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Figure 1: Aeolus and Aurora painted in 1614 by the Italian Baroque artist Guido
Reni. The painting shows Aeolus, the "keeper of the wind" on the right, surrounded by
clouds, followed by Aurora, the goddess of dawn, who brings daylight. The dynamic
composition of light and shadow, sun and clouds shows a contrast of opposing forces,
which Aeolus helps to balance with the wind. This balance between the elements
shaping daily weather is necessary for a society to live in harmony.



Abstract

Aeolus is the first satellite mission to use a space-based Doppler Wind Lidar (DWL) for
observing vertical wind profiles on a global scale. The instrument uniquely combines
Rayleigh-clear (molecular) and Mie-cloudy (aerosol) backscatter measurements in clear
and cloudy atmospheric conditions. This is particularly important in the tropics, where
the large gap in wind observations in the Global Observing System (GOS) has posed
significant challenges for Numerical Weather Prediction (NWP). By filling this gap,
Aeolus offered a unique opportunity to significantly improve the representation of the
tropical circulation in NWP models.

To ensure reliable data for NWP models, the sources of error in the Aeolus wind product
measurements must be identified and understood. To this end, the quality of Aeolus
Level 2B (L2B) wind product is assessed over the tropical Atlantic using radiosondes
launched from the islands of Sal, Saint Croix and Puerto Rico during August-September
2021 as part of the Joint Aeolus Tropical Atlantic Campaign (JATAC). During this
period, Aeolus sampled within a complex environment with a variety of cloud types in
the vicinity of the Intertropical Convergence Zone (ITCZ) and aerosol particles from
Saharan dust outbreaks. The results show that the presence of clouds or dust can
affect the quality of Rayleigh-clear measurements, when the useful signal is significantly
reduced, thus leading to an underestimation of the Error Estimate (EE). However,
gross outliers with large deviations from the radiosonde reference but low EEs account
for less than 5% of the data. These seem to affect measurements at all altitudes and
under all environmental conditions, and, their root-cause remains unknown. Finally, we
show the presence of an orbital-dependent bias of up to 2.5 ms−1 observed with both
radiosondes and European Centre for Medium-Range Weather Forecasts (ECMWF)
model equivalents.

Subsequent to the quality assessment of the Aeolus wind measurements, the impact
of the L2B dataset on the ECMWF and the Deutscher Wetterdienst (DWD) analyses
and forecasts over the adjacent West African Monsoon (WAM) during boreal summers
of 2019 and 2020 is assessed. The WAM is notoriously challenging to forecast and is
characterized by prominent and robust large-scale circulation features such as the African
Easterly Jet North (AEJ-North) and the Tropical Easterly Jet (TEJ). Assimilating
Aeolus generally improves the prediction of zonal winds in both forecasting systems,
especially for lead times above 24 hours. These improvements are related to systematic
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differences in the representation of the two jets, with the AEJ-North weakened at its
southern flank in the western Sahel in the ECMWF analysis, while no obvious systematic
differences are seen in the DWD analysis. In addition, the TEJ core is weakened in
the ECMWF analysis and strengthened on its southern edge in the DWD analysis.
The regions where the influence of Aeolus on the analysis is greatest correspond to the
ITCZ region for ECMWF and generally the upper troposphere for DWD. In addition,
we confirm the presence of an altitude and orbit dependent bias in the Rayleigh-clear
channel, as already identified with radiosondes, over the entire WAM region, which
causes the zonal winds to accelerate in the morning and slow down in the evening.
Applying a temperature-dependant bias correction to this channel contributes to a
better representation of the diurnal cycle and improved predictions of the WAM winds.

Ultimately, the NWP impact of Aeolus on large-scale tropical phenomena such as
Equatorial Waves (EWs) and associated mechanisms contributing to the improvements
are examined in both ECMWF and DWD systems. More specifically, EWs are isolated
in analysis and forecast fields using two complementary methods. Large impacts of
Aeolus on EWs identified in zonal wind forecasts can be found for most wave types,
EWs identification methodologies and forecasting systems. Improvements in the upper
levels are more pronounced, while the impact in the DWD system is significantly larger
compared to the ECMWF system. EWs isolated in rainfall fields, also exhibit large
positive impact in the DWD system compared to ECMWF. In the former, the positive
impact appears to stem from improvements in zonal wind forecasts over the Pacific
Ocean during the El Niño-Southern Oscillation (ENSO) phase change from neutral to
La Niña phase. Especially during that period, relative improvements of more than 50 %
are reached in this observation sparse area. Aeolus improves the DWD model first-guess
by up to 5 ms−1, which leads to improvements of zonal wind forecasts up to lead times
of 96 hours. These improvements are not related to important changes in temperature,
but rather to a better representation of vertical wind shear.

In conclusion, the Aeolus mission has now completed its 5 year mission in space, exceeding
expectations with technological and scientific achievements. We demonstrated the
positive impact of Aeolus, particularly in the Upper Troposphere and Lower Stratosphere
(UTLS) region where clear skies and low observational availability predominate, with
improvements seemingly related to better representation of vertical wind shear. The
qualify of Aeolus has played a crucial role in the observed improvements, although further
improvements are required to better characterizing the Rayleigh-clear error, particularly
in cloud and aerosol-loaded regions. Moreover, addressing error assignment of the wind
observations in NWP models can also lead to improvements. Future research should
address the underlying relationship between improvements in EWs and precipitation
forecasts, as well as the impact of Aeolus on longer time scales. The success of Aeolus
has motivated the development of its successor, Aeolus-2, which aims to further improve
space-based wind observation technology for meteorological applications.
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Kurzfassung

Aeolus ist die erste Satellitenmission, bei der ein weltraumbasiertes Doppler Wind
Lidar (DWL) zur Beobachtung von vertikalen Windprofilen auf globaler Ebene eingesetzt
wird. Das Instrument kombiniert in einzigartiger Weise Rayleigh-clear (molekular) und
Mie-cloudy (Aerosol) bei klarer und bewölkter Atmosphäre. Dies ist besonders in den
Tropen wichtig, wo die große Datenlücke bei den Windmessungen im Global Observing
System (GOS) das Numerical Weather Prediction (NWP) vor große Herausforderungen
stellt. Durch die Schließung dieser Lücke bot Aeolus die einzigartige Möglichkeit, die
Darstellung der tropischen Zirkulation in NWP-Modellen erheblich zu verbessern.

Um zuverlässige Daten für NWP-Modelle zu gewährleisten, müssen die Fehlerquellen
in den Aeolus-Windproduktmessungen identifiziert und verstanden werden. Zu diesem
Zweck wird die Qualität des Aeolus Level 2B (L2B)-Windprodukts über dem tropischen
Atlantik mit Hilfe von Radiosonden bewertet, die im Rahmen des Joint Aeolus Tropical
Atlantic Campaign (JATAC) im August-September 2021 von den Inseln Sal, Saint Croix
und Puerto Rico gestartet wurden. Während dieses Zeitraums sammelte Aeolus Daten
in einer komplexen Umgebung mit einer Vielzahl von Wolkentypen in der Nähe des
Intertropical Convergence Zone (ITCZ) und Aerosolteilchen von Staubausbrüchen aus
der Sahara. Die Ergebnisse zeigen, dass das Vorhandensein von Wolken oder Staub
die Qualität von Rayleigh-Clear-Messungen beeinträchtigen kann, wenn das useful
signal erheblich reduziert wird, was zu einer Unterschätzung des Error Estimate (EE)
führt. Allerdings machen grobe Ausreißer mit großen Abweichungen von der Radioson-
denreferenz, aber niedrigen EEs, weniger als 5% der Daten aus. Diese scheinen die
Messungen in allen Höhen und unter allen atmosphärischen Bedingungen zu beeinflussen,
und ihre Ursache bleibt unbekannt. Schließlich zeigen wir das Vorhandensein einer
orbitalabhängigen Bias von bis zu 2,5 ms−1, die sowohl mit Radiosonden als auch mit
European Centre for Medium-Range Weather Forecasts (ECMWF)-Modelläquivalenten
beobachtet wurde.

Im Anschluss an die Qualitätsbewertung der Aeolus-Windmessungen werden die Auswirkun-
gen des L2B-Datensatzes auf die ECMWF- und Deutscher Wetterdienst (DWD)-Analysen
und -Vorhersagen über dem anliegenden West African Monsoon (WAM) in den bo-
realen Sommern 2019 und 2020 bewertet. Der WAM ist bekanntermaßen schwierig
vorherzusagen und zeichnet sich durch markante und robuste großräumige Zirkulation-
sstrukturen wie den African Easterly Jet North (AEJ-North) und den Tropical Easterly
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Jet (TEJ) aus. Die Assimilierung von Aeolus verbessert im Allgemeinen die Vorhersage
der zonalen Winde in beiden Vorhersagesystemen, insbesondere bei Vorhersageszeiten
über 24 Stunden. Diese Verbesserungen hängen mit systematischen Unterschieden in
der Darstellung der beiden Jets zusammen, wobei der AEJ-North an seiner südlichen
Flanke in der westlichen Sahelzone in der ECMWF-Analyse geschwächt ist, während in
der DWD-Analyse keine offensichtlichen systematischen Unterschiede zu erkennen sind.
Darüber hinaus ist der TEJ-Zentrum in der ECMWF-Analyse geschwächt und in der
DWD-Analyse an seinem südlichen Rand verstärkt. Die Regionen, in denen der Einfluss
von Aeolus auf die Analyse am größten ist, entsprechen bei ECMWF der ITCZ-Region
und bei DWD im Allgemeinen der oberen Troposphäre. Darüber hinaus bestätigen wir
das Vorhandensein einer höhen- und orbitabhängigen Bias im Rayleigh-Clear-Kanal, wie
sie bereits mit Radiosonden identifiziert wurde, über der gesamten WAM-Region, die
dazu führt, dass die zonalen Winde am Morgen beschleunigt und am Abend verlangsamt
werden. Die Anwendung einer temperaturabhängigen Biaskorrektur auf diesen Kanal
trägt zu einer genaueren Darstellung des Tageszyklus und einer verbesserten Vorhersage
der WAM-Winde bei.

Letztendlich werden die Auswirkungen von Aeolus auf großräumige tropische Phänomene
wie Equatorial Waves (EWs) und die damit verbundenen Mechanismen, die zu den
Verbesserungen beitragen, sowohl in ECMWF- als auch in DWD-Systemen unter-
sucht. Genauer gesagt werden EWs in Analyse- und Vorhersagefeldern mit zwei sich
ergänzenden Methoden isoliert, darunter eine Raum-Zeit-Spektralanalyse mit Fast
Fourier Transform (FFT) und eine räumliche Projektionsmethode, die dynamische
Felder auf theoretische Wellenmuster projiziert. Große Auswirkungen von Aeolus auf
die in zonalen Windvorhersagen identifizierten EWs können für die meisten Wellen-
typen, EWs-Identifizierungsmethoden und Vorhersagesysteme festgestellt werden. Die
Verbesserungen in den oberen Ebenen sind ausgeprägter, während die Auswirkungen
im DWD-System im Vergleich zum ECMWF-System deutlich größer sind. EWs, die
in Niederschlagsfeldern isoliert sind, zeigen im DWD-System ebenfalls große positive
Auswirkungen im Vergleich zu ECMWF. Im erstgenannten System scheint die positive
Auswirkung auf Verbesserungen der zonalen Windvorhersagen über dem Pazifik während
des El Niño-Southern Oscillation (ENSO)-Phasenwechsels von der neutralen zur La
Niña-Phase zurückzuführen zu sein. Insbesondere in diesem Zeitraum werden in diesem
beobachtungsarmen Gebiet relative Verbesserungen von mehr als 50 % erreicht. Aeolus
verbessert die erste Schätzung des DWD-Modells um bis zu 5 ms−1, was zu Verbesserun-
gen der zonalen Windvorhersagen bis zu Vorhersageszeit von 96 Stunden führt. Diese
Verbesserungen sind nicht auf wesentliche Änderungen der Temperatur zurückzuführen,
sondern vielmehr auf eine bessere Darstellung der vertikalen Windscherung.

Zusammenfassend lässt sich feststellen, dass die Aeolus-Mission ihre fünfjährige Mis-
sion im Weltraum abgeschlossen hat und die Erwartungen hinsichtlich der technolo-
gischen und wissenschaftlichen Leistungen übertroffen hat. Wir haben die positiven
Auswirkungen von Aeolus aufgezeigt, insbesondere in der Upper Troposphere and



Lower Stratosphere (UTLS)-Region, wo klare Wettebedingungenund geringe Anzahl
von Beobachtungen vorherrschen, wobei die Verbesserungen offenbar mit einer besseren
Darstellung der vertikalen Windscherung zusammenhängen. Die Qualifizierung von Ae-
olus hat eine entscheidende Rolle bei den beobachteten Verbesserungen gespielt, obwohl
weitere Verbesserungen erforderlich sind, um den Rayleigh-clear-Fehler besser zu charak-
terisieren, insbesondere in wolken- und aerosolbelasteten Regionen. Darüber hinaus
kann die Behandlung der Fehlerzuweisung in NWP-Modellen ebenfalls zu Verbesserun-
gen führen. Künftige Forschungsarbeiten sollten sich mit der zugrunde liegenden
Beziehung zwischen Verbesserungen bei EWs und Niederschlagsvorhersagen sowie mit
den Auswirkungen von Aeolus auf längeren Zeitskalen befassen. Der Erfolg von Aeolus
hat die Entwicklung seines Nachfolgers, Aeolus-2, motiviert, der die weltraumgestützte
Windbeobachtungstechnologie für meteorologische Anwendungen weiter verbessern soll.
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1. Introduction

Wind is the most critical atmospheric variable lacking in the current Global Observ-
ing System (GOS) (Baker et al., 2014). Especially in the tropics, where the lack of
geostrophic balance requires simultaneous measurements of wind and mass information,
Numerical Weather Prediction (NWP) models require additional wind observations with
sufficient coverage in time and space to identify key atmospheric dynamics (Stoffelen
et al., 2005; Straume et al., 2020). Prior the advent of Aeolus, satellite wind observations
in these regions were only available for a limited number of tropospheric layers and
are mainly provided by Atmospheric Motion Vectors (AMVs) estimated from tracking
cloud and water vapour features (Bormann et al., 2003; Folger and Weissmann, 2014),
or by scatterometer measurements of surface winds (Naderi et al., 1991; Portabella and
Stoffelen, 2009). In particular, AMVs suffer from errors in height assignment, resulting
in substantial systematic and correlated errors (Bormann et al., 2003; Velden and Bedka,
2009; Folger and Weissmann, 2014). In recent years, more satellite observations (e.g.
passive microwave sensors and Global Navigation Satellite Systems (GNSS) radio occul-
tation) have complemented the conventional observing network, but those observations
mainly provide mass information and no direct measurements of wind profiles. In situ
measurements derived from aircraft reports, ground stations or radiosondes are not
globally distributed, leaving a significant data gap in the tropics. Several impact studies
have demonstrated the urgent need of additional wind profile measurements to reduce
uncertainties in initial conditions for NWP systems, especially over regions with a lack
of direct wind observations (Marseille and Stoffelen, 2003; Stoffelen et al., 2005, 2006;
Žagar et al., 2008; Baker et al., 2014; Weissmann and Cardinali, 2007; Weissmann et al.,
2012; Žagar, 2004).

To address these deficiencies, the European Space Agency (ESA) deployed the Aeolus
mission in 2018 (Figure 1.1), the first satellite capable of measuring atmospheric winds
around the globe from space with a homogeneous space-time coverage and altitude-
resolved profiles up to 30 km height (Reitebuch, 2012). The instrument carries a direct
detection Doppler wind lidar called Atmospheric LAser Doppler INstrument (ALADIN)
that can detect the Doppler shift of the narrowband particle backscatter signal (Mie
channel; cloud droplets and aerosols or ice crystals), and of the Rayleigh-Brillouin
backscatter spectrum (Rayleigh channel; air molecules). The processing algorithm
also distinguishes between retrievals originating from "cloudy" or "clear" atmospheric
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Chapter 1. Introduction

Figure 1.1: The Aeolus satellite measures wind from space using a Doppler Wind
Lidar (DWL) called ALADIN. Aeolus emits a laser pulses into the Earth’s atmosphere
with two different wind detection channels. The Rayleigh channel measures wind
from the scattering of air molecules, while the Mie channel captures wind from the
backscattering of clouds and aerosol particles, allowing for wind measurements in
different atmospheric conditions. Image credit: ESA.

conditions, resulting in Rayleigh-clear and Mie-cloudy observation types. The two
channels partially complement each other, as Mie-cloudy winds can compensate for gaps
in Rayleigh-clear measurements, providing information in cloudy and aerosol-loaded
regions. Various NWP centres have demonstrated the added value of assimilating
Aeolus winds through significant improvements in model fields and model background
information, especially in tropical regions, the upper tropical troposphere and the lower
stratosphere (Rennie and Isaksen, 2020; Rennie et al., 2021; George et al., 2021; Garrett
et al., 2022; Laroche and St-James, 2022; Pourret et al., 2022; Martin et al., 2023).

For an optimal use of the Aeolus wind observations in NWP models, an assessment of
the data quality is essential. To achieve this, several scientific and technical studies are
carried out in the framework of Calibration/Validation (Cal/Val) activities organised
by ESA. For wind validation, several reference products have been used such as ground-
based remote sensing observations (Belova et al., 2021; Guo et al., 2021; Iwai et al., 2021;
Abril-Gago et al., 2022), in situ measurements (Baars et al., 2020; Chen et al., 2021;
Ratynski et al., 2022), airborne measurements (Lux et al., 2020; Witschas et al., 2020;
Bedka et al., 2021; Witschas et al., 2022b) or NWP model equivalents (Martin et al.,
2021; Zuo et al., 2022). Several errors in the Aeolus data have already been detected and
improvements in the processing chain and the instrument have been made accordingly.
These include the implementation of a bias correction in both channels related to the
seasonal temperature variations of ALADIN’s M1 mirror (Weiler et al., 2021a) and
the correction of "hot pixels" (Weiler et al., 2021b), which reduced the systematic and
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random errors in the Rayleigh channel. Although the largest source of errors could
be explained, some remaining – not yet fully understood – systematic errors are still
expected to be present. One phenomenon that still needs to be explored is the sensitivity
of Aeolus wind quality to the presence of aerosols and clouds, potentially affecting
key parameters used to calculate the Line Of Sight (LOS) winds and the associated
Error Estimate (EE). The tropical Atlantic during the boreal summer, spanning from
West Africa to the Caribbean, is the ideal place to explore these dependencies, with a
wide range of atmospheric aerosols (Saharan dust aerosols, sea salt aerosols, biomass
combustion aerosols) and convective cloud types associated with the West African
Monsoon (WAM) circulation and the Intertropical Convergence Zone (ITCZ). For this
purpose, ESA organized the Joint Aeolus Tropical Atlantic Campaign (JATAC) in the
period July to September 2021, which deployed high-quality airborne lidar instruments
over Cabo Verde and the Virgin Islands but also ground-based instruments such as
radiosondes and Doppler lidar systems. In the first part of this study, we validate Aeolus
wind products using radiosondes launched from western Puerto Rico, northern St. Croix
and Sal airport on Cabo Verde. The semi-arid island of Sal is located over the tropical
East Atlantic off the West African coast, near the northern boundary of the WAM.
Rain events are relatively sporadic there, and most tropical cyclones propagate south
of the island. The region is exposed to mineral dust plumes emanating from Saharan
dust outbreaks. In contrast, the islands of St. Croix and Puerto Rico are located in the
formation areas of hurricanes and tropical cyclones and are frequently hit by them. The
contribution of the radiosondes in JATAC is complementary to other instruments as
they provide accurate wind measurements throughout the troposphere up to the lower
stratosphere.

Having assessed the quality of Aeolus in such complex atmospheric environment, it is
essential to explore the impact of Aeolus data on representing the WAM during its peak
from June to September in the NWP systems of the European Centre for Medium-Range
Weather Forecasts (ECMWF) and the Deutscher Wetterdienst (DWD). The WAM was
chosen as a study region for the following three reasons: (a) Sparse observations: The
conventional station network in tropical Africa is sparse, in particular with respect to
radiosondes (Parker et al., 2008; Knippertz et al., 2017), and even existing data are
sometimes not transferred to the Global Telecommunication System (GTS) in time for
assimilation in global forecasting systems. Moreover, reports from commercial air traffic
is very limited over tropical Africa, leading to relatively few aircraft reports. (b) Low
predictability: NWP models are known to have a poor ability to predict rainfall over
West Africa (Fink et al., 2011), barely outperforming ensemble predictions based on
climatology (Vogel et al., 2018, 2021; Walz et al., 2021). One reason for this appears
to be the great importance of highly organized Mesoscale Convective Systems (MCSs),
which contribute up to 80% of the annual rainfall (Bayo Omotosho, 1985; Mathon
et al., 2002; Fink et al., 2006). It is computationally challenging to achieve km-scale
horizontal resolution that would be required for representing these systems explicitly
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over a large enough model domain (Pante and Knippertz, 2019; Senior et al., 2021)
but some improvements in the ECMWF system have recently been achieved through a
more sophisticated convective parametrization (Becker et al., 2021). (c) Socio-economic
impact: The West African population is highly reliant on rainfed agricultural and thus
vulnerable to weather extremes, threatening local health, food security and socioeconomic
development (Krishnamurthy et al., 2014). An improvement in rainfall forecasts may
therefore prove beneficial not only for agriculture but also for energy production, water
supply and disease prevention.

A comprehensive understanding of the impact of Aeolus on NWP systems can be
gained by examining tropical weather patterns, which are mainly driven by Equatorial
Waves (EWs). EWs are east- and westward propagating disturbances trapped near
the equator. When coupled with convection, these systems, known as convectively
coupled EWs, can substantially control precipitation and its variability in the tropics.
EWs are theoretically described by the shallow water equations (Matsuno, 1966), and
evidence of EWs can be provided by the wavenumber-frequency power spectrum of
tropical cloudiness data, which display spectral peaks consistent with the theoretical
dispersion curves (Wheeler and Kiladis, 1999). Many techniques have been developed
to isolate equatorial waves in space and time by exploiting their unique propagation
and structure characteristics (Knippertz et al., 2022). EWs are assumed to be a major
source of predictability in the tropics (Ying and Zhang, 2017; Li and Stechmann, 2020;
Judt, 2018, 2020), but are not well captured in global models and are subjected to
errors in phase velocity and amplitude (Lin et al., 2006; Straub et al., 2010; Benedict
et al., 2013; Hung et al., 2013; Ferrett et al., 2020; Yang et al., 2021). Improving the
representation of EWs in global models is crucial to improve the prediction of EWs and
associated precipitation events. By providing accurate information on wind and it’s
vertical shear, Aeolus has the potential to improve the representation of the dynamical
structure of EWs and thus improve practical predictability in the tropics.

Thesis structure

This thesis is organized as follows: Chapter 2 provides the theoretical background on
the importance and need for wind observations in the tropics, followed by an overview
of the measurement principle and main objectives of the Aeolus mission and lastly
a description of the data assimilation systems implemented at ECMWF and DWD.
Chapter 3 provides the different research questions that motivates this thesis. Chapter
4 gives an overview of the analysed data, the applied verification strategies and details
the quality control and co-location criteria used for the validation study. This chapter
also provides a description of the different Observing System Experiment (OSE)s and
the Horizontal Line of Sight (HLOS) wind observation error modelling and settings.
Finally a description of the the different equatorial wave identification methodologies
used in this study is presented. Chapter 5 is the first result chapter on the validation of
Aeolus L2B wind product in tropical Atlantic. This chapter deals with the quantification
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of errors, their dependency on temporal and spatial distance between the compared
observations as well as on the presence of clouds and dust. Furthermore, the chapter
includes a case study illustrating the different behaviour of Rayleigh-clear and Mie-
cloudy winds under different environmental conditions. In Chapter 6, we discuss
the impact of Aeolus on the representation of the WAM in the ECMWF and DWD
operational systems. This includes a description of the various atmospheric components
and observed circulation features that Aeolus captures and the related error structure.
This chapter also contains a description of the influence of Aeolus on the African Easterly
Jet North (AEJ-North) and Tropical Easterly Jet (TEJ) (Lemburg et al., 2019), with a
thorough evaluation of the orbital and channel contributions to the observed influence
using background departure diagnostics. The forecast impact of Aeolus on the WAM
winds, using background verification against radiosondes and forecast comparisons of
zonal wind against ERA5 reanalysis is also presented. Chapter 7 presents the impact
of Aeolus on the representation of tropical waves on wind and precipitation forecasts
as well as scenarios that can explain the observed improvements. Finally, Chapter 8
provides the conclusions and Chapter 9 an outlook on future work.
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2. Theoretical background

This chapter provides the essential theoretical background necessary to comprehend the
research undertaken in this thesis. First, we examine the key aspects of tropical meteo-
rology, including equatorial waves, which play a major role in determining atmospheric
variability in the tropics, and the West African Monsoon (WAM) system, which is char-
acterised by it’s complex meteorology and low observational coverage. We also discuss
the concept of predictability and explore the potential for improvements in practical
predictability in the tropics. We then explore the need for global wind measurements,
in the context of the problems posed by the lack of geostrophic balance in the tropics
and the lack of wind observations in the Global Observing System (GOS). Secondly,
we focus on the Aeolus mission, its motivation and measurement principle. We will
also give an overview of the Aeolus products. Finally, we examine the data assimilation
frameworks used by European Centre for Medium-Range Weather Forecasts (ECMWF)
and Deutscher Wetterdienst (DWD) in which the Aeolus data are assimilated. A full
understanding of the characteristics of the Aeolus measurements, their assimilation into
the ECMWF and DWD systems, together with an introduction to tropical meteorology,
are essential foundations for understanding the research presented in this thesis.

2.1 Tropical meteorology and predictability

Wind is a critical component of the Earth’s weather and climate system, regulating
temperature and precipitation patterns worldwide. Wind can manifest in particularly
violent wind phenomena such as hurricanes or tornadoes, which can cause significant
damage to people and infrastructure. Especially in the tropics, accurate weather forecast
is critical for agriculture, energy production, water supply and disease prevention.
The development of supercomputers, the advancement of prediction models and data
assimilation systems as well as the increasing observational coverage have enabled
meteorologists to significantly improve the accuracy of Numerical Weather Prediction
(NWP) forecasts in recent years (Bauer et al., 2015). However, weather forecasting
in the tropics remains challenging, as it involves complex atmospheric processes with
rapidly changing weather conditions and limited data availability. Increasing the number
of observations have the potential to address these challenges and improve the accuracy
of NWP forecasts in the tropics. On repeated occasions, the World Meteorological
Organisation (WMO) has highlighted that three-dimensional global wind fields are
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“essential for operational weather forecasting on all scales and at all latitudes" (WMO,
1996; Jarraud, 2008).

2.1.1 Atmospheric circulation

Global wind circulation

Wind plays a vital role in the Earth atmosphere by transporting heat and moisture
around the planet. It is primarily driven by the uneven distribution of solar radiation
across Earth’s surface, creating temperature differences between the equator and the
poles. The rotation of the Earth also affects the movement of air masses with the Coriolis
force causing air to deflect in a curved path. In the extratropics, where the stronger
Coriolis force balances the horizontal pressure gradient forces, geostrophic winds can
occur, where the wind is directed parallel to isobar. Geostrophic adjustment occurs when
the winds are not in balance with the pressure pattern. The jet stream, a high-altitude
fast-moving westerly wind in the mid-latitudes, can steer storms, resulting in changes
in precipitation patterns and intensity. The interaction between pressure systems, the
jet stream, and the Coriolis force can generate relatively predictable weather patterns
in the extratropics. In contrast to higher latitudes, the Coriolis force is weaker in the
tropics. As a result, its influence on the atmospheric circulation is smaller, as the
ageostrophic winds flow rapidly between the pressure centres neutralising each other.
The tropical atmosphere is consequently more barotropic, with tropical pressure maps
lacking the distinct structure found at higher latitudes. Moisture content and solar
heating play a significant role in the formation of convective clouds and precipitation
in the tropics. These are influenced by the diurnal cycle of convection, which in turn
affects atmospheric pressure. However, the absence of a strong Coriolis force means that
pressure systems in the tropics are more dependent on smaller-scale processes, such as
clouds and rain. The rapid growth of uncertainty in convection makes it challenging
to predict rainfall and other weather systems accurately in tropical regions. However,
convective processes in the tropics can result in self-sustaining, organized Mesoscale
Convective Systems (MCSs) that persist for a few hours to several days and cover large
geographical areas (Mapes and Houze Jr, 1993). Scientific studies suggest that these
convective systems are induced and sustained by the passage of Equatorial Waves (EWs)
in the atmosphere, providing an untapped source of predictability in the tropics.

