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Abstract: Dynamic crossflow filtration (DCF) is the state-of-the-art technology for solid–liquid
separation from viscous and sensitive feed streams in the food and biopharma industry. Up to now,
the potential of industrial processes is often not fully exploited, because fixed recipes are usually
applied to run the processes. In order to take the varying properties of biological feed materials
into account, we aim to develop a digital twin of an industrial brownfield DCF plant, allowing to
optimize setpoint decisions in almost real time. The core of the digital twin is a mechanistic–empirical
process model combining fundamental filtration laws with process expert knowledge. The effect of
variation in the selected process and model parameters on plant productivity has been assessed using
a model-based design-of-experiments approach, and a regression metamodel has been trained with
the data. A cyclic program that bidirectionally communicates with the DCF asset serves as frame of
the digital twin. It monitors the process dynamics membrane torque and transmembrane pressure
and feeds back the optimum permeate flow rate setpoint to the physical asset in almost real-time
during process runs. We considered a total of 24 industrial production batches from the filtration of
grape juice from the years 2022 and 2023 in the study. After implementation of the digital twin on site,
the campaign mean productivity increased by 15 % over the course of the year 2023. The presented
digital twin framework is a simple example how an industrial established process can be controlled
by a hybrid model-based algorithm. With a digital process dynamics model at hand, the presented
metamodel optimization approach can be easily transferred to other (bio)chemical processes.

Keywords: digital twin; hybrid model; metamodel; dynamic crossflow filtration; industry scale

1. Introduction

Since the term Industry 4.0 was introduced at the Hanover Fair in 2011, the importance
of the development of cyberphysical production systems (CPPSs) is growing faster than
ever in the biomanufacturing industry. CPPSs are physical production plants equipped with
computation processing units used to automatically control the process. The realization
of a cyberphysical system for manufacturing is generally understood to require, among
other things, a virtual replica of the process that bidirectionally interacts with the physical
process, the collection and usage of process data, and the optimization of the process with
the help of intelligent algorithms [1]. The virtual part of a CPPS, including the digital
process model and the algorithms, is called a digital twin [2,3].

Concepts and requirements for digital twins in manufacturing have frequently been
presented and reviewed in the literature [4–15], whereas practical use cases where a digital
twin has been developed for real-life processes are few to be found in the literature. Lopez
and coworkers built a hybrid model for a fermentation process that is updated with data
during the process [16], but they did not close the information loop from the digital part
back to the physical process. A digital process replica with such an “one-way” information
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flow from the physical to the digital part is called a digital shadow [4,16]. Trunzer et al.
used data-driven models trained with expert knowledge to identify the operational states
of an industrial chemical reaction plant from the process data [17]. However, the models
were not used for plant process optimization. Chew et al. used data-driven models to
control a filtration process [18]. The optimization algorithm was tested on a laboratory
filtration unit and a benefit for control of industrial filtration units has been predicted.

Digital twins rely on digital process models by definition, which are the backbone that
makes process monitoring, simulation, and optimization possible [19–21]. Regarding the
literature, mathematical models used to describe bioprocesses are divided into mechanistic
and data-driven models [19,22]. Mechanistic models include models based on first prin-
ciples, namely mass and energy balances and previous process knowledge. Data-driven
models are built up on process data without incorporated previous knowledge. The trend
in recent years is to combine mechanistic and data-driven models to create hybrid model
structures in order to profit from the extrapolation capability of mechanistic models and
the flexibility of data-driven models at the same time [22,23]. Mechanistic and data-driven
models can be arranged in different serial or parallel configurations to hybrid models,
depending on which modeling goal is to be aimed for [24,25]. The most commonly used
model configuration in biochemical engineering is a serial structure of a data-driven model
and a mechanistic model, wherein the data-driven model functions as a filler for overall
model parts that cannot be expressed based on first principles [24].

Regarding the model description of the filtration processes, a spectrum of different
approaches and use cases is presented in the literature [26]. Krippl and coworkers connected
a neural network with mass balances in a serial model configuration to predict the permeate
flux over time in a conventional crossflow filtration unit [27]. Piron et al. applied the serial
model configuration to yeast filtration [28]. Díaz et al. used a serial neural network and
Darcy law configuration for flux prediction, but did not use the model for process control
and optimization [29]. Chew et al. used a similar model structure for the prediction of the
fouling and filtration resistances of an industrial water clarification process; however, the
model was not yet further used for process optimization [30].

A special type of model interconnection is the concept of metamodels or surrogate
models [19,22,31,32]. A surrogate model is defined as a superordinated, simplified model
based on the knowledge of the original, underlying model. The metamodel reduces
complexity and increases calculation time to enable model calling during the real-time
optimization of a process. Franzreb et al. used a model-based design-of-experiments
(DoE) approach to make statements about the economic variables of a complex antibody
production process [33]. Wang et al. trained a neural network with data generated from a
mechanistic model of protein chromatography, and they recognized the advantages of the
metamodel to quickly predict model parameters to adapt the mechanistic model to new
feed streams [34]. Reports on a metamodel built for a filtration use case could not be found
in the literature.

