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Abstract: This paper introduces a novel nothing-on-road (NOR) bridge weigh-in-motion (BWIM)
approach with deep learning (DL) and non-invasive ground-based radar (GBR) time-series data.
BWIMs allow site-specific structural health monitoring (SHM) but are usually difficult to attach and
maintain. GBR measures the bridge deflection contactless. In this study, GBR and an unmanned
aerial vehicle (UAV) monitor a two-span bridge in Germany to gather ground-truth data. Based
on the UAV data, we determine vehicle type, lane, locus, speed, axle count, and axle spacing for
single-presence vehicle crossings. Since displacement is a global response, using peak detection like
conventional strain-based BWIMs is challenging. Therefore, we investigate data-driven machine
learning approaches to extract the vehicle configurations directly from the displacement data. Despite
a small and imbalanced real-world dataset, the proposed approaches classify, e.g., the axle count for
trucks with a balanced accuracy of 76.7% satisfyingly. Additionally, we demonstrate that, for the
selected bridge, high-frequency vibrations can coincide with axles crossing the junction between the
street and the bridge. We evaluate whether filtering approaches via bandpass filtering or wavelet
transform can be exploited for axle count and axle spacing identification. Overall, we can show that
GBR is a serious contender for BWIM systems.

Keywords: bridge weigh-in-motion; ground-based radar; bridge monitoring; deep learning; MiniRocket;
feature extraction; wavelets

1. Introduction

Extracting vehicle configurations on bridges is essential, like detecting overweight
trucks and acquiring site-specific traffic information. This information can be considered
for structural health monitoring (SHM). At an early stage of weight control, static scales
have been used. However, the weighing process takes a long time, and measurement
stations can be easily bypassed. An alternative approach uses sensors on the pavement that
acquire dynamic measurements. This approach reduces the weighing time, but the sensors
are exposed to more stress, making the system maintenance difficult. Current solutions
use the bridge as a weighing scale [1–3]. These systems are called bridge weigh-in-motion
(BWIM). A part of the bridge, such as the girder, is usually used to measure strain or
acceleration during a vehicle crossing, which is henceforth referred to as an event. Axle
count, spacing, and driving speed information determine the vehicle’s weight. Pavement
sensors are generally exploited to acquire these three parameters. Nothing-on-road (NOR)
BWIMs are entirely dispensed with pavement sensors by only using the lower side of the
bridge for sensor attachment. This setup increases the challenge of acquiring data about
the vehicle configuration. Also, the lower bridge side has to be accessible, which is not
always the case. A remote NOR BWIM has barely been studied, except by Ojio et al. [3],
who use cameras for contactless measurements.
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Ground-based radar (GBR) has frequently been investigated in the context of bridge
monitoring in recent years [4–8]. It achieves comparable or even better accuracy than estab-
lished, conventional strain, or acceleration sensors [7] with the advantage of being remote
and non-invasive. Thus, GBRs can be quickly set up for measurements. As they measure
the bridge deflection and displacement, it can be directly applied to many SHM methods,
like determining the dynamic input factor [9]. Furthermore, GBR has been investigated
regarding the detection of bridge crossing events and, to some extent, the vehicle type
classification [10,11]. Arnold and Keller [12] show that it is possible to differentiate between
single- and multi-presence events from GBR deflection using machine learning (ML) de-
spite facing challenges like variable-length time series and dataset imbalance. Yet, GBR has
never been explicitly studied in the context of BWIM. In this paper, we will investigate the
potential of GBR bridge displacement time series for BWIM by applying standard signal
processing methods such as bandpass filtering and continuous wavelet transform (CWT)
and using data-driven ML.

Our study is motivated by using remote displacement measurements with GBR in
the context of BWIM. We develop an output-only method using GBR for analysis and an
unmanned aerial vehicle (UAV) to gather ground-truth data. Measuring the displacement is
challenging, so it has barely been studied for BWIM. Yet, it is regarded as a relevant feature
for SHM [13]. To our knowledge, to this date, no study exists that tries to extract traffic
information from only real-world bridge deflection. Since GBR-based bridge monitoring has
many advantages, such a system would be beneficial. Therefore, we focus on two objectives.

• We analyze and implement ML approaches to determine relevant BWIM vehicle
configurations, including vehicle type, lane, locus, speed, axle count, and spacing.

• We investigate signal processing techniques in the context of axle-related parameters.

An important aspect of BWIM is the determination of the traffic load. This study
will not investigate load estimation since we do not have ground-truth data. However,
Ojio et al. [3] showed that it is possible to extract the vehicle load from bridge displacement
data. Furthermore, our approach is currently limited to single-vehicle events. Otherwise,
the number of vehicles during an event has to be extracted from bridge displacement
data. To date, no study in this regard has been conducted. Therefore, events during which
multiple vehicles are present simultaneously have been discarded as Arnold and Keller [12]
indicates that data-driven differentiation between single- and multi-presence events is
possible.

First, we describe the related work relevant to this study in Section 2. In Section 3, we
explain the setup for GBR measurements and describe the used dataset. In Section 4, we
first cover the basics of wavelet transform. Then, the proposed feature extraction, the ML
models, and the methodology for each task are detailed. The results of our approach are
laid out in Section 5, and a comprehensive discussion is given in Section 6. Finally, Section 7
summarizes the main findings of this study.