Equatorial waves

EWs play a crucial role in determining synoptic and intraseasonal variability in the
tropical atmosphere. EWs are theoretically solutions of the Shallow Water (SW) equa-
tions that propagate in the zonal direction and are trapped near the equator. These
equations describe the motion of a rotating, inviscid fluid layer with constant density
and vertical stability. In the tropics, where the beta-plane approximation can be applied,
the linearized form of the equations about a motionless base state can be expressed as
follows
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2.1. TROPICAL METEOROLOGY AND PREDICTABILITY

Figure 2.1: Signal strength of (a) symmetric and (b) antisymmetric components
of precipitation (Tropical Rainfall Measurement Mission (TRMM)-3B42) over the
latitudes of 15◦S–15◦N. Shading interval is 0.1 with first level at 0.1. Positive and
negative wavenumbers correspond to eastward and westward propagation, respectively.
Dispersion curves are also plotted for Kelvin, n = 1 equatorial Rossby (ERn1), n = 1
and n = 2 westward inertia–gravity (WIGn1, WIGn2), n = 0 eastward inertia–gravity
(EIGn0), and mixed Rossby–gravity (MRG) waves, with equivalent depths of 8, 12,
25, 50, and 90 m. In (a) three diagonal dashed lines for the symmetric components
indicate constant phase speeds of 7.0, 9.0, and 11.0 ms−1. The regions enclosed
with thick solid lines represent filters for the isolation of each wave activity. From
Yasunaga and Mapes (2012b). © American Meteorological Society. Used
with permission.
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where f is the Coriolis parameter f = βy, and c the gravity wave phase speed c =
√
ghe,

with he the equivalent depth and g the gravitational acceleration. The variables u’, v’
and ϕ′ represent the linearized form of zonal wind, meridional wind and geopotential
height with respect to the motionless basic state. Assuming a wave-like solution in the
zonal direction and allowing for arbitrary meridional structure, the solutions can be
expressed as 
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Figure 2.2: The theoretical horizontal structures of some of the gravest equatorial
wave modes in the resting atmosphere. The Kelvin wave, the n = 0 westward-
moving mixed Rossby-gravity (WMRG) and the eastward-moving mixed Rossby-gravity
(EMRG), the n = 1 westward-moving Rossby (R1) waves. The meridional trapping
scale y0 has been taken to be 6° and the zonal wave number k = 6. Vectors indicate
horizontal wind. Filled contours indicate divergence (10−6 s−1) with convergence
set to be positive. Color contour lines represent vorticity (10−6 s−1) with blue lines
for positive vorticity and red lines for negative vorticity; the contour interval is 0.6
starting from ±0.2. The maximum zonal wind for the Kelvin wave and the maximum
meridional wind for the n = 0 MRG are set to be 1 m/s, and the maximum meridional
wind for the n = 1 Rossby (R1) wave is set to be ∼0.86 m/s. From Ferrett et al.
(2020) under the Creative Commons Attribution 4.0 International License
(CC BY 4.0).

with k the zonal wave number and w the frequency. By substituting the solution into
the previous equation set, we can derive the dispersion relation

c

β

(
w2

c2 − k2 + k

w
β

)
= 2n+ 1 (2.3)

where n is the meridional wave number. The resulting dispersion curves (Matsuno,
1966; Gill, 1980; Wheeler and Kiladis, 1999) provide essential information about each
wave mode, such as its wave numbers, periods, and specific horizontal structures.
Fig.2.1 display the dispersion curves for different EWs modes, including Kelvin waves,
Equatorial Rossby waves (ER), Mixed Rossby gravity waves (MRG), Westward Inertio-
Gravity waves (WIG) and Eastward Inertio-Gravity waves (EIG) for different equivalent
depths. When coupled with deep convection, EWs can modulate tropical convection
and precipitation and can be referred to as convectively coupled EWs. Early studies
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2.1. TROPICAL METEOROLOGY AND PREDICTABILITY

of Takayabu (1994) and Wheeler and Kiladis (1999) provided initial evidence of their
existence. For example,

As illustrated by Yasunaga and Mapes (2012a,c), rainfall and brightness temperature,
which can be used to detect clouds, show similar patterns in the frequency-wavenumber
power spectrum, with most of the signal found in the higher frequency and more divergent
wave types. Fig.2.1 depicts the power spectrum of TRMM satellite precipitation, serving
as an indicator of convection in the equatorial region (15°S-15°N). The spectrum
provides observational evidence for the existence of these waves, which are symmetric
(a) and antisymmetric (b) about the equator. The spectral peaks from observations are
remarkably aligned along the dispersion curves of the linear theory for different equivalent
depths. Additionally, a spectral peak not described by the SW equations is visible for
periods of 30-60 days and wavenumbers of 1-3, which corresponds to the Madden-Julian
Oscillation (MJO). The MJO (Madden and Julian, 1971) is a planetary-scale structure
that propagates slowly eastward (5 ms−1) with a large region of enhanced rainfall and
convective activity. Tropical Disturbances (TDs) are another important type of wave
observed in the tropics that are not predicted by the SW theory. In the framework of
this thesis, these waves are also included in the definition of EWs. The EWs solutions
also feature specific spatial structure, with more divergent waves such as Kelvin waves,
and rotational types of waves such as ER, MRG, WIG and EIG. Fig.2.2 illustrates the
theoretical structures of different equatorial wave modes, which are labeled according to
the EWs naming nomenclature proposed by Yang et al. (2003).

The West African Monsoon

The West African Monsoon (WAM) is a complex system characterized by prominent
and robust large-scale circulation features such as the midlevel African Easterly Jet
North (AEJ-North) and the upper-tropospheric Tropical Easterly Jet (TEJ) (Lemburg
et al., 2019). The latter is commonly described as the southern part of the upper-level
Asian monsoon anticyclone and extends from the Indian Ocean to the tropical Atlantic.
The AEJ-North is characterised by an easterly wind of about 10-15 ms−1 and peaks at
700–600 hPa (Burpee, 1972; Thorncroft and Blackburn, 1999; Nicholson and Grist, 2003;
Parker et al., 2005b) and is generated by the temperature gradient between the hot
Saharan air and the relatively cool monsoon air from the Gulf of Guinea (Charney and
Stern, 1962; Cook, 1999). The AEJ-North is closely linked to the synoptic variability
of precipitation, since it supports the formation and propagation of African Easterly
Waves (AEWs) (Burpee, 1972), which in turn modify moisture transport, stability
and vertical wind shear and thus convective organization (Mohr and Thorncroft, 2006;
Janiga and Thorncroft, 2016; Schlueter et al., 2019b,a). The representation of the
AEJ-North in the ECMWF model has undergone significant changes in response to
model updates and improvements, which have modified the structure and intensity of
the jet (Kamga et al., 2000; Tompkins et al., 2005a). The assimilation of additional
observations taken in the framework of field campaigns has unveiled remaining issues,
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e.g. that the AEJ-North is too weak in the ECMWF model over the eastern Sahel
(Tompkins et al., 2005b; Agustí-Panareda et al., 2010).

AEWs typically correspond to the TD wave type (see previous section) and have a
significant impact on precipitation patterns, modulating precipitation on a 2-6 day
period with wavelengths ranging from 2000-5000 km. During boreal summer, AEWs
are the dominant weather feature in West Africa, with approximately 60% of organized
squall lines associated with them (Fink and Reiner, 2003). Especially moisture, 70% of
which lies below 700 hPa, is strongly modulated by AEWs, which result primarily from
a strong meridional temperature and moisture gradient, carrying moisture zonally out
of the Sahel (Poan et al., 2015). Below the zonal modulation of moisture, near-surface
southwesterly monsoon flow also transport moisture from the western Atlantic Ocean
across the Guinea coast to the Sahel (Lélé and Leslie, 2016).

According to several studies (Kamsu-Tamo et al., 2014; Schlueter et al., 2019a,b), EWs
are the most important modulator of convection over West Africa. Specifically, TDs
and Kelvin waves are responsible for most of the rainfall variability (30%) on short time
scales (3 hours to 3 days), while MJO and ER dominate on longer time scales (40% for
7-20 days). Due to the close vicinity of TDs and MRG waves in wavenumber-frequency
space, various interactions have been reported. While "hybrid" waves have been observed
over Africa (Cheng et al., 2019), transition from MRG into off-equatorial TDs waves
has also been documented over the Pacific Ocean (Takayabu and Nitta, 1993; Zhou
and Wang, 2007). However, more research is needed to further clarify the nature of
the relationship and the involved mechanisms between the two types of waves over the
regions where they both occur.

2.1.2 Predictability

Intrinsic predictability

Intrinsic predictability describes the inherent finite limit up to which predictions are
possible given nearly perfect forecast model and initial conditions (Lorenz, 1969; Zhang
et al., 2003, 2007; Sun and Zhang, 2016). Lorenz (1969) first demonstrated its existence
using the concept of the butterfly effect which describes the rapid upscale grow of error
and multi-scale interaction caused by the chaotic nature of the atmosphere leads to a
finite range of predictability Lorenz (1969). Estimating predictability is challenging,
especially in the tropics, where moist convection cannot be resolved properly. Therefore,
various simplified and idealised models were used to investigate intrinsic predictability,
such as simple spectral turbulence models (Lorenz, 1969), global storm-resolving ideal
twin experiments (Judt, 2018), a stochastic convection scheme (Selz, 2019) or storm-
resolving aqua-planet simulations (Mapes et al., 2008). Although it remains somewhat
unclear whether these idealised models reflect the actual atmosphere well enough, it is
generally accepted that they can represent the inherent predictability in our atmosphere
(Palmer et al., 2014). Lorenz used a simple spectral turbulence model and derived the
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Figure 2.3: Time series of horizontal averaged Difference Kinetic Energy (DKE) for
the (a) tropics, (b) middle latitudes at three levels: upper troposphere (solid lines),
middle troposphere (dashed lines), and lower troposphere (dotted lines). Black lines
denote the saturation limits computed from ERA5 (dashed). The DKE time series are
normalized by the respective saturation limits. From Judt (2020). © American
Meteorological Society. Used with permission.

Kinetic Energy (KE) spectrum of the unperturbed flow, to describe the KE contained at
each wavenumber. In global mean, he showed that the predictability for spectral slopes
lower than -3 has a finite limit, with error growth scale- and time-dependent leading to
an upscale error spreading (Lorenz, 1969; Rotunno and Snyder, 2008; Morss et al., 2009).
For steeper spectral slopes than -3, unlimited predictability can be achieved. Using
an identical-twin predictability experiment using perturbed simulations, Judt (2018)
showed that each latitudinal zone has distinct error growth characteristics depending on
the underlying dynamics. The tropical atmosphere seems to be predictable on average
beyond 20 days, which is longer compared to the extratropics (see Figure 2.3). In
particular, the spectral slope in the extratropics is -3 at synoptic scales (>600 km) and
-5/3 at mesoscale scales (<100 km), while it is quasi-uniformly shallower at -5/3 in the
tropics. For mesoscale flows, the predictability is shorter in the tropics (5-7 days) than
in the extratropics (10-12 days). One hypothesis for the low predictability of mesoscale
flows in the tropics is that they depend on convective processes and are less constrained
by synoptic-scale forcing compared to the extratropics. For synoptic scales of around
1000 km the predictability is similar, around 10 days, while for larger scales (> 5000
km) the extratropics reach a predictability limit of 15-17 days, which corresponds to
60% of the saturation of the error in the tropics, which is set at twice the climatological
variance. It is assumed that the longer predictability on large scales in the tropics
compared to the extratropics is related to the propagation of EWs, as various studies
revealed that EWs have a long limit of predictability (Ying and Zhang, 2017; Li and
Stechmann, 2020; Judt, 2020). Other studies suggest that the shape of the spectral
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slope of the background kinetic energy is key to understanding scale-dependant error
growth and thus predictability (Lilly, 1972; Rotunno and Snyder, 2008).

Practical predictability

Practical predictability describes the current limit of predictability that can be reached
by NWP “given realistic uncertainties in both the forecast model and initial and bound-
ary conditions” (Lorenz, 1969; Zhang et al., 2003, 2007). Since the introduction of NWP,
weather forecasting capabilities have been gradually improving, with forecast skill for
lead times of 3 to 10 days increasing on average by one day per decade (Bauer et al.,
2015). This has been achieved by the increasing computational power, the improvement
of model physics and the higher model resolution. But the sophistication of Data As-
similation (DA) techniques and the increasing quality and quantity of observations have
also contributed to this progress. The improvement is true for forecast skills, mainly in
the extratropics in the Northern Hemisphere. Despite longer instrinsic predictability in
the tropics as we discussed earlier, Zhu et al. (2014) showed that practical predictability
in the tropics is limited to a day to a week. Especially over West Africa, there is a very
poor ability to predict rainfall (Fink et al., 2011) with predictions barely outperforming
ensemble predictions based on climatology, despite the use of state-of-the-art statistical
post-processing methods (Gneiting et al., 2005; Vogel et al., 2018, 2021; Walz et al.,
2021). The large gap between practical and intrinsic predictabilities in the tropics can
be understood in a number of ways. First, convective precipitation is the largest cause
of error in weather forecasts (Reynolds et al., 2020; Vogel et al., 2018, 2021; Walz et al.,
2021), but moist convective processes are parameterised in most operational global
models. Different weather service centers implement their own convection parameter-
ization scheme. Due to the convective nature of the tropics, modeling atmospheric
phenomena in the tropics is highly sensitive to the choice of convection parameterization,
such as the MJO (Wang and Schlesinger, 1999; Maloney and Hartmann, 2001) or the
Intertropical Convergence Zone (ITCZ) (Song and Zhang, 2018). Amongst the various
atmospheric phenomena in the tropics, an accurate representation of EWs is arguably
crucial for practical predictability (Ying and Zhang, 2017; Judt, 2018; Ferrett et al.,
2020), but weather and climate models often struggle to capture them realistically,
with biases and errors in the phase velocity, amplitude and structure of the waves (Lin
et al., 2006; Straub et al., 2010; Benedict et al., 2013; Hung et al., 2013; Ferrett et al.,
2020; Yang et al., 2021). For example, the propagation velocity of convectively coupled
Kelvin waves in atmospheric models is often too high, which affects the representa-
tion of the associated high impact weather system (Ferrett et al., 2020; Yang et al.,
2021). Convection-permitting models are thought to be a cure to represent convectively
coupled EWs better in models. However, these models require finer model resolution,
which is computationally challenging in a sufficiently large model domain (Pante and
Knippertz, 2019; Senior et al., 2021). Furthermore, a convection-permitting simulation
does not always guarantee better capturing convectively coupled EWs compared to its
counterpart with parameterized convection (Jung and Knippertz, 2023). This indicates
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P. Bechtold et al. Uncertainty in tropical winds
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Unit = 0.1 ms–1
1086420 12 20 1086420 12 20

Unit = 0.1 K
31-1-3-5-7 5 9 31-1-3-5-7 5 9

1.0 ms–1 Figure 1 (a) Mean analysis increments for 
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Statistical significance at the 95% level is 
denoted by intense colours, pale colours  
are employed otherwise.
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Figure 2 Mean analysis increments for temperature and wind vector for (a) 850 hPa and (b) 700 hPa for 
October–December 2011. Also shown is the mean difference between ECMWF and Met Office analyses 
at (c) 850 and (d) 700 hPa for the same period.

Figure 2.4: Standard deviation of wind speed analysis increments at 1000hPa
for October–December 2011. Statistical significance at the 95% level is denoted by
intense colours, pale colours are employed otherwise. From Bechtold et al. (2013)
under the Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License (CC BY-NC-ND 4.0).

that the development of convection parameterization, which alleviates coupling between
convection and large-scale circulations, is still necessary to capture tropical phenomena
(Becker et al., 2021), ultimately associated with skillful rainfall prediction in the tropics.
Finally, a major problem in improving the representation of tropical circulations is
the lack of satellite and in situ observation coverage, especially over the oceans and
tropical Africa. In these regions, moist convection leads to extensive cloud layers that
are generally opaque to observations. Despite the sophistication of modern DA methods,
these regions have large analysis and short-range forecast uncertainties (Park et al.,
2008; Žagar, 2017), as the influence of observations depends mainly on their density
and quality. This phenomenon is illustrated in Figure 2.4, which shows the seasonal
standard deviation of the ECMWF wind speed analysis increment at 1000 hPa, with
high values up to 1 ms−1 following the ITCZ. Improvement of the tropical analysis
can be achieved by better formulating the background forecast error (Bonavita et al.,
2012) or by reducing the assigned observation error by improving the observational
network. Amongst the others, wind is the most important meteorological observation
type that has to be obtained to accurately capture atmospheric circulation in global
models (Baker et al., 2014).
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2.1.3 The need of global wind measurements

Geostrophic balance

Geostrophic balance (Blumen, 1972) occurs when the Coriolis force and the pressure
gradient force in the atmosphere are in geostrophic equilibrium. The geostrophic
balance relationship is commonly used to derive large-scale winds from indirect mass
field information. However, this approximation can only be used at higher latitudes
than the tropics, where EWs play the main role in the dynamics (Žagar, 2004). Direct
wind information is therefore essential in the tropics and can be employed to better
characterise the structure and intensity of various tropical weather systems such as
tropical cyclones, EWs and monsoon circulations. The geostrophic balance relationship
is particularly useful in non-equatorial regions where pressure information is available
to estimate wind information. However, in regions where mass field information is
lacking, indirect wind cannot be estimated and direct wind measurements are required.
Additionally, the theory is only valid for atmospheric motion systems that have certain
horizontal and vertical scales. The Rossby radius of deformation, can help to identify
those scales, by providing the horizontal length scale on which the pressure gradient
force is balanced by the Coriolis force. The Rossby radius of deformation R is defined
as:

R =
√
gH

f
=

√
gH

2ΩsinΘ (2.4)

where the numerator describes the mass field with g the gravitational acceleration and H
the depth of the vertical atmospheric system under consideration and the denominator
is the expression for the Coriolis parameter f, which depends on the latitude Θ and
the Earth rotation rate Ω. At higher latitudes, the geostrophic balance relationship is
thus applicable to large-scale atmospheric systems (L»R) with shallow vertical structure
(H«L), and can be used to better define mid-latitude circulation patterns including
atmospheric fronts and polar lows. However, for deep vertical structures (H»L) and
horizontal scales smaller than the Rossby radius of deformation (L«R) such as torna-
does, thunderstorms or tropical cyclones, the theory breaks down. Since the theory
neglects non-geostrophic effects such as friction or buoyancy, it may not be applicable
in mountainous and coastal regions where boundary layer turbulence and gravity waves
prevail.

Deficiencies in the current Global Observing System (GOS)

Global geophysical observations are essential for monitoring and understanding Earth’s
system, providing key information about the atmosphere, ocean, land and cryosphere.
The GOS, coordinated by the WMO, was developed for this purpose, by collecting,
processing and disseminating Earth’s geophysical observations for weather forecast
models world-wide. The GOS thus supports a wide range of applications extending from
day-to-day decision making, through weather forecasting, disaster preparedness and air
quality monitoring to long-term adaptation strategies related to climate change. The
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a) SYNOP-SHIP-METAR b) RADIOSONDE

c) AIRCRAFT d) SCATTEROMETER

e) AMV WV f) AEOLUS

Figure 2.5: Geographic coverage on the 2023-04-05 of the different wind ob-
servation types assimilated at ECMWF, including SYNOP-SHIP-METAR (a), ra-
diosonde (b), aircraft reports (c), polar-orbiting scatterometer (d), geostationary
satellite Atmospheric Motion Vectors (AMVs), water vapour winds (e) and polar-
orbiting Aeolus (d). Each color represents the coverage of a single satellite or
data type. Adapted from ECMWF Geographical coverage charts (https:
//charts.ECMWF.int/catalogue/packages/monitoring/products/dcover?).

GOS gathers a variety of weather data, with different spatio-temporal coverage, vertical
resolution and accuracy. In situ measurements derived from ground stations (Fig.2.5a),
radiosondes (Fig.2.5b) or aircraft reports (Fig.2.5c) are generally more accurate, but
not globally distributed, and are mainly located over land in the Northern Hemisphere.
Satellite data cover larger areas and provide a comprehensive overview of global weather
patterns, but are generally less accurate and vertically less resolved. It is widely
recognised that the GOS has deficiencies in wind observations, with the observing
network heavily biased towards mass observation type and a particular lack of wind
observations in the Southern Hemisphere (SH), over the oceans and in regions close to
the equator. Although temperature soundings can be used to derive wind information
for large-scale wind fields in the extratropics, they are not a substitute for direct
wind observations (Stoffelen et al., 2005; Straume et al., 2020). Most satellite-based
wind observations in these regions are limited in vertical coverage. AMVs (Fig.2.5e)
estimated from tracking cloud and water vapour features (Bormann et al., 2003; Velden
and Bedka, 2009; Folger and Weissmann, 2014) are mostly limited to the lower and
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middle atmospheric layers in regions where clouds are present but exhibit systematic
and correlated errors due to inaccuracies of their height assignment. Scatterometer
measurements (Fig.2.5d) only provide information on surface winds (Naderi et al., 1991;
Portabella and Stoffelen, 2009). Ultimately, Aeolus (Fig.2.5f) is the world’s first space-
based Doppler Wind Lidar (DWL) that measures direct wind information worldwide
with high vertical coverage and high accuracy, partially closing the gap in the GOS.

2.2 The Aeolus wind mission

2.2.1 Motivation, objectives and achievements

Motivation

The Aeolus wind mission is motivated by the WMO’s recognition that global wind
measurements are necessary for understanding and improving weather forecasts and
climate models (Baker et al., 2014). This led to the first investigations in the 1970s
into the possibility of measuring wind profiles from space using lidar technologies. The
first basic technique for measuring atmospheric wind was the Laser Atmospheric Wind
Sounder (LAWS, Beranek et al. (1989)) developed by the National Aeronautics and
Space Administration (NASA). However, it turned out that building this instrument
and launching it into space would be extremely complex and expensive, putting its
development on hold. In parallel, alternative and more effective approaches using
atmospheric DWL were developed by European Space Agency (ESA), leading to the first
concept for Aeolus in 1989 with the Atmospheric LAser Doppler INstrument (ALADIN)
(Betout et al., 1989; Reitebuch et al., 2009). The Aeolus mission (ESA, 1999; Stoffelen
et al., 2005; Reitebuch, 2012; Straume et al., 2020) was finally accepted in 1999 and
selected as the fifth Earth Explorer Mission and as a core project of the Living Planet
Program. Many pre-launch studies highlighted the potential of global wind profiles in
NWP with the largest benefits found in the oceans, tropics and southern hemisphere
(Tan et al., 2007; Marseille et al., 2008; Horányi et al., 2015). In particular in the tropics,
DWL winds can improve quality of tropical analyses (Žagar, 2004; Žagar et al., 2008)
and short range forecasts (Masutani et al., 2010), thus improving the representation of
tropical phenomena such as monsoonal circulations and tropical cyclones (George and
Gray, 1976; Holland, 1983; Andersson et al., 1998; Pu et al., 2010). Improvement in the
tropics can also have an upstream effect through teleconnection effects (Raicich et al.,
2003; Magnusson, 2017) and improve mid-latitude weather forecasting (Bielli et al.,
2010; Gaetani et al., 2011; Pante and Knippertz, 2019). In the mid-latitudes, various
studies have also demonstrated that assimilating wind observations have a significant
positive impact on analyses and predictions of the DWD and ECMWF forecast system
(Cress and Wergen, 2001; Weissmann and Cardinali, 2007; Weissmann et al., 2012).

Objectives

The main objective of Aeolus is to demonstrate DWL technology as a proof of concept
for measuring wind profiles from space. This includes providing global wind profiles
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suitable for assimilation into NWP models to improve analyses and forecasts of 3D wind
fields over a minimum period of three years. The secondary objective of the mission is to
address some of the key concerns of the World Climate Research Programme (WCRP)
and to support objectives of the Global Climate Observing System (GCOS). This
includes providing datasets suitable for evaluating and improving climate models to
achieve a better understanding of climate variability.

Overall, the main objectives of the Aeolus mission can be summarized as following
(Ingmann and Straume, 2016)

• Improve medium range forecast in the extratropics with a better definition of
planetary-scale waves

• Improve short-range forecasts of intense storm developments though the measure-
ment of vertical wind shear of small-scale features

• Improve the analysis of tropical circulation systems through provisions of direct
wind measurements

• Improve understanding of stratospheric mixing processes and dynamics

• Provide data on atmospheric optical properties (aerosols and clouds) to improve
knowledge of atmospheric state and composition

• Provide data to evaluate climate models

Achievements

Eventually, Aeolus was launched in 2018 in the European spaceport in Kourou and
became the first satellite to provide global atmospheric wind profiles along the Horizontal
Line of Sight (HLOS) from the surface up to 30 km altitude. The winds are obtained
from short pulses of ultraviolet light emitted by ALADIN that are scattered by air
molecules (Rayleigh channel) and tiny particles (Mie channel) in the atmosphere before
being reflected back to the satellite telescope. The European Centre for Medium-Range
Weather Forecasts (ECMWF), the Royal Netherlands Meteorological Institute (KNMI)
and German Aerospace Center (DLR) were mainly involved in the planning and support
of the mission. For instance, they developed the Level 2B (L2B) processing chain that
produces the HLOS winds suitable for DA (de Kloe et al., 2020; Rennie et al., 2020).
Aeolus was shown to have a positive impact in many global institutions, including
ECMWF, the National Oceanic and Atmospheric Administration (NOAA), the German
Weather Service (DWD), Météo-France, the UK Met Office, the Canadian Global
Deterministic Prediction System and many others (Rennie and Isaksen, 2020; Rennie
et al., 2021; George et al., 2021; Martin et al., 2023; Garrett et al., 2022; Laroche and St-
James, 2022; Pourret et al., 2022). Significant improvements were observed in particular
in model fields and model background information, especially in tropical regions, the
Upper Troposphere and Lower Stratosphere (UTLS) and the polar troposphere. The
assimilation of Aeolus also had a positive effect on analyses and predictions of improving
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wind and mass variables up to 1–2 % in the lower stratosphere in the medium forecast
range (Rennie et al., 2021), through background error covariances providing the flow
dependence in the wind-mass balance (Song et al., 2017). On the short-range forecasts
at ECMWF, Aeolus had a positive impact of up to 5 % using the Forecast Sensitivity
to Observation Impact (FSOI) during the period July to October 2019, similar to the
impact of the radiosonde network (Rennie, 2022). In addition, Aeolus showed positive
benefits in the tropics by improving the prediction of tropical cyclone tracks (Garrett
et al., 2022), influencing the representation of the El Niño-Southern Oscillation (ENSO)
(Martin et al., 2023) and the representation of vertically propagating Kelvin waves
(Žagar et al., 2021).

To ensure that the data provided by the Aeolus mission is reliable and suitable for
assimilation into NWP models, the ESA coordinated numerous Calibration/Validation
(Cal/Val). Cal/Val activities involve a range of instrumentation to validate wind, such
as in situ measurements (Baars et al., 2020; Chen et al., 2021; Ratynski et al., 2022),
ground-based remote sensing observations (Belova et al., 2021; Guo et al., 2021; Iwai
et al., 2021; Abril-Gago et al., 2022), airborne measurements (Lux et al., 2020; Witschas
et al., 2020; Bedka et al., 2021; Witschas et al., 2022b) or NWP model equivalents
(Martin et al., 2021; Zuo et al., 2022). Different instrumental and algorithm related
issues were detected during those activities, and were accounted for with adjustments
in the processing chain. For example, several systematic and random sources of error –
mainly affecting the Rayleigh-clear winds – were identified and corrected, such as biases
related to uncorrected "hot pixels" (Weiler et al., 2020), decreasing laser energy and
signal losses in the receiver path (Reitebuch et al., 2019) as well as seasonal temperature
variations over the M1 mirror of the receiving telescope (a bias correction scheme was
implemented in the operational processing chain in April 2020) (Weiler et al., 2021a;
Rennie et al., 2021; Krisch et al., 2020; Martin et al., 2021) . A gradual degradation
of the laser pulse energy during the mission also led to a degradation of the impact
of Aeolus over time. This was most likely caused by laser-induced contamination on
the mirror surface, which deteriorated the laser transmission through the instrument’s
optics.

Having finally outlived its three-years nominal lifetime, Aeolus has exceeded expectations
in terms of technical performance and scientific achievements. Despite these successes,
challenges remain that need to be addressed in order to realise the full potential of
Aeolus and to prepare for the follow-up mission (Wernham et al., 2021). These include
accounting for biases and errors that may arise from a number of factors, involving the
instrument calibration, the data processing chain or the DA procedures.

