameters.
hese lists are then iterated through and training is carried out for each
ombination, i.e. each new network. The standard average deviation for
he results of each network is finally compared and the combination of
arameters that leads to the best FVC prediction is used.

A similar procedure was followed for the parameters of the dropout
ate in the dropout layer, the pool size in the max-pooling layer and
he kernel size in the convolutional layer. Analogously, multiple initial
earning rates, loss functions and optimizers were tested until the
uthors arrived at the presented architecture in Fig. 11.

. Results

.1. Chemical dissolution

Since the samples that were dissolved in acid of the first plate
ere of different sizes, the dependence of the fiber volume contents on

he sample size can be shown. In fact, this effect seems to be clearly
ronounced, as can be seen in Table 3: the fiber volume contents
ncrease monotonically from sample 1 to 3, as well as from 10 to 12.

With specimen 1 being the smallest (10 mm × 10 mm × 3 mm),
pecimen 2 being the second largest (20 mm × 20 mm × 3 mm) and
pecimen 3 being the largest (30 mm × 30 mm × 3 mm), it is noticeable
hat the larger the specimen, the larger the FVC. Moreover, the fiber
olume content seems to be higher in the charge region (specimen 1,
9

, 3) than in the flow region (specimen 10, 11, 12) - a finding that can t
Table 4
FVC in % for specimens of the second plaque deter-
mined through acid-based dissolution of the matrix.
From Scheuring et al. [65].
Specimen FVC

𝐹1 23.07%
𝐹2 22.08%
𝐹3 23.06%

Average 22.74%

𝐶1 25.57%
𝐶2 22.31%
𝐶3 22.81%

Average 23.57%

𝐶𝐹1 26.36%
𝐶𝐹2 23.10%
𝐶𝐹3 23.81%

Average 24.42%

Overall average 23.57%

partly be confirmed considering the samples of the second plate (cf.
Table 4). The results of the FVC in Table 4 of the second plaque have
been first published by Scheuring et al. [65].

While the average FVC of the three charge specimens (𝐶1, 𝐶2, 𝐶3)
is equal to the global average with 23.57%, it is indeed slightly higher
than the average FVC of the three specimens of the flow region (𝐹1,
𝐹2, 𝐹3) with 22.74%. The transition region (specimens 𝐶𝐹1, 𝐶𝐹2, 𝐶𝐹3)
shows the biggest average FVC with 24.42%.

5.2. Computational determination of the fiber volume content

For the assessment of the overall quality of a method, the following
two quantities are introduced. Firstly, the standard average deviation
(SAD) between the experimental and predicted FVC values of the
validation set (𝐹𝑉 𝐶𝑒𝑥𝑝, 𝐹𝑉 𝐶𝑝𝑟𝑒𝑑) is defined as follows

𝑆𝐴𝐷𝑎𝑏𝑠 =
1

𝑛𝑠𝑐𝑎𝑛𝑠

∑

|𝐹𝑉 𝐶𝑒𝑥𝑝 − 𝐹𝑉 𝐶𝑝𝑟𝑒𝑑 |

This value describes the absolute error of the prediction.
To compare different thresholding techniques with each other, the

relative SAD is used at times in this Section given by

𝑆𝐴𝐷𝑟𝑒𝑙 =
1

𝑛𝑠𝑐𝑎𝑛𝑠

∑ |𝐹𝑉 𝐶𝑒𝑥𝑝 − 𝐹𝑉 𝐶𝑝𝑟𝑒𝑑 |

𝐹𝑉 𝐶𝑒𝑥𝑝
,

as a measure of the relative error of the prediction.