2. Related Work

The relevance of time-series data in ML has never measured up to the prominence of
images, although the variety in the data poses an exciting challenge. A wide range in scaling,
length, sampling frequency, channels, etc., makes it challenging to develop versatile models
to handle such complexity. The UCR dataset provides extensive datasets and is often used
as a benchmark for new approaches [14]. However, at the date of writing this paper, only
six datasets are both multi-variate and of unequal length. Moreover, the differences in
signal length are minor. Oftentimes, an unequal length is circumvented by rescaling or
padding in the time domain or extracting features, for instance, by fitting an autoregressive
integrated moving average model [15]. Utilizing the UCR dataset, ref. [16] gives a detailed
overview of the most relevant state-of-the-art methods for time-series classification. Ran-
dom convolutional kernel transform (ROCKET), introduced by [17], is highlighted due
to its training speed and as it has the best results, especially for multi-variate time-series
classification. ROCKET uses random convolutional kernels to extract features, which are
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then used as input data for a linear ridge classifier. Dempster et al. [18] further refined
ROCKET to a version called MiniRocket. MiniRocket is faster than ROCKET and is mostly
deterministic while achieving comparable results. The authors also contributed a version of
MiniRocket to the Python library sktime [19], which can handle unequal-length time series.
Ref. [20] took an approach based on convolutional neural networks (CNNs) in combination
with padding and masking for acoustic scene classification. To this end, they implemented
a global pooling layer that supports masking to prevent the model from learning the
padding. Arnold and Keller [12] used hand-crafted features for tree-based learners and
MiniRocket for a bridge event classification on variable-length GBR displacement data.
Additionally, they investigated the potential of data augmentation in this context. Overall,
they achieve a balanced accuracy of over 90% when classifying crossings in single- or
multi-presence events.

Several studies used ML or deep learning (DL) methods to extract vehicle information
from NOR BWIM time series data. Kawakatsu et al. [21] attached a single strain sensor to
the span of a 300 m long-concrete bridge in Japan. They used CNNs to detect vehicles and
estimate the speed, locus, and axle count. As input, 8 s windows of strain data are passed
to the network. They use a traffic surveillance system for their ground-truth data, resulting
in up to 996,093 samples depending on the classification task. In [22], they expand their
dataset by a steel bridge and investigate acceleration sensors as an alternative to strain
sensors. The mean absolute error (MAE) for locus estimation is 0.097 m or 0.127 m for
strain data depending on the driving direction. Kawakatsu et al. [2] extend their previous
work by load estimation using multi-task CNNs. A load meter provides the necessary
ground-truth data. They also increase the sequence length of the input data to 20 s. For
a 74 m-long steel bridge, they achieve an MAE of 0.92 m/s for speed, and an 0.354 m for
axle spacing. The effects of more than one sensor are investigated in [23]. Eleven sensors
are used to input different CNN architectures for several bridges, further improving the
previous results. For a two-span bridge, they achieve a balanced accuracy score of 91.92%
for an imbalanced lane estimation. Other features are comparable or slightly improved
compared to their previous studies.

For axle detection, simple peak detection algorithms are often used [22]. Yu et al. [24]
applied a combination of wavelet transform and peak detection on strain data from finite
element method (FEM) simulations. Although they only use FEM data and do not trans-
fer to real-world data, they make several relevant findings. Firstly, it is shown that axle
information can be extracted from global bridge responses. Furthermore, the sampling
frequency significantly impacts the identification accuracy since it leads to sharper peaks.
For example, at 200 Hz, the axle spacing identification errors for a three-axle vehicle travel-
ing at 30 m/s are 25.3% and 97.1%, respectively. At a sampling frequency of 500 Hz, these
errors decrease to 0.2% and 1.43%. Finally, they show that road surface conditions can
severely impact the results. Lechner et al. [25] also use wavelets for BWIM based on crack
displacement sensor data. They measure the width changes of an existing crack during
traffic loading. With this local response, they can successfully obtain vehicle speed, axle
count, and distances. Using the influence line, they can also compute individual axle loads.
Zhao et al. [26] use free-of-axle detectors (FAD) in combination with wavelets for improved
strain-based axle detection. FAD BWIM uses additional FAD sensors attached to the lower
side of the bridge. They have shown that axle-induced peaks in the FAD strain signal with
Daubechies wavelets are more easily distinguished. While such FAD BWIMs give good
results, they need many sensors, leading to a higher probability of failure.

Concerning contactless BWIM, Ojio et al. [3] investigate the potential of cameras for
bridge displacement measurements. They can extract the axle loads of a few reference vehi-
cles with known weights from the bridge displacement using the influence line. However,
regarding other aspects such as speed, lane, and axle spacing, they rely on a second camera
instead of directly extracting these parameters from the displacement data. An overview of
BWIM studies relevant to this work is presented in Table 1.
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Table 1. Work related to the comparison of extracted vehicle configurations.

Parameter Response, Sensor, or Model References

Speed

Camera [3]
Displacement [25]
Strain [2,21,23]
FEM [24]

Lane or locus Strain [21,23]

Axle count

Camera [3]
Displacement [25]
Strain [2,21,23,26]
FEM [24,26]

Axle spacing Strain [2,23]
FEM [24]

3. GBR Measurements and Dataset

In this section, we briefly introduce GBR measurements. We refer you to, e.g., [6]
for a more detailed explanation. Next, we outline our process for acquiring ground-truth
data from UAV images. Figure 1 shows our overall measurement setup. Finally, we will
highlight several aspects of the dataset relevant to this study.

h

R

ΔR
Δz

x

z

y
GBR bridge

displacement data

GBR

UAV image
ground-truth data

Figure 1. Measurement setup applied in this study. The GBR measures the bridge displacement from
underneath it. The UAV records the bridge deck with a camera for traffic ground-truth data.

3.1. GBR Measurement Setup

Measurements have been conducted at a prestressed concrete bridge in Germany. To
achieve a high signal-to-noise ratio (SNR), five corner reflectors have been attached to the
lower side of one of the two spans of the bridge (see Figures 1 and 2). The monitored field
has a length of 28.5 m. Both fields are loosely connected via a 0.8 m thick asphalt layer.
Two lanes are present with opposing driving directions, as indicated by the black arrows.
The speed limit is 100 km/h. We monitored the bridge with two GBRs, represented by
yellow rectangles in the upper image of Figure 2. While the upper GBR measures the y and
z components, the left GBR primarily records the x and z components. From here on out,
we will primarily focus on the left GBR.
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zy
1
2
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Figure 2. Overview of the bridge and an example displacement time series. The yellow rectangles in
the upper image represent the GBRs, and the numbered triangles represent the five reflectors at their
approximate position.