2.2.2 Measurement technique

Doppler wind lidar principle

The DWL is a remote sensing instrument that enables the measurement of atmospheric
spatially resolved wind speed and direction based on the Doppler effect. The DWL
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instrument first emits a laser signal that travels through the atmosphere and is scattered
back to the instrument by atmospheric particles and molecules moving with the wind.
During the scattering process, the frequency of the emitted laser beam is shifted
with respect to the transmitted laser signal. Since the movement of the atmospheric
components is mainly driven by the wind, there is a increase in the frequency (blue
shift) when the wind is blowing towards the lidar and a decrease in the frequency (red
shift) when it is blowing away from the lidar. The wind velocity LOSAEOLUS along the
laser beam of wavelength λ is thus directly proportional to the frequency Doppler shift
∆f , through the Doppler equation

LOSAEOLUS = λ

2 ∆f (2.5)

Depending on the characteristics of the scattering body, the scattering process can lead
to changes in the spectral properties and the intensity of the backscattered signal. By
operating in the ultraviolet range, DWL can achieve molecular scattering (or Rayleigh
scattering), which is most effective for molecules whose size is much smaller than the
wavelength of the incident light. Because the velocity of air molecules is not constant, but
varies due to the Brownian motion, which is a function of both pressure and temperature,
the spectrum of the scattered light is broadened in frequency. The broadening of the
backscatter spectrum is nearly Gaussian but must be corrected for temperature and
pressure before the Doppler shift and the wind speed can be estimated. For Mie,
scattering occurs for aerosol and cloud particles whose size is larger or similar to the
wavelength of the incident light. The backscattered light has a relatively narrow frequency
spectrum, which makes it easier to measure the Doppler shift accurately. The intensity
of the backscattering depends on the concentration of the molecules and particles in
the atmosphere. Thus, the Mie signal depends on the attenuated backscattering of
the clouds (Marseille and Stoffelen, 2003) and the density of the aerosols, which varies
greatly geographically, with most intensity occurring at the top of the optically thick
clouds. Furthermore, high relative humidity leads to a swelling of hygroscopic aerosol
particles and therefore an increase in backscatter intensity (Weissmann et al., 2005b).
The scattering ratio γ is often used to quantify the amount of aerosols in the atmosphere,
and represents the ratio between the total (molecular γMol and particulate γA) and the
molecular backscatter coefficients.

γ = γA + γMol

γMol
(2.6)

It is strictly equal to or greater than one and describes the contribution of the particles
to the backscattered signal.
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The ALADIN instrument

The Atmospheric Laser Doppler Instrument (ALADIN Schillinger et al., 2003) is a
direct-detection high-spectral-resolution wind lidar with a Nd:YAG laser transmitter
that operates at an ultraviolet wavelength of λ = 354.8 nm. The instrument emits
laser pulses of around 60 mJ at a frequency of 50.5 Hz through its 1.5 m diameter
Cassegrain telescope into the atmosphere. The ALADIN instrument consists of a two-
channel receiver that allows the simultaneous measurement of wind speed from molecular
(Rayleigh channel) and particulate (Mie channel) return signal (Fig.2.6), thus allowing
wind retrieval in clear atmospheres and aerosol loaded regions (Stoffelen et al., 2005;
Reitebuch, 2012).

The Rayleigh channel relies on the double-edge technique (Chanin et al., 1989; Garnier
and Chanin, 1992; Flesia and Korb, 1999; Kovacic et al., 2000) which uses a sequen-
tial Fabry-Perot Interferometers (FPI) to measure wind speed by detecting molecular
scattered light. After the backscattered laser signal has returned to the instrument,
the interference between the emitted and the returned laser signal creates two sets of
interference fringes, symmetrical to the emitted laser frequency. The intensity of the
fringe depends on the phase difference between the two beams, which relies on the
Doppler shift and the distances between the FPI mirrors. Two filters A and B are then
used in sequence to isolate the two peaks with signal intensities IA(f) and IB(f) that
lie on either side of the spectrum of the backscattered signal (Fig.2.7). Both filters have
a certain spectral width and distance from each other to have a high transmittance for
a certain wavelength range, allowing each peak to be isolated with high accuracy while
blocking unwanted wavelengths. The interference fringes are detected with a Detection
Front End Unit (DFU), which is then imaged by an Accumulation and Control and
Calculation Device (ACCD) with a 16 x 16-pixel imaging zone and converted into a
measurable signal. By comparing the intensities of the two filtered interference fringes,
a differential measure of frequency change proportional to the speed of the scattering
object can be calculated using the Rayleigh response (RRay Garnier and Chanin, 1992).
The latter is defined as the frequency-dependent contrast ratio between the intensities
transmitted through filters A and B

RRay(f) = IA(f) − IB(f)
IA(f) + IB(f) (2.7)

With a Doppler shift to the right, the intensity IA(f) increases, resulting in a larger
Rayleigh response RRay(f). The Rayleigh contrast can thus finally be used to measure
the wind along the Line Of Sight (LOS) using a suitable calibration and inversion
mechanism (Tan et al., 2008; Dolfi-Bouteyre, 2008; Marksteiner et al., 2018). Since the
FPI takes into account the total signal with the contributions of both Rayleigh and Mie
signals, unwanted Mie signal can leak into the Rayleigh channel. This optical "cross-talk"
can cause biases, especially in the case of strong Mie returns, as the Rayleigh-channel
assumes pure molecular signal in the processing chain. For Mie winds, the Doppler
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Figure 1. Sketch of the ALADIN optical receiver layout reproduced from Lux et al. (2021). QWP: quarter-wave plate; HWP: half-wave
plate; PBS: polarizing beam splitter; PBSB: polarizing beam splitter block; PBC: polarizing beam combiner; FFM: flip-flop mechanism;
BS: beam splitter; HR: high-reflectance mirror; LCM: laser chopper mechanism; FS: field stop; IF: interference filter; LT: light trap; ACCD:
accumulation charge-coupled device.

beam is expanded and coupled out by means of a 1.5 m di-
ameter Cassegrain telescope. A small portion of the laser ra-
diation that is leaking through the beam splitter is further at-
tenuated and is used as an internal reference signal, which
allows the frequency of the outgoing laser pulses to be mon-
itored as well as measurements of the frequency-dependent
transmission curves of the interferometers to be performed
as is done, for instance, during ISR measurements (see also
Sect. 3). The backscattered radiation from the atmosphere
and the ground is collected by the same telescope that is
used for emission (mono-static configuration) and is returned
to the transmit–receive optics (TRO), where a laser chop-
per mechanism (LCM) is used to protect the detectors from
the signal returned during laser pulse emission after a nar-
rowband interference filter (IF) with a width of about 1 nm
has blocked the broadband solar background light spectrum.
Furthermore, the transmit–receive optics contain a field stop
(FS) with a diameter of about 88 µm to set the field of view
(FOV) of the receiver to be only 18 µrad, which is needed to
limit the influence of the solar background radiation and the
incidence angle on the spectrometers.

Behind the transmit–receive optics, the light is directed to
the interferometers that are used to analyze the frequency
shift in the backscattered light to finally derive the wind
speed along the LOS direction of the laser beam. In partic-
ular, the light is first directed to the so-called Mie channel
via a polarizing beam splitter block (PBSB). After increas-
ing its diameter to 36 mm by means of a beam expander and
with that reducing its divergence to 555 µrad, the light is di-
rected to the Fizeau interferometer, which acts as a narrow-
band filter with a full width at half maximum (FWHM) of
58 fm (135 MHz) to analyze the frequency shift of the nar-
rowband Mie backscatter from aerosol and cloud particles.
The Fizeau interferometer spacer is made of Zerodur to bene-
fit from its low thermal expansion coefficient. It is composed
of two reflecting plates separated by 68.5 mm, leading to an
FSR of 0.92 fm (2190 MHz), which is chosen to be 1/5 of
the FPI FSR. The plates are tilted by 4.77 µrad with respect
to each other, and the space in between is evacuated. The pro-
duced interference patterns (fringes) are imaged onto the ac-
cumulation charge-coupled device (ACCD) in different pixel
columns, whereas different laser frequencies interfere at dif-
ferent lateral positions along the tilted plates. The ACCD

https://doi.org/10.5194/amt-15-1465-2022 Atmos. Meas. Tech., 15, 1465–1489, 2022

Figure 2.6: Sketch of the ALADIN optical receiver layout reproduced from Lux
et al. (2021). QWP: quarter-wave plate; HWP: half-wave plate; PBS: polarizing
beam splitter; PBSB: polarizing beam splitter block; PBC: polarizing beam combiner;
FFM: flip-flop mechanism; BS: beam splitter; HR: high-reflectance mirror; LCM:
laser chopper mechanism; FS: field stop; IF: interference filter; LT: light trap; ACCD:
accumulation charge-coupled device. From Witschas et al. (2022a) under the
Creative Commons Attribution 4.0 International License (CC BY 4.0).

shift is determined based on a fringe-imaging technique (McKay, 2002) using a the
Fizeau interferometer. The latter consist of two plates slightly titled with respect
to each other, with the emitted and returned light forming interferences fringes at
distinct lateral positions along the plate. The lateral displacement of the interference
fringe is approximately linearly depends with the frequency of the incident light, and
vertically imaged onto a ACCD detector. The peak position referred to as the Mie
response can then used to calculate the Doppler frequency shift, using a Nelder-Mead
downward simplex algorithm (Nelder and Mead, 1965), which optimises the fit of the
signal distribution using a Lorentzian function (Reitebuch et al., 2006; Rennie et al.,
2020). The Mie response RMie(f) can thus be written as

RMie(f) = x0 + k × ∆f (2.8)

with x0, the Mie fringe centroid position of the transmitted pulse, and k the proportion-
ality factor between the Doppler shift ∆f and the Mie fringe shift (Lux et al., 2018). It
should also be mentioned that the useful signal is defined as the total returned signal
level per observation and includes corrections for solar background, dark current and
Detection Front Offset (DCO).
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Figure 2.7: Spectral distribution of the transmitted laser pulse (purple) and the
backscattered signal (black), which is composed of the narrowband Mie and the
broadband Rayleigh component. The transmission spectra of the two FPI filters of
the Rayleigh channel are shown in green, while the filled areas illustrate the respective
intensities IA(f) and IB(f) transmitted through the filters A and B for determining
the Doppler shift. From Lux et al. (2018) under the Creative Commons
Attribution 4.0 International License (CC BY 4.0).

.

Error Estimates

The Error Estimates of the Rayleigh EERay and Mie EEMie channels are quantifications
of the measurements uncertainties that are provided by the Aeolus L2B processor (ATBD,
2020; Rennie and Isaksen, 2020; Lux et al., 2022a). The Rayleigh channel Error Estimate
EERay is based on the uncertainty of the Signal-to-Noise Ratio (SNR) of the spectrometer
response RRay and takes into account error propagation arising from the sensitivity of
the FPI, Poisson noise in the useful signal and the solar background. The Rayleigh
response error σRay is thereby given as

σRay = 2
(IA + IB)2

√
I2

Bσ
2
A + I2

Aσ
2
B (2.9)

with
σA = IA

SNRA
∝
√
IA and σB = IB

SNRB
∝
√
IB (2.10)

the noise terms of the two FPI filters with SNRA and SNRB the respective SNR values
of filters A and B. Taking into account errors in the projection onto the Rayleigh HLOS
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and assuming that IA(f) = IB(f), EERay can be simplified as follows

EERay ∝ σA

IA
∝ 1√

IA
(2.11)

As a result, EERay is proportional to the inverse squared root of the useful signal on
the detector. Future baseline versions will include additional noise terms, such as noise
related to atmospheric temperature and pressure, or cross-talk contamination, which
influence the Rayleigh response (Dabas et al., 2008).

In contrary, the error in the Mie response σMie is determined from the accuracy of the
fringe peak position using the solution covariance of the Lorentzian fitting algorithm
based on four characteristics of the signal shape, i.e the peak position, height, width
and offset. It can be converted to the following Mie error estimate EEMie

EEMie = λ

2RMie sinθ
σMie (2.12)

with θ the projection angle with the horizontal axis. Thus, EEMie is mainly characterized
by the accuracy of the Lorentzian fitting algorithm of the signal distribution, while
EERay is more related to the signal levels.

2.2.3 Orbit geometry

Aeolus was taken into orbit by ESA on 22th August 2018 from the Kourou spaceport in
French Guinana. The launch was carried by Arianespace, using a Vega rocket which
lifted off at 21:30 UTC. The ALADIN instrument is the main component mounted on the
Aeolus satellite platform. The longevity of Aeolus depends primarily on the performance
of ALADIN and the amount of propellant needed to prevent orbital drifting, resulting
in a nominal lifetime of 3 years. The satellite flies in a sun-synchronous dawn-dusk
orbit with an inclination of 96.97◦, covering almost the entire globe and crossing the
equatorial latitudes at 06:00 local mean solar time for the descending orbit and 18:00
for the ascending orbit. This allows Aeolus to sample at sunset and sunrise, when
there is less convective activity and thus less cloud obstruction, as well as consistent
temperature and lighting conditions. Aeolus is a low orbit satellite at an altitude of
about 320 km to achieve sufficient accuracy and resolution in the wind measurements.
The LOS points at 35◦ from the nadir to ensure best instrument performance and 90
◦ from the satellite’s ground track, eliminating the Doppler frequency shift caused by
satellite velocity (Fig.2.8). To avoid the contribution of solar background radiation and
reduce noise, the instrument is pointed in the opposite direction of the Sun toward the
night side of the Earth (ESA, 1999). Aeolus mainly measures along the zonal wind
direction for the tropical and mid-latitude parts of the track, at an angle of about 10◦

to the zonal direction, which allows better detection of the vertical wind shear that
dominates in the zonal direction (Stoffelen and Marseille, 1998). At the poles, however,
meridional wind information predominates. The satellite orbits the Earth at a speed of
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Figure 11: Geometry for the (horizontal) line-of-sight wind observation during the ascending orbit
phase. Note that β �= 180◦ - 90◦ - 35◦ since β depends on the local elevation —i.e. the local
orography as described by the EGM96.

The HLOS wind vector [Eq. 13] can be —when corrected for the the azimuth angle ψ,
which is the angle clockwise from north of the target-to-satellite pointing direction —de-
composed into the zonal and meridional u, v-wind components respectively:

VHLOS = u� − v� = −u sinψ − v cosψ. (14)

Conversely, the a priori known u, v-wind components e.g. from a NWP model can be uti-
lized to construct VHLOS for e.g. data assimilation purposes. A graphical illustration of Eq.
14 is shown in Fig. 12.

Figure 2.8: Geometry for the HLOS wind observation during the ascending orbit
phase. Courtesy Steven Albertema.

about 7.5 kms−1 and completes about 15 revolutions per day with an orbital period of
90 minutes. This means that the satellite orbits the entire globe every 7 days, which
corresponds to 111 orbits.

The horizontal projection of the LOS wind observation is referred to as the HLOS
wind component HLOSAEOLUS can be retrieved by dividing the LOS wind observation
LOSAEOLUS with the sinus of the local incidence angle θ

HLOSAEOLUS = LOSAEOLUS

sinθ
(2.13)

The HLOS wind vector can be further decomposed into zonal u and meridional v wind
components

HLOSAEOLUS = −u sinψ − v cosψ (2.14)

with the azimuth angle ψ, which is the angle clockwise between the LOS pointing
direction and geographical north, and is approximately ∼260◦ for ascending and ∼100◦

for descending orbits. Although a single line-of-sight observation cannot provide the
full wind vector, Lorenc et al. (1992) has demonstrated that it can be assimilated
into the ECMWF model and improve weather forecasting. In particular Horányi et al.
(2015) has shown that the ECMWF model is able to derive 75% of the full wind vector
information from a single line-of-sight wind observation, especially for medium-range
forecasts. Finally, it should be mentionned that the sign convention of the HLOS wind
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is defined to be negative (positive) when the wind is measured towards (away) the
instrument.

2.2.4 Measurement resolution

To ensure a sufficient SNR of the signal accumulation of the return signal, the wind
measurements are averaged vertically and horizontally into single observations. The
atmospheric return from individual laser pulses are accumulated on the detectors on
board the spacecraft.

Horizontal resolution

Horizontally, the measurements are defined by the average of 20 accumulated laser pulses,
corresponding to a minimum sample-length of 3 km. The sequence of 30 consecutive
measurements define a Basic Repeat Cycle (BRC). The BRC profiles are subsequently
processed into observations with 87 km nominal horizontal averaging length, performed
on-ground for the Level 1B (L1B) products. The distance between two consecutive
observations is 200 km, which corresponds to the typical spatial error correlation length
of the wind patterns, providing independent observations to the Global Circulation
Models (GCMs). The BRC can contain multiple wind profiles, with flexible horizontal
averaging from the measurement scale to the observation scale, on the basis of the
grouping algorithm in the L2B processor (Rennie et al., 2021). Rayleigh measurements
are typically averaged over 87 km, owing to the larger shot noise, while Mie measurements
are averaged between 10 and 15 km to achieve a good compromise between spatial
resolution and SNR.

Vertical resolution

Vertical sampling is performed within 24 vertical elevation bins with a resolution that
can vary from 0.25 km at lower elevations to 2 km at higher elevations, from the surface
up to the lower stratosphere at 25km, sometimes up to 30 km. Thicker bins are generally
used at higher altitudes, to accumulate enough signal due to the lower density of air
molecules. They are defined by the Range Bin Settings (RBS) and can be adjusted up
to eight times for one orbit, depending geographically on the under-laying topography
or climate zone and between the respective detection channel (Rayleigh and Mie). In
particular, RBS can be configured to meet the specific needs of scientific applications,
with six primary settings: tropical, extratropical, Quasi-Biennial Oscillation (QBO),
polar, eastern Mediterranean and Chile. For example, the tropical setting covers the
entire tropics from 30◦S to 30◦N (Fig.2.9), with increased resolution between 12 and
15 km to accurately measure gravity waves and vertical mass fluxes. In contrast, the
Extratropical settings are lower compared to the tropics, reaching a maximum height of
about 17.5 km, with increased vertical resolution in the lower troposphere between 5
km and 10 km for a better sampling of the jet stream.
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Figure 2.9: Tropical and Extratropical range bin thickness (km). Dotted lines
represent vertical intervals of 5 km. Courtesy Alexander Geiss and Sebastian
Bley.

2.2.5 Aeolus products overview

The data products are processed through a multi-stage processing chain generated by
the Aeolus Payload Data Ground Segment (PDGS), with each level containing different
information (Tan et al., 2008; Reitebuch et al., 2018; ATBD, 2020). In the first phase,
the collected Aeolus data are forwarded to a ground station in Svalbard, where they
are referred to as Annotated Instrument Source Packets (AISP). The data is then
transferred to the Aeolus Processing Facility (APF) in Tromsø, Norway, where it is
processed into Level 0 (L0) and Level 1A (L1A) products. In L1B, the data is cleaned,
geolocated and projected onto the HLOS winds. The data are calibrated in terms
of instrument offsets, atmospheric backgrounds, satellite orientation information and
instrument responses using the Harmonic Bias Estimator. Further processing takes
place at the Aeolus Calibration and Monitoring Facility (ACMF) in ESA-European
Space Research Institute (ESRIN), where the Level 2A (L2A) and L2B products are
generated. The L2A product is mainly designed to obtain information on atmospheric
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Table 2.1: Overview of the Aeolus data products and product levels.
Level Data product Description
Level 0 Raw data Raw data as measured by the Aeolus satellite
Level 1A Geo-located unpro-

cessed observational
data

Intermediate level between Level-0 and Level 1B.

Level 1B Geo-located calibrated
observational data

Near-real time product. Measurement-scale data
with preliminary HLOS wind profiles with basic
calibration.

Level 2A Aerosol and cloud layer
optical properties

Off-line product. Aerosol (extinction, backscat-
ter profiles, optical depth) and cloud (layer, cover-
age, top heights) information along the satellite’s
orbit.

Level 2B Meteorologically repre-
sentative HLOS winds
observations

Near-real time product. Fully processed profiles
of HLOS winds at ECMWF suitable for assimila-
tion. Temperature and pressure correction using
ECMWF model data. Contains group measure-
ments and scene classification

Level 2C Aeolus-assisted wind
vectors

Supplementary product based on L2B product.
Contains vertical, zonal and meridional wind pro-
files, using ECMWF model output after assimi-
lation.

clouds and aerosols from the raw measurements and optical properties of the L1B
product. The L2B is the primary data products from Aeolus. The L2B wind retrieval
software is developed by ECMWF and the KNMI and provides HLOS wind observations
and uncertainty estimates suitable for NWP and research purposes (Rennie et al., 2021).
It contains the final horizontal projection of the LOS wind speed profiles of the Rayleigh
and Mie channels, where all necessary calibration and instrument corrections have been
performed (Dabas et al., 2008). Among the various steps within the L2B processor
(ATBD, 2020), the software corrects for the effect of atmospheric temperature and
pressure broadening on the Rayleigh-clear winds to avoid systematic biases (Dabas et al.,
2008). Since Aeolus does not measure temperature and pressure, the L2B processor
utilizes short-range forecasts from ECMWF’s Integrated Forecasting System (IFS).
The L2B product also provides scene classification based upon the backscatter ratio
corresponding to the wind originating from a ’cloudy’ or ’clear’ atmospheric region,
resulting in Rayleigh-clear, Rayleigh-cloudy, Mie-clear and Mie-cloudy observation types.
Most of the wind data originate from the Rayleigh channel, which is related to the
scattering by air molecules. Level 2C (L2C) is generated in the final processing stage,
also conducted at ECMWF. It combines assimilated Aeolus data with model fields to
reconstruct the horizontal and vertical 3D wind components. An overview of the Aeolus
data and products can be found in Table 2.1. Throughout the processing chain, the
L1B and L2B processors are continuously updated into different baseline versions to
account for revisions and identified problems. The processor development and product
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reprocessing are carried out through a collaborative effort between the Aeolus Data
Science and Innovation Cluster (DISC) and the Aeolus PDGS. This leads to different
HLOS wind observations and quality in different time periods.

2.3 Data assimilation

DA is a technique that aims to combine collected observations and NWP "prior knowl-
edge", usually a short-range forecast (sometimes called background or first guess), to
obtain an "analysis" that is the best estimate of the true state of the system (Nychka
and Anderson, 2010). DA is used in a variety of applications in the geosciences and
engineering, but originated in the field of meteorology with the development of weather
forecasting. As computers became more powerful, NWP models were able to approxi-
mate global atmospheric flows by integrating nonlinear partial differential equations
that could be used to predict future weather. Nevertheless, the high non-linearity
of the simulated primitive equations, makes it difficult to propagate initial condition
uncertainties and can lead to large uncertainties in model predictions. For the purpose
of weather forecasting, those numerical models require real atmospheric observations
to have accurate initial conditions. However, observations are unevenly distributed
geographically and temporally and are subject to a wide range of uncertainties that do
not match the spatial and temporal resolution of the NWP models. The purpose of
DA is to combine these observations with model predictions that take into account the
corresponding observational and model errors. The analysis is usually a weighted average
of observations and model forecasts, with the weighting determined by the uncertainties
in the observations and model forecasts. DA can also provide indirect information
about variables that are not measured directly, through error covariances spreading
the information in space and across variables. These covariances can be estimated
with statistical methods taking into account model and observation uncertainties, using
empirical techniques based on climatology or based on an ensemble of forecasts. However,
the high dimensionality of the model state results in a large number of unknowns that
have to be estimated, which can be computationally challenging. There are several DA
approaches to estimate the true state of the atmosphere given the nonlinear evolution
operator and the large dimensionality of the observations. Variational DA and ensem-
ble DA approaches are highly popular in the DA community, both methods offering
advantages and limitations given the nature of the problem to be solved. Variational
methods iteratively minimise a cost function using a gradient-based approach, while
ensemble methods use error estimates from an ensemble. Hybrid approaches, such as
those used by ECMWF and DWD, combine elements of both variational and ensemble
methods. Here we will provide an overview of the different DA algorithms that are used
in operational settings in the ECMWF and DWD DA systems.

2.3.1 The Ensemble Kalman Filter (EnKF)

The Ensemble Kalman Filter (EnKF) is a DA technique, part of the Kalman filter
family, suitable for high-dimensional problems. The EnKF operates on an ensemble
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of the model state vector which is updated with observational data to produce the
best estimate of the true state. Here we provide a description of the stochastic EnKF,
which is used in combination with 4D-Var in the ECMWF system, as well as the Local
Ensemble Transform Kalman Filter (LETKF) used in the DWD system.

The stochastic Ensemble Kalman Filter (EnKF)

The stochastic EnKF is a data assimilation technique that uses an ensemble approach
to represent forecast uncertainty within a Kalman filter framework which updates the
analysis using the available observations. The stochastic EnKF can employ stochastic
perturbations in both the background and the observations to account for model and
observational errors. Suppose the state of the atmosphere is represented by an ensemble
of model states xk that approximates the state distribution

xk, k = {1, . . . , N} (2.15)

with k the ensemble member of an ensemble size of N . We denote xa
k, the analysis

ensemble state that was used as initial conditions at time t − 1 to generated the
background ensemble state xb

k at time t. The background perturbation matrix Xb is
a matrix where the k-th column contains the departures between each background
ensemble state and background ensemble mean xb. The background covariance matrix
can be estimated by

B = (N − 1)−1Xb(Xb)T (2.16)

In the analysis step, the observations are assimilated into the ensemble of analyses, with
the analysis of each ensemble member given by

xa
k = xb

k + K(yo + rk − Hxb
k) (2.17)

where H is the observation relation operator, yo the observation vector, rk the random
noise vector for the observations and K the Kalman gain. The latter can be expressed
as

K = BHT
(
HBHT + R

)−1
(2.18)

where R is the observation error covariance matrix. A deterministic optimal estimate
can be additionally derived from the mean of the ensemble of forecasts, such as

xa = xb + K
(
yo − Hxb

)
(2.19)

with no noise term. Finally, the analysis error covariance matrix can be expressed as
following

A = I − KHBI − KHT + KRKT (2.20)
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The obtained ensemble and deterministic analysis is then used as the prior state in
the next assimilation cycle, which is then iteratively repeated to produce a sequence of
analyses and corresponding uncertainty estimates.

The Local Ensemble Transform Kalman Filter (LETKF)

In this section, we introduce the LETKF and its main equations. For a detailed
derivation of the LETKF equations, see Hunt et al. (2007). Similar to the stochastic
EnKF, the background covariance matrix can be estimated by

B = (N − 1)−1Xb(Xb)T (2.21)

The latter is mapped from the model grid point space into the observation space by
use of the observation relation operator H, such as yb

k = H(xb
k). The corresponding

background perturbation matrix in observation space is denoted as Yb. The analysis is
therefore given by

xa = xb + Xbw (2.22)

where w is the mean weighting vector computed as

w = Ã(Yb)T R−1(yo − yb) (2.23)

with Ã is the analysis error covariance matrix in ensemble space. The latter can be
expressed as

Ã =
[
(Yb)T R−1(Yb) + (N − 1)I

]−1
(2.24)

with I the identity matrix. Finally, the ensemble perturbation of the analysis field is
determined by

Xa = Xb
[
(N − 1)Ã

]1/2
(2.25)

The latter provides an estimate of the analysis uncertainty, which can be used to
construct an analysis ensemble xa

k by perturbing the analysis ensemble mean xa. An
important component of the LETKF is localisation. During the analysis step, only
observations within a certain distance from the respective grid points are assimilated and
the respective observation error is increased according to their distance by a localisation
weight. This localisation weight is usually described by Gaussian-like rational functions
(Gaspari and Cohn, 1999; Miyoshi and Yamane, 2007), decaying from 1 to 0 with the
distance.

2.3.2 Variational data assimilation

Variational DA methods were first introduced in the early 1950s (Sasaki, 1955, 1958) and
became very popular in the 1990s, especially in the meteorology community (Parrish
and Derber, 1992; Courtier et al., 1998; Andersson et al., 1998). The method can
treat a problem globally by finding an optimal solution that minimizes a global cost
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function considering model and observation constraints. The two most widely used
variational approaches in NWP centers are presented here, namely the Three-Dimensional
Variational assimilation (3D-Var) and the Four-Dimensional Variational assimilation
(4D-Var) methods. The former considers the three-dimensional space at a specific point
in time, while the latter also considers the temporal evolution of the model state.

Three-dimensional variational assimilation (3D-Var)

The three-dimensional variational assimilation (3D-Var) consists of minimising the cost
function J to find the optimal analysis xa. The 3D-Var cost function is given by

J(x) = 1
2(x − xb)T B−1(x − xb) + 1

2(yo − H(x))T R−1(yo − H(x)) (2.26)

where xb is the background state, yo are the observations, H(x) is the nonlinear
observation operator, B is the background error covariance matrix, and R is the
observation error covariance matrix. There are numerous methods for performing this
minimization, which depend on the optimisation problem, i.e. the structure of the
cost function and the form of the observation operator, which can be either linear or
non-linear. Minimisation is usually performed numerically in an iterative process. The
optimal analysis can be derived by iteratively adjusting the model state in the direction
of the negative gradient until convergence, with

∇xJ(x) = B−1(x − xb) − HT R−1(yo − H(x)) (2.27)

where H is the Jacobian matrix, i.e the tangent linear of the observation operator H
(HT is the corresponding adjoint operator).