This paper is the first to present a digital twin for the process of dynamic crossflow
filtration (DCF). We introduce a very quick regression metamodel to enable providing
setpoint recommendations in almost real time. Furthermore, the practical implementation
of the digital twin in an industrial use case is reported. DCF is a high-performance filtration
technique that relies on rotating discs reducing the deposition of fouling components on a
membrane surface [35,36]. The modeling of rotating membrane discs requires consideration
of the physical phenomena occuring only with DCF such as cake reduction and fluid
backpressure due to rotation of the membranes [37,38]. In this publication, the reader
is shown how we aim at creating a digital twin of a brownfield DCF plant in order to
enable optimized setpoint decisions in real time and to utilize the digital twin during an
industrial filtration campaign, with the goal of improving the mean campaign DCF process
productivity. Therefore, we built a mechanistic, semiempiric, hybrid process model of
membrane fouling during the DCF of grape must. We present a concept of training a
data-driven metamodel banking on model-based DoEs and response surface modeling and
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showcase how to straightforwardly apply the resulting metamodel for the time-critical
forecasting of optimum process productivity. The model collective is implemented into a
digital twin framework that reads the torque and transmembrane pressure (TMP) parameter
at regular time intervals from the physical DCF plant during the process run and returns
the permeate flow rate setpoint calculated for optimum productivity to the process actuator.
The added value of introducing the digital twin to the industrial process is examined by
comparing the overall productivity between 2022 and 2023 grape must filtration campaigns.

2. Materials and Methods

In this section, the plant setup of the industrial filtration runs and an examplary set
of process data that is applied for model construction are presented. The structure and
the elements of the digital model collective are explained, followed by a description of the
superstructure of the digital twin framework.

2.1. Production Setup and Operation

The experimental setup for the filtration runs is shown in Figure 1. The filtration
machine (F1) is a DCF-type number 312/32 (Andritz Separation GmbH, Vierkirchen,
Germany) equipped with four shafts and 256 ceramic membrane discs. Permeate passes
through the porous membrane discs, and it is discharged from the machine inside the
hollow shafts. Retentate is collected inside the process chamber and can be released by
opening a valve (V1). The membrane discs are mounted on top of each other on every
shaft, so that they form membrane stacks. Adjacent membrane disc stacks overlap, thus
causing increased shear rate at the overlap region and achieving an increased cleaning
effect from solid deposits at the overlapping points. The total available filter area is 32.8 m2;
the membrane diameter is 312 mm.

The feedstock considered for the filtration experiments of this research study is pressed
grapes containing pulp and other solids. Thus, the valuable product of the process is the
clarified sweet must, i.e., the permeate. A membrane pore size of 200 nm is used for the
filtration process. The filtration runs were performed at a production facility of a wine
manufacturer in Italy during the regular sweet must production campaigns from August
to October 2022 and 2023.

A centrifugal pump (P1) transports the feed from a storage tank into the DCF chamber.
The feedstock is periodically mixed in the storage tank; however, a fully uniform solids
content in the feed during the entire filtration process cannot be ensured. The pumping
rate of the feed pump is controlled by a programmable logic controller (PLC) using the
signal of sensors recording the TMP and permeate flow rate. The TMP is measured by
the difference between the feed inlet pressure and the permeate outlet pressure, i.e., the
TMP reduction due to membrane rotation is neglected. The filtration process starts in the
“flow-controlled” operation mode; that is, the pumping rate of the feed pump is controlled
at a constant permeate flow rate. The initial permeate flow setpoint is predefined by the
plant operator at the beginning of the process run from experience dependent on estimated
solids concentration in the feed and the postcleaning permeability of the membrane discs.
As soon as the TMP setpoint of 0.8 bar is exceeded once during the production run, the
operation mode automatically switches to “TMP-controlled”, and the feed pump rate is
controlled to keep the TMP at a constant value.

The rotation speed of the membrane drive is controlled to a constant value of 343 min−1

during all experiments. The readout of power consumption from the frequency converter of
the motor rotating the membrane shafts is done to receive data about the membrane drive
torque. The membrane drive torque is strongly correlated to the retentate viscosity inside
the DCF chamber and provides information about the increase in solids concentration in the
retentate during a filtration run. Opening of the retentate valve for release of retentate from
the DCF chamber is controlled by the membrane torque. At the beginning of the process,
the DCF chamber is filled with feed suspension. During the concentration phase, the
retentate valve is kept closed until the torque setpoint of 300 N m is reached. Subsequently,
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retentate discharge begins by gradual opening of the retentate valve until the torque does
not increase any further. Closing of the retentate valve happens with a torque hysteresis of
10 %, i.e., it closes only when the membrane torque falls below 270 N m.

The end of a filtration run is decided by the operator based on the amount of feed
suspension available. A cleaning procedure with variable efficiency is followed by each
filtration process. The permeate water flux is measured after every cleaning cycle for the
assessment of the cleaning efficiency. All sensor and actuator setpoint data are logged
24/7 in 5 s intervals as a time series in a proprietary server database of Andritz (Metris
All-in-One digitalization platform) and is used by us for model and digital twin validation
after download as comma-separated values and manual segmentation into single filtration
runs. When exporting data from the Metris platform, data preprocessing filters for, e.g.,
data compression by averaging are available; however, we have based our analysis on the
raw data comprising approximately 2 MB for an experiment of 10 h in duration.

                                                                             

          

          

             

                           

                                         

              

                

                     

             

                         

 
   

 
 

   

  

  

 

   

 

  

 

  
  

  

 

  
    

         

        

   

 

   

 

   

 

   

  

    

    

    

   

   

   

                    

                          

                          

                           

                   

                                        

                            

                            

Figure 1. Piping and instrumentation diagram of the filtration process complemented by typical
trends of central process variables during a filtration run. The plant setup includes sensors for TMP,
permeate flow rate, membrane drive torque, and retentate valve opening. Actuators of the process
control system are a feed pump, membrane drive, and retentate valve.

2.2. Mechanistic–Empirical Process Dynamics Model

A dynamics model that describes the physical process as close as possible is the
backbone of the digital twin. We decided to build a mainly mechanistic model comple-
mented with semiempirically chosen adjustment parameters in order to use existing process
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knowledge as a counterbalance to the limited variations in the available process data from
filtration runs in industrial production.