5.2.1. Novel thresholding procedure
The scans, that the FVC had to be determined of, all showed salt

and pepper noise. So the first step of the implemented thresholding
method was the application of a filter. The choice of the filter type
and kernel size was decided on after all other steps of the procedure
were defined. The authors conducted a study, as to which filter and
kernel size produces a FVC closest to the measured ones. The median
blur led to the least average deviation between the calculated and the
measured results. It is noticeable, that there are differences of the best
kernel size between the two different plaques. For the specimens of the
first plaque, consisting of 𝐹𝐿𝐷1 to 𝐹𝐿𝐷12, a median blur filter and a
kernel size of 15 pixel × 15 pixel showed the least average deviation,
as well as the least maximum deviation. The results can be seen in
Table B.7, Tables B.8 and B.9 in Appendix A. For the specimens of the
second plaque, consisting of 𝐶1 to 𝐹3, a median blur and a kernel size of
3 pixel × 23 pixel had the least average deviation, as well as the least
aximum deviation, which is shown in Tables C.10 and C.11. In the

ables with the results of the second plaque, only the tested kernel sizes
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Fig. 14. Illustration showing the whole process of FVC determination by AOA thresholding using the example scan of sample 𝐹𝐿𝐷3. (a) Shown is a middle slice of the original
3D CT image read into Python. (b) The same slice is shown after applying the median filter (kernel size in this case 15, as 𝐹𝐿𝐷3 is one of the first specimens). (c) The Otsu
threshold of each slice was determined and plotted over the slices. The calculated thresholds are shown in blue, the average in orange and the value that is ultimately applied in
green. The average value is used if the actual threshold of the slice is below the average value, otherwise the calculated value above it is used (cf. Fig. 8). (d) The slice is shown
with the threshold applied. (e) Finally, the fiber volume content determined by the method is plotted over the slices. The decreasing volume content at the edges is clearly visible.
The mean value over all slices in orange is the final determined value, which is again compared with the experimentally determined value. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
that seemed the most relevant of some filters are listed. Comparing the
dimensions of the images of the different plaques, to be seen in Table 2,
it shows that the average image size of the second plaque is larger than
that of the first one, hence the image resolution is higher for the second
plaque (cf. Table 1). Apparently the needed kernel size of the median
blur is dependent on the dimensions and the resolution of the scan used.
The effect of the median blur is visible comparing the images (a) and
(b) in Fig. 14. The determined binary image after applying the AOA
thresholding method of this particular slice is shown in (d).

However, not all final results of the FVC are convincing (com-
pare Table B.8, column ‘‘medianBlur(...,15), and Table C.10, column
‘‘medianBlur(...,23)). While most samples show decent results, when
not including outliers, with a relative average deviation of 1.81% in
the first measurement series and 3.42% in the second measurement
series, there are samples with a much larger deviation. The sample
𝐹𝐿𝐷10 of the first series and the samples 𝐶2 and 𝐹2 of the second
series show relative deviations of up to 116.09% (𝐹𝐿𝐷10). The reason
for those differences of the performances of the algorithm are not
entirely clear. 𝐹𝐿𝐷10 was a small specimen and a scan with low
resolution, which is not the best combination in general. This condition
arose because the authors desired to have the same resolution for all
samples of one plate and the low resolution was necessary in order to
fit the biggest specimens inside of the beam path. Hence, the image
quality was insufficient but that was also the case for 𝐹𝐿𝐷1, which
did not deviate that massively. Additionally, 𝐹𝐿𝐷10 showed a much
lower experimentally measured FVC and the authors assumed minor
measurement uncertainties leading to that value. For these reasons
𝐹𝐿𝐷10 was left out of the error calculations of the AOA thresholding
and was not used as training data in the CNN either. However, the
other two outliers 𝐶2 and 𝐹2 were included. The authors could neither
detect any visual deviation nor deviations in the histograms, brightness
levels or other measures used for image comparison in these two scans,
which is why they are included in the absolute average deviations and
were also used as training data for the CNN. That way, the absolute
average deviation of the final AOA thresholding with medianBlur filter
of 15 and 23, respectively, amounts to about 𝟐.𝟕%. The final results are
depicted in Table D.12 in Appendix A.

The final results of the FVC determined by AOA thresholding after
applying the median filter as described above are also plotted in Fig. 15.
The two deviating values of 𝐶2 and 𝐹2 can be clearly detected.