Four-dimensional variational assimilation (4D-Var)

Four-dimensional variational assimilation (4D-Var) is a temporal extension of 3D-Var,
in which the optimisation is not fixed to a specific point in time, but aims for the
optimal distance between the model trajectory and the observations in a specific time
window . The distribution of observations is thus taken into account both spatially and
temporally in the minimization process. The standard formulation of the cost function
(Le Dimet and Talagrand, 1986) is given by

J(x0) = 1
2(x0 − xb)T B−1

0 (x0 − xb) + 1
2

τ∑
i=1

[yo
i − H(xi)]T R−1

i [yo
i − H(xi)] (2.28)

where x0 is the model state at time t0 and xi the model state at time ti. The propagation
of the model state from time ti to ti+1 can be carried out by means of the nonlinear
NWP model Mi+1,i such as

xi+1 = Mi+1,i(xi) (2.29)

Considering an atmospheric perturbation, the model can be linearised in the vicinity of
xi as following
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δxi+1 = Mi+1,i(xi)δxi (2.30)

with Mi+1,i the tangential linear model. The analysis can again be determined by
iteratively adjusting the model state in the direction of the negative gradient until
convergence.

∇x0J(x0) = B−1(x0 − xb) −
τ∑

i=1
MT

i,0HT
i R−1

i (Hi(xi) − yo
i ) (2.31)

MT
i,0 is the adjoint model and is computed from the tangent linear model as a backward

integration from time ti to t0 with

MT
i,0 = MT

1,0MT
2,1...MT

i,i−1 (2.32)

However, the backward integration of the adjoint model can be very computationally
expensive with slow convergence due to non-linearities. To reduce the computational
cost, an approximation of the 4D-Var of was proposed by (Courtier et al., 1994), namely
the incremental approach. The incremental algorithm for minimising the cost function
uses forward integration of the tangential linear model with reduced model resolution.

2.3.3 Error modeling

Representing the error covariances correctly is essential in both variational (Fisher, 2003)
and ensemble (Sénégas et al., 2001) DA algorithms. The structure of the error covariances
describes how the errors are correlated in space and time and between variables, so
that e.g. wind field observations can be used to retrieve mass field information. The
observation and background error covariance matrices are defined as

B = Cov(ϵb, ϵb) (2.33)

R = Cov(ϵo, ϵo) (2.34)

where

ϵb = xb − x (2.35)

ϵo = H(x) − yo (2.36)

denote the background and observation errors, respectively. To simplify the probability
distribution of the uncertainties, errors are generally assumed to be uncorrelated and
zero-mean Gaussian distributed

ϵb ≈ N (0,B) (2.37)

ϵo ≈ N (0,R) (2.38)
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However, both R and B are difficult to construct empirically because of the unknown
statistical relationship to the true state and the high dimensionality of the problem. The
performance of the DA depends on the quality of both model and observation errors.
The latter usually depend on the various sources of uncertainty associated with the
measurement process (instrumentation error) or within the DA process, such as
errors in the representation of the model state by the observations (representativeness
errors) and errors arising from the interpolation of model fields into the observation
space (operator error). Background errors, in contrast, are uncertainties in the model
state that are related to the limitations in the representation of physical processes as
well as errors of the preceding analysis that was used to initialize the forecasts. The
ensemble estimates of the background error also includes sampling errors due to
limited ensemble size. A proper description of the correlation between variables and
different scales is essential to improve the accuracy of the DA process.

2.3.4 Operational data assimilation configurations

This section provides an overview of the data assimilation systems used operationally at
ECMWF and DWD.

ECMWF

The operational system of ECMWF is based on the state-of-the-art operational weather
prediction system IFS that provides four forecast runs per day (00/06/12/18 UTC) with
a horizontal resolution of about 9 km and 137 vertical model layers globally. ECMWF
operates a hybrid system known as Ensemble Data Assimilation (EDA), which combines
the ensemble 4D-Var approach at the lower resolution of 18 km with a deterministic
4D-Var analysis at the full model resolution of 9 km. In the EDA system, an ensemble of
50 independent 4D-Var analyses is performed, which allows the quantification of forecast
uncertainties obtained from observations and model perturbations (e.g. sea surface
temperature (SST)). The deterministic 4D-Var analysis is then performed, combining
the climatological background and the ensemble-derived background error covariance
matrices from the EDA. The observations are assimilated following a two-step analysis
process, starting with an early data analysis cycle with a short time window of 6 hours,
used for the High-RESolution forecasts (HRES) at 00 and 12 UTC. This is followed by a
Long-Window Data Assimilation (LWDA) analysis with a 12-hour assimilation window,
which allows late-arriving observations to be incorporated into the final analysis. For
example, for the 00 UTC (12 UTC) assimilation window, the LWDA cycle starts at 18
UTC (06 UTC) on the previous (current) day and ends at 06 UTC (18 UTC) on the
current day. The LWDA analysis is then used as the initial condition for the short-range
forecast used in the next DA and LWDA analyses. By combining the ensemble and
deterministic approaches, the EDA system assimilates about 40 million observations
per day to provide accurate initial conditions for reliable weather forecasts.
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DWD

The DWD uses the global Icosahedral Nonhydrostatico (ICON) model to produce
deterministic forecasts worldwide with a native resolution of 13 km and 90 atmospheric
levels. The assimilation system is based on a hybrid approach combining an LETKF
and 3D-Var. The LETKF (Hunt et al., 2007; Schraff et al., 2016) algorithm is used to
dynamically generate the background error covariance matrix, which is combined with
a climatological static background error covariance matrix, that has the advantage of
smaller sampling errors. By combining both approaches linearly, the Hybrid Variational
Ensemble Kalman Filter (VarEnKF) can generate a hybrid background error covariance
matrix with 70% of the weight given to the LETKF and 30% to the 3D-Var components.
This allows the incorporation of temporal evolution which enables a more comprehensive
use of the observational data. The LETKF ensemble forecasts are composed of 40
members at a 40 km coarse resolution, combined with a 3-hourly cycled 3D-Var to
provide the initial conditions for the ICON forecasts. The 3D-Var algorithm finally
solves the large-scale problem to achieve a deterministic analysis. Prior to assimilation,
observations also undergo a Variational Quality Check (VarQC) to handle outliers and
verify for realistic probability density functions of the observation errors. As a title
of comparison, ECMWF assimilates about ten times more data than DWD, with a
significant proportion of this coming from satellite radiation measurements.
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3. Research questions

The broad objective of this thesis is to investigate the impact of Aeolus wind observations
in the tropics. Since Aeolus is a research and demonstration mission, Cal/Val activities
and NWP impact studies are essential to evaluate Aeolus wind products and fully exploit
the benefits of this technology for the purpose of weather forecasting.

Research questions 1

First, the quality of the Aeolus products in the tropics must be assessed to ensure
that the data are accurate and can be used effectively for NWP purposes. To this end,
radiosondes have been launched over the tropical Atlantic region, extending from the
Caribbean to the Cabo Verde Islands, as part of the Joint Aeolus Tropical Atlantic
Campaign (JATAC) during August-September 2021. Especially during boreal summer,
the atmospheric conditions in this region are characterized by a variety of tropical
features with mineral dust and convective cloud types that can interfere with Aeolus
measurements. Radiosondes, which provide very accurate wind profiles of the lower
25 km of the atmosphere, were used to identify biases and random errors in both the
Rayleigh-clear and Mie-cloudy measurement channels. The first research focus concerns
the validation of Aeolus wind observations with radiosondes over the tropical Atlantic.
This addresses the following research questions:

RQ 1.1 What is the quality of Aeolus L2B wind products in the tropics
in terms of systematic and random errors?
RQ 1.2 What are the error dependencies of Rayleigh-clear in terms of
co-location features and the presence of clouds and dust?
RQ 1.3 What are the error dependencies of Mie-cloudy in terms of
co-location features and the presence of clouds and dust?

Research questions 2

Having assessed the quality of Aeolus in this region, sufficient understanding of its
performance is provided for an assessment of the NWP impacts of Aeolus. It is particu-
larly important to demonstrate the impact of Aeolus in the adjacent region where the
Cal/Val was conducted, namely the WAM during the boreal summer of 2019 and 2020.
This is accomplished using Observing System Experiment (OSE)s that were conducted
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in the operational systems of ECMWF and DWD. This region is of particular impor-
tance because of its low predictability, sparse observational network, and socioeconomic
significance. Assessing the impact of Aeolus on key features of the atmospheric wind
circulation, such as the AEJ-North and TEJ, in both the analysis and forecast fields,
can provide substantial insight into the impact of Aeolus in the tropics. The second
research focus consequently addresses the impact of Aeolus wind observations on the
representation of the WAM circulation in the operational systems of ECMWF and
DWD. The corresponding research questions can be formulated as follows:

RQ 2.1 Which atmospheric features of the WAM can Aeolus effectively
sample?
RQ 2.2 What is the influence of Aeolus on wind analysis in the WAM in
the ECMWF and DWD operational systems?
RQ 2.3 What is the impact of Aeolus on wind forecasts in the WAM in
the ECMWF and DWD operational systems?

Research questions 3

Having investigated the impact of Aeolus on a specific tropical region, it is critical to
understand the effect of Aeolus on the representation of large-scale tropical dynamics,
such as EWs in both operational systems. EWs are critical in the tropics as they
modulate much of the tropical weather and are a source of untapped predictability that
Aeolus can potentially leverage. Additionally, it is important to isolate particular high
NWP impact events on wind predictions to investigate the underlying mechanism that
contribute to the observed improvements. The third research interest focuses on the
impact of Aeolus wind observations on the representation of EWs. This addresses the
following research questions.

RQ 3.1 What is the impact of Aeolus on EWs predictions in the tropics?
RQ 3.2 How does Aeolus affect the modulation of tropical rainfall associ-
ated with EWs?
RQ 3.3 What are the dynamical mechanisms that contribute to the
observed improvements?
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4.1 Observational Data

4.1.1 Aeolus wind products

For the validation study of Aeolus using radiosondes, data from the near-real-time
version Baseline product 12 (L2bP 3.50) are used. We evaluate all observation types and
corresponding Error Estimates (EEs) of the Level 2B (L2B) product except Mie-clear,
which should not be detectable in clear sky conditions. Additionally, two Level 1B (L1B)
products are used, namely the Scattering Ratio (SR) and the useful signal. Note that
the SRs of the L2B products are not used, as some SRs were manually set to one
during the processor baseline to eliminate a cross-talk correction, which had detrimental
effects on the wind quality. The useful signal represents the returned signal levels per
observation and comprises corrections for the solar background, the dark current and the
Detection Front Offset (DCO). Here we apply an additional range correction and signal
normalization that takes into account the different range bin thickness and distances
between the instruments and the height bins.

For the Numerical Weather Prediction (NWP) impact studies, both the reprocessed
Aeolus L2B product and the European Space Agency (ESA) Payload Data Ground
Segment (PDGS) Near-Real Time (NRT) operational products with PDGS baslines
2B10 are used, where a bias correction for M1 mirror temperature variations and
additional instrumental drift biases are included. In addition, we use feedback files
from the Meteorological Archival and Retrieval System (MARS), which are generated
at the end of each assimilation cycle at European Centre for Medium-Range Weather
Forecasts (ECMWF). These reports contain information on the assimilated observations,
the assimilation system and the forecast model. In this study, the short-range forecast
or "background" equivalents of Aeolus observations are used as an additional reference
to validate Aeolus Horizontal Line of Sight (HLOS) winds.

4.1.2 Radiosondes

The radiosondes were launched from three different locations over the tropical Atlantic
and coordinated by different research components of Joint Aeolus Tropical Atlantic
Campaign (JATAC). Between the 7 and 28th of September 2021, a total of 37 radiosondes
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Table 4.1: Overview of Aeolus overflights and associated radiosonde profiles. From
Borne et al. (2024) under the Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0).

distances between the instruments and the height bins. Due to the sequential implementation of the Fizeau and the Fabry-Perot

interometers, signal from Mie scattering can leak into the Rayleigh channel signal. This optical "cross-talk" can cause biases,

especially in the case of strong Mie returns, as the Rayleigh-channel assumes pure molecular signal in the processing chain.

Along with many other NWP centers, the data were assimilated in the European Centre for Medium-Range Weather Fore-

casts (ECMWF) Integrated Forecasting System (IFS) by means of the operational four-dimensional ensemble-variational (4D-125

EnVar) data assimilation scheme (4D-EnVar). At the end of each assimilation cycle, the feedback files with the Aeolus winds

and their model equivalents can be retrieved from the Meteorological Archival and Retrieval System (MARS). These reports

contain information on the assimilated observations, their model background (short-range forecast) and analysis equivalents as

well as various quality control flags.. In this study, background equivalents of Aeolus observations are used as an additional

reference to validate Aeolus HLOS winds. Note that only Rayleigh-clear and the Mie-cloudy winds are in operational use for130

NWP.

2.2 Radiosondes

Table 1. Overview of Aeolus overflights and associated radiosonde profiles.

Week day Start and stop time Orbit node Co-location radius Number of profiles

Sal Tuesday 07:28 – 07:29 UTC Descending 50 km 3

Thursday 19:23 – 19:24 UTC Ascending 180 km 3

Friday 19:36 – 19:37 UTC Ascending 280 km 3

Saint Croix Monday 10:17 - 10:18 UTC Descending 90 km 3

Wednesday 22:12 – 22:13 UTC Ascending 160 km 3

Thursday 22:25 – 22:26 UTC Ascending 340 km 1

Puerto Rico Tuesday 10:29 – 10:30 UTC Descending 160 km 2

Thursday 22:25 – 22:26 UTC Ascending 100 km 2

During the campaign, radiosondes were launched from three different locations over the tropical Atlantic and coordinated by

different research components of JATAC. Between the 7 and 28th of September 2021, a total of 37 radiosondes were launched
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were launched from Sal airport in Cape Verde, 9 of them corresponding to Aeolus
overflights. The launches were coordinated by the Karlsruhe Institute of Technology
(KIT) with local support from the JATAC team. This was accomplished using the DFM-
09 (GRAW) light weather radiosondes, which measure air pressure, air temperature,
relative humidity, wind speed and wind direction. The vertical resolution depends on the
ascent speed, which varies with the amount of helium in the balloon, but can generally
be estimated at about 5 ms−1. Most of the radiosondes launched at Sal were ingested
into the Global Telecommunication System (GTS).

The radiosondes launched on the Virgin Islands were organised by National Aeronautics
and Space Administration (NASA)’s Convective Processes Experiment-Aerosols and
Wind campaign (CPEX-AW) component of JATAC, with the University of Utah con-
ducting the launches on Saint Croix and the University of Oklahoma conducting the
launches from Puerto Rico. On Saint Croix, launches were conducted from Carambola
between 19 August 2021 and 14 September 2021. Altogether 73 launches were conducted,
of which a total of seven radiosondes were used to validate Aeolus in this study. As
for Sal, these measurements were performed with the radiosonde instrument DFM-09
(GRAW). Lastly, 32 launches were conducted from the University of University of
Puerto Rico at Mayagüez (UPRM) campus between 26 August and 14 September 2021,
7 of which could be used for the validation of Aeolus. All launches were performed
with iMet-4 radiosondes from the International Met System. As with DFM-09, the
iMet-4 radiosondes provide measurements of wind speed, wind direction, temperature,
humidity and air pressure. The radiosonde data also underwent a quality control check
using the Atmospheric Sounding Processing Environment (ASPEN) software (Martin
and Suhr, 2021) developed by the National Center for Atmospheric Research (NCAR).
A summary of the radiosonde launches and weather events sampled at UPRM was
provided by Rios-Berrios et al. (2023).
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The total number of radiosonde profiles corresponding to Aeolus overpasses thus amounts
to 20, of which 12 correspond to ascending and 8 to descending orbits of Aeolus. An
overview of the launches from the different sites can be found in Table 4.1, along with
other co-location parameters fully discussed in Section 4.4.2.

4.1.3 Satellite-based observations

EUMETSAT SAFNWC Cloud type product

The Satellite Application Facility for supporting NoWCasting and very short range fore-
casting (SAFNWC) (Alonso Lasheras et al., 2005) developed a number of satellite-based
meteorological products distributed by the European Organisation for the Exploitation
of Meteorological Satellites (EUMETSAT). Among others, they provide the Cloud
Type (CT) product (Derrien and Le Gléau, 2005), which is a detailed scenery classifica-
tion of clouds based on different main classes.

The baseline data originate from the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) operated onboard the second generation METEOSAT geostationary satellites
(MSG). Multispectral thresholding techniques (Saunders and Kriebel, 1988; Derrien
et al., 1993; Stowe et al., 1999) are subsequently applied in the SAFNWC software
to process the SEVIRI/MSG images into the various NWC products. The product is
available with a temporal resolution of 15 minutes and a nadir spatial resolution of 3
km, compared to 11 km at the edge of the field of view.

In this thesis, CT is used to identify the cloud type and cloud cover along the Aeolus
tracks and to assess the quality of the Aeolus wind products relative to the presence
of clouds. More specifically, we identify the pixels closest to each track of Aeolus and
determine the average percentage of cloud cover at each altitude based on a cloud
classification. According to this classification, a measurement bin is considered as cloudy,
if it is situated within or below a cloud. This refers to following classes for altitudes
above 16 km (very high clouds), between 7 and 16 km (very high and high cloud types),
between 3 and 7 km (very high, high, mid-level, low and fractional cloud types) and
finally below 3 km (very high, high, mid-level, low, very low and fractional cloud types).

GPM IMERG

For precipitation, we use the globally gridded rainfall product Integrated Multi-Satellite
Retrievals for Global Precipitation Measurement (IMERG) (Huffman et al., 2015), which
is estimated using information from the Global Precipitation Mission (GPM) satellite
constellation. The precipitation data was aggregated to 12-hourly on a horizontal grid
of 1°.

4.2 Model data

ERA5 reanalysis

For the NWP impact studies, forecasts are verified against the ERA5 reanalysis (Hersbach
et al., 2020), which is a robust and relatively independent reference as Aeolus is not
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assimilated in this dataset. The ERA5 product is constructed using an older version of the
Integrated Forecasting System (IFS) Four-Dimensional Variational assimilation (4D-Var),
namely CY41R2 with a resolution of 31 km. Output is provided on 37 interpolated
pressure levels.

CAMS Dust products

The fourth generation of ECMWF Global Atmospheric Composition Reanalysis (EAC4)
(Inness et al., 2019) is produced by Copernicus Atmosphere Monitoring Service (CAMS)
global atmospheric composition and prediction (Benedetti et al., 2009; Morcrette et
al., 2009), with the main objective of global aerosol monitoring. EAC4 relies on
ECMWF’s IFS, which has been extended to predict and assimilate aerosols (Rémy
et al., 2019), trace gases (Flemming et al., 2015; Huijnen et al., 2019) and greenhouse
gases. The IFS meteorological and atmospheric composition models are combined with
data assimilation from satellite products using the 4D-Var data assimilation scheme
in CY42R1. In particular, CAMS assimilates the Aerosol Optical Depth (AOD) at
550 nm derived from MODIS and the Polar Multi-Sensor Aerosol Optical Properties
(PMAp). Reanalysis outputs are provided on three-dimensional time-consistent fields
interpolated on 25 pressure levels, a horizontal resolution of about 80 km and a sub-daily
time resolution of 6 hours.

For the validation study using radiosonde, the dust-aerosol mixing ratio is averaged
along each track and projected onto Rayleigh-clear and Mie-cloudy measurement bins
to obtain an estimate of the dust concentration for each observation.

4.3 Observing system experiments (OSEs)

An Observing System Experiment (OSE) is a well-established method frequently con-
ducted at NWP centres to study the added value of a given observation type (Bouttier
and Kelly, 2001; Kelly et al., 2004). OSEs are for example used to assess data from field
campaigns (Agustí-Panareda et al., 2010; van der Linden et al., 2020; Harnisch et al.,
2011; Schindler et al., 2020; Weissmann et al., 2011), groups of observations (Cress and
Wergen, 2001) and to estimate the benefit of various observation groups (Zapotocny et al.,
2002). In an OSE, two parallel assimilation and forecast experiments are performed,
one with and one without the assimilation of the observations of interest. The impact
of the added data in an OSE is assessed by comparing the accuracy of the forecasts. It
is usually expected to have a negative impact when denying a given observation type.
In the current study, four OSEs were conducted to evaluate the impact of Aeolus L2B
data in the Deutscher Wetterdienst (DWD) Icosahedral Nonhydrostatico (ICON) and
the ECMWF IFS covering the boreal summers of 2019 and 2020. The two 2019 OSEs
are based on the reprocessed L2B product, while the two 2020 OSEs use the PDG NRT
product (see Table 4.2). The DWD OSE was performed using the operational version
of the global ICON model global ICON model (Zängl et al., 2015) with a horizontal
grid spacing of 13 km (R3B07 grid), 90 vertical levels and a six-hourly output at 00,
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Table 4.2: Overview of the four OSEs used in this study. From Borne et al. (2023)
under the Creative Commons Attribution 4.0 International License (CC
BY 4.0).

Borne et al. 5

2.2 | Observing system experiments (OSEs)

An OSE is a well-established method frequently conducted at NWP centres to study the added value of a given ob-
servation type [52, 53]. OSEs are for example used to assess data from field campaigns [38, 54, 55, 56, 57], groups of
observations [58] and to estimate the benefit of various observation groups [59]. In an OSE, two parallel assimilation
and forecast experiments are performed, one with and one without the assimilation of the observations of interest.
The impact of the added data in an OSE is assessed by comparing the accuracy of the forecasts. It is usually expected
to have a negative impact when denying a given observation type. In the current study, four OSEs were conducted
to evaluate the impact of Aeolus L2B data in the DWD global ICOsahedral Nonhydrostatic model (ICON) and the
ECMWF IFS covering the boreal summers of 2019 and 2020. The two 2019 OSEs are based on the reprocessed L2B
product, while the two 2020 OSEs use the PDG NRT product (see Table 1).
The DWD OSE was performed using the operational version of the global ICON model global ICON model [60]

TABLE 1 Overview of the four Observing System Experiments (OSEs) used in this study.

OSE Name Period L2B data PDGS Data assimilation Bias correction
source baseline system

ECMWF2019 July-September Reprocessed 2B10 IFS Cycle: 46R1.2.
hil4 (Ctrl), hil5 (Exp) 2019 TCO399 (∆x ≈ 29km)

ECMWF2019BC July-September Reprocessed 2B10 IFS Cycle: 46R1.2. Rayleigh-clear
hil4 (Ctrl), hldz (Exp) 2019 TCO399 (∆x ≈ 29km) temperature-dependant

ECMWF2020 July-September PDGS NRT 2B10 IFS Cycle: 47R1.1.
hel1 (Ctrl), hel4 (Exp) 2020 dataset TCO399 (∆x ≈ 29km)

DWD2020 July-September PDGS NRT 2B10 ICON deterministic Rayleigh-clear
610 (Ctrl), 600 (Exp) 2020 dataset R3B07 (∆x ≈ 13km) vertically dependant

with a horizontal grid spacing of 13 km (R3B07 grid), 90 vertical levels and a six-hourly output at 00, 06, 12 and 18
UTC. The assimilation system is based on a hybrid approach, using a Local Ensemble Transform Kalman Filter (LETKF)
[61, 62] to estimate the background uncertainty with an ensemble state, and a three-dimensional variational (3D-VAR)
algorithm to achieve a deterministic analysis. This is realized by iteratively minimising a cost function to fit the model
background with observations at their actual time. Additionally to the operationally implemented M1 temperature
dependent bias correction scheme at DWD, a vertical-latitude dependant correction based on the previous seven
days was applied to the Rayleigh-clear observations before the assimilation.
The ECMWF system uses a hybrid ensemble of incremental four-dimensional variational (4D-VAR) assimilation tech-
nique [63, 64], which assimilates all observationswithin a 12-hourwindow. Thismethod ensures that the observations
are used in a dynamically consistent way with the model physical processes. Three ECMWF OSEs were conducted
using the IFS cycles 46R1.2 and 47R1.1 for the 2019 and 2020 OSEs, respectively, with a 4D outer loop resolution
of TCO399 corresponding to a grid spacing of 29 km with 137 vertical layers. In contrast to the DWD OSEs and
the operational ECMWF system, only the deterministic analysis was conducted for the OSEs, while the model error
estimates were taken from the operational ensemble of data assimilation. The ECMWF2019 OSE, was rerun with
an additional bias correction for Rayleigh-clear data as a function of atmospheric temperature from the ECMWF IFS
model, while the two other ECMWF OSEs do not include any bias-correction (2019 and 2020). Further description
of the ECMWF2019 and ECMWF2020 OSEs can be found in Rennie et al. [43]. The systematic comparison between

06, 12 and 18 UTC. Additionally to the operationally implemented M1 temperature
dependent bias correction scheme at DWD, a vertical-latitude dependant correction
based on the previous seven days was applied to the Rayleigh-clear observations before
the assimilation.
Three ECMWF OSEs were conducted using the IFS cycles 46R1.2 and 47R1.1 for the
2019 and 2020 OSEs, respectively, with a 4D outer loop resolution of TCO399 correspond-
ing to a grid spacing of 29 km with 137 vertical layers. In contrast to the DWD OSEs
and the operational ECMWF system, only the deterministic analysis was conducted for
the OSEs, while the model error estimates were taken from the operational ensemble of
data assimilation. The ECMWF2019 OSE, was rerun with an additional bias correction
for Rayleigh-clear data as a function of atmospheric temperature from the ECMWF IFS
model, while the two other ECMWF OSEs do not include any bias-correction (2019 and
2020). Further description of the ECMWF2019 and ECMWF2020 OSEs can be found
in Rennie et al. (2021). The systematic comparison between all four OSEs thus allows
evaluating the effects of different bias correction methods in the two different models.
Generally, the weight given to an observation in data assimilation is based on the
uncertainty associated with its measurement and representativity. Observation minus
background Observation minus Background (O-B) statistics and Desroziers diagnostics
(Rennie et al., 2021; Desroziers et al., 2005) were mainly used to determine the assigned
observation errors in the ECMWF and DWD OSEs. The ECMWF OSEs used the
following assigned HLOS wind observation error modelling:

σass =
√

(α2σ2
instr + σ2

repr) (4.1)

with α the L2B processor instrument error estimate scaling factor, which accounts for
important noise terms that are missing in the L2B estimated error, σinstr L2B processor
reported instrument error standard deviation, which has the advantage of capturing
drifting signal levels in the range-bin thickness and σrepr the representativeness error
standard deviation. In contrary, the assigned observation error in the DWD OSE is
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Table 4.3: Summary of the observation error parameters and error thresholds of the
OSEs used in this study. The listed assigned observation error of DWD is given for
the following pressure levels (in hPa): 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100,
70, 50, 30, 20, 10. From Borne et al. (2023) under the Creative Commons
Attribution 4.0 International License (CC BY 4.0).

6 Borne et al.

TABLE 2 Summary of the observation error parameters and error thresholds of the OSEs used in this study. The
listed assigned observation error of DWD is given for the following pressure levels (in hPa): 1000, 850, 700, 500,
400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10.

NWP Center Channel Error Threshold (ms−1) Assigned observation error (ms−1)

ECMWF Rayleigh-clear 8.5 > 200hP a 1.4σi nst r

12 < 200hP a

0 > 850hP a

Mie-cloudy 5
q
(1.252σ2

i nst r
+ 22 )

DWD Rayleigh-clear 7 5.50; 5.00; 4.50; 4.50; 4.75; 5.00; 5.00; 5.25
5.25; 5.50; 6.00; 6.50; 7.00; 7.50; 8.00

Mie-cloudy 5 3.50; 3.00; 3.50; 4.00;4.50; 4.75; 5.00; 5.25
5.25; 5.50; 6.00; 6.00; 6.00; 6.00; 6.00

all four OSEs thus allows evaluating the effects of different bias correction methods in the two different models.
Generally, the weight given to an observation in data assimilation is based on the uncertainty associated with its mea-
surement and representativity. Observation minus background (O-B) statistics and Desroziers diagnostics [43, 65]
were mainly used to determine the assigned observation errors in the ECMWF and DWD OSEs. The ECMWF OSEs
used the following assigned HLOS wind observation error modelling:

σass =
q
(α2σ2

i nst r
+ σ2

r epr ) (1)

with α the L2B processor instrument error estimate scaling factor, which accounts for important noise terms that are
missing in the L2B estimated error, σi nst r L2B processor reported instrument error standard deviation, which has the
advantage of capturing drifting signal levels in the range-bin thickness and σr epr the representativeness error standard
deviation. In contrary, the assigned observation error in the DWD OSE is estimated using a look-up table for specific
altitude levels and interpolation between levels. An important step in preprocessing the data is the quality control
of the L2B product, which verifies the validity of the measurement and corresponding errors. Only Rayleigh-clear or
Mie-cloudy winds with a valid confidence flag and below a specific error thresholds are assimilated. More information
about the assigned observation error parameters and error thresholds can be found in Table 2.

2.3 | Verification strategy

A common tool for assessing observation quality is the use of departures between observations (O) and short-range
forecasts (B). They can be used to estimate systematic and random errors in the observation, background and analysis
fields, and are an essential part of quality control in NWP centers [66]. This procedure can also be applied to forecast
ranges beyond 12 hours, which are considered sufficiently independent of the observation against which they are
verified.
To assess the impact of Aeolus on the WAM circulation features, we compute the standard root mean square error

estimated using a look-up table for specific altitude levels and interpolation between
levels. An important step in preprocessing the data is the quality control of the L2B
product, which verifies the validity of the measurement and corresponding errors. Only
Rayleigh-clear or Mie-cloudy winds with a valid confidence flag and below a specific
error thresholds are assimilated. More information about the assigned observation error
parameters and error thresholds can be found in Table 4.3.

