

Use of micro-structured filters to explore the KATRIN background

Dominic Hinz for the KATRIN collaboration

DPG 24: 04.03.2024 – 08.03.2024 Karlsruhe

www.kit.edu

The KATRIN Experiment

Current results

• Upper limit on neutrino mass: $m(v_e) < 0.8 \text{ eV/c}^2$ (90% C.L.)

- Background rate limits sensitivity
- Upcoming release of new results

Main spectrometer background: scenario

Institute for Astroparticle Physics (IAP)

Main spectrometer background: conditions

- Homogeneous magnetic and electric field layout
- Electron with small energy $(E < \Delta E)$ are transmitted to detector
- Cannot distinguish from beta electrons at detector
- Neutral messenger from MS surface
 - Rydberg background model
 - Very small energy O(meV)

Rydberg background model

- MS surface with implanted radioactive impurities
 - ²¹⁰Pb with $t_{1/2} = 22 y$
 - \rightarrow beta decays to ²¹⁰Po
 - \rightarrow alpha decay to stable ²⁰⁶Pb (103 keV)
- \rightarrow Sputtering of neutral atoms from surface
 - $v \sim 10 \frac{\text{km}}{\text{s}} \rightarrow t_{tof} \sim 1 \text{ ms}$
- Excited states Rydberg atoms (n > 7)
- Rydberg atoms subsequently ionised by BBR

Key characteristics of our background electrons

- Small energy: no trapping in MAC-E filter main spectrometer
 - Assumption ionisation of Rydberg atoms \rightarrow E: 1 µeV ... 100 meV
- Start in regions of very low magnetic field and high electric potentials
 - \rightarrow acceleration towards detector
 - Angle to magnetic field θ decreases

Adiabatic motion – magnetic moment conserved \rightarrow Transformation of θ

•
$$\theta_{\text{final}} = \arcsin\left(\underbrace{\sqrt{\frac{E_{\text{i}}}{E_{\text{f}}} \cdot \frac{B_{\text{f}}}{B_{\text{i}}} \cdot \sin^2(\theta_{\text{i}})}}_{\leq 1}\right) \rightarrow E_t \leq \frac{B_{\text{i}}}{B_{\text{f}}} \cdot E_{\text{f}}$$

Difference of background and beta electrons

- Beta electrons from source
 - magnetic field (2.5T)
 - no potential
 - energy close to E_0 (18.57 keV)
 - Isotropic \rightarrow Cut by acceptance angle

- Background electrons from MS volume
 - small magnetic field (~0.5 mT)
 - high potential (-18.57 kV)
 - Iow energy (~meV)
 - Isotropic \rightarrow Transmission through pinch magnet

Basic principle of Transverse Energy Filter (TEF)

- **a** Radius of cyclotron motion defines polar angle $\theta \rightarrow$ transverse energy
- Distribution for Rydberg background and beta electrons differ strongly
- Passive filter: Transmits electrons with <u>small</u> transverse energy

Basic principle of Transverse Energy Filter (TEF)

- **a** Radius of cyclotron motion defines polar angle $\theta \rightarrow$ transverse energy
- Distribution for Rydberg background and beta electrons differ strongly
- Active filter: Electron detection with <u>high</u> transverse energy

Test our Rydberg background hypothesis with a filter

- Passive transverse energy filter (pTEF)
 - Filters electrons with larger angles (beta electrons)
 - Background electrons with small angles transmitted on to detector
- Semi-circle gold plate
 - Side length: 100 μm
 - Wall thickness: 8 μm
 - Depth: 250 μm
 - Open-area-ratio: 91.4%
- Installed in front of detector in high magnetic field strength B_{det}
- Transmission and detector response simulation with Geant4

pTEF measurements and results

- Polar angle of e^- can be varies by changing U_{HV} and B_{MS}
- Clear signature on FPD
 - Rate drops behind filter to ~50%

Mean initial transverse energy

•
$$E_{\rm t} \approx 220(20) \text{ meV}$$

• $E_{\rm t,Rydberg} \approx 15 \text{ meV}$

• \rightarrow Model extension

Model extension

- Ionisation of hydrogen Rydberg atoms by BBR photons does not exclusively cause our background
- Implementation of other mechanisms
 - Higher electron energies by autoionisation of O-16
- Autoionisation of oxygen atoms
 - Additional higher energies (up to 2.5 eV)
 - Dominant long-lived states
 - 420 meV
 - 495 meV

- → New hypothesis of background contribution
- Open questions
 - Which states can contribute?
 - Any other effect possible?

Autoionisation: Exotic excited state of atom

- $\Sigma_{F} = \Sigma_{F} = \Sigma_{F} = (\Sigma_{F})^{-1} e^{-1}$
- $\sum_{i} E_{i,exc} > E_{ionisation}$ (>2 e⁻ excited)
- Lifetime can be larger due to forbidden transitions

Summary and Outlook

- The KATRIN background from the Main spectrometer is not fully understood
- The current rate limits our final sensitivity to < 0.3 $\frac{\text{eV}}{c^2}$
 - No systematic budget only statistical
- Mitigation strategies
- Further use-cases for micro-structures currently under investigation