The GBR uses two different principles to acquire displacement data [27]. Firstly, using
frequency modulation, the GBR can distinguish measurement points along its line of sight
(LOS). The range resolution ∆r can be calculated according to

∆r =
c

2 · B
= 0.75 m, (1)

with the speed of light c = 3 × 108 m/s2 and a bandwidth B = 200 MHz. Every 0.75 m,
the GBR measures the displacement by summing all reflected signals of a range bin. The
reflectors are thus spread along the x and y plane to be distinguishable for both GBRs.

The second principle to acquire the displacement signal from each range bin is interfer-
ometry. With a sampling rate of up to 200 Hz, the phase shift ∆ϕ of each point is measured
and then transformed to radial displacement ∆R along LOS using

∆R =
λ

4π
· ∆ϕ. (2)

λ represents the wavelength of the GBR.
Finally, using triangulation and assuming only one dominant displacement compo-

nent, the vertical displacement ∆z can be calculated according to

∆z =
R
h
· ∆R, (3)

where h is the height difference between the bridge and GBR, and R is the distance of the
GBR to a measurement point (see Figure 1). The lower plot of Figure 2 shows an example
displacement signal for all five reflectors. The vehicle inducing the signal is the bus shown
in Figure 3.

3.2. UAV Dataset as the Ground-Truth Data

During our measurement campaigns, we deployed a UAV to monitor the bridge deck
with a sampling frequency of around 25 fps. Furthermore, several control points along the



Infrastructures 2024, 9, 37 6 of 20

bridge were measured using a tachometer. This enables us to transform image coordinates
in pixels to positions in meters in our radar reference system. In Figure 3, two control points
are highlighted with yellow circles. As they are visible in the UAV video data for each frame,
deviations in the UAV position do not influence the transformation. Five measurement
campaigns have covered various weather conditions over almost two years.

To acquire information about locus, axle spacing, and speed, we labeled each axle
on three images per vehicle using a labeling tool [28]. Figure 3 shows a two-axle bus’s
labeling results (ground-truth data). For the position of an axle, we used the x-wise center
of a bounding box, which is then transformed into the meter. The distance between
consecutive axles has been calculated via the position difference. By labeling more than
one image per vehicle, we determined the speed. For that, we used the positions of
the first axle, the number of frames elapsed between each labeled image, and the UAV
sampling frequency. Finally, the y position of the lower bound of the first axle represents the
locus. Labeling three images per vehicle has allowed us to detect outliers in the extracted
properties. Imprecisions during the labeling process can lead to minor variations in the
ground-truth data. Furthermore, the transformation accuracy precisely depends on how
the control points are recognized during the transformation process. To validate the ground-
truth data, we compared datasheets for recognizable vehicles to the extracted axle spacing
to verify our procedure. This provided a satisfactory match. Therefore, the margin of
these errors is not significant enough to have a relevant impact. One challenge during
the labeling process was posed by the darkness in combination with wet streets since it
rendered the asphalt and the wheels barely distinguishable. Especially for trucks with
raisable tires, it has been challenging to say whether they have touched the street or not.

y
x

2
1

Figure 3. Example of a labeled vehicle using the tool provided by Tzuta [28]. Bounding boxes have
been drawn around the axles, as indicated by the orange bounding boxes. The yellow circles represent
two control points for the coordination transformation. Furthermore, the lane number is shown.

Table 2 lists the axle counts distinguished by vehicle type. As expected, cars mainly
have two axles, whereas trucks have varying axle configurations. Overall, 455 single cars
and 131 single trucks have been registered and labeled. Additionally, Table 2 shows the
distribution of events for both lanes. Lane 1 has been used more often, but all values
are similar.

Table 2. Axle configuration and lane information for cars and trucks in our dataset.

Type 2 Axles 3 Axles 4 Axles 5 Axles 7 Axles Lane 1 Lane 2

Car 443 7 5 - - 235 220
Truck 24 12 41 53 1 78 53

Figure 4 shows the distributions for our regression tasks: speed, locus, and axle
spacing estimation. The car’s speed is generally higher and sometimes exceeds the speed
limit. Trucks drive slower on average. The locus shows similar distributions for both
vehicle types and corresponds to the existence of two lanes. The most significant difference
is shown in the axle spacing, as cars have values of approximately 2.8 m, while trucks have
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values ranging from approximately 0.7 m to 10.3 m. At the peak of the car distribution,
the truck distribution has a local minimum.

Figure 4. Distributions of speed, locus, and axle spacing in the applied dataset.

4. Methodology

In this chapter, we will shortly introduce wavelet transform. Then, we explain our
preprocessing and feature extraction steps and, afterward, the data-driven approaches and
methods for each vehicle parameter. First, we investigate the distinction between cars and
trucks. For all other tasks, we investigate both vehicle types simultaneously to have a more
extensive dataset, as well as only trucks, by disregarding cars, as trucks are more relevant
to SHM.