The calculation of the process parameters TMP, permeate, retentate and feed flow
rates, membrane drive torque and valve opening percentage was implemented in a time
loop with a cycle time of 3.6 s. In order to replicate the solids concentration gradient along
the shaft axis from the feed inlet to the retentate outlet, the DCF chamber was conceptually
divided into segments, and the permeate flow rate and membrane drive torque were
calculated separately for each segment. The number of segments was set to smax = 4 after a
segment parameter study and a comparison of model simulation accuracy. The TMP was
not calculated per segment, since the pressure drop along the shaft axis was assumed to be
negligible. The sequence of calculation steps of the process dynamics model is presented in
Figure 2 in the right-hand detail box.

Digital twin

Regression 

metamodel

Physical

asset

M(t),

TMP(t)

Qper,set(t)

Soft sensor

Process

dynamics model

once at process startup
during process run

in 5 min cycle

simulation in 3.6 s time step

Darcy equation:

𝑅𝑚 = 𝑓(𝑄𝑤𝑓)

Darcy equation:

𝑅𝑐𝑎𝑘𝑒,𝑖𝑛𝑖𝑡
= 𝑓(𝑇𝑀𝑃𝑖𝑛𝑖𝑡 ,
𝑄𝑝𝑒𝑟,𝑖𝑛𝑖𝑡)

Concentration-

torque 

correlation

(soft sensor):

𝑐𝑓𝑒𝑒𝑑 = 𝑓(𝑀)

Regression 

metamodel:

𝑄𝑝𝑒𝑟,𝑠𝑒𝑡
= 𝑓(𝑐𝑓𝑒𝑒𝑑 ,

𝑅𝑐𝑎𝑘𝑒,𝑆𝑆,𝑟𝑒𝑓)

Model 

adaption:

𝑅𝑐𝑎𝑘𝑒,𝑆𝑆,𝑟𝑒𝑓
= 𝑓(𝑇𝑀𝑃𝑠𝑖𝑚 ,
𝑇𝑀𝑃𝑒𝑥𝑝)

Resistance equation:

𝑅𝑝𝑜𝑟𝑒 𝑡𝑖 , 𝑠 , 𝑅𝑐𝑎𝑘𝑒 𝑡𝑖 , 𝑠

= 𝑓(𝑄𝑝𝑒𝑟 𝑡𝑖−1, 𝑠 ,

𝑇𝑀𝑃 𝑡𝑖−1 , 𝑐(𝑡𝑖−1))

Darcy equation:

𝑄𝑡,𝑝𝑒𝑟 𝑡𝑖 , 𝑇𝑀𝑃(𝑡𝑖)

= 𝑓(𝑄𝑝𝑒𝑟,𝑠𝑒𝑡, 𝑇𝑀𝑃𝑠𝑒𝑡)

𝑄𝑝𝑒𝑟 𝑡𝑖 , 𝑠 = 𝑓(𝑇𝑀𝑃 𝑡𝑖 , 𝑅𝑐𝑎𝑘𝑒 𝑡𝑖 , 𝑠 )

Fluid mass balance:

𝑄𝑓𝑒𝑒𝑑 𝑡𝑖 , 𝑄𝑟𝑒𝑡(𝑡𝑖 , 𝑠)

= 𝑓(𝑄𝑡,𝑝𝑒𝑟 𝑡𝑖 , 𝑄𝑡,𝑟𝑒𝑡 𝑡𝑖−1 )

Species mass balance:

𝑐 𝑡𝑖 , 𝑠𝑖 = 𝑓(𝑄𝑓𝑒𝑒𝑑 𝑡𝑖 , 𝑄𝑟𝑒𝑡 𝑡𝑖 , 𝑠 )

Concentration-torque correlation:

M 𝑡𝑖 , 𝑠 = 𝑓(𝑄𝑝𝑒𝑟 𝑡𝑖 , 𝑠 , 𝑐 𝑡𝑖 , 𝑠 )

Retentate valve model:

𝑄𝑡,𝑟𝑒𝑡 𝑡𝑖 = 𝑓(𝑀 𝑡𝑖 , 𝑠 , 𝑇𝑀𝑃 𝑡𝑖 )

Figure 2. Overview of the digital twin structure. Obtaining torque data from the physical DCF asset,
the digital twin applies a mechanistic–empirical soft sensor to estimate the feed concentration. The
regression metamodel is used to find the optimum permeate flow rate setpoint, whereas the digital
process dynamics model is called to assess the model validity in each process optimization cycle.

The Darcy equation [39] was used to obtain the permeate flow rates during TMP-
controlled operation mode or the TMP during flow-controlled mode, respectively:

TMP(ti) =
η · Qper(ti, s) · Rtot(ti, s)

Asegm
(1)

where η is the dynamic viscosity of water in Pa s, Qper is the permeate flow rate in L h−1,
Rtot is the total filtration resistance in m−1, and Asegm is the filtration surface area of one
segment. The dependencies of the variables on time ti and the segment number s were
marked. In the case of the flow-controlled operation mode, the calculation is not trivial,
because although the total permeate flow rate is set by the operator or the digital twin, its
distribution between the different segments of the DCF model is unknown at this stage of
the time step. Therefore, in an intermediate calculation for each segment, a reference flow
rate was calculated for a reference TMP. Subsequently, the sum of these reference permeate
flow rates was compared to the desired total permeate flow rate, and the TMP was adjusted
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in order to match the flow rates. Knowing the required TMP, the real segmentwise permeate
flow rates were calculated from the Darcy equation.