4.4 Methods

4.4.1 First-guess departures

A common tool for assessing observation quality is the use of departures between
observations (O) and short-range forecasts (B). They can be used to estimate systematic
and random errors in the observation, background and analysis fields, and are an
essential part of quality control in NWP centers (Hollingsworth et al., 1986). This
procedure can also be applied to forecast ranges beyond 12 hours, which are considered
sufficiently independent of the observation against which they are verified.
To assess the impact of Aeolus on the West African Monsoon (WAM) circulation features,
we compute the standard Root Mean Square Error (RMSE) according to the following
equation

RMSE =

√√√√ 1
M

M∑
m=1

(xf
m − xr

m)2 (4.2)

with xf the forecast value, xr the reference value against which the forecast is verified,
and M the number of data pairs. In both OSEs, the predictions are verified against the
ERA5 reanalysis, which comprises additional satellite and in-situ observations that were
not included in the OSEs. We calculate the RMSE for the zonal wind over West Africa for
both the Aeolus and control experiments, and evaluate the improvement by calculating
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the relative difference in RMSE . To characterize the atmospheric constituents that
influence the Aeolus measurements, cloud fraction from ERA5 and aerosol mixing ratio
products from the CAMS global atmospheric composition and prediction (Benedetti
et al., 2009; Morcrette et al., 2009) are used. The model employed for the CAMS
prediction of global atmospheric composition is the IFS, which uses the CY47R2 4D-Var
cycle corresponding to a horizontal resolution of 40 km with output on 25 pressure
levels.

4.4.2 Co-location criteria

For the comparison of Aeolus against radiosonde profiles, several steps are required to
fit the radiosonde wind measurements to the Aeolus measurement grid and to co-locate
them in time and space.

To ensure vertical consistency, the high-resolution radiosonde measurements are vertically
averaged within the 24 range bins as specified in the Aeolus L2B product. Subsequently,
the radiosondes total horizontal wind speed VRS and direction ϕRS are projected to the
Aeolus HLOS (HLOSRS) using the azimuth angle ϕ also specified in the L2B product,
in accordance to

HLOSRS = VRS × cos(ϕ− ϕRS) (4.3)

Moreover, we have chosen co-location radii of up to 340 km, as we assume typical
variations in zonal wind to be of a larger scale. In fact, during boreal summer, African
Easterly Waves (AEWs) and tropical disturbances dominate the tropospheric zonal
wind variability over the tropical Atlantic, which generally have a horizontal wavelength
of 2000-5000 km with a periodicity of 2-7 days (Belanger et al., 2016). Section 5.3.1
discusses the error dependencies related to co-location aspects in more detail.

4.4.3 Statistical metrics

Different metrics were used to validate and estimate the systematic and random error
of Aeolus wind products. The bin-to-bin wind speed difference between Aeolus and
radiosonde along the HLOS is defined as

∆diffHLOS
= (HLOSAEOLUS −HLOSRS) (4.4)

Thus, the bias µ is defined as the total mean difference

µ = 1
N

N∑
i=1

∆diffHLOS
(4.5)

with the Mean Absolute Difference (MADI) yielding

MADI = 1
N

N∑
i=1

|∆diffHLOS
| (4.6)
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and N the total number of data points.

Additionally, we calculated the Standard Deviation (STD) of the difference

STD =

√√√√ 1
i− 1

N∑
i=1

(HLOSAEOLUS −HLOSRS)2 (4.7)

and the Scaled Median Absolute Deviation (SMAD)

SMAD = 1.4826 ×median
(∣∣∆diffHLOS

−median(∆diffHLOS
)
∣∣) (4.8)

The SMAD is equivalent to the standard deviation for a normal distribution of errors,
but is often used in Aeolus validation studies as it is less sensitive to individual outliers
with very large differences than the standard deviation.

Since the number of data points varies greatly depending on the measurement channel
and height, we define the uncertainty of the mean bias ϵµ as

ϵµ = SMAD√
N

(4.9)

4.4.4 Representativeness

The difference between Aeolus and radiosonde observations is the sum of the Aeolus
observation error, the radiosonde observation error and the error arising from spatial and
temporal displacement of the observations and different observation geometries. The
latter is usually referred to as representativeness error (Weissmann et al., 2005a). As
the three error components can be assumed to be uncorrelated, the standard deviation
of the Aeolus HLOS winds observation error (σAeolus) can therefore be calculated as

σAeolus =
√
σ2

tot − σ2
RS − σ2

rep (4.10)

where σtot is the standard deviation of the total difference between Aeolus and radiosonde
observations, σRS is the standard deviation of the radiosonde observation error and σrep is
the standard deviation of the representativeness error. Martin et al. (2021) estimated that
the representativeness error for the comparison of Aeolus and radiosonde observations
in mit-latitudes is about 2.5 ms−1 based on high-resolution model simulations. As the
wind fields in the area of the present validation study is comparably homogeneous, we
estimate the representativeness error for our comparison to be in the range of 1.5 ms−1

to 2.5 ms−1. The radiosonde observation error σRS is estimated to be 0.7 ms−1 based
on Dirksen et al. (2014).

The representativeness and radiosonde observations errors also need to be considered
when comparing the differences between Aeolus and radiosonde observations with the
expected error provided in the Aeolus data product (EEAeolus). To account for this, we
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add the the radiosonde observation error and an estimated representativeness error of 2
ms−1 to achieve the total expected error for the comparison (EEtot) as follows:

EEtot =
√
EE2

Aeolus + σ2
RS + σ2

rep (4.11)

4.4.5 Quality control

Quality Control (QC) is an important step in the evaluation of Aeolus wind errors.
The aim is to check for the validity of the measurements and discard nonphysical wind
results from the analysis process. The QC we apply here is based on the existing quality
control recommendations (Rennie and Isaksen, 2020) from the Aeolus Data Science and
Innovation Cluster (DISC), and primarily rely on the HLOS wind Error Estimate (EE)
in the L2B product and the validity flags.

The Rayleigh channel EE is based on the uncertainty of the Signal-to-Noise Ratio
(SNR) spectrometer response and takes into account error propagation arising from the
sensitivity of the Fabry-Perot interferometer, Poisson noise in the useful signal and the
solar background. Ultimately, the Rayleigh EE is proportional to the inverse squared
root of the useful signal on the detector. Future baseline versions will include additional
noise terms, such as noise related to atmospheric temperature and pressure, or cross-talk
contamination. In contrary, the Mie EE is determined from the accuracy of the fringe
peak position using the solution covariance of the Lorentzian fitting algorithm based on
four characteristics of the signal shape, i.e the peak position, height, width and offset.

Following the default QC flags, all Aeolus wind products with a validity flag of 0, EE
above 8 ms−1 for Rayleigh and 4 ms−1 for Mie, are omitted. Nevertheless, the
used QC might not be enough and the data algorithm may contain gross errors in
the wind estimate that have not been flagged as invalid. These errors are usually
due to non-Gaussian error sources, such as instrument/transmission failure, or to a
misrepresentation of the measurements in space and time. Since the two aforementioned
QC are not sufficient to remove these gross errors, an additional QC parameter is used,
namely the modified Z-score (Lux et al., 2022a; Witschas et al., 2022b; Iglewicz and
Hoaglin, 1993). The modified Z-score Zm,i is defined as

Zm,i = ∆diffHLOS
−median(∆diffHLOS

)
SMAD

(4.12)

and describes the median deviations between each wind speed difference normalized
with the SMAD. The modified Z-score significantly influences small data sets, such
as those used in this study. Following literature recommendations (Lux et al., 2022a;
Witschas et al., 2022b; Sandbhor and Chaphalkar, 2019; Tripathy et al., 2013), we
discard wind observations with a modified Z-score greater than 3 as a final QC.
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4.5 Equatorial wave identification methods

In recent decades, several methods have been developed to identify equatorial wave modes
from observational data (Knippertz et al., 2022), most notably including space-time
spectral analysis (Wheeler and Kiladis, 1999; Gehne and Kleeman, 2012; Roundy, 2018;
Kikuchi et al., 2018) and spatial projection based approaches (Yang et al., 2003; Žagar
et al., 2009; Castanheira and Marques, 2015). Here we introduce two of these methods
that are used in this work. The first method was developed by Wheeler and Kiladis
(1999) and isolates the Equatorial Waves (EWs) using the Fast Fourier Transform (FFT)
in the wavenumber-frequency spectrum. The second method, developed by Yang et al.
(2003), projects dynamic variables into the horizontal structure of the EWs modes.

4.5.1 Wavenumber–frequency filtering using fast Fourier transform

He we present the method described by Wheeler and Kiladis (1999); Kiladis et al.
(2009) to isolate EWs using a space-time spectral analysis. The method consists of
spectrally isolating the EWs in wavenumber and frequency domains for eastward and
westward propagating signals according to the dispersion relations of Shallow Water (SW)
theory. Generally, the employed data are filtered using a two-dimensional FFT and
thus decomposed into zonally propagating waves, symmetrically and anti-symmetrically
about the equator. In this study, five different wave modes are isolated using different
wavenumber k, period p and equivalent depth h window selection. Those include more
divergent waves such as Kelvin waves (k=1:14, p=2.5:20, h=8:90) and rotational types of
waves such as ER (k=-10:-1, p=9:72, h=0.1:90) and Mixed Rossby gravity waves (MRG)
(k=-10:-1, p=3:8, h=8:90). The method also allows the detection of two wave types that
are not solutions of the SW equations such as the Madden-Julian Oscillation (MJO)
(k=0:9, p=30:96) and Tropical Disturbances (TDs) (k=-20:-6, p=2.5:5) which includes
AEWs.

Since we are interested in filtering waves in relatively narrow time periods of up to 3
months, we use the padded filtering approach developed by Janiga et al. (2018). In
order to obtain a significantly large data range for filtering, the data of interest must
be combined with consistent observations. In this study, the wind and geopotential
fields of the ECMWF and DWD OSEs are merged with the ERA5 reanalysis, while
precipitation is combined with GPM IMERG records. More specifically, the method
consists of padding two years of observations with the three months of data of interest
and adding zeros afterwards to get a total of four years of data. For the investigation of
EWs over Cape Verde, only 2 years of the ERA5 and GPM IMERG data were merged
with 2 years of zeros. Before filtering, the first four harmonics of the nonzero portion of
the data are removed to obtain anomalies. Lastly, the four years of data are tapered
with a split-cosine bell fit to reduce spectral leakage (Wheeler and Weickmann, 2001),
and finally filtered with a twice daily resolution for the different wave signals.
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4.5.2 2D Spatial Projection using Parabolic Cylinder Functions

This method was originally introduced by Yang et al. (2003) and mainly consists
of a horizontal projection of the upper and lower tropospheric dynamical fields onto
equatorial wave modes. Principally, this method assumes that the linear adiabatic
theory for equatorial waves on a resting atmosphere is not directly applicable. It argues
that the real tropical atmosphere is not at rest, leading to distortions in the theoretical
dispersion curves, Doppler shifts in the case of a strong background zonal flow (Dias and
Kiladis, 2014) and invalidity of the concept of equivalent depth due to variations in the
vertical heating profiles. With this method, there are no restrictions on the dispersion
relation and vertical structure, but only on the horizontal structure.

The method is applied to the two zonal and meridional horizontal-velocity (u, v) and
geopotential-height (ϕ) fields at 850 hPa and 200 hPa simultaneously. The meridional
structure of equatorial waves of latitude y are described using Parabolic Cylindrical
Functions (PCFs), according to Gill (1980)
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y

y0

)
= exp

[
−1

4

(
y

y0

)2
]
Pn

(
y√
2y0

)
(4.13)

where Pn is a polynomial of degree n, and where y0 is the latitudinal trapping scale of
the modes. The later is set empirically to y0 = 6◦ using a best fit to observational data.
The equatorial wave solutions of the PCFs, are easily described using new dynamical
variables {q, r, v} that are expressed as following

q = (g/c)ϕ+ u and r = (g/c)ϕ− u (4.14)

where c is the gravity wave speed. The first step of this methodology is to spatially
and temporally filter the new dynamic variables q, r and v into eastward and westward
moving components. This is achieved using a FFT with a wide frequency (2 - 30 days)
and wavenumber (2 - 40) range to remove stationary features. The resulting Fourier
coefficients are then projected onto the different horizontal structures using the PCFs,

{q, r, v} =
∞∑

n=0
{qn, vn, rn}Dn (4.15)

where n is the meridional mode number. Those structures corresponds to different
wave solutions, e.g. the Kelvin waves, the Westward moving Mixed Rossby Gravity
wave (WMRG), the Equatorial Rossby wave with meridional mode number 1 (R1) and 2
(R2). Because the projection is only applied to the theoretical modes, TDs and the MJO
cannot be identified. Finally, the projected fields are transformed back into physical
space to obtain the different equatorial wave modes. This approach can be implemented
in real-time and has the advantage of being applicable to relatively short time series.

49



Chapter 4. Data and methods

In this study, we apply this methodology to the dynamic fields of ECMWF and DWD
OSEs that are no longer than 3 months with a 12 hourly resolution.
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5. Validation of Aeolus wind
observations over the tropical Atlantic
using radiosondes

5.1 Equatorial wave activities during the campaign

In this section we examine the role of Equatorial Waves (EWs) in modulating moisture
using Total Column Water Vapour (TCWV) from ERA5 and precipitation from Global
Precipitation Mission (GPM) Integrated Multi-Satellite Retrievals for Global Precipita-
tion Measurement (IMERG) over the tropical Atlantic Ocean in September 2021, with
a particular focus on Sal Island (Cape Verde). Figure 5.1 shows a Hovmöller diagram
of the ERA5 TCWV (Fig. 5.1a) and GPM IMERG precipitation (Fig. 5.1b) anomalies
during September 2021, averaged in the latitude band 14°N–18°N, in which the Cape
Verde Islands are located. The superposed colored lines represent the associated filtered
tropical waves with contours at 3.5 mm for the TCWV and 2.5 mm day−1 for the
precipitation. The dotted vertical line at 22.5°W represent the location of Sal Island.
As expected, the moisture field is dominated by westward propagating waves such as
Mixed Rossby gravity waves (MRG) (green), Tropical Disturbances (TDs) (blue) and
Equatorial Rossby waves (ER) (red), while the precipitation field also exhibits eastward
propagating Kelvin waves (orange). The Madden-Julian Oscillation (MJO) does not
appear to significantly modulate precipitation and moisture during September 2021.
TCWV and precipitation anomalies as well as wave patterns have similar characteristics,
but are not always correlated as the mechanism involved in the modulation of moisture
and precipitation differs, the latter being generated in situ from moisture fluxes while
the other involves dynamical transport.
In the precipitation field, one can identify the major African Easterly Waves (AEWs),
tropical storms and hurricanes that occurred during September 2021, especially visible
west of Cape Verde where they became more organized and intense. These events
are often associated with a superposition of wave types that interact with each other
on different time scales, thereby amplifying the precipitation events. This is the case
for the Hurricane Larry (Category 3) that propagated from 25°W to 45°W between
2021-09-03 and 2021-09-08 where the locations of enhanced rainfall is associated with
the superposition of high-frequency TD and MRG and low-frequency ER waves. Larry
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radiosondes

Figure 5.1: Hovmöller diagrams for ERA5 total column water vapour (a) and
IMERG total precipitation (b), averaged from 14°N to 18°N for September 2021. The
contour lines denote individual propagating tropical waves detected using the Wheeler-
Kiladis space-time filter. The solid (dashed) lines represent positive (negative) wave
anomalies at the interval of 3.5mm and 2.5mmday−1, respectively. MRG, TD, MJO
and ER stand for Mixed-Rossby Gravity waves, Tropical Disturbance, Madden-Julian
Oscillation and Equatorial Rossby waves, respectively. The dotted black vertical line
at 22.5°W represent the location of Sal Island and the dotted black horizontal lines
represent the dates of the Falcon 20 flights during Clouds-Atmospheric Dynamics–Dust
Interactions in West Africa (CADDIWA).

is also visible in the moisture field anomaly, but is not associated with prominent
wave activity there. The period from 2021-09-17 to 2021-09-24 was an active Tropical
Storm (TS) period, with the passage of e.g. Peter and Rose which are associated with
the superposition of an westward TD wave packet and a Kelvin wave. Those TSs seems
to be associated with TD and MRG wave activities in the moisture field. Finally, we
note the propagation of Hurricane Sam (Category 4), which occurred between 24-09-2021
and 29-09-2021 and extended to 60°W. Sam appears to be mainly modulated by an
ER acting like an envelope that sustains precipitation on a longer time scale, along
with a fast-propagating TD. The ER signal modulating Sam is also very prominent in
the TCWV field and seem to originate already from eastern Africa at the beginning of
September 2021 (30°E).
Figure 5.1 shows time series of the TCWV anomaly and the corresponding sum of the
five filtered wave types (Fig. 5.2a) alongside the contribution from each individual wave
(Fig. 5.2b) in September 2021 near Sal Island (16.5°N; 22.5W). The Pearson correlation
between the anomaly and each type of wave is indicated in the legend. We find that
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5.1. EQUATORIAL WAVE ACTIVITIES DURING THE CAMPAIGN

Figure 5.2: TCWV anomaly (solid, teal), Dust Aerosol Optical Depth (AOD)
anomaly (solid, coral) and sum of tropical wave contribution (dashed, teal) (a) together
with individual tropical wave contribution (b) filtered following the Wheeler-Kiladis
approach during September 2021 near Sal Island [16.5°N;22.5°W]. The anomalies were
computed on the period 2015-2021. The Pearson correlation ρ between the waves and
the anomaly is given for each wave type in the legend. The names of the identified
events crossing Sal are indicated in panel a).

the sum of tropical waves can explain most of the observed TCWV variability, with a
correlation reaching 0.76. The most strongly correlated waves are MRG (0.60) followed
by TDs (0.36), which, as anticipated, are rotational waves that accounts for most of the
moisture transport in the region. They are followed by lower amplitude waves such as
the higher frequency Kelvin wave (0.25) and the lower frequency ER and MJO (both
0.15). Different regions where the TCWV anomalies are positive could be identified
as following chronological sequence of events: Larry (Hurricane, early phase), Noname
(non identified event), Peter (TS), Rose (TS) and Sam (Hurricane, early phase). Most
of these positive anomalies are in a phase with a positive signal from MRG, TD or
a combination of both. This suggests that most of the TSs and AEWs that crossed
Sal had a mixed flavor of MRG and TD, while other lower amplitude waves mainly
modulated the TCWV background.
The marked contribution of MRG in the modulation of moisture in September 2021
over Cape Verde is also illustrated in the appendix, where the relative importance of
the tropical wave signal for the different variables has been investigated. It can be
concluded that moisture (TCWV) and clouds (OLR) are unusually strongly modulated
by MRG waves with respect to the climatology (September 2000–2020), while they are
almost absent in the precipitation field, as September 2021 was largely dry over the
Cape Verde Islands.
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radiosondes

5.2 Statistical comparison of Aeolus with radiosonde observations and
model winds

In this section, the Level 2B (L2B) Horizontal Line of Sight (HLOS) winds (L2bP 3.50)
from Aeolus are compared statistically with radiosonde observations and model winds.
This includes a comparison with the European Centre for Medium-Range Weather
Forecasts (ECMWF) model equivalents (subsection 5.2.1), an overview of systematic
and random differences with respect to Calibration/Validation (Cal/Val) sites and
orbital nodes (subsection 5.2.2), and finally the identification of an orbital- and altitude-
dependent bias in the Rayleigh-clear channel (subsection 5.2.3). The present study
relies on a total of 384 Rayleigh-clear and 59 Mie-cloudy bin pairs, of which ∼ 60%
and ∼ 53% are from ascending orbits, respectively, with the majority of observations
obtained from the Caribbean launch sites (∼ 56% for Rayleigh-clear and ∼ 64% for
Mie-cloudy). Rayleigh-cloudy bin pairs are also available, but only in a very small
number (16 counts), which makes a statistical analysis difficult.

5.2.1 Comparative analysis with the ECMWF model equivalents

Figure 6.1 shows a scatter plot of the radiosonde HLOS (HLOSRS) against Aeolus L2B
(HLOSAEOLUS) Rayleigh-clear (blue), Mie-cloudy (red) and Rayleigh-cloudy (orange)
wind products (a) as well as against Aeolus ECMWF model equivalents (HLOSECMW F )
(b). Since Rayleigh-cloudy wind observations are not assimilated at ECMWF, they
are not displayed in Fig. 6.1b. The × symbol represent the gross errors rejected with
a Z-score threshold of 3 (∼ 3.5%, ∼ 4.8% and ∼ 6.7% of the total Rayleigh-clear,
Mie-cloudy and Rayleigh-cloudy data points, respectively). The dashed lines represent
the ±10 ms−1 and ±20 ms−1 difference between two measurements. The Aeolus model
equivalent HLOSECMW F for Rayleigh-clear shows a much better agreement with the
radiosonde measurements HLOSRS with a Standard Deviation (STD) of 2.1 ms−1

(Fig. 6.1b) compared to the Aeolus HLOSAEOLUS Rayleigh-clear observations, which
have a larger spread and a STD of 4.8 ms−1 (Fig. 6.1a). The systematic difference
of the model equivalent is also smaller with a bias of 0.1 ± 0.1 ms−1 compared to
−0.5 ± 0.2 ms−1 for the Aeolus observations. In contrast, the Mie-cloudy winds of
both Aeolus model equivalents and HLOSAEOLUS behave similarly with respect to the
radiosonde measurements, with STD of 2.93 ms−1 and 2.9 ms−1, respectively. Again,
the systematic difference in the model equivalent is smaller than for Aeolus Mie-cloudy
winds, with biases of 0.4 ± 0.3 ms−1 and −0.9 ± 0.3 ms−1, respectively. For Rayleigh-
cloudy, the STD is larger at 6.6 ms−1 with a bias of 1.0 ± 1.4 ms−1, but given the
small statistical sample size, there is a risk of a large margin of error. The generally
good agreement between radiosonde and model equivalent shows that the co-location
parameters used in this study are reliable, as most of the systematic and random errors
seem to be specific to the Aeolus Rayleigh-clear data. This stresses the need to identify
the underlying potential error sources of Rayleigh-clear observations with respect to
the presence of clouds and dust aerosols, which are frequent in the region of interest. It
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5.2. STATISTICAL COMPARISON OF AEOLUS WITH RADIOSONDE
OBSERVATIONS AND MODEL WINDS

Figure 5.3: (a) Aeolus HLOS Rayleigh-clear (blue), Mie-cloudy (red) and Rayleigh-
cloudy (orange) wind products plotted against radiosonde measurements projected
along the HLOS for the 20 radiosonde profiles. The gross errors (crosses) are determined
using the modified Z-score with a threshold of 3. (b) Aeolus HLOS model equivalents
from the ECMWF feedback files plotted against radiosonde measurements. The dashed
lines are located at the ±10 ms−1 and ±20 ms−1 wind speed difference between two
measurements. From Borne et al. (2024) under the Creative Commons
Attribution 4.0 International License (CC BY 4.0).

is also worth noting that this good agreement indicates that the model equivalent is a
robust reference for validating the Aeolus winds in the tropical Atlantic.

5.2.2 Systematic and random errors using radiosondes

An overview of the bias and random differences of both channels can be found in Table
5.1. In terms of systematic errors, Rayleigh-clear shows a relatively small negative
bias of −0.5 ± 0.2 ms−1, on average, which is below European Space Agency (ESA)’s
specification of 0.7 ms−1 (Ingmann and Straume, 2016). This bias is, however, the
result of a large heterogeneity with respect to the Cal/Val sites and orbital nodes, with
compensating biases of −1.5 ± 0.6 ms−1 and 0.6 ± 0.4 ms−1 for the descending and
ascending nodes on Sal, respectively, compared to negative biases of −1.0 ± 0.3 ms−1

(ascending) and −0.6 ± 0.4 ms−1 (descending) in the Virgin Island. As for random
differences, Rayleigh-clear has an average STD of 4.8 ms−1, which varies only marginally
between the Cal/Val sites and orbital nodes, ranging from 4.1 ms−1 to 5.3 ms−1. The
overall Scaled Median Absolute Deviation (SMAD) is found to be slightly below at
4.3 ms−1.

For comparison with the ESA recommendation for random errors, we derived the random
errors for Aeolus observations considering also the representativeness errors for the
comparison and radiosonde observation errors according to Eq. 4.10 (table 5.2). The
random error at 2–16 km altitude of 3.8 – 4.3 ms−1 exceeds the threshold of 2.5 ms−1,
while at 16–20 km altitude it amounts to 4.3 – 4.8ms−1, also exceeding the ESA threshold
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radiosondes

Table 5.1: Overview of the mean bias and uncertainty (µ, σµ; ms−1), Standard
deviation (STD; ms−1), Scaled Median Absolute Deviation (SMAD; ms−1) and
counts (COUNT) for the Rayleigh-clear and Mie-cloudy channels, orbital nodes and the
different radiosonde locations. Due to the small amount of available data, Rayleigh-
cloudy is not shown here. From Borne et al. (2024) under the Creative
Commons Attribution 4.0 International License (CC BY 4.0).

Table 2. Overview of the mean bias and uncertainty (μ, σμ; ms–1), Standard deviation (STD; ms–1), Scaled Median Absolute Deviation

(SMAD; ms–1) and counts (COUNT) for the Rayleigh-clear and Mie-cloudy channels, orbital nodes and the different radiosonde locations.

Due to the small amount of available data, Rayleigh-cloudy is not shown here.

Region Orbital node
Rayleigh-clear Mie-cloudy

μ STD SMAD COUNT μ STD SMAD COUNT

Ascending 0.6±0.4 4.9 4.4 112 -1±0.9 2.9 3.5 15

Sal Descending -1.5±0.6 4.6 4.8 55 -1.6±0.8 2.2 2.1 6

All -0.1±0.3 4.9 4.5 167 -1.2±0.7 2.7 3.2 21

Ascending -1.0±0.3 4.1 3.7 119 -0.6±0.7 2.9 3.7 16

SCRX/PR Descending -0.6±0.4 5.3 4.3 98 -1.0±0.5 2.9 2.5 22

All -0.8±0.3 4.7 4.3 217 -0.8±0.4 2.9 2.5 38

Ascending -0.2±0.3 4.6 4.2 231 -0.8±0.6 2.9 3.3 31

Sal/SCRX/PR Descending -0.9±0.4 5.0 4.6 153 -1.1±0.4 2.8 2.2 28

All -0.5±0.2 4.8 4.3 384 -0.9±0.3 2.9 2.6 59

misalignment, laser-induced contamination, as well as the wavefront error of the 1.5 m telescope. The solar background noise,

which varies along the orbit and season, can also affect the quality of the Rayleigh-clear measurements.

For Mie-cloudy, the systematic difference indicates a bias of –0.9± 0.3 ms–1, which is within the uncertainty range of the

ESA’s specification and more uniform across regions and orbital nodes with a slightly larger bias in the descending orbits305

and over Sal. Concerning the random differences, the measurements exhibit a total random error of 1.1 – 2.3 ms–1, which is

below ESA’s 2–16 km recommendation, as most Mie-cloudy measurements are located underneath 16 km altitude. As with the

bias, the STD and SMAD of Mie-cloudy are also quite independent of orbital and regional dependence. The overall accuracy

of Mie-cloudy depends on the signal accumulation, the classification algorithm and the quality of the calibration data. The

accuracy of Mie-cloudy winds is higher than that of Rayleigh-clear winds as particle backscatter is usually stronger than that310

of clear air in addition to the fact that Mie backscatter is not subject to broadening induced by Rayleigh-Brillouin scattering

(Witschas et al., 2012).

Comparing the results of different Cal/Val studies is tricky as the influence of geographical regions, atmospheric conditions,

decreasing laser energy, product baseline and quality control procedures on the result can be significant and must be considered.

In this analysis, comparisons are only made with statistics derived from AVATAR-T airborne-based measurements (Witschas315

et al., 2022; Lux et al., 2022b), as these were carried out in the framework of the same JATAC campaign. The statistical analysis

of AVATAR-T shows systematic errors of –0.1± 0.3 ms–1 for Rayleigh-clear and –0.7± 0.2 ms–1 for Mie-cloudy, which are

slightly smaller than for radiosondes. However, the random error of 7.1± 0.3 ms–1 for Rayleigh-clear is significantly higher.
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of 3 ms−1. The quality of Rayleigh-clear measurements primarily depends on the signal
accumulation, which can vary with the thickness of the Range Bin Settings (RBS) and
the horizontal accumulation length as well as with the atmospheric path signal. The
latter has been decreasing in recent years as a result of initial instrumental misalignment,
laser-induced contamination, as well as the wavefront error of the 1.5 m telescope. The
solar background noise, which varies along the orbit and sea

For Mie-cloudy, the systematic difference indicates a bias of −0.9 ± 0.3 ms−1, which
is within the uncertainty range of the ESA’s specification and more uniform across
regions and orbital nodes with a slightly larger bias in the descending orbits and over
Sal. Concerning the random differences, the measurements exhibit a total random error
of 1.1 – 2.3 ms−1, which is below ESA’s 2–16 km recommendation, as most Mie-cloudy
measurements are located underneath 16 km altitude. As with the bias, the STD and
SMAD of Mie-cloudy are also quite independent of orbital and regional dependence. The
overall accuracy of Mie-cloudy depends on the signal accumulation, the classification
algorithm and the quality of the calibration data. The accuracy of Mie-cloudy winds is
higher than that of Rayleigh-clear winds as particle backscatter is usually stronger than
that of clear air in addition to the fact that Mie backscatter is not subject to broadening
induced by Rayleigh-Brillouin scattering (Witschas et al., 2012).