4.1. Prerequisite Concerning Wavelets

We will only superficially explain the concept of wavelets. For a more in-depth
explanation, please see, e.g., [29]. One motivation behind wavelets is to acquire local
frequency information while maintaining a high temporal resolution, which is impossible
using Fourier transformation. The method is analog, as the original signal is expressed as a
family of functions. These functions are constructed from a so-called mother wavelet:

W(a, b) =
∫ +∞

−∞
f (t)

1√
a

ψ

(
t − b

a

)
dt a ∈ R+, b ∈ R (4)

Different coefficients are generated from the input signal by varying scaling a and
time delay b. One example of a mother-wavelet is the Gaussian wavelet

ψ(t) = C · exp(−t2), (5)

where C is an order-dependent normalization factor. Another mother-wavelet is the
Gaussian derivative wavelet, the m-th order derivative of Equation (5), where m lies
between 1 and 8. It is defined as

ψ(t) =
1√

Γ
(
m + 1

2
) dm

dηm exp(−t2/2), (6)

where Γ represents the gamma function [30]. The Gaussian derivative wavelet will be used
in this study, as implemented by Lee et al. [31].
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4.2. Preprocessing and Feature Extraction

We minimize the preprocessing, so removing each time series’s offset is the only step
except for axle counting and axle spacing estimation, where we use an additional high-pass
filter before feature extraction. This offset comes from long-term drifts in the signal due to
environmental influences [10]. Otherwise, no filtering is applied since we want to maintain
high-frequency information.

Figure 5 shows the methodology for our feature-based approaches. Among others, we
test various models in combination with manually crafted features. Table 3 summarizes
all features used in this study and how they are calculated. Each feature is calculated for
each used time series. Only a part of these features is used for a specific task to avoid
making ML predictions more challenging by adding irrelevant features. This selection
will be stated in the corresponding subsections. Different input features are passed to
the ML models since the number of reflectors also varies depending on the task. Since
tree-based models are scale-independent, no scaling is applied to the input features for
random forest (RF) [32] and gradient boosting (GB) [33]. The input features are scaled in
the case of k-NearestNeighbours (KNN) [34].

Time series Prediction

GBR
Data

Locus

Vehicle Type

Speed

Lane

Feature Extraction       Machine
Learning Models

F1 FN

MiniRocket Ridge

Random
Forest

Gradient
Boosting

k-Nearest
Neighbor

Scaling

Axle Count

F1 FN

MiniRocket Ridge

Random
Forest

Gradient
Boosting

k-Nearest
Neighbor

Scaling

Axle Spacing

Highpass

Figure 5. Methodology for our feature-based methods. F1–FN represent manually extracted features.
We use a high-pass filter before feature extraction for the axle counting and axle spacing estimation.

Table 3. These 11 features were extracted from the GBR time-series data x. The Python packages
numpy and scipy were used for the calculation. All non-default values are stated.

Feature No. Name of Feature Basis of Calculation

1 Maximum max(x)
2 Minimum min(x)
3 Mean min(x)
4 Skewness mean(x3)
5 Kurtosis mean(x4)
6 Median median(x)
7 Length len(x)
8 xMinPosRatio argmin(x)/len(x)
9 Power sum(x2)/len(x)
10 MAD median_abs_deviation(x)
11 GradMax max(gradient(x))
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Unlike manual feature selection, MiniRocket [18] uses random convolutional kernels
to extract 9996 features. The kernels have a fixed length of 9, and their weights are restricted
to two values: α = −1 and β = 2. Dilation, or the spread of a kernel over the time series,
lies within the range of ⌊20⌋ and ⌊2max⌋, where max = log2(linput − 1)/8 and with linput
are the input length. Padding is fixed due to the convolution and alternates between
no and zero padding. Biases are calculated based on the result of the convolution of
randomly selected training examples, therefore being the only non-deterministic aspect of
the MiniRocket approach. The final extracted feature is the proportion of positive values
(PPV), which can be calculated with

PPV(Z) =
1
N

N−1

∑
i=0

[zi > 0] i ∈ N, (7)

where Z is the convolution result between the input signal and a kernel and N represents
the non-zero signal length [17].

Theoretically, the number of kernels can be regarded as a hyperparameter, but Demp-
ster et al. [18] recommend using 10,000 kernels since they do not observe a significant
impact on the accuracy for different values. Normalization is unnecessary using the PPV
and the bias drawn from the convolution results.

We split our data in an 80 : 20 manner for training and testing, and we use stratified
sampling for classification tasks to maintain class frequency. During training, we apply a
5-fold cross-validation grid search to find the best hyperparameters for each regression
and classification task. For MiniRocket, we use the configuration recommended by the
authors, which also includes a ridge regressor or classifier as the final step. During grid
search, we optimize the mean squared error (MSE) for regression and the balanced accuracy
for classification.

4.3. Vehicle Type

Since we distinguish between cars and trucks in the following tasks, we want to
investigate whether data-driven distinction is possible for completeness. Although it seems
trivial to use a threshold, the driving lane also comes into play. Therefore, we use the
reflectors 2 and 4 (see Section 3.1). As input features, we use 2, 3, and 9 of Table 3. So,
for each time series, we extract the minimum, mean, and power using the corresponding
calculation methods. As we use two reflectors and extract each feature for each reflector,
six features are extracted in this task. These features are then directly passed to RF, GB,
and KNN after scaling to predict the vehicle type.

4.4. Lane and Locus

The offset of the reflectors in the y direction, as depicted in Figure 2, makes it possible
to discern the vertical driving position of a vehicle. In the first step, the lane shall be
determined in a classification task using reflectors 2 and 4. As a baseline, which we will
refer to as POWER, we compare the signal power (Feature 9 in Table 3) for both reflectors.
The lane is determined depending on which one has a higher value. The signal power
of reflector 2 is greater, and the vehicle drives on lane 2. The input for the features-based
models consists of the features 2, 3, and 9. In addition to the lane, the locus is estimated by
regression to have a more precise vehicle localization. We use all 5 reflectors with the same
features for locus regression.