Considering the progress of the fiber content across a specimen by
the example of specimen 𝐹2, a clear non-monotonous course can be
seen in Fig. 16.

The lower values at the borders of the sample and the increase of the
FVC towards the center have been expected. This behavior appears due
to the compression molding process. The so-called ‘‘shell-core effect’’
10
Fig. 15. Original (orange) and calculated with the novel thresholding technique
(blue) values of FVC for the fourteen specimens, as well as measured averaged FVC
(orange dashed) and calculated averaged FVC (blue dashed). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 16. Exemplary progression of FVC over thickness of the specimen in blue and
average value in orange considering the example of specimen 𝐹2. Typical increase of
FVC towards the center of the specimen visible. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

known from injection molding signifies changing fiber volume content
and fiber orientation between shell and core layer of the plaque [5,36].
While the fiber orientation effect is only visible in the area of the
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Fig. 17. Final graph showing the losses for the training (blue) and validation (orange)
data sets during the training process as a function of the epoch. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 18. Original (orange) and calculated with the CNN (blue) values of FVC for the
fourteen specimens, as well as measured averaged FVC (orange dashed) and calculated
averaged FVC (blue dashed). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

initial charge (due to a different effect than in injection molding)
and non-existent in the flow area, the effect of the process on the
through-thickness FVC is clearly visible.

5.2.2. CNN
As shown in Fig. 17, using 40 epochs as training of the CNN is

sufficient since the model’s validation and training losses converge after
around 22 epochs and there are no significant improvements beyond
that point. The training loss value after 40 epochs amounts to 0.5539
and the validation loss to 0.5535. Considering the shift of the minimum
attainable loss value briefly discussed in the methods (Section 4), this
can be considered a successful training process.

The performance of the CNN is further assessed in Fig. 18. Contrar-
ily to Fig. 15 which describes the results of the thresholding method,
the depicted predicted single values in Fig. 18 are themselves an
average of the FVC prediction of the CNN for all input scans with the
same measured FVC (including the original and the augmented scans).

In the best universal case, hence the final network depicted and
described in Section 4.3.3, an absolute average deviation of 𝟏.𝟒𝟔% was
achieved (cf. Table D.12).

Beside the amount of epochs used to train the network, a number
of variables were tuned to improve the prediction’s accuracy. The
augmentation process, e.g., has multiple steps of flipping and rotat-
ing images. Experiments with using less or more augmentation steps
11
showed that using the most amount of steps showed the best results.
Changing which scans were fed into the program from the start had a
large impact and by down-selecting systematically, an absolute average
deviation below 0.9%, so a performance increase by about 40% was
achieved.

However, since the goal of this network is to provide a universal
method for carbon-reinforced PA6 sample scans, the authors instead
used all data, resulting in worse predictions for the limited validation
data at hand in favor of general applicability to different scans at a
later time. 𝐹𝐿𝐷10, which has already shown to be an outlier for the
thresholding method poses an exception in this case. Its implementation
caused a remarkable decrease in performance in all cases, for which the
authors are lacking an identifiable rationale and thus this scan had to
be removed from the entire data set, as mentioned before.

6. Discussion

6.1. Novel thresholding method

With the chemical dissolution average being 24.23% and the method
estimating 26.54% when including the outliers, the absolute average
deviation amounts to 2.7%, which is higher than that of the CNN.
The number was mainly driven up by the two outliers, which were
included in the final result as there is no apparent reason to exclude
them. Neither the visual inspection of the image nor the histogram
showed larger deviations than those that were also usual between the
other samples.