Comparing the results of different Cal/Val studies is tricky as the influence of geo-
graphical regions, atmospheric conditions, decreasing laser energy, product baseline and
quality control procedures on the result can be significant and must be considered. In
this analysis, comparisons are only made with statistics derived from Aeolus Validation
Through Airborne Lidars in the Tropics (AVATAR-T) airborne-based measurements
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5.2. STATISTICAL COMPARISON OF AEOLUS WITH RADIOSONDE
OBSERVATIONS AND MODEL WINDS

Table 5.2: Overview of the total systematic (µ, σµ; ms−1) and random (σAeolus;
ms−1) errors derived according to Eq. 4.10 for Rayleigh-clear and Mie-cloudy winds
for altitudes ranges 2–16km and 16–20km, as well as the corresponding ESA’s error
recommendations. The random error σAeolus was computed for a representativeness
error σrep ranging from 1.5 ms−1 to 2.5 ms−1. For Mie-cloudy, only the altitude range
2–16km is shown for the random error, as Mie-cloudy does not sample sufficiently above
16km. From Borne et al. (2024) under the Creative Commons Attribution
4.0 International License (CC BY 4.0).

Table 3. Overview of the total systematic (μ, σμ; ms–1) and random (σAeolus; ms–1) errors derived according to Eq. 8 for Rayleigh-clear

and Mie-cloudy winds for altitudes ranges 2–16km and 16–20km, as well as the corresponding ESA’s error recommendations. The random

error σAeolus was computed for a representativeness error σrep ranging from 1.5 ms–1 to 2.5 ms–1. For Mie-cloudy, only the altitude range

2–16km is shown for the random error, as Mie-cloudy does not sample sufficiently above 16km.

Rayleigh-clear Mie-cloudy

σAeolus 2–16km σAeolus 16–20km μ σAeolus 2–16km μ

Ascending 3.4 – 3.9 4.0 – 4.4 -0.2±0.3 1.1 – 2.3 -0.8±0.6

Descending 4.3 – 4.7 4.4 – 4.9 -0.9±0.4 0.5 – 2.1 -1.1±0.4

All 3.8 – 4.3 4.3 – 4.8 -0.5±0.2 1.1 – 2.3 -0.9±0.3

ESA 2.5 3 0.7 2.5 0.7

The difference in results is caused by the different altitudes at which the data are sampled, as the aircraft only samples the lower

10 km portion of the troposphere, which is shown to be more noisy owing to the abundance of dust aerosols in this region.320

For Mie-cloudy, the random error gives 2.9± 0.3 ms–1, which is similar to our radiosonde-based results as most Mie-cloudy

scattering occurs at lower levels.

4.1.3 Orbital bias in the Rayleigh-clear channel

Figure 2 shows vertical profiles of the differences between Aeolus Rayleigh-clear observations and radiosonde measurements

projected along HLOS (O-RS; solid lines), and the corresponding ECMWF model equivalents (O-B; dotted lines) for both325

ascending (red) and descending (blue) orbits over Sal (a), PR and SCRX (b). The shading represents the bias uncertainty σμ.

HLOS winds from the descending track are multiplied by -1 to conform with the sign convention of the model coordinate

system. The vertical profiles illustrate the presence of an ascending/descending bias visible in both the O-B and O-RS profiles,

reaching up to 2.5 ms–1 around 8 km altitude in both regions. The differences below 5 km altitude could be related to the

greater amount of dust in Cabo Verde during this period, while above 17 km the differences could partly be related to the lack330

of descending orbit data over Sal (Fig. 2a). This altitude- and orbit-dependent bias was already described by Borne et al. (2023)

using first-guess departure statistics over West Africa.

This latitude consistent bias caused the zonal winds in the ECMWF analysis to accelerate in the morning and weaken in

the evening, affecting the African Easterly Jet (AEJ) and Tropical Easterly Jet (TEJ) in particular. Correcting this bias with

a temperature-dependent approach helped to improve the representation of winds in the analysis and forecast fields (Borne335

et al., 2023). However, the cause of this bias remains unknown, as it has not been proven to be related to temperature, nor has

any dependence on wind speed, SNR or useful signal been found (not shown here). Here, as both the O-B and O-RS profiles

are very close to each other, with deviations below 0.5 ms–1, the existence of this bias can be confirmed observationally with

radiosondes. As highlighted by Horányi et al. (2015), biases of the order of 1 ms–1 can already deteriorate forecast quality.
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(Witschas et al., 2022b; Lux et al., 2022a), as these were carried out in the framework of
the same Joint Aeolus Tropical Atlantic Campaign (JATAC) campaign. The statistical
analysis of AVATAR-T shows systematic errors of −0.1 ± 0.3 ms−1 for Rayleigh-clear
and −0.7 ± 0.2 ms−1 for Mie-cloudy, which are slightly smaller than for radiosondes.
However, the random error of 7.1 ± 0.3 ms−1 for Rayleigh-clear is significantly higher.
The difference in results is caused by the different altitudes at which the data are sampled,
as the aircraft only samples the lower 10 km portion of the troposphere, which is shown
to be more noisy owing to the abundance of dust aerosols in this region. For Mie-cloudy,
the random error gives 2.9 ± 0.3 ms−1, which is similar to our radiosonde-based results
as most Mie-cloudy scattering occurs at lower levels.

5.2.3 Orbital bias in the Rayleigh-clear channel

Figure 6.2 shows vertical profiles of the differences between Aeolus Rayleigh-clear obser-
vations and radiosonde measurements projected along HLOS (O-RS; solid lines), and the
corresponding ECMWF model equivalents (O-B; dotted lines) for both ascending (red)
and descending (blue) orbits over Sal (a), Puerto Rico (PR) and Saint CRoiX (SCRX)
(b). The shading represents the bias uncertainty σµ. HLOS winds from the descending
track are multiplied by -1 to conform with the sign convention of the model coordi-
nate system. The vertical profiles illustrate the presence of an ascending/descending
bias visible in both the Observation minus Background (O-B) and Observation minus
RadioSonde (O-RS) profiles, reaching up to 2.5 ms−1 around 8 km altitude in both
regions. The differences below 5 km altitude could be related to the greater amount of
dust in Cabo Verde during this period, while above 17 km the differences could partly
be related to the lack of descending orbit data over Sal (Fig. 6.2a). This altitude-
and orbit-dependent bias is further described in Chapter 6 using first-guess departure
statistics over West Africa.
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Figure 5.4: Differences (dots) and average differences (lines) between ascending
(red) and descending (blue) winds between Aeolus observations (O) and radiosonde
HLOS wind measurements (RS, solid line) along with ECMWF model equivalents (B,
dotted line) over Sal (a) and Puerto Rico - Saint Croix (PR/SCRX, (b). The shadow
represents the bias uncertainty σµ. To comply with the sign convention of the model
coordinate system, the HLOS winds from the descending orbit are multiplied by -1.
From Borne et al. (2024) under the Creative Commons Attribution 4.0
International License (CC BY 4.0).

This latitude consistent bias caused the zonal winds in the ECMWF analysis to accelerate
in the morning and weaken in the evening, affecting the African Easterly Jet North
(AEJ-North) and Tropical Easterly Jet (TEJ) in particular. Correcting this bias with a
temperature-dependent approach helped to improve the representation of winds in the
analysis and forecast fields (see Chapter 6). However, the cause of this bias remains
unknown, as it has not been proven to be related to temperature, nor has any dependence
on wind speed, Signal-to-Noise Ratio (SNR) or useful signal been found (not shown
here). Here, as both the O-B and O-RS profiles are very close to each other, with
deviations below 0.5 ms−1, the existence of this bias can be confirmed observationally
with radiosondes. As highlighted by Horányi et al. (2015), biases of the order of 1 ms−1

can already deteriorate forecast quality.

5.3 Error dependency

In this section we examine the error dependency and associated error sources of the
different Aeolus wind products. Firstly, we investigate the error dependency as a function
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of co-location parameters, such as radius and time difference between two measurement
points, to account for representativeness. Secondly, we explore the error dependency in
relation to the presence of clouds and dust, as these supposedly influence the quality of
Aeolus wind products.

5.3.1 Temporal and spatial co-location

Rayleigh-clear and Rayleigh-cloudy

Figure 6.3 shows the absolute difference between Aeolus and radiosonde measurement
points |∆diffHLOS

| as a function of EEtot (a), altitude (b), co-location radius (c) and co-
location time (d) for the Rayleigh-clear (blue) and Rayleigh-cloudy (orange) observation
types. The solid and dashed blue lines show the Rayleigh-clear Mean Absolute Difference
(MADI) and SMAD, respectively, with each value calculated using a minimum sample
size of 40 data points for panels a, b and d. Also shown are outliers (cross symbol +),
that we define in this study as values with low Error Estimate (EE) (< 5 ms−1) and
large absolute difference (> 10 ms−1), which are of particular interest as they contribute
the most to the wind quality degradation. The Rayleigh-clear outliers account for 13
observations, i.e. ∼ 3.4% of the data points. For Rayleigh-cloudy, no MADI and SMAD
are computed due to the lack of data.

In general, the MADI and SMAD between Rayleigh-clear and radiosonde wind measure-
ments appear to be proportional to the Aeolus EEtot (Fig. 6.3a), with larger deviations
associated with larger EEtots, as expected. However, on average, the mean EEtot

overestimates the MADI by 1 ms−1 for EEtot values below 6 ms−1 (see grey line). This
discrepancy can be attributed to the relatively small amount of data used in the study,
as the EE is based on the Gaussian assumption of a large data set. For Rayleigh-cloudy
measurements, it is difficult to establish a dependency although the absolute difference
appears to be generally larger owing to the large STD of 6.6 ms−1 for this observation
type. Considering the altitude error dependency of Rayleigh-clear (Fig. 6.3b), a general
pattern emerges with MADI and SMAD reaching a minimum of 3 ms−1 and 2 ms−1

respectively on average in the middle troposphere at 10 km, while increasing above
and below, with MADIs of 4 − 5 ms−1 and SMADs of almost 6 ms−1 at 2.5 km and 19
km altitude. As we will see in the next subsection 5.3.2, this error pattern is inversely
proportional to the Rayleigh backscattered useful signal, as it directly affects the SNR
and thereby the quality of the measurement points. Rayleigh-clear outliers seem to
occur at all altitudes and Rayleigh-cloudy measurements are primarily found in the
lower troposphere, below 6 km.

In Fig. 6.3c we examine the error dependency with respect to the co-location radius,
which extends up to 340 km, a distance that is large relative to the 100 km specified
in ESA’s recommendations. However, the MADI and SMAD for Rayleigh-clear do not
increase with radius, but stagnate at an average of 3–4 ms−1 for radii above 100 km, while
they are slightly higher below 100 km, reaching 4–5 ms−1. Furthermore, outliers appear
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Figure 5.5: EEtot (a), altitude (b), co-location radius (c) and co-location time
quantities expressed as a function of the absolute difference between radiosonde HLOS
winds (HLOSRS) and Aeolus (HLOSAEOLUS) Rayleigh-clear (blue) and Rayleigh-
cloudy (orange) observations. Outliers are defined as values with an EE below 5 ms−1

and absolute difference larger than 10 ms−1 and are represented by the cross symbol
+. The solid blue lines indicate the MADI while the dotted blue lines represent the
SMAD of Rayleigh-clear and each value is computed using a minimum sample size
of 40 data points. The grey line in panel a represents the diagonal at intercept 0
with slope 1. Due to the limited amount of data, no MADI and SMAD are shown
for Rayleigh-cloudy. From Borne et al. (2024) under the Creative Commons
Attribution 4.0 International License (CC BY 4.0).

across all co-location radii. This indicates that the use of a co-location distance up to
340 km is acceptable for the statistical comparison. Exploring the error dependency with
respect to the time difference between the observations (Fig. 6.3d), there is indication
for increasing difference for larger time-differences, going from 3–4 ms−1 at 0 minutes to
4–6 ms−1 above 30 minutes. There is also an asymmetry of the error dependence, with a
larger error magnitude for radiosonde observations preceding the Aeolus passage. Since
most radiosondes were launched with the objective of reaching the mid-troposphere
during the satellite’s passage, the measurements preceding/following Aeolus of more
than 30 minutes correspond mainly to measurements at lower/higher altitudes. The
larger MADI and SMAD values for these time differences could hence be an indirect
effect of the larger errors found at those altitudes (Fig. 3b). Again, no error dependency
is observed for outliers, with most occurring below ±40 minutes time differences.

Mie-cloudy

Figure 6.4 shows the same error dependencies as in Fig. 6.3, but for the Mie-cloudy
observation type. For Mie-cloudy, we define outliers as values exceeding an absolute
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Figure 5.6: Same as for Fig. 6.3, but for Mie-cloudy. For Mie-cloudy (red), outliers
are defined as values having an absolute error above 6 ms−1 and an EE inferior to
3 ms−1. The MADI and the SMAD values are computed using a minimum sample
size of 15 data points. From Borne et al. (2024) under the Creative Commons
Attribution 4.0 International License (CC BY 4.0).

error of 6 ms−1 along with EEs inferior to 3 ms−1. With a total of 3 data points, they
account for ∼ 5% of the total Mie-cloudy observations. In panels a, b and d, each MADI
and SMAD value is calculated using a minimum sample size of 15 data points.

As shown in Fig. 6.4a, the absolute differences for Mie-cloudy measurements are
generally smaller than for Rayleigh-clear, with the largest deviations around 7–8 ms−1,
while attaining 13–14 ms−1 for Rayleigh-clear. The MADI and SMAD remain between
2 and 3 ms−1, indicating an overestimation of the EEtot, especially for increasing EEtot.
Regarding the altitude error dependency (Fig. 6.4b), most of the data are found within
the 10-15 km layer, which is probably related to the presence of high-level clouds, and
below 7 km, where low- and mid-level clouds and dust layers are found. Due to the
sparseness of Mie-cloudy data, both MADI and SMAD do not show a specific vertical
error trend. While MADI and SMAD remain between 2.3 and 2.7 ms−1, respectively,
they decrease to 1.8 and 2.3 between 1.5 and 3 km altitude before increasing to almost
3 ms−1 in the lowest 1 km. Fig. 6.4c shows that similarly to Rayleigh-clear, Mie-cloudy
reveals no error dependency with respect to co-location radii, with the mean absolute
error and SMAD mainly ranging from 1.7 to 3.2 ms−1, and outliers found at all radii.
Regarding the error dependence on time difference (Fig. 6.4d), we find that most of
the measurement differences occur at time intervals of less than ±40 minutes. MADIs
and SMADs are generally higher for negative co-location times, corresponding to cases
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where radiosonde observations are sampled before those from Aeolus. Nevertheless, we
do not notice a strong relationship between co-location time and errors.

5.3.2 Cloud type and dust

As already mentioned, the accuracy of Rayleigh-clear and, to a lesser extent, Mie-cloudy
depends on the signal level and SNR. In general, the signal level depends on the range
bin thickness, the horizontal accumulation length, the atmospheric path signal and the
overall signal background level. In addition, Rayleigh-clear winds are sensitive to signal
attenuation due to atmospheric conditions, with weaker signal return under optically
thick clouds and dust-aerosol layers. Mie-cloudy is less concerned as backscatter from
particles is stronger, although it is sensitive to weak backscatter, e.g. from dust layers.
Because of its strong sensitivity on signal levels, the EE of Rayleigh-clear only considers
Poisson noise and is therefore inversely proportional to the squared root of the useful
signal. For Mie-cloudy, this rule of thumb is not true. In this context, we aim to
investigate the quality of the Rayleigh-clear and Mie-cloudy winds and the reliability of
the corresponding EE with respect to the presence of clouds and dust.

Rayleigh-clear

Table 5.3 describes the error dependency of the Rayleigh-clear observations with respect
to the presence of clouds and dust, with cases below 50%, above 50% and above 75% of
cloudiness, as well as sub-categories distinguishing the dust mixing ratio above (Dust)
and below (DustNO) 10−8 kgkg−1. Note that SMAD is not used for this analysis
as this reliably removes outliers, which ought to be quantified here. We note that
the MADI, the STD, and the EEtot all increase with the amount of clouds and dust
along the track, presumably due to the reduced return signal. In non-dusty conditions
(DustNO), we observe that for low cloud cover (<50%), the MADI (3.3 ± 0.2 ms−1) is
significantly lower than the EEtot (4.8 ms−1) with a difference of 1.5 ms−1, while for
higher cloud cover, the difference between MADI and EEtot is much smaller (1.1 ms−1

and 1.0 ms−1 for above 50% and 75% of cloudiness, respectively). This phenomenon is
further enhanced at higher dust concentrations, with the MADI reaching even higher
values (5.7 ± 0.8 ms−1) than the EEtot (5.8 ms−1) for cloud cover above 75%. This
highlights how the EEtot in clear sky conditions is well calibrated, while it is becoming
gradually too low with the increasing presence of clouds and dust. The larger STD
with increasing cloudiness and dust concentration suggests an increasingly perturbed
pattern of Rayleigh-clear measurements,possibly owing to the lower signal levels or to a
cross-talk.

Figure 6.5 puts this phenomenon into perspective, by showing the altitude-dependent
absolute difference |∆diffHLOS

| (a,e), the EEtot (b,f), the normalized useful signal (c,g)
and the SR (d,h), where the colouring depends on the percentage of SAFNWC clouds
(upper row) and the CAMS dust mixing ratio (lower row) along the track. For reference,
the values that did not pass the Quality Control (QC) are shown transparently. In
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Table 5.3: Overview of the total Error Estimate (EEtot; ms−1), mean absolute
difference and uncertainty (MADI, σµ; ms−1), Standard deviation (STD; ms−1) and
counts (COUNT) for the Rayleigh-clear measurements under different cloud and dust
conditions. This includes three categories of cloud cover (< 25 %, > 50 %, > 75 %)
for dust mixing ratios above (Dust) and below (DustNO) 109 kgkg−1 along the track.
From Borne et al. (2024) under the Creative Commons Attribution 4.0
International License (CC BY 4.0).

Table 4. Overview of the total Error Estimate (EEtot; ms–1), mean absolute difference and uncertainty (MADI, σμ; ms–1), Standard deviation

(STD; ms–1) and counts (COUNT) for the Rayleigh-clear measurements under different cloud and dust conditions. This includes three

categories of cloud cover (< 25 %, > 50 %, > 75 %) for dust mixing ratios above (Dust) and below (DustNO) 109 kgkg–1 along the track.

Cloud < 50 % Cloud > 50 % Cloud > 75 %

DustNO Dust DustNO Dust DustNO Dust

EEtot 4.8 5.4 5.0 5.6 5.3 5.8

MADI 3.3±0.2 4.4±0.6 3.9±0.5 5.0±0.5 4.3±0.7 5.7±0.8

STD 4.3 5.0 5.1 5.9 5.6 6.4

COUNT 234 28 64 52 38 24

Figure 5. Altitude as a function of Rayleigh-clear absolute difference |ΔdiffHLOS | (a,e), EEtot (b,f), normalized useful signal (c,g) and SR

(d,h), where the colouring is dependent on the percentage of SAF clouds (upper row) and CAMS dust mixing ratio (lower row) along the

track. The cross symbol + stands for outliers and defines values with an EE below 5 ms–1 and an absolute difference of more than 10 ms–1.

Panel (a) includes the MADI for each cloud cover percentage, with a minimum sample size of 10 data points used to compute each value.

the generally good consistency between the EEtot and the absolute differences. As expected, this tendency fits inversely with

the normalized useful signal shown in Fig. 5c, with lower signal in the upper and lower troposphere. Indeed, in the higher430

troposphere the air is less dense and the thickness of the RB’s is not sufficient to compensate for the decrease in air molecule

19

Figure 5.7: Altitude as a function of Rayleigh-clear absolute difference |∆diffHLOS
|

(a,e), EEtot (b,f), normalized useful signal (c,g) and Scattering Ratio (SR) (d,h),
where the colouring is dependent on the percentage of Satellite Application Facility for
supporting NoWCasting and very short range forecasting (SAFNWC) clouds (upper
row) and Copernicus Atmosphere Monitoring Service (CAMS) dust mixing ratio (lower
row) along the track. The cross symbol + stands for outliers and defines values with
an EE below 5 ms−1 and an absolute difference of more than 10 ms−1. Panel (a)
includes the MADI for each cloud cover percentage, with a minimum sample size of
10 data points used to compute each value. From Borne et al. (2024) under the
Creative Commons Attribution 4.0 International License (CC BY 4.0).

addition, panel 6.5a includes the MADI of four cloud cover percentage categories, where
each MADI is computed with a minimum sample size of 10 values. The colourings in
Fig. 6.5 are illustrative of the results summarised in Table 5.3, with measurements
showing generally greater MADI under high cloud cover (red, orange, Fig. 6.5a) than
under lower cloud cover (blue, blue-green). Measurements in the lower troposphere
are naturally more strongly affected by cloud cover compared to higher levels. The
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same applies to dust (Fig. 6.5e), which also occurs mainly in the lower 5 km of the
troposphere.

As we have already shown in Fig. 6.3b, the absolute error is higher in the upper and
lower troposphere and minimised in the middle troposphere around 10 km altitude.
This trend is well reflected in the EEtot in Fig. 6.5b, which is an indication of the
generally good consistency between the EEtot and the absolute differences. As expected,
this tendency fits inversely with the normalized useful signal shown in Fig. 6.5c, with
lower signal in the upper and lower troposphere. Indeed, in the higher troposphere the
air is less dense and the thickness of the RB’s is not sufficient to compensate for the
decrease in air molecule density. In the lower troposphere, the return signal is lower due
to strong attenuation under clouds and dust layers. Interestingly, the values with high
EEtot and smaller useful signal in the mid-troposphere between 5 and 12.5 km in red
likely correspond to measurements sampled under thick clouds, resulting in a strongly
attenuated signal. They account for most of the measurements with cloud cover greater
than 75 % in this altitude range, while the cloud tops appear to be located between
12.5 and 15 km, as they exhibit a larger normalized useful signal and a SR greater than
1 (Fig. 6.5d,h). Finally, outliers are found under all types of cloud and dust conditions
and affect different altitude ranges. They also occur for regular normalized useful signals,
with most SRs lying around 1, which rules out a cause related to atmospheric particles.

Mie-cloudy

Table 5.4 shows the same as Table 5.3, but for Mie-cloudy. Due to the limited amount of
data for Mie-cloudy winds, the interpretation of the results should be treated with caution.
We find that, in contrast to Rayleigh-clear, the EE, MADI and STD decrease with the
percentage of cloud cover along the path. This is understandable as clouds provide
the strongest backscatter signal required for high quality Mie-cloudy measurements.
However, the presence of dust for cloud cover below 50 % leads to a decrease in EEtot,
MADI and STD, while conversely there is an increase of these quantities in more dense
cloudy conditions (>50 %, >75 %). A possible explanation is that in clear-sky conditions,
the backscatter from dust layers is strong enough to obtain high quality measurements,
whereas in cloudy conditions, the attenuation by clouds weakens the backscatter return
from the dust.

Figure 6.6 depicts the same as Fig. 6.5, but for Mie-cloudy. As mentioned in the previous
section when discussing in Fig. 6.4b, most backscatter occurs in two layers, i.e. within
10–15 km and below 7 km altitude. The majority of measurements have normalized
useful signals above 5e13 a.u. (Fig. 6.6c,g), which is overall above the normalized useful
signal of the rejected measurements shown in transparent. Furthermore, the SRs are
generally above 1 (Fig. 6.6d,h), which is characteristic of Mie-cloudy measurements.
More specifically, measurements sampled above 12.5 km have a cloud cover of more
than 75 % along the track and probably correspond to cloud tops, as they have stronger
SRs between 1.5 and 3 (Fig. 6.6d,h). They exhibit good quality as well, with an
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Table 5.4: Same as table 5.3, but for Mie-cloudy. From Borne et al. (2024)
under the Creative Commons Attribution 4.0 International License (CC
BY 4.0).Table 5. Same as table 4, but for Mie-cloudy.

Cloud < 50 % Cloud > 50 % Cloud > 75 %

DustNO Dust DustNO Dust DustNO Dust

EEtot 3.7 3.6 3.4 3.5 3.2 3.4

MADI 2.8±0.5 2.4±0.2 1.8±0.3 2.5±0.4 1.6±0.3 2.6±0.6

STD 2.96 1.53 1.89 2.95 1.68 3.18

COUNT 11 9 16 23 8 13

Figure 6. Same as Fig. 5 but for Mie-cloudy. Here the cross symbol + defines values with an EE below 3 ms–1 and an absolute difference

above 6 ms–1.

4.2.3 Case studies

To further investigate the properties of the Aeolus wind errors, this section presents three case studies comparing Aeolus and

radiosonde wind measurements under three different atmospheric conditions, namely clear sky, high cloud cover and high dust

concentration.

The first case-study illustrated in Fig. 7 presents a comparison between Aeolus and radiosonde wind measurements collected470

under clear sky conditions. The radiosonde was launched over Sal Airport at 18:45 UTC on 9 September 2021, and Aeolus

21

Figure 5.8: Same as Fig. 6.5 but for Mie-cloudy. Here the cross symbol +
defines values with an EE below 3 ms−1 and an absolute difference above 6 ms−1.
From Borne et al. (2024) under the Creative Commons Attribution 4.0
International License (CC BY 4.0).

average MADI of 1.5 ms−1 (Fig. 6.4b). Between 7.5 and 12.5 km altitude, most of the
measurements occur with cloud cover less than 50 %, with SRs falling below 1.3. In
this altitude range, there are also 2 outliers, which interestingly have SRs around 1 and
a normalized useful signal in the same order of magnitude as the discarded ones. Their
presence is unusual, as Mie-cloudy measurements are only obtainable for SRs above 1.
Finally, below 7.5 km, the cloud cover is mainly above 50 %, while the dust concentration
is mainly below 5 × 10−8 kgkg−1, showing that most of the Mie-cloudy backscatter
results from clouds and not from dust. As can be seen in Fig. 6.6g, measurements with
high dust concentration (brown) are discarded (transparent) with normalized useful
signals below 5e13 a.u. Surprisingly, measurements sampled at the lower 1 km have the
lowest normalized useful signals, mostly below 5e13 a.u. and are not discarded. These,
however, tend to have larger SRs between 1 and 2, which can compensate for the low
normalized useful signal in the calculation of the EE. They also correspond to the
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largest MADI scaling up to 4 ms−1 on average (i.e. Fig. 6.4d) in addition to relatively
high EEtots (i.e. Fig. 6.6b,f). Two measurements also show negative SRs, which is an
artifact, due to insufficient background signal corrections. The third outlier in the lower
1 km does not have abnormal characteristics compared to other measurements at this
altitude.

5.3.3 Case studies

To further investigate the properties of the Aeolus wind errors, this section presents three
case studies comparing Aeolus and radiosonde wind measurements under three different
atmospheric conditions, namely clear sky, high cloud cover and high dust concentration.

The first case-study illustrated in Fig. 6.7 presents a comparison between Aeolus and
radiosonde wind measurements collected under clear sky conditions. The radiosonde
was launched over Sal Airport at 18:45 UTC on 9 September 2021, and Aeolus passed
over on an ascending orbit between 19:23:56 UTC and 19:24:31 UTC within a co-
location radius of 180 km around the launch site. Figure 6.7a depicts the corresponding
sampled radiosonde HLOS wind profile (black lines) as well as Rayleigh-clear (blue) wind
measurement points with associated EEtot shown as error bars and ECMWF model
equivalents shown as stepped lines. The corresponding Rayleigh-clear EEtot, normalized
useful signal and CAMS dust mixing ratio profiles are shown in blue in Figs. 6.7b, 6.7c
and 6.7d, respectively, along with all other profiles in grey and the average of all profiles
in black. Figure 6.7e shows the SAFNWC Cloud Type (CT) over the Cape Verde region
at 19:00 UTC. In the latter panel, it can be seen that conditions were predominantly
cloud-free along the Aeolus track (red solid line) and within the co-location radius
(white solid line), while some low clouds can be found in the surrounding area. In these
clear-sky conditions, it is not surprising to find that most of the measurements are of the
Rayleigh-clear observation type, with no Mie-cloudy and Rayleigh-cloudy measurements
(Fig. 7a). Throughout the atmosphere above 2.5 km, the quality of Rayleigh-clear is very
good, with most error bars overlapping with radiosonde measurements and ECMWF
model equivalents. In general, we found that the EEtot estimate (Fig. 6.7b) is below
average throughout the atmosphere, with a minimum of 3.5 ms−1 at 8 km altitude and
a maximum above 5 ms−1 at 17.5 km and 2.5 km altitude. This is consistent with
to a normalized useful signal (Fig. 6.7c) close to the average, except between 2.5 and
12.5 km, where it is higher, most likely due to the absence of cloud attenuation. In
general, EEtot and normalized useful signal decrease below 5 km, which is accompanied
by an increase in the dust mixing ratio. This increase reaches 1.2 kgkg−1 at about 2
km altitude, below which no measurements are found, presumably filtered out during
the QC procedure.