The resistance-in-series approach [39] was chosen for the modeling of the filtration
resistances:

Rtot(ti, s) = Rm + Rpore(ti, s) + Rcake(ti, s) (2)

where Rm is the intrinsic membrane resistance in m, Rpore is the pore resistance in m−1,
and Rcake is the cake resistance in m−1. The pore resistance was defined to follow an
exponential relation:

Rpore(ti, s) = Rpore,ref ·
(
exp

(
kpore · kp,i(ti, s)

)
− 1
)

(3)

where Rpore,ref is the reference pore resistance in m−1, and kpore is a model adaption
parameter in L g−1m−1. The kinetic parameter kp,i(ti, s) is calculated as follows:

dkp,i(ti, s)
dti

= cfine ·
Qper(ti, s)

Asegm
(4)

where cfine is the concentration of fine particles in the DCF chamber in g L−1. Fine particles
were assumed to pass through the membrane, and the fine particle concentration was set to
20 % of the feed concentration. A rational equation of the Langmuir type [40] was used to
model the cake resistance striving asymptotically to a maximum during filtration runs:

Rcake(ti, s) = Rcake,SS(ti, s) · kc,i(ti, s)
kc,i(ti, s) + kcake

(5)

where Rcake,SS(ti, s) is the steady state cake resistance in m−1, and kcake is a model adaption
parameter in g h L−1. The increase in the kinetic parameter kc,i(ti, s) in time is defined as
being dependent on the chamber concentration:

dkc,i(ti, s)
dti

= c(ti, s) (6)

and the steady state cake resistance follows the equation:

Rcake,SS(ti, s) = Rcake,SS,ref ·
(

Qt,per(ti−1)

Qt,per,ref

)nQ

· exp
(

TMP(ti−1)

TMPcompress

)
·
(

c(ti−1, s)
cref

)nc

(7)

where Rcake,SS,ref is measured in m−1, Qt,per,ref is measured in L h−1, TMPcompress is mea-
sured in bar, cref is measured in g L−1, and dimensionless nQ and nc are model parameters.
For process variable values that were taken from the previous time step of the simulation,
the time variable was marked with the index i − 1. The composition of the steady state re-
sistance equation results from the analysis of the 2022 campaign’s process data and is based
on physical knowledge about cake formation, cake shearing, and cake compressibility in
filtration.

Fluid mass balances were implemented to obtain the retentate flow rates per segment,
in which the feed flow rate of a segment is understood as the retentate flow rate of the
previous segment:

Qret(ti, s) = Qret(ti, s − 1)− Qper(ti, s) (8)

The overall feed flow rate of the process defines the inlet of the first segment:

Qret(ti, 0) = Qfeed (9)

Chamber concentration values are calculated from segmentwise, instationary species
mass balances:
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Vsegm · dc(ti, s)
dti

= Qret(ti, s − 1) · c(ti, s − 1)− Qret(ti, s) · c(ti, s) (10)

with the following boundary condition:

c(ti, 0) = cfeed (11)

where c is the coarse solids concentration in the DCF chamber in g L−1, thus providing the
concentration of particles and colloids retained by the membrane. The membrane drive
torque is calculated from the solids concentration in two steps. Firstly, it is calculated via
an empirical equation relating the viscosity exponentially to the concentration:

η(ti, s) = ηref · exp
(
kη · fc(ti) · c(ti)

)
(12)

where η is the dynamic viscosity in Pa s, ηref and kη are model parameters, and fc(ti) is an
empirical correction function that takes into account that the suspended solids concentration
in the DCF chamber does not exactly follow Equation (10), possibly because a fraction of
the solids is fixed in the filter cake or attached to the chamber walls. In order to consider the
effect, which results in a slowed down increase in the torque, fc(ti) follows an exponential
decay until the retentate valve is determined to open, thus indicating the approach of a
quasisteady state in the DCF. Secondly, the well-known first principle mechanistic equation
linking viscosity and torque [41] is applied:

M(ti, s) = Mseal + kg · ω · η(ti, s) (13)

where Mseal is the torque already caused by the seals of the rotating shafts, and kg is the
model parameter determined by the geometry of the DCF, mainly the total filter area and
the distance between the discs.

The last calculation step is to obtain the total retentate flow rate from the valve opening:

Qt,ret(ti) = kvalve ·
(

TMP(ti) · X(ti)− σf

)
(14)

where Qt,ret is the total retentate flow rate in L h−1, kvalve is the valve cross-section coefficient
in L bar−1 h−1, X the valve opening in %, and σf the flow stress of the retentate in bar.
When the critical torque is reached, the degree of valve opening is gradually increased
starting from a minimum opening percentage until the torque starts to descend.

For the simulation of the model, the initial permeate flow rate setpoint, the solid feed
concentration, the process duration, and all model parameters have to be defined as input.
After the digital process simulation, the mean productivity over a filtration run is obtained
via a time averaging and space summation of the permeate flow rate:

P =
1

tend
·
∫ tend

t=t0

smax

∑
s=1

Qper(ti, s) dti (15)

where P is the average productivity of the production batch in L h−1, which we simply call
productivity in the following, tend is the process duration in h, and smax is the dimensionless
number of segments.

2.3. Regression Metamodel

A series of in silico experiments was performed with the process dynamics model
to obtain the data for building the data-driven metamodel. A full factorial experimental
design was chosen, and the initial permeate flow rate setpoint, the feed concentration, and
the reference steady state cake resistance were varied in the boundaries of [400, 1200] L h−1,
[20, 100] g L−1, and [6 · 1012, 2.2 · 1013] m−1, respectively. Five levels were calculated per
factor. All in silico experiments were carried out with a process duration of 10 h. Sub-
sequently, a second-degree polynomial was fitted to the obtained values of the average
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productivities. Because of the strongly differing magnitudes of their numerical values, the
factors had to be scaled to the interval [0, 1] before performing the fit. The calculations were
performed using Python, including pyDOE2, as well as the preprocessing.PolynomialFeatures
and linear_model.LinearRegression packages from the scikit-learn library.