The empirical approach of the binary decision between the single
slice Otsu threshold and the average stack Otsu threshold could still
be developed into another non-constant adaption of the threshold.
Specifically, it would probably be helpful to mathematically determine
the variation of the histogram across the thickness and change the
threshold values accordingly continuously. The rather large influence
of the filtering before the AOA thresholding method shall be mentioned
here as well (cf. Tables B.7, B.8, B.9, C.10, C.11). However, the main
influence is still the thresholding. Considering Fig. 9, it becomes clear
that even though a median filter was applied onto both images, the nor-
mal Otsu threshold still overinterprets the amount of fibers. The right
choice of filter is just an additional factor. Considering in particular
that neural networks basically consist of several filters in a row, the
importance of choosing the right filter(s) should not be underestimated,
especially for noisy, low-contrast images. It shall also be stated that the
AOA thresholding method is not optimal by any means. However, the
authors wanted to compare the CNN not only to experimental methods,
but also to a more conventional image processing method working on
2D slices and simple thresholding was not an option considering the
high errors (cf. Tables A.5 and A.6). Therefore, multiple approaches
were tested, including the mentioned normalization of the threshold
values, etc., with the AOA thresholding delivering the best results for
our specific material and scan quality. It is a comparably fast and
simple method to get to a decent result compared to the high effort in
development and training of the CNN. Especially the agile adjustment
with the values rising or falling along with increasing or decreasing
experimentally determined FVC was convincing.

6.2. CNN

Fig. 18 shows the performance of the trained CNN on specific scans
of the validation data set. It can be seen that although the FVC of
some samples was predicted with very high accuracy, the deviations
are distributed unevenly among the data with some predictions being
off by several percent points. The overall performance of the CNN is
relatively accurate with the average prediction of 24.3% being very
close to the original measured FVC average of 24.23% and the absolute
average deviation amounting to 1.46% (cf. Table D.12). However, it is
unreliable in some cases, for which a pattern could not be observed
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yet. In particular, the logical connection (increasing measured value
does not correspond to increasing predicted value from the mean) is not
given. However, experimental measurement inaccuracies also fluctuate
randomly around a mean value (cf. boxplots).

Although excluding distinct scans from the training data improved
the accuracy in this case, it is likely due to the CNN being overtrained
on unintended features that are exclusive to the specific data used.

In order to increase the CNN’s accuracy for a universal purpose,
more diverse input data might be useful. Although a total of 448
scans were used for the training and validation process, they only stem
from 14 original scans which themselves contain a similar amount of
fibers with FVCs ranging between 22.08% and 28.6%. So providing the
network with scans that contain significantly more and less fibers could
allow it to pick up the relevant patterns more effectively.

Furthermore, a larger scan resolution would detail more information
about the structure of distinct fibers, which cannot be detected with
the 100 × 100 × 100 pixels. However, any resolution larger than this
ed to memory issues within the bwHPC cluster and thus posed a
imitation on the data evaluation. Rather than only considering bundles
f fibers, considering individual fibers would allow the network to
ifferentiate better between fibers and irrelevant irregularities within
he PA6 matrix and could improve the quality of the overall prediction.
his would require a CT device with better contrast and higher possible
esolutions.

. Conclusion

The authors implemented a novel thresholding method based on
he Otsu threshold and a convolutional neural network both for the
omputational determination of the fiber volume content of carbon
iber reinforced polyamide 6 produced in the long fiber reinforced
hermoplastic direct process. The convolutional neural network outper-
ormed the thresholding in terms of fiber volume content prediction
hen compared to experimental results that were obtained through
cid-based dissolution of the surrounding matrix. The absolute average
eviation between the fiber volume content of the average or above
hresholding and the experimental values was about 2.7% compared to
bout 1.46% of the convolutional neural network.

. Outlook

The AOA thresholding method could be adapted to a continuous
djustment of the threshold directly depending on the histogram of the
pecific slice.

The CNN could be improved by adding additional scans, and hence
nput data, of which experimental FVC values are available. Especially
ore specimens with a wider range of different FVCs already in the
rocess would be important as the variance of the experimental data is
ery much limited. While both methods are highly material-, process-
and scan-dependent, the trained CNN and its determined weights

ould be used as pretraining weights for a network with a different
aterial type. Furthermore, images of a similar kind, e.g. the same
atrix and process but with a glass fiber reinforcement, could be added

dditionally as input data on top of the CFRP images.