Figure 6.8 shows the same as Fig. 6.7, but for cloudy conditions. In this case study, the
radiosonde was also launched from Sal airport, this time at 07:00 UTC on 14 September
2021, with a co-location radius of 60 km. Aeolus passed across the co-location region
between 07:28:32 UTC and 07:28:55 UTC, i.e. during the descending node. As can
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Figure 5.9: Overview of the cloud-free case study for a radiosonde launched from Sal
airport on 9th September 2021 at 18:45 UTC and the ascending orbit of Aeolus between
19:23:56-19:24:31 UTC for a co-location radius of 180km. (a) Vertical radiosonde HLOS
wind profile (black solid line) and projected onto Rayleigh-clear RBS (black stepped
line), as well as averaged Rayleigh-clear observations (blue dots), corresponding EE
(error bars) and ECMWF model equivalents (Meq, stepped lines). (b) Vertical profile
of the Rayleigh-clear EEtot (blue line), together with the EEtot of all profiles (grey
solid lines) and their average (black solid line). (c), (d) Same as (b), but for normalised
useful signal and CAMS dust mixing ratio, respectively. (e) Horizontal map showing
the SAFNWC CTat 19:00 UTC and the co-location perimeter (white solid line), the
Aeolus track (red solid line) and the radiosonde launch site (red cross). From Borne
et al. (2024) under the Creative Commons Attribution 4.0 International
License (CC BY 4.0).

been seen in panel 6.8e, which corresponds to SAFNWC CT at 07:30 UTC, Aeolus
overpasses a variety of high clouds, mainly high semitransparent clouds. These high-
clouds appear to be located between 13 km and 16 km altitude, as three Mie-cloudy
(red) and two Rayleigh-cloudy (orange) measurements are found in this range, and
where the normalized useful signal is found to have a maximum. In this altitude range,
all Rayleigh-clear, Rayleigh-cloudy and Mie-cloudy measurements exhibit good quality,
with radiosonde measurements generally within the error bars. Above this cloud cover
at 16 km, we only find Rayleigh-clear measurements that also perform well, with an
EEtot (Fig. 6.8b) and normalized useful signal (Fig. 6.8c) close to average. Beneath the
cloud base at 13 km altitude, however, it appears that the Rayleigh-clear measurements
follow an irregular pattern, with most of the measurements and error bars not matching
the radiosonde observations, reaching deviations higher than 10 ms−1. Accordingly, we
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Figure 5.10: Same as Fig. 6.7, but for the case study with high cloud cover.
Here, the radiosonde was launched from the Sal airport at 07:00 UTC on the 14th
September 2021, while Aeolus overpassed the co-location area, with radius of 60km,
on a descending node between 07:28:32 and 07:28:55 UTC. In panel a, the red and
orange colours represent the averaged Mie-cloudy and Rayleigh-cloudy observations
(points), respectively, with the corresponding EE shown as error bars and ECMWF
model equivalents (Meq) shown as stepped lines. The SAFNWC CT shown in (e)
corresponds to 07:30 UTC. From Borne et al. (2024) under the Creative
Commons Attribution 4.0 International License (CC BY 4.0).

find that the EEtot (Fig. 6.8b) is larger in this altitude range mainly varying between 5
and 6 ms−1, which also corresponds to a sharp decrease of the normalized useful signal
well below the average (Fig. 6.8c). Nonetheless, the ECMWF model-equivalents in Fig.
6.8a remain fairly accurate relative to the radiosonde measurements. This result mirrors
the findings presented in the previous section, namely that the Rayleigh-clear EEtot is
systematically underestimated when the normalized useful signal is strongly attenuated.
It appears that the normalized useful signal further decreases below 2.5 km, presumably
as a result of the increasing dust concentration at this height (Fig. 6.8d), which most
likely leads to a QC rejection of the Rayleigh-clear measurements.

Lastly, Fig. 6.9 examines the influence of dust on the quality of Aeolus. In this case,
the radiosonde was launched on 21 September 2021 at 06:50 UTC for a descending
orbit of Aeolus, which passed over a co-location perimeter with a radius of 60 km
between 07:28:44 UTC and 07:29:07 UTC. As can be seen in Fig. 6.9e, the atmospheric
conditions in the co-location area were completely cloud free at 07:30, with some low
level cloud further south of the island. The radiosonde profile shown in Fig. 6.9a
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Figure 5.11: Same as Figs. 6.7 and 6.8 but for the case study with dust. Here, the
radiosonde was launched from the Sal airport at 06:50 UTC on the 21th September 2021,
while Aeolus overpassed the co-location area, with radius of 60km, on a descending
node between 07:28:44 UTC and 07:29:07 UTC. The SAFNWC CT shown in (e)
corresponds to 07:30 UTC. From Borne et al. (2024) under the Creative
Commons Attribution 4.0 International License (CC BY 4.0).

indicates that Aeolus primarily measured in the Rayleigh channel along this orbital
segment. Rayleigh-clear measurements appear to be consistent with radiosonde wind
measurements throughout the mid-troposphere between 5 km and 15 km altitude, while
outliers with EEs of less than 5 ms−1 (Fig. 6.9b) can be spotted above 15km and below
5km. This error structure is surprising, as both the normalized useful signal and error
estimation curves are similar to the one of the cloud-free case study in Fig. 6.7b and
6.7c. However, in panel 6.9c, we see that the Rayleigh-clear error pattern coincides
with a strong peak in dust mixing ratio, reaching more than 2 10−7 kgkg−1 around
3.5 km altitude. The presence of dust seems to affect the quality of Rayleigh-clear
measurements without influencing the normalized useful signal and thus leading to an
underestimation of the EE. Reason could be linked to a cross-talk.

5.4 Concluding remarks

In this study, we conducted a cross-Atlantic validation of Aeolus wind observations using
radiosondes in the scope of the JATAC. Of the total 20 radiosonde profiles included
in this work, 11 were launched from Puerto Rico and St. Croix in the Caribbean
and 9 from Sal Airport on Cape Verde between August and September 2021. The
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advantage of radiosondes is that they provide good vertical coverage, providing 384
Rayleigh-clear bin-to-bin comparisons from the surface to an altitude of 20 km and 59
Mie-cloudy comparisons, mainly restricted to the presence of clouds and aerosols. After
having applied several QC and adaptation grid procedures, we quantified the quality of
Rayleigh-clear, Mie-cloudy and to a lesser extent Rayleigh-cloudy observation types,
with respect to co-location aspects as well as atmospheric conditions such as cloud cover
and dust concentration.

According to our statistical analysis, the total systematic error of Rayleigh-clear is
−0.5 ± 0.2 ms−1, which is in agreement with the ESA recommendation of 0.7 ms−1.
The random error was calculated from the standard deviation of the difference between
radiosonde and Aeolus measurements, accounting for radiosonde observation errors
estimated at 0.7±0.28 ms−1 and representativeness errors ranging from 1.5 to 2.5 ms−1.
In the altitude range of 2–16 km and 16–20 km, the random error is 3.8 – 4.3 ms−1 and
4.3 – 4.8 ms−1, respectively, which is above the ESA-specified values of 2.5 ms−1 and
3 ms−1, respectively. In general, Rayleigh-clear shows no error dependency with respect
to co-location radius, even for distances reaching 340 km, whilst being more sensitive to
co-location time, especially if the radiosonde measurement is ahead of Aeolus’ overflight
time, which presumably corresponds to low altitude measurements. In addition, the
systematic and random errors are height-dependent, with larger errors occurring in the
upper troposphere, mainly caused by the reduction in signal return from decreasing
air density, and in lower levels, most likely caused by the signal attenuation by clouds
and dust. The error estimate likewise follows a similar form to the observed height
error dependency, as it is inversely proportional to the squared root of the normalized
useful signal. In cases where the normalized useful signal is strongly attenuated by
clouds or dust, the error estimate is generally underestimated, with measurements
exhibiting non physical features and departures from radiosonde winds larger than
the error estimate. A redefinition of the Rayleigh-clear error estimate could account
for this underestimation by including other sources of noise, such as detector noise
or readout noise, which increase for reduced signal levels. Furthermore, a cross-talk,
i.e. the leakage of the Mie signal into the Rayleigh receiver, could also explain this
underestimation, especially in the case of strong Mie returns. However, this supposition
was not investigated in the context of this study. Outliers, defined as measurements
with small error estimate and large absolute differences, are found under all conditions,
i.e. for all co-location radii, co-location times, altitudes as well as cloud and dust cover.
Their origin does not appear to be correlated with low signal levels but seem to be
inherent to the statistical nature of the error distribution. Taking other terms into
account when defining the error estimate, such as the influence of temperature, pressure
or scattering ratio on the Rayleigh response, could certainly contribute to improving the
error characterisation. The ECMWF model equivalents of Rayleigh-clear are found to
have a significantly better agreement with the radiosonde wind measurements compared
to the Rayleigh-clear observations. This is a further confirmation that the co-location
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parameters used for this validation study are appropriate and that the model equivalents
provide a suitable reference for validating Aeolus. In addition, we demonstrate the
existence of an orbital- and altitude-dependent bias in the Rayleigh-clear channel, which
is visible with respect to both radiosondes and ECMWF model equivalents. This bias is
documented in Chapter 6 in West Africa using model equivalents and is now confirmed
observationally. The underlying cause for this bias, however, remains unknown. In
addition, we find that Rayleigh-clear performs better compared to Rayleigh-cloudy, but
due to the lack of Rayleigh-cloudy data we cannot draw any strong conclusions.

For Mie-cloudy, the statistical analysis yielded a systematic negative deviation of
−0.9 ± 0.3 ms−1 within ESA specifications when uncertainty is taken into account, and
it is consistent across all orbital nodes and Cal/Val sites. The random error between
2–16 km is 1.1 − 2.3 ms−1, which falls within the ESA recommendations. The general
quality of Mie-cloudy winds does not depend on the co-location radius, while it is
more sensitive to temporal differences. The errors appear to be larger at 5 km and
about 1 km altitude, typically at the upper and lower limits of the Saharan Air Layer,
where clouds frequently occur. According to Lux et al. (2022b), the Mie fringe of
the Fizeau interferometer can be distorted in the case of strong backscatter gradients,
e.g. at cloud edges. Interestingly, Mie-cloudy does not seem to sample within dust
layers, as most bins with high dust concentrations are rejected by the QC. Furthermore,
the systematic and random Mie errors decrease with the percentage of cloud cover,
while they increase in the presence of dust. This may be attributed to the generally
weak backscatter of dust, increasing the error of the Mie-cloudy winds. Similar to
Rayleigh-clear, outliers with small error estimate and large absolute differences can be
found for all co-location distance, co-location time, altitude, dust concentrations and
cloud cover. An improvement of the Mie EE is expected from an optimisation of the
Mie core algorithm, such as the fitting function or the classification algorithm.
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6. Impact of Aeolus wind observations
on the representation of the West
African monsoon circulation

This section presents the main results of this study in three subsections. The first one
(section 6.1) examines the distribution of observation in the Rayleigh-clear and Mie-
cloudy channels, shows resulting climatologies and discusses the assigned observation and
background errors in the different Observing System Experiment (OSE)s. Section 6.2
analyzes the impact of Aeolus data on 3D analyses fields with a special emphasis
on the contributions from the two orbit phases and the two channels as well as the
effect of the bias correction tested at European Centre for Medium-Range Weather
Forecasts (ECMWF) for 2019. Finally, section 6.3 presents the impact of Aeolus data
on 1–4 days forecasts with a special emphasis on the predictions of the African Easterly
Jet North (AEJ-North) and Tropical Easterly Jet (TEJ). This analysis is supplemented
by a verification of model background with radiosondes over Africa.

6.1 Observed atmospheric features

West Africa during boreal summer is characterized by many different types of aerosols
and clouds that affect the Aeolus measurements. Figure 6.1 shows longitudinal averages
between 30°E and 30°W of the number of counts for both Rayleigh-clear and Mie-cloudy
channels from the ECMWF2019 OSE, as well as mixing ratios of different aerosol
types from the CAMS and cloud fraction from ERA5 during the boreal summer of
2019. Irrespective of latitude the Rayleigh-clear counts (Fig. 6.1a) peak in the upper
troposphere and lower stratosphere with values around 3000. Counts below 300 hPa
are markedly reduced around the cloudy Intertropical Convergence Zone (ITCZ), which
reaches its northernmost position in August at about 11°N and is often referred to as the
African rainbelt (Nicholson, 2009). There are also indications for slightly reduced counts
at midlevels towards the subtropical ends of the study domain in both hemispheres.
Rayleigh-clear data below 850 hPa are rejected at ECMWF, as the impact found there
was slightly negative. (see Table 4.3). The more complex Mie-cloudy signal (Fig. 6.1b)
is shaped by the distribution of clouds and aerosols. There is a distinct maximum in
the upper troposphere between 300 and 100 hPa over the African rainbelt around 10°N,
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Figure 6.1: Latitude-height cross-sections of counts for Aeolus Rayleigh-clear (a)
and Mie-cloudy (b) measurements, as well as ERA5 cloud cover (c), Copernicus
Atmosphere Monitoring Service (CAMS) Dust Aerosol (0.03–20 µm) mixing ratio (d),
CAMS Organic Matter and Black Carbon Aerosol mixing ratio (e) and CAMS Sea
Salt Aerosol (0.03–20 µm) mixing ratio (f). AMR stands for Aerosol Mixing Ratio.
The fields are averaged between 30°W and 30°E during July–September 2019 period.
From Borne et al. (2023) under the Creative Commons Attribution 4.0
International License (CC BY 4.0).

corresponding to returns from cumulonimbus clouds, their associated anvils or from
optically thick cirrus. The corresponding maximum in cloud fraction can be seen in
Fig. 6.1c. In this area Rayleigh-clear and Mie-cloudy counts are of a similar magnitude
exceeding 3000 counts (cf. Fig. 6.1a and b). During the ascending orbit at 18 UTC (not
shown here), there is a higher number of Mie-cloudy counts over this location, caused
by the stronger land convection occurring in the afternoon. Below the prominent high
cloud maximum, two smaller peaks are evident in Fig. 6.1c, likely corresponding to
early stages of cumulonimbus, cumulus congestus or altocumulus layers just below 500
hPa and boundary-layer clouds below 800 hPa (Johnson et al., 1999). These, however,
are less prominent in Mie-cloudy counts (Fig. 6.1b) due to attenuation effects. Higher
counts at midlevels extend northwards from the rainbelt region into the Sahara. These
appear to be partly related to midlevel clouds (Fig. 6.1c) and to the high dust content
of the dry and warm Saharan Air Layer (SAL) (Fig. 6.1d) (Dunion and Marron, 2008).
The SAL is mainly sampled in its upper parts by Mie-cloudy scattering (Fig. 6.1b). To
the south of the African rainbelt, a distinct low-level maximum is evident stretching
from 30°S to 5°N (Fig. 6.1b). The southern part is restricted to levels below 700
hPa but around 8°S enhanced counts reach up to about 550 hPa. This maximum is
likely due to a combination of sea salt aerosol in the shallow marine boundary layer
(Fig. 6.1f, below 900 hPa), low mostly stratiform clouds at the top of the boundary
layer (Fig. 6.1c, below 800 hPa) as described, for example, in Knippertz et al. (2011)
and Schrage and Fink (2012), and a relatively deep plume of Biomass Burning (BB)
aerosol, as indicated by enhanced levels of black carbon and organic matter (Fig. 6.1e,
around 10°S) (Reid et al., 2005; Levin et al., 2010; Zuidema et al., 2016; Carter et al.,
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Figure 6.2: Latitude-height cross-sections of Aeolus measured Rayleigh-clear (a,b)
and Mie-cloudy (c,d) Horizontal Line of Sight (HLOS) winds, as well as zonal wind from
the ECMWF2019 analysis that includes Aeolus data (e,f). Shown are 06 UTC (left
column) and 18 UTC (right column), corresponding to the descending and ascending
orbits, respectively. The fields are averaged between 30°W and 30°E and smoothed
using a latitudinal moving average of 2° grid size for the period July–September
2019. Regions for which no wind data were collected are shown in white. The
major jet features AEJ-North and AEJ! (AEJ!)-South , Tropical Easterly Jet (TEJ),
Subtropical Jet (STJ) North (STJ-N) and South (STJ-S) as well as the southwesterly
Monsoon flow are labelled in panel e. HLOS winds from the descending track are
multiplied by -1 to correspond with the sign convention of the model coordinate system.
From Borne et al. (2023) under the Creative Commons Attribution 4.0
International License (CC BY 4.0).

2021). This plume originates from agricultural and forest burning (Barbosa et al.,
1999; Haslett et al., 2019) with some parts getting thermally lifted above the low-level
clouds. Taken Rayleigh-clear and Mie-cloudy signals together, most parts of the West
African Monsoon (WAM) region show a satisfactory level of sampling such that the
main circulation features should be captured by Aeolus measurements. Since the WAM
region is located around the Greenwich meridian, the Aeolus descending and ascending
observations are included in the 06 UTC and 18 UTC assimilation windows, respectively.
Figure 6.2 compares the HLOS winds for ascending and descending orbits with the
zonal wind of the analysis field of the ECMWF2019 OSE where Aeolus is assimilated.
The Rayleigh-clear HLOS wind observations (Fig. 6.2a and b) can well represent all
important wind features above 850 hPa, i.e. the TEJ around 5°N and the subtropical
jets of both hemispheres in the upper troposphere, as well as the AEJ-North (10–15°N,
between 700 and 500 hPa) and AEJ!-South (5°S, ∼800 hPa) in the mid-troposphere
(see labels in Fig. 6.2e). Rayleigh-clear winds are generally consistent between ascending
(Fig. 6.2a) and descending (Fig. 6.2b) orbits, although some differences in the intensity
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of the TEJ and AEJ-North are visible, and can possibly be attributed to either diurnal
cycle effects between dusk (18 UTC) and dawn (06 UTC) or orbital-dependant biases.
The Mie-cloudy observations (Fig. 6.2c and d) have too few measurements in the usually
cloud- and aerosol-free areas of the subtropical jets (see Fig. 6.1) but can capture the
TEJ, the AEJ-North, partially the AEJ-South as well as the westerly component of the
monsoon flow between 0 and 15°N at 900 hPa. Differences between the orbits are again
noteworthy, with the intensity of the AEJ-North and the TEJ stronger near 100 hPa at
06 UTC (Fig. 6.2c) compared to 18 UTC (Fig. 6.2d). Furthermore, Mie-cloudy winds
have a much larger TEJ jet core with respect to Rayleigh-clear winds. According to
Lemburg et al. (2019), cloud-related processes such as convection and the change in
diabatic heating/cooling due to radiation have an influence on the TEJ. In general,
the TEJ is expected to strengthen a few hours after a large-scale convective event,
mainly southwest of the convection, which is consistent with the stronger TEJ observed
in Mie-cloudy winds. Finally, the HLOS Rayleigh-clear winds (Fig. 2a and b) seem
to have the best agreement with the analysis field (Fig. 2e and f) in terms of the
pattern and intensity of the different jets, while Mie-cloudy seems to have a stronger
TEJ compared to the analysis. The largest impact of Aeolus data on analysis fields is
expected in regions with high data density, low assigned observation errors and large
background errors. Figure 6.3 shows both the Rayleigh-clear and Mie-cloudy assigned
observation errors for the three OSEs without bias correction. The assigned observation
error in the ECMWF OSEs is mainly derived from the instrument error estimate of
the Level 2B (L2B) processor, while in the Deutscher Wetterdienst (DWD) OSE it is
determined by a predefined look-up table (see Table 4.3). For ECMWF2019, the assigned
Rayleigh-clear observation error has minima around 2.8 ms−1 in the free troposphere
in the southern and northern parts of the study domain (Fig. 6.3a). Errors increase
markedly in the area of the African rainbelt (around 10°N), where they exceed 5 ms−1

at lower levels. Here, the number of counts is reduced, as indicated by the grey line in
Fig. 6.3a (see full field in Fig. 1c). The increase in error can be attributed to the lower
signal-to-noise ratio in broken cloud scenes (see Fig. 1c). In addition, there is a general
increase in the upper troposphere above 200-150 hPa, which is likely related to cirrus
clouds, and below 600hPa in areas where clouds and aerosol are abundant (see Fig. 1c–f).
The corresponding analysis for 2020 (Fig. 6.3b) shows some similarities in terms of
the overall pattern but generally much higher values exceeding 5 ms−1 in large parts
of the domain. This may be attributed to the decreasing atmospheric path signal and
thinner range bin settings, increasing the Rayleigh-clear wind random error (Reitebuch
et al., 2020). As indicated by the grey and black lines in Fig. 6.3b, this also leads to
an overall reduced number of counts. The DWD experiment for 2020 (Fig. 6.3c) in
contrast assumes a much smoother error pattern that reveals the height dependence of
the assigned error. The error is generally lower and does not exceed 5 ms−1 anywhere in
the domain. DWD does consider data from below 850 hPa but overall less observations
than in ECMWF pass the initial quality control, as indicated by the grey and black lines
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Figure 6.3: Latitude-height cross-sections of Rayleigh-clear (top row) and Mie-cloudy
(middle row) assigned observation error for ECMWF2019 (left column), ECMWF2020
(middle column) and DWD2020 (right column), all for July–September. The fields are
averaged between 30°W and 30°E and smoothed using a latitudinal moving average of
2° grid size for the period July-September 2019. Regions for which no wind data were
collected are shown in white. The grey and black contours correspond to 1500 and
500 measurement counts, respectively. The lines in panels a and b here correspond
to the shading in Fig. 1a and b. From Borne et al. (2023) under the Creative
Commons Attribution 4.0 International License (CC BY 4.0).

in Fig. 6.3c. The corresponding observation errors for Mie-cloudy winds show a different
and generally more noisy structure for both ECMWF experiments (Fig. 6.3d and e).
Errors are larger in regions dominated by aerosols (i.e., BB and SAL) than in regions
dominated by clouds (see Fig. 6.1c–f). Mie-cloudy backscatter from ice particles and
cloud droplets generally has a stronger signal level, while backscatter from aerosol layers
is weaker, thus increasing the wind errors. The representativeness error of Mie-cloudy
winds may also depend on the spectral properties and concentration of the various
atmospheric constituents. As for the Rayleigh signals, the assigned error for DWD and
the number of counts used (Fig. 6.3f) are overall smaller than for ECMWF. The error
is dominated by the height dependence, giving overall similar values for Mie-cloudy and
Rayleigh-clear winds (cf. Fig. 3c and f).

6.2 Influence on analysis fields

6.2.1 Mean and root mean squared differences

To investigate the influence of Aeolus on the representation of WAM wind subsystems
such as the AEJ-North and the TEJ in the analysis fields, Mean Differences (MD) and
Root Mean Square Differences (RMSD) in the zonal wind component were computed for
all four OSEs (see Table 1) with four-time daily data. Figure 6.4 shows these quantities
as latitude-height cross-sections averaged between 30°W and 30°E, Fig. 6.5 shows
corresponding horizontal maps at the levels characteristics of the AEJ-North (700 hPa)
and TEJ (200 hPa). To locate the position of the jets, grey and black lines are drawn in
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Figure 6.4: Latitude-height cross-sections of mean difference (MD, left column) and
root mean square difference (RMSD, right column) between the analysis fields of the
zonal wind component Aeolus minus Control for the four different OSEs (see Table 1).
The fields are averaged between 30°W and 30°E during July–September. The grey
and black contours correspond to zonal wind fields, taken from the OSE with Aeolus,
of 6 and 9 ms−1, respectively. Solid lines indicate westerlies, dashed ones easterlies.
The brown lines mark the 200hPa and 700hPa levels. From Borne et al. (2023)
under the Creative Commons Attribution 4.0 International License (CC
BY 4.0).

both figures for zonal wind speeds of 6 and 9 ms−1, respectively. For the ECMWF OSEs
the largest MD and RMSD (top three rows in Fig 6.4) corresponds to the convective ITCZ
and the cumulonimbus outflow region, where the background forecast error is largest
(not shown), while for the DWD2020 OSE (bottom row in Fig 6.4) even more significant
differences are present in the upper tropical troposphere centred on the equator south of
the cumulonimbus outflow region. The ECMWF2019 OSE shows a strengthening of the
central region of the TEJ (Fig. 6.4a, 6.5b) by up to 0.4 ms−1 and a weakening of the
same magnitude south of the AEJ-North, corresponding to the region where Mie-cloudy
captures congestus and altocumulus clouds (see Fig. 6.1b and c). These changes are
accompanied by large random changes in wind (Fig. 6.4b) when Aeolus is assimilated.
These features are also evident in Figure 5, with maximum weakening occurring south
of the AEJ-North between 25°W and 15°E at 10°N, notwithstanding a strengthening
of the AEJ-North towards the eastern part of the Sahel (∼20°E) (Fig. 6.5a). The
strengthening of the northern part of the AEJ!-South (Fig. 6.4a, 6.5a), associated with
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Figure 6.5: Horizontal maps of the July–September mean differences (MD, left
two. columns) and root mean square differences (RMSD, right two columns) between
the analysis fields of the zonal wind component Aeolus minus Control for the four
different OSEs (see Table 1). The black contours show the 9ms−1 zonal wind isotach
from the analysis with Aeolus. Solid lines indicate westerlies, dashed ones easterlies.
The AEJ-North is evident at 700 hPa, while the TEJ and STJs are visible at 200 hPa.
From Borne et al. (2023) under the Creative Commons Attribution 4.0
International License (CC BY 4.0).

a change in wind direction between the monsoon layer and the mean easterly winds, is
also striking. For the TEJ, the strengthening is apparent across the entire jet (Fig. 6.5b).
In comparison, the ECMWF2019BC OSE shows an almost identical influence of Aeolus
on the analysis (Figs. 6.4a-d, 6.5a-h), implying that the temperature-dependent
bias correction of the Rayleigh channel does not contribute noticeably to the analysis
differences averaged over four times per day. The influence of Aeolus on the ECMWF2020
OSEs is similar to that of the ECMWF 2019 OSEs, with a comparable strengthening
of the TEJ of ∼0.4 ms−1 but a less pronounced weakening of the southern edge of the
AEJ-North of only ∼0.2 ms−1 and no obvious strengthening of the AEJ-North over
the eastern Sahel (Figs. 6.4e, 6.5i-j). It is noteworthy that the maximum RMSD in
the ECMWF 2019 OSEs affects the upper part of the TEJ between 200 and 100 hPa
and between 700 and 300 hPa (Fig. 6.4b-d), while in the ECMWF2020 OSE it spans
across the entire ITCZ region between 700 and 100 hPa (Fig. 6.4f), thus explaining the
weaker RMSD at 200 hPa in 2019 (Fig. 6.5d-h) compared to 2020 (Fig. 6.5l). Moreover,
the influence in the DWD2020 OSE is much larger, with a slowdown of the southern
edge of the TEJ of more than 0.5 ms−1 and a less pronounced acceleration of ∼0.2
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Figure 6.6: Latitude-height cross-sections of mean difference between the analysis
fields of the zonal wind component of ECMWF2020 minus DWD2020 with (a) and
without (b) Aeolus as well as the difference between both differences (c). The fields
are averaged between 30°W and 30°E during July–September. The black and red
contours correspond to zonal wind fields, taken from the OSE with Aeolus at 9 ms−1

for the ECMWF and DWD OSEs, respectively. Solid lines indicate westerlies, dashed
ones easterlies. From Borne et al. (2023) under the Creative Commons
Attribution 4.0 International License (CC BY 4.0).

ms−1 of the northern part of the TEJ (Figs. 6.4g, 6.5m-n). The strong deceleration is
accompanied by more significant random changes in the zonal wind fields due to Aeolus
compared to the ECMWF OSEs (Figs. 6.4h, 6.5o-p). Furthermore, the DWD2020
OSE does not show a significant change in the structure of AEJ-North, likely due to
a relatively low background forecast error in the domain, which gives more weight to
the background in the analysis. Finally, we assess to what extent Aeolus assimilation
brings the analyses of ECMWF2020 and DWD2020 together. Figure 6.6a and b depict
the difference between ECWMF2020 and DWD2020 analyses with and without Aeolus
respectively, while Figure 6.6c shows the differences between Fig. 6.6a and b. The
black and red lines represent the wind fields at 9 ms−1 in the ECMWF and DWD
analysis with Aeolus, respectively. In general, the differences between ECMWF and
DWD analyses are larger (Fig. 6.6a and b, up to 4 ms−1) than the differences induced
by the assimilation of Aeolus (Fig. 6.6c, up to 1.5 ms−1 exceeding the colorbar). The
most significant differences between ECMWF and DWD model analyses are found over
in the area of the TEJ, with DWD revealing a stronger TEJ up to 4 ms−1 compared

80



6.2. INFLUENCE ON ANALYSIS FIELDS

to ECMWF. The AEJ-North, however, seems to be relatively consistent between the
ECMWF and DWD. Figure 6.6c shows that the convective ITCZ above 600 hPa,
culminating in the southern edge of the TEJ are the region where ECMWF and DWD
converge most when Aeolus is assimilated. Elsewhere, especially in regions dominated by
clear-sky conditions, the analyses diverge by up to 0.2 ms−1. These differences appear
to follow the Rayleigh-clear and Mie-cloudy measurement regions, with the Mie-cloudy
observations in the convective ITCZ seemingly bringing the two model analyses closer
together, while the Rayleigh-clear measurements pulls them apart. The additional
vertical bias-correction included in the Rayleigh-clear channel in the DWD2020 OSE
could explain the observed discrepancies in clear-sky regions.