Including the first- and second-order parameter terms, the interaction terms, and the
constant bias term, the resulting response surface equation approximating the achievable
productivity in dependence of the process parameters feed concentration, permeate flow
rate setpoint, and steady state cake resistance has the form:

P = w0 + w1cfeed + w2Qper,set + w3Rcake,SS + w4cfeed
2 + w5cfeedQper,set

+ w6cfeedRcake,SS + w7Qper,set
2 + w8Qper,setRcake,SS + w9Rcake,SS

2
(16)

where wi and i ∈ [0, 9] are the parameters of the response surface that are identified via
polynomial regression.

The aim of the digital twin is to optimize the productivity of the DCF. Therefore, the
extrema of the predicted productivity of the metamodel are determined via the first-order
derivative with respect to the permeate flow rate setpoint equaling zero:

dP
dQper,set

= w2 + 2w7Qper,set + w5cfeed + w8Rcake,SS
!
= 0 (17)

The second-order derivative was checked to verify that the extremum found was a
productivity maximum:

d2P
dQper,set

2 = 2w7
!
< 0 (18)

Equation (17) allows for real-time calculation of the permeate flow rate setpoint
reaching for the maximum productivity of the process. Since the feed concentration is
included, the optimum permeate flow rate setpoint can be easily recalculated when a change
in the feed composition occurs during the filtration process run. If an unmodeled physical
effect in the process causes a mismatch between the real and the modeled process dynamics,
the reference steady state cake resistance parameter is used to adapt the mechanistic model
during industrial DCF runs in 5 min intervals, if necessary. As well, since this parameter
describing the physical properties of the solids in the feed is included as a factor in the
response surface equation, changes in the natural feed solution sweet must during or
between industrial runs do not require the repetition of the DoE prestudies.

2.4. Digital Twin Framework

The digital twin framework is built to use the model components and to communicate
with the physical asset. The algorithm evaluates the plant status every 60 s by watching the
PLC internal status variable. As soon as a process run is detected, the digital twin frame-
work’s calculations are started. In Figure 2 the flow sheet of the digital twin framework
is shown in the left-hand detail box. Once at the process startup, the intrinsic membrane
resistance is calculated from the permeate water flux according to the Darcy Equation (1).
Due to detectable cake formation already being present during the DCF chamber filling,
the cake resistance parameter kc,i is initialized once at the moment that regular filtration
starts using the measured TMP and permeate flow rate.

During the filtration process, the membrane drive torque is read every 5 min, and a
permeate flow rate setpoint recommendation for the optimum productivity is returned to
the DCF process control system. In every optimization cycle, the current feed concentration
is estimated using the mechanistic–empirical correlation between the feed concentration
and the torque from Equations (12) and (13) in the sense of a soft sensor. Secondly, the
function based on a first-order derivative of the regression metamodel from Equation (17)
is called, and the permeate flow rate recommendation is obtained for the current feed
concentration and reference steady state cake resistance. Thirdly, the mechanistic–empirical
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model is used to simulate the past 5 min starting from the simulated status of the DCF
obtained by the respective 5 min simulation in the previous optimization cycle of the digital
twin. The simulation used the real experimental permeate flow rate setpoint and the current
feed concentration. The resulting TMP from the simulation was compared to the actual
TMP in the process. In the case where the TMP difference between the simulation and the
experiment exceeded 0.1 bar, the reference steady state cake resistance was adapted by
10 % for model refinement.

All program parts are written in Python and uploaded on the data server platform of
the filtration plant. The platform serves as an interface between the digital twin framework
and the local DCF process control system and allows for the reading of sensor data and
writing of actuator instructions during the process. Due to safety reasons, changes in the
permeate flow rate setpoints were manually authorized by the operator.

3. Results

The results section is divided into the presentation of the process dynamics model
functions, the model validation with industrial experiment data, and the results of the meta-
modeling. The impact of applying the digital twin’s permeate flow rate recommendations
on the 2023 process campaign is evaluated in the last section.

3.1. Mechanistic–Empirical Process Dynamics Model

A mechanistic–empirical model has been created to calculate the time course of all
important process variables. Exemplary results of the predicted process dynamics can be
seen in Figure 3. The simulation was defined to start with a permeate flow rate setpoint of
415 L h−1, and the target permeate flow rate was realized by the model system adjusting
the TMP over time. The TMP increased during the initial 2.5 h of the modeled process, thus
indicating a progressive membrane blocking. The slope of the TMP decreased during the
initial 2.5 h of the modeled process, because the build up of the cake filtration resistance,
that tended towards a maximum, was dominant over the increase in the pore filtration
resistance. The process time 2.5 h after the start of the simulated process was characterized
by the opening of the retentate valve; therefore, the TMP increase was stopped, and the
TMP level was held. The membrane rotation speed was defined to remain constant. At
the simulated process time of 5 h, the permeate flow rate setpoint was defined to increase
by 80 L h−1 to showcase the switch from a flow-controlled to a TMP-controlled filtration
mode. Until the end of the simulated process, the TMP was held at the predefined setpoint
of 0.8 bar, and the permeate flow rate was calculated to slowly decrease because of the
increasing pore filtration resistance.

Due to the constant permeate flow rate and a constant feed concentration of 60 g L−1,
a linear increase in the lump chamber concentration calculated by the simple mass balance
was observed until the retentate valve opened for the first time. Thereafter, the simulated
concentration decreased and again increased in a manner dependent on the opening state
of the valve. During the retentate discharge phase, the higher the valve opening percentage
was, the higher retentate volume discharged and thus the faster the chamber concentration
fell. The increase and decrease in the membrane drive torque correlated with those of the
chamber concentration, thus following the modeled relationship between torque, viscosity,
and concentration.