4.5. Speed

Global responses, such as displacement, require a different approach than usual to
calculate the speed since extracting it via peak detection from local responses is impossible.
Therefore, we use data-driven ML to extract the vehicle speed. Arnold and Keller [10]
and Arnold et al. [11] can extract vehicle crossings, but just using the length of such an
event is not enough since the vehicle length also plays an important role. To show this, we
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additionally train a linear regression (LR) for speed estimation only on the signal length
as a baseline. A one-dimensional LR tries to find the function of the coefficient w and the
estimated intercept c, such that

y = w · x + c. (8)

y is the target vector and x the input vector. In our case, x represents the event length, and y
represents the vehicle speed. The feature-based models are trained with the features 1 to 11
from Table 3. As the input time series, we use reflector 3.

4.6. Axle Count

We treat the determination of the axle count as a classification problem with either
2, 3, 4, or 5+ axles. With more data, a more precise classification might be possible. All
predictions are made using only the signal of reflector 3.

Unlike the previous task, we do not use the displacement directly as input or for feature
extraction. Instead, we filter the signal with a 50th order forward-backward Butterworth
high-pass with a cut-off frequency of 45 Hz. This is performed so that the models learn
high-frequency features and do not use low frequencies. For our feature-based approaches,
we use the features from 1 to 10 in Table 3. We drop feature 11 since we already filter the
signal with a high pass.

Apart from using ML, we also investigate the deterministic methods using a bandpass
filter (BANDPASS) and CWT (WAVELET) as novel approaches. Their pipelines are depicted
in Figures 6 and 7, respectively. They are similar except for the first step of the pipeline,
where its corresponding filtering or transformation is applied. As input, they receive
unfiltered GBR bridge displacement data from one reflector. The output consists of a
list of the positions of the detected peak. For BANDPASS, we apply a forward-backward
Butterworth bandpass in the first step. The order of the filter is 50 and the critical frequencies
are (45 Hz, 65 Hz). We choose gaus7 as implemented by Lee et al. [31] and the 4. coefficient
for our WAVELET approach. This corresponds to m = 7 regarding Equation (6). These
parameters have been determined as part of the parameter tuning process but outside
the grid search. The bandpass-filtered signal and the wavelet transform result are then
squared and smoothed by a weighted moving-average filter to obtain the distinguishable
peaks. Ultimately, the signals are normalized to their highest value before searching all
peaks to achieve generalization over all vehicles. We use the find_peaks-method of the
Python-package scipy for peak detection [35]. The window size of the moving-average
filter and the distance and prominence of a peak during peak detection are regarded as
hyperparameters and deduced using the training dataset. Depending on the driving side
and thus the driving direction, we discard peaks in half of the signal during which the
vehicle does not enter or leave the bridge. As seen from Figures 8 and 9, only the entering
or leaving process is relevant for peak detection. Finally, we treat the length of the list of
detected peak positions as the axle count. If no peak or only one is detected, we assume
two axles.

Input

Bridge
Data List of

Peak
Positions

Bandpass
 Moving
Average Squaring Normalization

 Find
Peaks

Discard 
 Peaks

Window Size

Lane

  Distance
Prominence

BANDPASS

Output

Figure 6. Pipeline for our BANDPASS approach for axle configuration extraction. The orange-colored
hyperparameters are determined during the grid search. The lane information is used in the Discard
Peaks step as an additional input parameter to filter the detected peaks.



Infrastructures 2024, 9, 37 11 of 20

Input

Bridge
Data

CWT
 Moving
Average Squaring Normalization

 Find
Peaks

Discard 
 Peaks

Window Size

Lane

  Distance
Prominence

WAVELET

Output

List of
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Positions

Figure 7. Pipeline for our WAVELET approach for axle configuration extraction. The orange-colored
hyperparameters are determined during the grid search. The lane information is used in the Discard
Peaks step as an additional input parameter to filter the detected peaks.
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Figure 8. Example result of a bus for our filtering approaches.
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Figure 9. Example result of a truck for our filtering approaches.

4.7. Axle Spacing

Finally, we investigate how well the distance of axles can be determined. We treat this
as a multi-output regression. Our BANDPASS and WAVELET procedures return a list of
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detected peak positions x (see Figures 6 and 7). A peak at position i in the list is interpreted
as axle number i. The temporal distance between the peaks i and j can be calculated by
subtracting the consecutive positions xj and xi and then divided by the GBR sampling rate
of 200 Hz. With the speed vUAV from the UAV data, this can finally be transformed into
axle spacing dij between axle i and j according to

dij =
xj − xi

200 Hz
· vUAV . (9)

We assume the speed can be correctly extracted from Section 4.5. We also assume that the
axle count is known and ignore additionally detected spacings during evaluation. The
same goes for our ML approaches. We also use the same inputs as in Section 4.6.

5. Results

This study aims to investigate the potential of GBR for contactless NOR BWIM. In this
section, we will state the results of our methods described in Section 4 in a corresponding
order. Each approach except vehicle type classification is evaluated once for all vehicles and
once for only trucks since they are more relevant for SHM. Classification tasks are evaluated
based on balanced accuracy (BA), overall accuracy (OA), precision (P), and recall (RC).
Regression performance is expressed by the coefficient of determination (R2), mean squared
error (MSE), and mean absolute error (MAE). The results of our filtering approaches will
be addressed in detail in Section 5.4.

5.1. Vehicle Type

The results for the distinction between cars and trucks, which is relevant for SHM, are
displayed in Table 4. All feature-based models classify the vehicle type perfectly. Using the
raw time series data, only MiniRocket misclassifies one truck as a car.

Table 4. Classification results for vehicle type estimation with reflectors 2 and 4. The highlighted
values represent the best results for each vehicle group.

Model BA OA P RC
in% in% in% in%

MiniRocket 98.1 99.2 100 96.1
RF 100 100 100 100
GB 100 100 100 100
KNN 100 100 100 100

5.2. Land and Locus

We investigate both lane classification (see Table 5) as well as locus regression (see Table 6),
which is the lateral position of a vehicle. MiniRocket provides the best results for both
vehicle groups with 94.3% and 97.9%. Except for RF, all models have a BA of over 90%.
POWER shares the first place with MiniRocket in the case of only trucks. Both approaches
misclassify only one truck, leading to an RC of 100%. Yet, RF, whose concept relies on
comparing input values, has the worst results for both cases. The difference between both
vehicle selections is slight, but the performance for only trucks is better overall.