RediT authorship contribution statement

Juliane Blarr: Writing – review & editing, Writing – original draft,
isualization, Validation, Software, Project administration, Method-
logy, Investigation, Formal analysis, Data curation, Conceptualiza-
ion. Philipp Kunze: Writing – original draft, Visualization, Software,
ethodology. Noah Kresin: Writing – original draft, Visualization,

oftware, Methodology.Wilfried V. Liebig:Writing – review & editing,
upervision, Resources. Kaan Inal: Writing – review & editing, Super-
ision, Resources, Funding acquisition. Kay A. Weidenmann: Writing
12

review & editing, Supervision, Resources, Funding acquisition.
eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The implemented CNN can be found in the FVC_CNN GitHub repos-
tory: https://github.com/jewelsbla/FVC_CNN. The AOA thresholding
ethod can be found in a separate GitHub repository: https://github.

om/jewelsbla/AOA_thresholding. The 3D scan files of all specimens
an be accessed and downloaded via the following doi: https://doi.org/
0.35097/1707 ([66]). Please cite this paper when using any of the
bove code or data.

cknowledgments

The research documented in this manuscript has been funded by
he Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
ation), project number 255730231, within the International Research
raining Group ‘‘Integrated engineering of continuous-discontinuous

ong fiber reinforced polymer structures’’ (GRK 2078). The support by
he German Research Foundation (DFG) is gratefully acknowledged.
he authors would also like to thank the Fraunhofer ICT for its support

n providing the plates produced in the LFT-D process under the project
anagement of Christoph Schelleis and for the TGA investigations by

usanne Lüssenheide. Furthermore, the authors thank the wbk Institute
f Production Science and specifically Katja H’́oger for providing the

scans of the first plaque when the institute internal device could not be
used. Additionally, the authors would like to thank the FIBRE in Bre-
men, where the acid-based dissolution investigations were conducted
and specifically Ernö Nemeth. Support from Covestro Deutschland AG,
as well as Johns Manville Europe GmbH in the form of trial materials
is gratefully acknowledged. The authors acknowledge support by the
state of Baden-Württemberg through bwHPC.

Appendix A. Results of FVC determined by different conventional
thresholding methods

See Tables A.5 and A.6.

Appendix B. Results of FVC of the first plaque determined by AOA
thresholding for different pre-filters

See Tables B.7–B.9.

Appendix C. Results of FVC of the second plaque determined by
AOA thresholding for different pre-filters

See Tables C.10 and C.11.

Appendix D. Final results of AOA thresholding and CNN (aver-
aged) for the 14 samples and absolute deviations to experimental
results

See Table D.12.

https://github.com/jewelsbla/FVC_CNN
https://github.com/jewelsbla/AOA_thresholding
https://github.com/jewelsbla/AOA_thresholding
https://github.com/jewelsbla/AOA_thresholding
https://doi.org/10.35097/1707
https://doi.org/10.35097/1707
https://doi.org/10.35097/1707


NDT and E International 144 (2024) 103067J. Blarr et al.
Table A.5
Fiber volume contents of the specimens of the first plaque determined by chemical dissolution and by exemplary slice-wise conventional thresholding procedures in
Python that are also available in ImageJ. The results of the white row of 𝐹𝐿𝐷10 were not incorporated into the final maximum deviations, sum of relative deviations
and relative average deviations in order to be comparable to the results in Appendix B.

Specimen Exp. values opencv Otsu medianBlur(...,15) + O. skimage mean medianBlur(...,15) + m.