According to the results, the mechanistic–empirical model is capable of providing a
simplified replication of the physical effects of membrane blocking and the control behavior
of the filtration plant.
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Figure 3. Simulation results of the digital process dynamics model for a 10 h in silico experiment.
Time courses of (a) permeate flow rate, (b) TMP, (c) membrane rotation speed, (d) chamber solids
concentration, (e) membrane torque, and (f) retentate valve opening are plotted. The permeate flow
rate setpoint was defined to escalate after half of the simulated process time. The rotation speed was
set constant. The modeled switch from flow to pressure control operation mode, and the beginning
of the retentate discharge are marked.

3.2. Process Dynamics Model Validation

During the process runs with the digital twin, the current TMP and torque from the
experiment and the model simulation were recorded after every optimization cycle. The
plots resulting from two process runs are presented in Figure 4. A visual assessment
shows a good agreement between simulation and experiment. The differences between the
simulated and real TMP were smaller than the measurement noise. The increase in the TMP
within the first hour of the process run 2–22 and the subsequent stabilization to a constant
TMP level was recognized by the model. The initial, real TMP of run 2–22 was met by the
simulation with a deviation of less than 10 %. During the concentration phase of run 2–22,
the increase in torque was adequately modeled for the initial 2 h of the process. However,
the subsequent gradient of the torque increase was limitedly overestimated by the model
such that the setpoint torque for the valve opening was reached 1 h earlier within the
simulation. In run 2–22, the valve opening percentage was precisely set so that alternating
opening and closing of the valve did not occur. This characteristic was properly simulated
from the process run time of 5.5 h. Overall, the torque profile during the concentration
phase and the retentate discharge phase was satisfactorily modeled.

Considering the TMP course validation of run 14–23, although the initial TMP was
simulated to be 0.15 bar lower than the actual experimental value, the correction function
of the digital twin adjusted the simulation within the first 30 min of the run. The shift in the
TMP course at 4 h resulted from a change in the permeate flow rate setpoint from 400 L h−1

to 500 L h−1 and was reproduced by the model simulation. The constant TMP of 0.8 bar
due to the change to the TMP-controlled operation mode at the time of the permeate flow
rate setpoint change was simulated correctly. In the torque course of run 14–23, the increase
during the concentration phase, the torque level during the retentate discharge phase,
and the fluctuations due to the changes in the valve opening percentage were adequately
approximated by the simulation.

All validation results of the 2022 and 2023 campaigns’ production runs can be viewed
in Figure S1 and Figure S2 in the Supplementary Information. During the filtration runs, the
permeate flow rate setpoint was varied between 400 L h−1 and 850 L h−1 both between the
experiments and partly during the single runs. Considering all the experimental validation
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results from the 2023 campaign, a good agreement between the model and real data has
been reached particularly with natural variations in feed concentration and operational
changes in the permeate flow rate setpoint, thereby underlining the robustness of the
process dynamics model for this use case. The validated process dynamics model sets the
basis for training the metamodel and for recommendations for optimum permeate flow
rate setpoints of the digital twin.

(a)

(c) (d)

(b)

P2-22 P2-22

P14-23 P14-23

Figure 4. Validation of modeled TMP and torque with experimental data. The experiment from the
2022 campaign (TMP in (a) and torque in (b)) was carried out with a fixed permeate flow rate setpoint
of 500 L h−1. In the the experiment from the 2023 campaign (TMP in (c) and torque in (d)), the
permeate flow rate setpoint was increased from initial 400 L h−1 to 500 L h−1 after 4 h process time.
The difference in the overall TMP level of both experiments can be explained by different membrane
cleaning efficiency prior to the process run.

3.3. Regression Metamodel

A total of 125 in silico experiments were carried out with variation in the feed concen-
tration, the initial permeate flow rate setpoint, and the reference steady state cake resistance.
Using the productivity output from the in silico experiments, a regression metamodel
was created, which allows for inverse calculation of the optimum initial permeate flow
rate setpoint in the digital twin framework. The relationship between the initial permeate
flow rate setpoint and the resulting experiment’s productivity in the metamodel is shown,
together with the regression residuals, in Figure 5. With sparse exceptions, the absolute
residuals from the polynomial regression were lower than 60 Lperh−1, thereby indicating a
satisfactory goodness of fit of the simple regression metamodel to the complex mechanistic
model (cf. Figure 5 d).

All in silico experiments with the initial permeate flow rate setpoint of 400 L h−1

resulted in a productivity of 400 Lperh−1 within the accuracy of the regression model. With
the initial permeate flow rate setpoint as low as 400 L h−1, the maximum TMP of 0.8 bar
was not reached during the 10 h run, and, consequently, the permeate flow rate could be
kept for the complete simulation. The same held true for the experiments having an initial
permeate flow rate setpoint of 600 L h−1 and a reference steady state cake resistance of
6.0 · 1012 m−1. However, even in the case of this low cake resistance and the smallest feed
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concentration investigated of 20 g L−1, this 1:1 dependency between the productivity and
initial permeate flow rate setpoint did not hold anymore when the initial permeate flow
rate setpoint was increased to 800 L h−1. At the initial permeate flow rate of 800 L h−1, the
maximum TMP of 0.8 bar was reached before the process time of 10 h was finished, and
the process had to switch to the TMP-controlled operation mode. As a consequence, the
permeate flow rate started to decay after this time point, and the (average) productivity
of the run was less than the initially chosen permeate flow rate setpoint. In Figure 5a,
the effect is shown in an increasing deviation of the course of the curves from a linear
correlation of productivity with an increasing initial permeate flow rate setpoint. When the
assumed reference steady state cake resistance was set to higher values of 1.4 · 1013 m−1 or
2.2 · 1013 m−1 (cf. Figure 5b,c, respectively), the time until the TMP setpoint was reached
and the system switched to the TMP-controlled mode with reduced productivity became
shorter. In addition, the compressibility of the filter cake started to show a significant
negative effect on the productivity at higher cake resistances. The combination of these
effects can result in a situation in which the selection of a too high initial permeate flow rate
setpoint corresponds with a productivity that is lower than the productivity that could have
been achieved if the process had been operated more carefully. Consequently, Figure 5b,c
show the existence of an optimal initial permeate flow rate setpoint.