A more fine granular lateral position estimation via the locus using all five reflectors
resulted in Table 6. Again, MiniRocket beats all other models for all vehicles, with an R2 of
0.84. When discarding cars, KNN has an almost perfect R2 score of 0.99, slightly surpassing
the MiniRocket with 0.96. All models improve from all vehicles to only trucks, like in lane
classification, except for RF, which achieves worse results.
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Table 5. Classification results for lane estimation with reflectors 2 and 4. The highlighted values
represent the best results for each vehicle group.

Model
All Vehicles Trucks Only

BA OA P RC BA OA P RC
in% in% in% in% in% in% in% in%

POWER 92.7 92.4 87.1 98.2 96.9 96.3 91.7 100
MiniRocket 94.3 90.0 98.2 94.1 96.9 96.3 91.7 100
RF 83.2 83.1 79.7 85.4 89.2 88.9 83.3 90.1
GB 93.3 93.2 91.2 94.5 93.8 92.6 83.3 90.1
KNN 93.4 93.2 89.8 96.4 92.3 92.6 90.1 90.1

Table 6. Regression results for locus estimation with all five reflectors. The highlighted figures
represent the best results for each vehicle group.

Model
All Vehicles Trucks Only

R2 MSE MAE R2 MSE MAE
in m2 in m in m2 in m

LR 0.57 1.50 1.06 0.91 0.38 0.47
MiniRocket 0.84 0.57 0.54 0.96 0.18 0.36
RF 0.59 1.40 0.79 0.32 2.86 0.99
GB 0.80 0.69 0.57 0.91 0.40 0.49
KNN 0.81 0.65 0.50 0.99 0.04 0.16

5.3. Speed

Table 7 shows the results for the speed regression task. MiniRocket achieves the best
performance for both vehicle sets. For all vehicles, it achieves an R2 of 0.94 and an MAE of
0.76 m/s, which is slightly better than the 0.86 m/s of Kawakatsu et al. [23]. All feature-
based methods have comparable results for R2 and are less effective than MiniRocket. LR,
on only the duration of the bridge crossing event, has the worst results but still is not far
off from MAE. Its MSE, however, is significantly worse compared to the other models.

LR does improve regarding MSE and MAE when only using trucks, although R2

decreases. The same behavior can be observed for KNN and GB. GB has the best R2 for
trucks and is slightly worse than MiniRocket in MSE and MAE. MiniRocket, with an MAE
of 1.02 m/s is still only 0.16 m/s worse than Kawakatsu et al. [23]. However, they evaluate
more data, making their results more robust.

Table 7. Regression results for speed estimation with reflector 3. The highlighted values represent the
best MAE for each vehicle group.

Model
All Vehicles Trucks Only

R2 MSE MAE R2 MSE MAE
in m2/s2 in m/s in m2/s2 in m/s

LR 0.71 5.08 1.81 0.67 2.22 1.22
MiniRocket 0.94 1.06 0.76 0.71 1.93 1.02
RF 0.85 2.68 1.12 0.53 3.16 1.25
GB 0.85 2.56 1.14 0.75 1.67 1.06
KNN 0.85 2.60 1.14 0.70 2.03 1.13

5.4. Axle Count

As explained in Section 4.6, we investigate the potential of bandpass filtering and wavelet
transform to detect axles in GBR bridge displacement data. Three examples of these approaches
can be seen in Figures 8–10. In all images, first, the vehicle is depicted, and then the results of
the filtering and the smoothed time series. The filtered signal corresponds to the intermediate
result after the bandpass filtering and CWT in Figures 6 and 7, respectively. The envelope
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represents the unitless waveform after the normalization step from which the peak positions are
acquired. We have marked the peaks, which have been detected with the respective approach
and the learned hyperparameters. Finally, starting from the first detected peak, positions where
we would expect subsequent peaks due to the labeled UAV data are shown.

Figure 8 shows the bus with two axles from Figure 3. The bandpass filtered signal
has two areas with a high amplitude vibration in the frequency range of 45 Hz to 65 Hz.
Accordingly, the envelopes for both approaches have two peaks. Assuming that the first
peak corresponds to the first axle, the second peak matches the expected position. A more
complex example is depicted in Figure 9 since the truck has five axles, three of which
are very close to each other. Again, these axles are recognizable and at their expected
position in the bandpass signal and its envelope. However, one additional peak does not
belong to any axle. This peak does not exist in the wavelet signal. Conversely, the first
peak is missed, and the final three axles are combined into one axle group in the signal.
Finally, Figure 10 shows a truck with a similar axle configuration. Seven peaks are detected
using the BANDPASS approach. The final three axles are again registered as a single axle
group. WAVELET clearly shows the first two axles at the expected positions, yet the peaks
for the three back axles are too small to be distinguishable from noise. The behavior in the
previous pictures is also evident with cars, although they are usually lighter.

We also investigated the other reflectors as well as the second GBR. While very distinct
peaks, like in Figure 8, are also visible with other reflectors, reflector 3 shows the best
results overall. No axle information could be extracted from the second GBR using our
two methods, BANDPASS and WAVELET.
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Figure 10. Second example result of a truck for our filtering approaches.