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation
𝐹𝐿𝐷1 22.30% 48.90% 119.28% 33.18% 48.79% 49.58% 122.33% 44.10% 97.76%
𝐹𝐿𝐷2 25.50% 48.89% 91.73% 28.20% 10.59% 49.66% 94.75% 43.50% 70.59%
𝐹𝐿𝐷3 28.60% 48.93% 71.08% 30.89% 8.01% 49.69% 73.74% 43.55% 52.27%
𝐹𝐿𝐷10 17.90% 49.31% 175.47% 44.36% 147.82% 49.77% 178.04% 47.88% 167.49%
𝐹𝐿𝐷11 24% 48.69% 102.88% 32.49% 35.38% 49.49% 106.21% 43.74% 82.25%
𝐹𝐿𝐷12 26.60% 48.88% 83.76% 31.45% 18.23% 49.59% 86.43% 42.51% 59.81%
Max. deviation 119.28% 48.79% 122.33% 97.76%
Sum of rel. dev. 468.73% 120.99% 483.46% 362.68%
Rel. aver. dev. 𝟗𝟑.𝟕𝟓% 𝟐𝟒.𝟐𝟎% 𝟗𝟔.𝟔𝟗% 𝟕𝟐.𝟓𝟒%
Table A.6
Fiber volume contents of the specimens of the second plaque determined by chemical dissolution and by exemplary slice-wise conventional thresholding procedures
in Python that are also available in ImageJ.

Specimen Exp. values opencv Otsu medianBlur(...,23) + O. skimage mean medianBlur(...,23) + m.

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation
𝐶1 23.07% 47.97% 107.96% 30.88% 33.87% 49.30% 113.73% 44.69% 93.74%
𝐶2 22.08% 48.78% 120.91% 46.33% 109.82% 49.47% 124.04% 49.00% 121.91%
𝐶3 23.06% 48.10% 108.60% 33.84% 46.75% 49.32% 113.89% 45.71% 98.23%
𝐶𝐹1 25.57% 48.32% 88.94% 33.25% 30.01% 49.37% 93.05% 44.16% 72.68%
𝐶𝐹2 22.31% 47.44% 112.60% 36.85% 65.14% 49.06% 119.86% 45.64% 104.54%
𝐶𝐹3 22.81% 47.77% 109.42% 32.94% 44.40% 49.16% 115.51% 46.13% 102.23%
𝐹1 26.36% 48.27% 83.14% 39.78% 50.93% 49.47% 87.69% 46.88% 77.87%
𝐹2 23.10% 48.98% 112.01% 46.58% 101.62% 49.71% 115.17% 49.00% 112.10%
𝐹3 23.81% 48.22% 102.55% 36.07% 51.51% 49.34% 107.25% 46.43% 95.03%
Max. deviation 120.91% 109.82% 124.04% 121.91%
Sum of rel. dev. 946.13% 534.07% 990.19% 878.31%
Rel. aver. dev. 𝟏𝟎𝟓.𝟏𝟑% 𝟓𝟗.𝟑𝟒% 𝟏𝟏𝟎.𝟎𝟐% 𝟗𝟕.𝟓𝟗%
Table B.7
Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying different configurations
of the ‘‘blur’’ filter onto the CT images.
Specimen Exp. values blur(...,(11,11)) blur(...,(13,13)) blur(...,(15,15)) blur(...,(19,19))

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation
𝐹𝐿𝐷1 22.30% 25.43% 14.04% 23.66% 6.10% 22.41% 0.49% 21.05% −5.61%
𝐹𝐿𝐷2 25.50% 26.77% 4.98% 25% −1.96% 23.76% −6.82% 21.26% −16.63%
𝐹𝐿𝐷3 28.60% 29.83% 4.30% 28.95% 1.22% 28.36% −0.84% 27.64% −3.36%
𝐹𝐿𝐷10 17.90% 36.30% 102.79% 35.09% 96.03% 34.16% 90.84% 32.97% 84.19%
𝐹𝐿𝐷11 24% 26.07% 8.63% 24.65% 2.71% 23.26% −3.08% 21.91% −8.71%
𝐹𝐿𝐷12 26.60% 26.24% −1.35% 23.58% −11.35% 22.56% −15.19% 20.40% −23.31%
Max. deviation 14.04% 11.35% 15.19% 23.31%
Sum of rel. dev. 33.30% 23.34% 26.43% 57.61%
Rel. aver. dev. 6.66% 4.67% 5.29% 11.52%
Table B.8
Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying different configurations of the
‘‘medianBlur’’ filter onto the CT images.