When the feed concentration increased, e.g., from 20 g L−1 to 40 g L−1, the produc-
tivity also decreased; however, the effect was minor compared to the effect of a change
in the permeate flow rate setpoint or the reference steady state cake resistance on the
productivity. The reason for the decrease in productivity can be found in the fact that higher
solids concentrations accelerate the increase in filtration resistance over the process time.
Consequently, the TMP increases faster, thereby resulting again in an earlier change from
the flow-controlled to the TMP-controlled operation mode. In most cases, the influence
of the feed concentration on the optimal initial permeate flow rate setpoint was quite
small; however, at high reference steady state cake resistances, it can be seen that a feed
concentration of 100 g L−1 shifted the optimum to lower values of the flow rate setpoint (cf.
Figure 5c).
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(a) (b)

(c) (d)

Figure 5. Results from the metamodel training. Subplots (a–c) show the dependency of productivity
on initial permeate flow rate setpoint. Reference steady state cake resistance is constant in each
plot, and feed concentration varies within the curve families. Subplot (d) presents the residuals of
the regression.

In summary, the variation in the optimum permeate flow rate setpoint with the model
parameters reference steady state cake resistance and feed concentration confirms the
relevance of a metamodel enabling the calculation of the appropriate permeate flow rate
setpoint in the digital twin framework during the filtration process.

In the case of varying properties of the feed entering the DCF or an adjustment to
the mechanistic model caused by an observed significant deviation in the simulated TMP
from the experimental data, the metamodel makes it possible to conduct a new calculation
of the optimal initial permeate flow rate setpoint in practically real time. The frequent
calculation of the optimal initial permeate flow rate setpoint would not be possible when
using the mechanistic model for optimization calculations directly. To find the optimum
of the productivity resulting from a 10 h filtration, several runs of the mechanistic model
covering the full process time would be needed, thereby resulting in a computation time
clearly exceeding the 5 min intervals of the optimization loop of the digital twin.

3.4. Effect of the Digital Twin on the Productivity

By the start of the 2023 production campaign, the digital twin was implemented on
the server platform and put into operation. At this stage of the development, the permeate
flow rate recommendations from the digital twin were transferred manually to the physical
process by the operator during the course of the production runs due to safety reasons. The
productivities of the 2022 and 2023 campaigns’ production runs and the campaign mean
productivity are presented in Figure 6.
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(a) (b)

Figure 6. Productivity comparison between the production runs of the (a) 2022 and (b) 2023 cam-
paigns. The digital twin was active from beginning of the 2023 filtration runs. A significant increase
in average productivity of 15 % was achieved from 2022 to 2023.

The average productivity of the productions runs in the 2022 campaign was 466 Lperh−1

± 88 Lperh−1. An increase in average productivity of 15 % was achieved from the 2022
campaign to the 2023 campaign, as the average productivity of the 2023 campaign was
536 Lperh−1 ± 63 Lperh−1. This shows that, in addition to the increased productivity, a
reduction in the fluctuations of the productivity of individual runs by one quarter could
be achieved by implementing the digital twin. We performed a classic t test for unpaired
samples and reached a p value of 0.040. Accordingly, the increase in the 2023 campaigns’
productivity mean values can be classified as significant. The variations in the productivity
of the individual runs during both filtration campaigns are explained by the different feed
characteristics of the respective batches. For instance, the solids concentration, fouling
particle compressibility, and temperature influence the degree of membrane blocking and
thus the maximum applicable permeate flow rate setpoint.

The achieved increase in productivity in the campaign applying the digital twin can be
mainly attributed to fact that the digital twin suggested initial permeate flow rate setpoints
that resulted in a DCF operation at higher TMPs. In the manual operation during the
2022 campaign, the operators strived to avoid a transition into TMP-controlled operating
conditions. However, the simulation runs and metamodel showed that the reference steady
state cake resistance of sweet must was only moderate and that a transition into the TMP-
controlled operation mode in the course of the filtration did not harm the productivity.
These predictions were confirmed in the 2023 campaign, as can be seen in the individual
TMP time courses of all runs’ plots in Figure S1 in the Supplementary Information.

4. Discussion

The results are discussed with regard to the quality of the mechanistic–empirical process
dynamics model and the digital twin’s faculty to identify the optimum process setpoint.

4.1. Process Dynamics Model Quality

Generally, the mechanistic–empirical process model provides a good replication of the
time dynamics of the process variables TMP and membrane drive torque. However, there
were effects observed during some process runs that cannot be explained with current
process knowledge. For instance, the initial TMP of process run 14–23 in Figure 4 was
unexpectedly high, and the subsequent TMP course stayed constant within 4 h despite
a constant permeate flow rate and a closed retentate valve. Nonetheless, the adaption
functionality of the digital twin recognized the TMP deviations and corrected the model
simulation. The metamodel was trained using the fundamental mechanistic–empirical
model, i.e., the metamodel does not take the individually observed, unmodeled effects in
the production data into account. A further development of the digital twin with regard to
the ability to learn on the basis of observed effects in current or past production runs can
possibly improve the model.
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The development and iterative refinement of the process dynamics model was based
on the data of the complete sweet must production campaign in 2022. However, the
industrial production runs in 2022 were often carried out with similar setpoint values,
thereby giving only limited variation to the process data. We tried to compensate for the
limited information available from the data by considering the expert knowledge from
project partners and process data obtained with other feed solution types. Nevertheless,
the acquisition of data from further industrial filtration runs with variations in, e.g., the
TMP maximum setpoint, permeate flow rate setpoint, and membrane drive torque setpoint,
followed by the data integration into further model development would be desirable.