As described in Section 4.6, the hyperparameters for BANDPASS and WAVELET
have been determined using the training data. To quantify the performance, Table 8
displays the results for all approaches. Again, MiniRocket has the best results for both
categories. Especially for trucks, it achieves a BA of 76.7%, delivering results comparable
to Kawakatsu et al. [21], who achieve BA of 85.8% using a single strain sensor. When
including the cars, however, the BA decreases to only 60.7%. Only the OA improves
compared to the trucks. BANDPASS and WAVELET have similar results for all vehicles,
with WAVELET having a slightly better BA. Still, the BA is only 25.1%. It improves together
with P and RC to 46.6% for only trucks, whereas BANDPASS achieves results of over 30%.
RF, GB, and KNN tend to outperform BANDPASS and WAVELET but still fall heavily
behind MiniRocket.
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Table 8. Classification results for axle count estimation with reflector 3. The highlighted figures
represent the best results for each vehicle group.

Model
All Vehicles Trucks Only

BA OA P RC BA OA P RC
in % in % in% in% in% in% in% in%

BANDPASS 23.4 34.7 24.5 23.4 35.1 29.6 30.3 35.2
WAVELET 25.1 28.8 21.5 25.0 46.6 37.0 44.6 46.6
MiniRocket 60.7 86.4 58.1 60.7 76.7 70.4 74.4 76.7
RF 50.5 89.0 46.0 50.5 45.4 51.9 23.7 45.5
GB 40.8 83.9 38.0 40.9 38.6 48.1 32.0 38.6
KNN 47.0 87.3 46.0 47.0 45.3 51.8 40.9 45.3

5.5. Axle Spacing

As shown in the previous section, it is challenging to formalize a procedure for BAND-
PASS and WAVELET, which works for all vehicles. The same goes for axle spacing since it
builds upon the peak detection. Yet, we want to indicate that the information can sometimes
be extracted successfully. A more generalized analysis will be performed afterward.

In Figure 8, two peaks are easily recognizable. Using their distance, the GBR sampling
frequency of 200 Hz, and the vehicle speed, we can calculate an axle spacing of 6.33 m
using Equation (9). Comparing this to the UAV axle spacing of 6.19 m, we overestimate the
spacing by only 0.14 m. Likewise, the results for Figure 9 would deliver close values, as the
expected peaks are near the detected positions. Yet, additional peaks, such as the third peak
in Figure 9 for BANDPASS, would lead to underestimating the second axle spacing, as we
would also overestimate the axle count by one. These challenges are reflected in the overall
results in Table 9. The R2 is even harmful for both BANDPASS and WAVELET. While the
MAE is only slightly more than 1 m for only trucks, the MSE shows that there are a lot of
spacings estimated with large deviations, as previously outlined. The same tendency can
be found when including cars. Interestingly, all ML approaches achieve similar results.
MiniRocket has the best results for MAE with 0.64 m for only trucks. Also, the MSE is
considerably smaller for the ML approaches, meaning fewer outliers exist. With all vehicles,
GB achieves the best MAE of 0.21 m, although all models achieve similar results again.

Table 9. Regression results for axle spacing estimation with reflector 3. The highlighted figures
represent the best results for each vehicle group.

Model
All Vehicles Trucks Only

R2 MSE MAE R2 MSE MAE
in m2 in m in m2 in m

BANDPASS −0.22 3.80 0.54 −0.45 7.78 1.30
WAVELET −0.14 3.54 0.49 −0.16 6.25 1.19
MiniRocket 0.45 1.71 0.27 0.66 1.78 0.64
RF 0.53 1.45 0.23 0.63 2.00 0.71
GB 0.53 1.45 0.21 0.68 1.73 0.66
KNN 0.43 1.75 0.22 0.64 1.95 0.68

6. Discussion

The central focus of this study is the potential of GBR displacement signals for a
remote and data-driven BWIM. This section will discuss the results stated in the previous
section. First, we will analyze the potential of ML for all classification and regression tasks.
Afterward, our filter approaches regarding axle configuration identification are discussed.

6.1. Machine Learning for Displacement-Based BWIM

As the results for vehicle-type classification are immaculate for feature-based methods,
it is possible only to regard trucks for SHM if desired. Trucks cause a significantly greater
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deflection than cars. Therefore, the promising results are unsurprising. The issue of the
driving lane can be avoided by using one reflector per lane as input data. Our distinction
between vehicle types during vehicle configuration tasks is thus well founded.

It seems that, for all tasks except axle spacing estimation, ML models can extract
vehicle configurations. MiniRocket, which uses the raw time series data and extracts
features via convolutional kernels, shows especially auspicious results. The model with the
best performance can vary from task to task, but MiniRocket either has the best performance
or follows close behind. Interpretability is an important aspect of bridge monitoring [36–38].
The overall satisfying results of our models indicate that the extracted configurations are
identifiable from global bridge displacement data using data-driven ML approaches.

To acquire the vertical position of a vehicle, we test both a lane classification and a
locus regression. The lane can successfully be extracted for both vehicle categories. Trucks
can be classified almost perfectly, with only one vehicle misclassified. This is unsurprising,
as our reflectors are spread along the y axis (see Figure 2). Accordingly, the maximum
displacement during an event correlates to the driving side. Especially for heavy vehicles,
a clear distinction can be made. In Figure 2, e.g., reflectors 3 to 5 show a steeper curve than
reflector 1 and 2. This suggests that the vehicle drives in lane 1, which corresponds to the
bus from Figure 8, which caused the bending. Thus, it seems enough for trucks to compare
the signal power of reflectors 2 and 4 to acquire the lane.

The locus regression shows a similar behavior in that the results improve when
discarding cars. Due to KNN’s outstanding performance, we surmise that scaling our
features will help with this task. This makes sense, as the maxima ratio within one event is
more relevant than their absolute values.

There is a significant difference in speed between all vehicles and only trucks. The
reason for this might lie in the dataset composition. As cars are more frequent and with
less variation in the vehicle configurations, like the length, the correlation between event
duration and speed is more prominent. Thus, for some models, the R2 decreases while the
MAE improves. For MiniRocket, R2 and MAE decrease when discarding cars, suggesting
that it does not mainly look at the event duration.