Specimen Exp. values medianBlur(...,11) medianBlur(...,13) medianBlur(...,15) medianBlur(...,19)

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation
𝐹𝐿𝐷1 22.30% 26.12% 17.13% 24.37% 9.28% 22.97% 3.00% 21.26% −4.66%
𝐹𝐿𝐷2 25.50% 27.57% 8.12% 25.64% 0.55% 24.18% −5.18% 22.49% −11.80%
𝐹𝐿𝐷3 28.60% 30.14% 5.38% 29.16% 1.96% 28.50% −0.35% 27.69% −3.18%
𝐹𝐿𝐷10 17.90% 36.30% 102.79% 39.47% 120.50% 38.68% 116.09% 36.81% 105.64%
𝐹𝐿𝐷11 24% 26.68% 11.17% 25.06% 4.42% 23.91% −0.37% 22.31% −7.04%
𝐹𝐿𝐷12 26.60% 29.20% 9.77% 27.56% 3.61% 26.64% 0.15% 25.79% −3.05%
Max. deviation 17.13% 9.28% 5.18% 11.80%
Sum of rel. dev. 51.57% 19.82% 9.06% 29.74%
Rel. aver. dev. 𝟏𝟎.𝟑𝟏% 𝟑.𝟗𝟔% 𝟏.𝟖𝟏% 𝟓.𝟗𝟓%
13
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Table B.9
Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying a
‘‘gaussianBlur’’ and ‘‘bilateralFilter’’ onto the CT images.
Specimen Exp. values GaussianBlur(...,(15,15),0) bilateralFilter(...,15,350,350)

FVC FVC Deviation FVC Deviation
𝐹𝐿𝐷1 22.30% 28.30% 26.91% 24.39% 9.37%
𝐹𝐿𝐷2 25.50% 30.96% 21.41% 25.56% 0.24%
𝐹𝐿𝐷3 28.60% 32.39% 13.25% 29.23% 2.20%
𝐹𝐿𝐷10 17.90% 39.79% 122.29% 35.52% 98.44%
𝐹𝐿𝐷11 24% 28.39% 18.29% 25.11% 4.63%
𝐹𝐿𝐷12 26.60% 29.87% 12.29% 25.01% −5.98%
Max. deviation 26.91% 9.37%
Sum of rel. dev. 92.15% 22.41%
Rel. aver. dev. 𝟏𝟖.𝟒𝟑% 𝟒.𝟒𝟖%
Table C.10
Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying different configurations of the ‘‘medianBlur’’ filter onto the
CT images.
Specimen Exp. values medianBlur(...,15) medianBlur(...,21) medianBlur(...,23) medianBlur(...,25)