4.2. Digital Twin Optimization Capability

The capability of the digital twin to optimize the process not only depends on the
quality of the process dynamics model, but it also depends on the accuracy of the trained
metamodel. To generate the training data for the metamodel, in silico experiments were
carried out, with the duration of all experiments fixed at 10 h. Originally, the real pro-
ductions runs were also planned to be carried out with a fixed duration of 10 h to ensure
precise comparability. However, in practice, the duration of the industrial runs is primarily
determined by the amount of feed available at the time of the filtration run, and it is not set
by the operator in advance. Thus, the duration of the filtration runs varies considerably
over a campaign. Here, the optimization potential can be further exploited by matching the
duration of the industrial run and the in silico experiment duration of the metamodel. For
this, the expected duration of the industrial runs needs to be known. In the case of variable
durations of the industrial runs, the duration can be added as an additional factor to the
design space of the in silico experiments, thus extending the metamodel by one parameter.

More generally, the concept of the regression metamodel based on in silico process
simulations offers the ability to integrate further operating, model, or geometry parameters
of the underlying mechanistic–empirical process dynamics model into the metamodel.
Therefore, only the in silico parameter study and the regression modeling need to be
redone; experimental runs on site are not required. Possibly, besides the reference filter
cake resistance, some more currently fixed model parameters could be changed to an
adaptable form to improve the predictive power of the process dynamics model during
the industrial runs. In addition, a higher flexibility of the modeled operation conditions,
such as a permeate flow rate ramp, can be added to open new possibilities for productivity
optimization. Lastly, the optimization objective is imagined to be extended from only
productivity to other objective variables, such as the product yield, energy demand of the
membrane drive, or membrane cleaning effort.

4.3. Applicability of the Digital Twin Concept Beyond the Presented Use Case

The scalability of the digital twin concept in the scope of DCF systems, the transferabil-
ity to other feed materials, and the applicability to other chemical processes are discussed
below. Due to the mainly mechanistic nature of the model, the digital twin is expected to
be applicable to other DCF systems with adjustments to geometry parameters such as the
membrane diameter, the number of segments, or the geometry factor connecting the torque
and concentration. The general principles based on the mechanistic model, such as cake
formation, pore fouling, the influence of membrane rotation, and the PLC control mecha-
nisms to maintain a constant TMP or permeate flow rate, remain consistent across all DCF
systems. Extending the digital twin concept to other feed streams is considered feasible,
assuming that the model parameters are tailored to the specific feed stream. However, the
adaptability of the digital twin concept is currently constrained by the need to generate
and evaluate experimental data in order to identify the model parameters. Looking ahead,
incorporating an automated learning algorithm to facilitate model parameter identification
during the process run would be advantageous.

The digital twin concept, with its polynomial response metamodel, is universal and
appears to be transferable to other industrial processes. Nevertheless, the data-driven
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metamodel is reliable only within the design space, thus meaning it lacks extrapolation
capability. Thus, the scope of the model parameters and operating conditions must be
established during the training of the metamodel and can only be modified by retraining
the metamodel. Moreover, the effectiveness of the metamodel depends on the availability
of a robust process model. Therefore, the primary constraint on the universal applicability
of the digital twin concept to other chemical processes likely lies in the need for a rigorous
process dynamics model, which must be built on either detailed process knowledge or a
comprehensive dataset that includes a significant range of variations in the system variables’
responses.

5. Conclusions

This study reports the development of a digital twin for an industrial DCF process
and its successful application during the 2023 grape must filtration campaign resulting
in an overall campaign productivity increased by 15 %. The digital twin was constructed
around a process dynamics model that we based on mechanistic filtration knowledge and
fine-tuned with empirical correlations derived from historical process data. The validity of
the mechanistic–empirical process dynamics model was confirmed by comparing torque
and TMP time series with experimental data of process runs. A regression metamodel was
interposed between the basal process dynamics model and the digital twin framework,
because we found that the metamodel approach is superior to several calculations of the
mechanistic–empirical process dynamics model in terms of computational speed and, to-
gether with the step-by-step simulation of the process dynamics model, and a setpoint
recommendation was obtained within seconds. Examination of the regression residuals in-
dicated a good fit between the simple metamodel and the underlying, complex mechanistic
model. By comparing the TMP live data with the simulation result, the process dynamics
model was continuously validated during the production runs. If a nonreplicated process
effect occurs, the digital twin adjusts a model parameter included in the metamodel. As it
could be seen in retrospect to the experiments, the metamodel approach held under devia-
tions in the filtration system’s startup behavior, as well as in the case of changing filtration
properties of the feed suspension; thus, the digital twin enables the robust prediction of
an optimal permeate flow rate setpoint within a filtration process dealing with biological
feed materials.

Given a mechanistic process model, the presented method can be used to optimize
a (bio)chemical process without having to perform repeated computation-intensive cal-
culations during the operation. The expandability of the metamodel offers the prospect
of integrating further parameters into the optimization or optimizing additional target
variables without additional experimental effort on site. Nonetheless, the transfer of the
presented regression metamodel-based digital twin concept to other use cases is tied to the
availability of a rigorous process dynamics model built up on either mechanistic process
knowledge or a sufficiently large and variant amount of process data.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering11030212/s1, Figure S1: Overview of TMP courses of
all production runs performed during 2022 and 2023 campaigns in comparison with the corresponding
simulation results.; Figure S2: Overview of torque courses of all production runs performed during
2022 and 2023 campaigns in comparison with the corresponding simulation results.
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