The results for axle count classification imply that our features from Table 3 are
not helpful for this task, as all models that depend upon them have a BA of less than
51%. Only MiniRocket achieves satisfactory results, especially for trucks. The high OA
but low BA show that the imbalance in the dataset, when including cars, leads to more
misclassified trucks.

Comparing both datasets, it can be said that, although having more data generally
helps, cars drastically change the distribution of many configurations. This makes it more
challenging for models to learn truck properties. Regarding BWIM, where only trucks are
considered relevant, this can be seen as a disadvantage. The truck dataset is very small
as we have only one truck with seven axles, for example. Since trucks come in significant
axle count and spacing variations, our models naturally have generalized difficulties. The
dilemma of high imbalance and a small dataset is also apparent for axle spacing regression.
Here, the MSE is very high for all vehicles compared to MAE, as the axle spacing for cars
is very closely distributed (see Figure 4). Conversely, models mainly learn about the car
distribution, regarding trucks as outliers due to the highly imbalanced datapoints.

6.2. Filtering for Axle Configuration Identification

Figures 8–10 indicate that the information of axles is present in a bridge’s global
displacement time series. Individual examples produce promising results concerning axle
count and axle spacing. To our knowledge, this has not been presented before, as displace-
ment is barely exploited in BWIM. However, the results for BANDPASS and WAVELET
in Tables 8 and 9 show that it is challenging to find a general procedure. Especially the
negative R2 values in Table 9 demonstrate this, as this means that simply using the mean of
the data as a prediction is a better fit than our methods. Neither BANDPASS nor WAVELET
can be described as the better approach overall, as their respective performances varied
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heavily between samples. Unfortunately, we can only show a small portion of all the
recorded vehicles, as there are cases in which no axle-induced peaks are visible in the
bandpass signal, but they exist with WAVELET.

While having a high SNR to measure these small vibrations is necessary, a good SNR
alone will not lead to valuable measurements concerning axle detection. Interestingly enough,
the weight of a vehicle or axle seems not to be the decisive factor, as for some cars, the peaks
are easily recognizable, whereas they are not visible for trucks. Therefore, we assume that the
relative axle weight within one event is relevant. The truck in Figure 10 appears heavier in the
front than in the back. Accordingly, the peaks for the latter axles are less visible. However,
this is only a conjecture since no axle load data have been recorded during this study. Also,
the driving direction appears unrelated to how well axles can be detected. More peaks might
have been detected with a higher sampling frequency, or at least their distinction might
have been more straightforward for CWT. Yu et al. [24] have demonstrated that a sampling
frequency of only 200 Hz leads to large errors. These vibrations seem to be caused at the
junction between the bridge and the street. Consequently, this behavior might be specific to
this bridge. Since we only monitored one field, we cannot say if the same vibrations can be
measured for the other junction. Both fields seem too loosely coupled to transmit the signal
if they exist. For one-span bridges, both leaving and entering might be observable. In such
cases, our BANDPASS and WAVELET approaches can also extract the vehicle speed. In this
study, however, this was not possible.

For vehicles with clearly visible peaks, like in Figure 8, the axle-induced response
could also be observed in the signal of other reflectors. This suggests that the specific
reflector or its attachment does not induce the vibration but is a high-frequency vibration
in the bridge displacement. Also, as mentioned in Section 3.1, we monitor the bridge with
two GBRs that measure different components. There have not been visible vibrations or
peaks for the GBR measuring the z and y components, although the SNR lies in an adequate
range. This indicates that the vibration mainly occurs in the x-component. However, a more
detailed investigation is necessary.

7. Conclusions and Outlook

In this study, we discuss a novel data-driven, displacement-based BWIM approach.
The data were recorded at a two-span bridge in Germany using GBR and a UAV for
ground-truth data. We investigate the potential of both classic signal processing and ML
to extract the vehicle configurations from bridge-crossing events. These configurations
include vehicle type, speed, lane, locus, axle count, and spacing. One challenge herein is
that displacement is a non-local bridge response. Furthermore, our dataset is imbalanced
and consists of variable-length time series. We evaluate all approaches on all vehicles and
all trucks only.

As ML approaches, we test four different models, three of which depend on manually
crafted features. The fourth model, MiniRocket, uses the raw time series data. Over all
configurations, MiniRocket achieves the most auspicious results, comparable to other
studies such as Kawakatsu et al. [21]. While speed, lane, and locus can be extracted, axle
count classification is more challenging for all models. Only MiniRocket can classify a truck
axle count with a BA of 76.7%. Finally, the results for axle spacing regression suffer from
a small dataset. Therefore, more bridges should be monitored. However, more complex
models and using extracted values like speed as an input feature could lead to better results.

We have recorded a high-frequency vibration for this bridge that coincides with
axles crossing the junction. Using bandpass filtering and wavelet transform, we could
demonstrate examples of this behavior. Based on this finding, we try two approaches
for axle count and axle spacing determination purely based on signal processing. While
the information seems available, we have not found a comprehensive procedure for the
automatic extraction of axle configurations. A more sophisticated approach exploiting
CNNs might be more successful as they can learn more generalizable features. For this,
however, either the dataset needs to be increased, or data augmentation needs to be applied,
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as it has been investigated in Arnold and Keller [12]. Furthermore, it must be investigated
whether other bridges show a similar behavior in the high-frequency range. Ideally, GBRs
with a higher sampling rate will be used for these measurements.

We showed that a purely data-driven BWIM exploiting GBR-displacement time series
data is possible. However, these promising results must be refined using a more extensive
dataset. Ojio et al. [3] indicated that determining axle loads is possible with bridge dis-
placement signals and the vehicle configurations extracted in this study. Thus, our results
work towards a fully remote and data-driven BWIM.
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