FVC FVC Deviation FVC Deviation FVC Deviation FVC Deviation
𝐶1 23.07% 25.88% 12.21% 24.41% 5.81% 24.07% 4.36% 25.39% 10.06%
𝐶2 22.08% 41.43% 87.63% 42.06% 90.50% 42.20% 91.10% 42.56% 92.73%
𝐶3 23.06% 25.48% 10.52% 23.43% 1.62% 23.04% −0.08% 22.59% −2.03%
𝐶𝐹1 25.57% 22.65% −11.42% 25.58% 0.02% 26.60% 4.01% 28.31% 10.70%
𝐶𝐹2 22.31% 24.52% 9.90% 23.65% 5.97% 23.53% 5.44% 23.48% 5.24%
𝐶𝐹3 22.81% 23.33% 2.28% 21.97% −3.69% 22.53% −1.24% 22.41% −1.76%
𝐹1 26.36% 26.90% 2.07% 25.70% −2.48% 25.48% −3.33% 25.28% −4.09%
𝐹2 23.10% 32.43% 40.37% 32.52% 40.74% 32.76% 41.81% 35.16% 52.19%
𝐹3 23.81% 26.46% 11.15% 25.29% 6.23% 25.11% 5.49% 25.00% 5.01%
Max. deviation 12.21% 6.23% 5.49% 10.70%
Sum of rel. dev. 59.55% 25.82% 23.95% 38.89%
Rel. aver. dev. 𝟖.𝟓𝟏% 𝟑.𝟔𝟗% 𝟑.𝟒𝟐% 𝟓.𝟓𝟔%
Rel. aver. dev. with outliers 𝟐𝟎.𝟖𝟒% 𝟏𝟕.𝟒𝟓% 𝟏𝟕.𝟒𝟑% 𝟐𝟎.𝟒𝟐%
Table C.11
Fiber volume contents determined by chemical dissolution and by the novel thresholding technique when applying
a ‘‘gaussianBlur’’ and ‘‘Blur’’ onto the CT images.
Specimen Exp. values GaussianBlur(...,(21,21),0) blur(...,(15,15))

FVC FVC Deviation FVC Deviation
𝐶1 23.07% 27.03% 17.20% 25.86% 12.13%
𝐶2 22.08% 39.09% 77.03% 41.19% 86.55%
𝐶3 23.06% 26.53% 15.05% 24.99% 8.36%
𝐶𝐹1 25.57% 22.47% −12.14% 21.03% −17.78%
𝐶𝐹2 22.31% 25.47% 14.16% 24.85% 11.39%
𝐶𝐹3 22.81% 23.83% 4.45% 22.53% −1.24%
𝐹1 26.36% 26.00% −1.35% 24.97% −5.28%
𝐹2 23.10% 30.93% 33.88% 30.41% 31.64%
𝐹3 23.81% 27.81% 16.80% 26.51% 12.89%
Max. deviation 17.20% 17.78%
Sum of rel. dev. 81.15% 69.07%
Rel. aver. dev. 𝟏𝟏.𝟓𝟗% 𝟗.𝟖𝟕%
Rel. aver. dev. with outliers 𝟐𝟏.𝟑𝟒% 𝟐𝟎.𝟖𝟏%
Table D.12
Predictions of final AOA thresholding method (compare green columns in Table B.8 and in Table C.10)
and of final CNN structure. The values for the CNN are averaged predictions for the original and all
augmented 3D image versions with the same FVC.
Specimen Exp. values AOA thresholding CNN

FVC FVC Absolute deviation FVC Absolute deviation
𝐹𝐿𝐷1 22.30% 22.97% 0.67% 26.04% 3.74%
𝐹𝐿𝐷2 25.50% 24.18% 1.32% 28.62% 3.12%
𝐹𝐿𝐷3 28.60% 28.5% 0.1% 28.41% 0.19%
𝐹𝐿𝐷11 24% 23.91% 0.09% 25.24% 1.24%
𝐹𝐿𝐷12 26.60% 26.64% 0.04% 25.6% 1%
𝐶1 23.07% 24.07% 1% 23.24% 0.17%
𝐶2 22.08% 42.2% 20.12% 22.85% 0.76%
𝐶3 23.06% 23.04% 0.02% 22.49% 0.57%
𝐶𝐹1 25.57% 26.6% 1.03% 23.12% 2.46%
𝐶𝐹2 22.31% 23.53% 1.22% 22.35% 0.04%
𝐶𝐹3 22.81% 22.53% 0.28% 22.80% 0.01%
𝐹1 26.36% 25.48% 0.88% 21.98% 4.37%
𝐹2 23.10% 32.76% 9.66% 24.78% 1.68%
𝐹3 23.81% 25.11% 1.3% 22.68% 1.12%
Mean 𝟐𝟒.𝟐𝟑 % 𝟐𝟔.𝟓𝟒% 𝟐𝟒.𝟑%

Abs. aver. dev. 𝟐.𝟕% 𝟏.𝟒𝟔%
14
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