6.2.2 Orbital phase and channel contributions

In this subsection we use statistics of observation minus background (Observation
minus Background (O-B)) departures to disentangle the contributions of the HLOS
Rayleigh-clear and Mie-cloudy wind observations on the analysis differences discussed
in the previous subsection. Data corresponding to ascending and descending tracks will
be examined separately to reveal the effects of the orbit phase. For the ECMWF2020
OSE, Fig. 6.7a and b shows the analysis differences Aeolus minus control at 06 UTC
(descending orbit) and 18 UTC (ascending). These two panels can be compared directly
to Fig. 6.4e and use the same shadings and lines. The comparison reveals that the total
difference between the analyses with and without Aeolus data is dominated by 06 UTC,
where the strengthening of the TEJ (plus a southward extension of negative differences)
and the weakening of the southern edge of the AEJ-North are more pronounced. Signals
in the northern hemispheric subtropics are generally small, while in the southern
hemisphere, small-amplitude differences at 06 UTC and 18 UTC of opposite sign largely
cancel each other out.

The subsequent panels of Fig. 6.7 (i.e., c–h) show background departures for the two
Aeolus channels and their combination to examine where the diurnal differences in the
Aeolus impact on the analysis fields come from. The O-B data of Rayleigh-clear and
Mie-cloudy combined (Fig. 6.7c and d) have overall structures similar to their analysis
counterparts but with amplitudes about 4–10 times larger, revealing considerable diurnal
variations as already discussed in the context of Fig. 2. The magnitude of the influence on
the analysis is a clear reflection of the assigned errors (see Fig. 3b, e and h). For example,
the negative HLOS differences at upper-levels in the TEJ region, where background
errors are assumed to be relatively large (Fig. 6.3h), translate into a strong signal in the
analysis at 06 UTC (cf. Fig. 6.7a and c), while similar HLOS differences in the southern
subtropics, where background errors are small, have very little impact.

Separating the Rayleigh-clear and Mie-cloudy contributions reveals that the combined
O-B structures are dominated by the Rayleigh-clear signal (Fig. 6.7e and f), particularly
in the upper levels. The results suggest an orbital- and vertical-dependent bias that
is rather homogeneous with latitude, except maybe near the TEJ where both orbits
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Figure 6.7: Latitude-height cross-sections showing July-September mean differences
between the analysis fields of the zonal wind component Aeolus minus Control from
the ECMWF2020 OSE at 06 UTC (a) and at 18 UTC (b). Subsequent panels show
corresponding HLOS first guess-departures for Rayleigh-clear and Mie-cloudy combined
(c,d), Rayleigh-clear (e,f) and Mie-cloudy (g,h). All fields are averaged between 30°W
and 30°E. The grey and black contours correspond to zonal wind fields of 6 and
9 ms−1, respectively, from the analysis with Aeolus. Solid lines indicate westerlies,
dashed ones easterlies. HLOS winds from the descending track are multiplied by -1 to
correspond with the sign convention of the model coordinate system. From Borne
et al. (2023) under the Creative Commons Attribution 4.0 International
License (CC BY 4.0).

show the same O-B sign. The Mie-cloudy signal (Fig. 6.7g and h), in contrast, is
more consistent between ascending and descending tracks in the convectively active
region, while the BB and SAL regions have opposite signs, which is also evident in
the combined fields (Fig. 6.7c and d). The reason for this diurnal difference over the
aerosol-loaded region is not fully understood and could be related to diurnal wind effects
or instrumental factors associated with the presence of aerosols. It is worth noting that
in the area of the TEJ all channels and orbits show the same-sign departure, which
combined with the assumed low background error (Fig. 6.3h), leaves a strong imprint
on the analysis. For the AEJ-North – and particularly its southern flank, the situation
is considerably more complicated with positive differences in Rayleigh-clear at 06 UTC
and Mie-cloudy at 18 UTC but negative differences in Rayleigh-clear at 18 UTC and
mixed signals in Mie-cloudy at 06 UTC. For comparison, Fig. 6.8 shows the same
analysis but for the DWD2020 OSE. In stark contrast to ECMWF2020 (Fig. 6.7), the
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Figure 6.8: As Figure 6.7 but for the DWD2020 OSE.

mean analysis differences for morning and evening are almost identical (Fig. 6.8a and
b) – and thus also closely agreeing with Fig. 6.4g. Somewhat surprisingly, however,
the O-Bstatistics for Rayleigh-clear and Mie-cloudy combined (Fig. 6.8c and d) show a
rather low agreement with the analysis differences. This is particularly true in the upper
troposphere and lower stratosphere. The most striking example is the southern part of
the TEJ region, where analysis differences are strongly positive, a signal not matched in
O-B statistics, particularly not at 06 UTC. The exact reasons for this discrepancy are
not fully understood, but could be related to the background error covariance in this
region, which spreads the observational information in space, or through a non-linear
dynamical response in the forecast model. Irrespective of this, the combined O-B data
reveal marked diurnal differences that structurally resemble those seen for ECMWF
(Fig. 6.7c and d), suggesting that the reason lies in the observations rather than the
modelling systems. As for ECMWF, the combined HLOS signals are dominated by the
Rayleigh-clear contribution (Fig. 6.8e and f) but for DWD the dominance is even clearer.
Ascending and descending tracks are somewhat more consistent than for ECMWF, likely
due to the vertical-dependent bias correction used in the DWD2020 OSE. The Mie-
cloudy O-B statistics (Fig. 6.8g and h) structurally resemble those in the ECMWF2020
OSE, further supporting the conclusion that the O-B structures found in Fig. 6 and 7
are largely independent from the used modelling framework.
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Figure 6.9: Latitude-height cross-sections showing July-September mean HLOS first
guess-departures for Rayleigh-clear from the ECMWF2019 OSE with bias-correction
(BC, top row) and without BC (second row) at 06 UTC (left column) and at 18 UTC
(right column). These are analogous to Figs. 6e and f for the ECMWF2020 OSE.
Corresponding differences between the analysis fields of the zonal wind component
Aeolus minus Control are shown in the bottom two rows. These are analogous to
Figs. 6a and b for the ECMWF2020 OSE. All fields are averaged between 30°W and
30°E. The grey and black contours correspond to zonal wind fields of 6 and 9 ms−1,
respectively, from the analysis with Aeolus. Solid lines indicate westerlies, dashed ones
easterlies. HLOS winds from the descending track are multiplied by -1 to correspond
with the sign convention of the model coordinate system. From Borne et al. (2023)
under the Creative Commons Attribution 4.0 International License (CC
BY 4.0).

Next we will explore to what extent a simple bias correction can cure some of the
issues found in the ECMWF system for JAS 2020 (see discussion of Fig. 6.7). It was
found that the atmospheric temperature is a good predictor for the Rayleigh-clear bias.
Therefore, a temperature-dependent bias correction was tested in the ECMWF2019BC
OSE (see Table 1). Figure 6.9 shows the O-B statistics for the Rayleigh-clear channel
for the descending and ascending tracks without (ECMWF2019, Fig. 6.9a and b) and
with (ECMWF2019BC, Fig. 6.9c and d) bias correction. These figures are analogous to
Fig. 6.7e and f, indicating differences between the two years. Particularly for 06 UTC,
the O-B structures are very similar, showing consistency despite the degradation of
the instrument, while at 18 UTC positive differences are evident in the region of the
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southern STJ and to the south of the northern STJ in 2020, which are much weaker in
2019.

Comparing O-B statistics with and without bias correction (top vs. second row in
Fig. 6.9) reveals an overall positive effect, reducing the magnitude of the differences
almost everywhere. Some regions, mostly in the lower levels, even change sign, leading to
a better agreement between the two tracks. The weaker TEJ signal at 18 UTC increases
somewhat to better match that at 06 UTC. The temperature-dependent bias correction
in the ECMWF2019BC OSE leads to diurnal differences of a similar magnitude as with
the vertical-dependent bias correction applied in the DWD2020 OSE (cf. Fig. 6.9c and
d with Fig. 6.8e and f).

Figure 6.9e-h show the corresponding analysis differences with and without bias correction
in analogy to Fig. 6.7a and b for JAS. 2020. First comparing the two years with each
other, we can see that the analysis impact is generally larger in 2019 than in 2020,
particularly at 06 UTC. This is consistent with the assumed lower observational errors
(shading in Fig. 6.3a, b, d and e) and the higher number of counts in 2019 (grey and black
lines in the same panels). Comparing O-B statistics (Fig. 6.9a and b) with corresponding
analysis differences (Fig. 6.9e and f), first both without bias correction, shows again
some structural agreement but much lower amplitudes in the latter, broadly consistent
with the results for 2020 (see Fig. 6.7). Applying the bias correction (Fig. 6.9g and h)
clearly amplifies the impact of the Aeolus observations on the analysis for both tracks
and particularly in and to the south of the TEJ and AEJ-North. This results in a
much better agreement of the Aeolus effect between ascending and descending orbits,
underlying the overall success of the bias correction.

Finally, in order to further investigate diurnal patterns in the different datasets analysed
up to this point, we compare vertical profiles of the mean difference between 18 UTC
and 06 UTC averaged horizontally over West Africa (10°S–20°N, 30°E–30°W) between
the four OSEs (Table 1) and with ERA reanalysis data as a reference (Fig. 6.10).
The chosen region is restricted to the low-latitude mean easterly wind features TEJ,
AEJ-North and AEJ-South and excludes the two STJs but does include the low-level
southwesterly Monsoon flow (see Fig. 2e for example). Nevertheless, since several wind
features are averaged in this region, the diurnal patterns found may be the result of
a mixture of different meteorological phenomena. The first row of Fig. 6.10 compares
ERA5 reanalysis and OSE analysis fields with and without Aeolus data, all projected
on the Aeolus HLOS. The most prominent feature in ERA5, with an amplitude of more
than 1 ms−1, occurs at 200 hPa, indicating the strengthening of upper-level easterlies
at 18 UTC as also observed over northern India in the evening (Krishnamurti and
Kishtawal, 2000; Mohan and Rao, 2016), which is related to the diurnal response of
convective outflows to surface heating.

Between 800 and 700 hPa, an opposite but much weaker diurnal pattern is apparent,
which likely reflects the decrease in wind speed in the AEJ-North (and possibly to a lesser
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Figure 6.10: Vertical profiles of diurnal differences 18 UTC minus 06 UTC of
HLOS winds for the four OSEs (Table 1; see column labels) averaged over West
Africa (30°W–30°E, 10°S–20°N) during July-September. (a–d) Analysis fields, (e–
h) Aeolus Rayleigh-clear and (i–l) Mie-cloudy observations with their analysis- and
background-equivalents. Corresponding fields from the ERA5 reanalysis are plotted in
all panels for reference. From Borne et al. (2023) under the Creative Commons
Attribution 4.0 International License (CC BY 4.0).

extent EJ-South) during the afternoon, when the planetary boundary layer grows into
the lower parts of the jet and slows it down through turbulent mixing (Agustí-Panareda
et al., 2010). Finally, the low-amplitude negative signal around 900 hPa likely reflects
the increase of monsoonal westerlies in the course of the night peaking shortly before
sunrise at 06 UTC (Parker et al., 2005a,b; Kalapureddy et al., 2010; Kalthoff et al.,
2018). The diurnal pattern at 1000 hPa should be regarded with some caution, as it
will be under ground for larger parts of the averaging domain. In general, the ECMWF
analysis fields with (grey solid lines in Fig. 6.10a–c) and without (red solid lines in
Fig. 6.10a–c) Aeolus data reproduce the ERA5 pattern, except for the ECMWF2020
OSE in the lower troposphere (Fig. 6.10c), where the reanalysis and analysis show some
discrepancy. An effect of Aeolus on the representation of the diurnal cycle in the analysis
fields, however, is at best marginal. For the DWD2020 OSE (Fig. 6.10d) differences
between the control analysis and ERA5 are substantially larger, with the former showing
a less pronounced diurnal cycle throughout the troposphere. Assimilating Aeolus data
has a relatively large influence and leads to a better agreement with ERA5, particularly
in the TEJ region. This improvement is much more evident from Fig. 6.10 than from
the vertical profiles shown in Fig. 6.8a and b.
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The second row of Fig. 6.10 compares Rayleigh-clear HLOS observations with their
background and analysis counterparts in HLOS space. The diurnal patterns in the
background fields in all OSEs (Fig. 9e–h, blue dashed line) are similar to the ERA5
reanalysis below 200hPa, while above they display stronger easterly winds at 18UTC
compared to 06UTC, suggesting that the Rayleigh-clear HLOS space may be representa-
tive of the regional diurnal cycle in the mid-troposphere. This is particularly true for the
2019 OSEs, while some inconsistencies around 600hPa are apparent for the 2020 OSEs.
However, the corresponding HLOS observations without temperature bias correction
(blue solid lines in Fig. 6.10e, g and h) does not follow the same diurnal cycle with a
generally stronger easterly component in the mid-troposphere at 18 UTC compared
to 06 UTC, reversing the sign of the expected diurnal cycle of the AEJ-North, while
still having a realistic representation of the diurnal cycle of the TEJ. The analyses in
HLOS space (blue dashed lines) are therefore shifted from the background equivalent
towards the HLOS Rayleigh-clear data. When applying the temperature bias correction
as seen in the ECMWF2019BC OSE (Fig. 6.10f), the Rayleigh-clear observation follows
an almost identical diurnal cycle compared to the ERA5 reanalysis and background
equivalent, especially below 200 hPa. Correcting for the temperature bias thus has
a positive effect on the Rayleigh-clear winds and makes them more realistic in the
mid-troposphere below 200 hPa.

Finally the bottom row of Fig. 6.10 shows a corresponding analysis for the Mie-cloudy
channel. The background HLOS model equivalents in the all OSEs (Fig. 6.10i–l, red
dotted lines) do not follow the ERA5 reanalysis closely, with a more pronounced diurnal
cycle near the AEJ-North as well as a stronger TEJ diurnal cycle in 2020 compared to
2019. The magnitude of this discrepancy is generally larger than for Rayleigh-clear data
(Fig. 6.10e–g) and related to the fact that the two channels do not measure the same
wind properties with the same sampling density as discussed in the context of Fig. 6.3.
The diurnal cycle of Mie-cloudy HLOS winds (red dotted lines) in the mid-troposphere
is opposite to that for the Rayleigh-clear HLOS winds. At upper levels Mie-cloudy
HLOS winds show large positive diurnal differences in 2019 and large positives ones
in 2020, with little agreement with the Rayleigh-clear data. As expected, the bias
correction applied in ECMWF2019BC has hardly any effect on the Mie-cloudy HLOS
winds. The analysis counterparts (red dashed lines) are generally not driven in the
direction of the Mie-cloudy observations – sometimes even in the opposite direction –
indicating the dominant effect of the Rayleigh-clear data, also found in the analysis of
Fig. 6.7. Despite the model differences between ECMWF and DWD, Rayleigh-clear
(Fig. 9g-h) and Mie-cloudy (Fig. 9k and l) behave similarly, as do their model and
analysis equivalents.

Exploring background departures of the Aeolus HLOS in the DWD and ECMWF assim-
ilation systems enabled to assess the orbital and channel contribution to the influence
on analysis between ascending and descending orbits. We showed the existence of a
height- and orbital- dependant bias in the Rayleigh-clear channel that has the effect
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of accelerating and slowing down the AEJ-North and TEJ diurnally. This bias is a
likely explanation for the earlier statement in section 6.2.1 that the Rayleigh-clear
measurements pull the DWD2020 and ECWF2020 analyses apart. This is observed
particularly outside the ITCZ region, where the Rayleigh-clear measurements predom-
inate. It should also be noted that even small biases (of the order of 1 ms−1) can
lead to a deterioration of the forecast quality (Horányi et al., 2015). Correcting this
bias, using a temperature-dependent bias corrections allows for better consistency of
Rayleigh-clear winds between ascending and descending orbits. Finally, we showed that
the assimilation of Aeolus brings the DWD analysis closer to both the ECMWF2020
analysis and the ERA5 reanalysis.

6.3 Influence on forecast fields

6.3.1 Background verification against radiosondes

As a first step to understand the impact of Aeolus data on forecast fields, this subsection
evaluates the background fields from the three ECMWF OSEs with actively assimilated
radiosondes measurements using O-B statistics (Fig. 6.11). Corresponding DWD statis-
tics are not shown here as not enough radiosonde data were assimilated in the OSE to
obtain meaningful statistics. In total 11 and 5 radiosonde stations in tropical Africa
were used during July-September 2019 and 2020, respectively (Fig. 6.11i) with only two
common stations (Accra in Ghana and Cabinda in Angola). Figure 6.11d and h show
the number of reports assimilated in the different OSEs, which varies broadly between
500 and 1000 per level with generally more data in 2019 (∼ 850) than in 2020 (∼ 600).
The number of reports are more variable within the lower troposphere. Figure 6.11a–c
shows the mean O-B difference as well as the standard deviation from the ECMWF2020
OSE for absolute errors in zonal and meridional wind as well as the relative improvement
for the total wind speed. The ECMWF first guess has a negative zonal wind bias in
the upper troposphere peaking just above 200 hPa with about -1 ms−1 (Fig. 6.11a),
which indicates a too weak TEJ, as we have shown previously. Aeolus reduces this
bias to a small extent, in agreement with the analysis impact seen in Fig. 6.4e. There
is also a smaller positive bias at midlevels, mostly above 700 hPa, which gets hardly
improved when assimilating Aeolus data. The error standard deviation (solid lines in
Fig. 6.11a) oscillates around 1.5 ms−1. Assimilating Aeolus wind fields leads to some
moderate reductions at upper levels. For meridional wind (Fig. 6.11b), the bias is
small throughout the profile and changes little when Aeolus is assimilated. The random
error has a similar magnitude as that for zonal wind and shows little sensitivity to the
(mostly zonal) Aeolus measurements. Despite this, the assimilation of Aeolus leads to a
mass-weighted vertical average random error reduction for the total wind component of
1.95%, which is vertically consistent (Fig. 6.11c).

Figure 6.11e–g shows the corresponding analysis for 2019 including both OSEs with and
without bias correction. The overall patterns agree reasonably well with 2020 despite
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Figure 6.11: Vertical profiles showing July–September mean (Mn) and standard
deviation (SD) of radiosonde background departures from the Aeolus and control
experiments of the ECMWF2020 OSE for zonal (a) and meridional (b) winds, relative
SD error reduction for the total wind component (c) and number of reports (d) used
to generate the statistics. All fields are averaged over West Africa (20°W–20°E, 10°S–
20°N. The second row shows corresponding fields for 2019 contrasting the OSEs with
and without bias correction (BC). (j) Horizontal map showing the locations of the
used radiosondes in 2019 (blue dots) and 2020 (orange crosses). From Borne et al.
(2023) under the Creative Commons Attribution 4.0 International License
(CC BY 4.0).

the large differences in radiosonde data coverage. The most interesting aspect is the
effect of the bias correction in ECMWF2019BC. Overall improvements from that are
moderate but some positive effects on the random error in zonal wind and the mean
error in meridional wind at upper levels are evident. The vertically averaged relative
improvement shown in Fig. 6.11g is overall smaller than in 2020 with only 0.45% in the
ECMWF2019 OSE and 1.45% in ECMWF2019BC, demonstrating the additional benefit
of correcting the Rayleigh-clear wind temperature-dependent bias. This is particular
due to a reduction of the background deterioration with Aeolus around 200 hPa evident
in ECMWF2019. Overall, a similar magnitude in the reduction of the background error,
peaking in the upper troposphere, was observed in the DACCIWA radiosonde campaign
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in West Africa in June/July 2016 (van der Linden et al., 2020), suggesting that the
assimilation of Aeolus has a comparable effect to a high-resolution radiosonde coverage
over this region in the ECMWF model.

6.3.2 1-4 days forecast verification against ERA5 reanalysis

Finally, we will look at the improvements in longer-term forecasts verified with ERA5
over the entire tropical Africa domain. Figure 6.12 and Figure 6.13 show the relative
reduction of the root mean square error (Root Mean Square Error (RMSE)) of the four
OSEs (Table 4.1) as latitude-height cross-sections for forecast times of 1–4 days and
as single levels at 200 hPa and 700 hPa at +48h forecast time, respectively. As before,
isotachs at 6 ms−1 (grey) and 9 ms−1 (black) are included to identify the main jet
features. In addition, Table 6.1 provides an overview of the relative improvement of the
zonal wind RMSE at 200 hPa and 700 hPa for the whole tropical Africa domain and
specifically for the AEJ-North and TEJ regions.

For all OSEs, we see a predominantly positive influence of Aeolus data for all forecast
lead times. The reduction in RMSE is generally larger for forecasts lead times greater
than 24 hours. In the 2019 ECMWF and DWD2020 OSEs (Fig. 6.12a,b and d), the
largest decrease in RMSE at +24h are found in the lower stratosphere, before gradually
vanishing at higher lead times, while in the ECMWF2020 OSE (Fig. 6.12c) the initial
errors are more spurious, and seem to be preserved at longer lead times. One reason could
be the generally poorer quality of the Aeolus Rayleigh-clear measurements (Fig. 6.3b)
in 2020, when compared to 2019, caused by the aforementioned decreasing atmospheric
path signal. In the ECMWF2019 OSEs with and without bias correction (Fig. 6.12a
and b, Fig. 6.13e and f), the errors at +24h are found in the southern hemisphere at ∼
700hPa between 20°S and 0°, which coincides with a change in wind direction between
the monsoon layer and the midlevel easterlies. With a bin size of 1 km at this height,
Aeolus data can not resolve large vertical gradients and thus may misrepresent the local
dynamics. This region also corresponds to a strong increase in the analysis 700 hPa zonal
wind of ∼ 0.5ms1 when Aeolus is assimilated (Fig. 6.5a and e at 0°). Nevertheless, this
large RMSE is surprisingly not apparent at 700hPa in the ECMWF2020 and DWD2020
OSE (Fig. 6.13g and h).

Other errors over the SAL region at 20°N are also visible in all OSEs at +24h, in particular
over the lower northern part of the AEJ-North around 800 hPa in the ECMWF OSEs
(Fig. 6.12 a,b,c) and the whole northern AEJ-North region in the DWD2020 OSEs
(Fig. 6.12 d). This includes the Intertropical Discontinuity (ITD), which is a confluence
zone between the northeasterly dry and hot Harmattan winds and the southwesterly
moist and cool monsoon flow. This pronounced meridional wind feature is challenging
to resolve with an Aeolus Rayleigh-clear integration length of 87 km.

Furthermore, the AEJ-North is embedded in a dust-loaded region (Fig. 6.1d), which is
subject to larger Mie-cloudy (Fig. 6.3d) and Rayleigh-clear assigned observation errors
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Figure 6.12: Latitude-height cross-sections showing the relative
reduction of the RMSE of zonal wind (i.e. (RMSE(CONTROL)-
RMSE(AEOLUS))/RMSE(CONTROL)×100) for the four OSEs (Table 4.1)
for +24h to +96h lead-time forecasts against ERA5 reanalysis. Cold (warm) colours
indicate improvement (degradation) when Aeolus is assimilated. All fields are
averaged between 30°W and 30°E during July-September. The grey and black
contours correspond to zonal wind fields of 6 and 9 ms−1, respectively, from the
analysis with Aeolus. Solid lines indicate westerlies, dashed ones easterlies. The
brown lines mark the 200hPa and 700hPa levels. From Borne et al. (2023) under
the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Figure 6.13: Horizontal maps at 200 hPa and 700 hPa showing rel-
ative reduction of the RMSE of zonal wind (i.e. (RMSE(CONTROL)-
RMSE(AEOLUS))/RMSE(CONTROL)×100) for the four OSEs (Table 4.1) for +48
lead-time forecasts against ERA5 reanalysis. Cold (warm) colours indicate improve-
ment (degradation) when Aeolus is assimilated. The fields are averaged over July-
September. The grey and black contours correspond to zonal wind fields of 6 and
9 ms−1, respectively, from the analysis with Aeolus. Solid lines indicate westerlies,
dashed ones easterlies. From Borne et al. (2023) under the Creative Commons
Attribution 4.0 International License (CC BY 4.0).
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Table 6.1: Overview of the relative reduction of the zonal wind RMSE for the
four OSEs (Table 1) in the AEJ-North and TEJ regions for +24h to 96h lead time
forecasts verified against ERA5 reanalysis. The fields are averaged within [30°W–30°E;
10°S–20°N] for the TEJ at 200 hPa, [30°W–30°E; 8°N-.-22°N] for the AEJ-North at 700
hPa and [30°W–30°E; 30°S–30°N] for comparison at both levels. Blue (red) numbers
indicate improvement (degradation) when Aeolus is assimilated. The values are
expressed in percent. From Borne et al. (2023) under the Creative Commons
Attribution 4.0 International License (CC BY 4.0).

24 Borne et al.

TABLE 3 Overview of the relative reduction of the zonal wind RMSE for the four OSEs (Table 1) in the
AEJ-North and TEJ regions for +24h to 96h lead time forecasts verified against ERA5 reanalysis. The fields are
averaged within [30°W–30°E; 10°S–20°N] for the TEJ at 200 hPa, [30°W–30°E; 8°N-.-22°N] for the AEJ-North at
700 hPa and [30°W–30°E; 30°S–30°N] for comparison at both levels. Blue (red) numbers indicate improvement
(degradation) when Aeolus is assimilated. The values are expressed in percent.

Lead time ECMWF2019 ECMWF2019BC ECMWF2020 DWD2020

+24h +1.98 +2.45 +1.77 +0.74
200hPa (TEJ) +48h +1.67 +1.89 +1.07 +1.6

[30°W-30°E;10°S-20°N] +72h +1.77 +2.35 -0.06 +0.89
+96h +1.81 +2.30 -0.10 +0.20

+24h +0.1 +0.01 +0.80 -0.34
700hPa (AEJ-North) +48h +0.75 +0.24 +1.30 -0.74

[30°W-30°E;8°N-22°N] +72h +0.37 +0.28 +1.03 -0.78
+96h +0.25 +0.42 +0.22 -0.83

+24h +2.04 +2.39 +1.66 1.51
200hPa +48h +2.06 +2.42 +1.44 +2.52

[30°W-30°E;30°S-30°N] +72h +1.97 +2.53 +0.96 +1.34
+96h +1.55 +2.35 +1.09 1.55

+24h -1.4 -1.69 +0.34 -0.06
700hPa +48h -0.08 -0.44 +0.93 +0.83

[30°W-30°E;30°S-30°N] +72h +0.09 +0.10 +0.86 1.31
+96h +0.20 +0.52 +0.80 +1.3

4 | CONCLUSIONS

This study addresses the impact of Aeolus wind observations on the West African Monsoon (WAM) circulation in
the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF)
and in the global non-hydrostatic ICOsahedral Model (ICON) of the German Weather Service (DWD). In particular,
we investigated the crucial role of Aeolus in terms of its ability to complement the sparse conventional observing
network and improve the low predictability in this region. The complementary wind observations in clear and cloudy
atmospheric conditions are of great importance in a region with a broad range of cloud features and aerosol types.
Accordingly, we assessed and compared the representation of theWAMwind subsystems in the analysis and forecast
fields of four observing system experiments (OSEs) across both analysis and forecast fields during the 2019 and 2020
boreal summers. The main conclusions from these investigations are:

1. Aeolus Rayleigh-clear and Mie-cloudy channels complement each other well in a complex region like the WAM,
which is characterised by many different cloud types and aerosols. Rayleigh-clear primarily samples in cloud-
free regions surrounding the Intertropical Convergence Zone (ITCZ) and broken cloud scenes within it, while
Mie-cloudy measures in the heart of the convective region across a range of different cloud types such as cumu-
lonimbus, congestus or altocumulus clouds, as well as aerosols from biomass burning and within the Saharan Air
Layer. These different atmospheric components are embedded in the main circulation features of the WAM and

(Fig. 6.3a) due to reduced signal-to-noise ratio. These errors could also be insufficient to
fully compensate for the large model errors related to the stochasticity of convection and
the coupling between atmospheric dynamics and Mesoscale Convective Systems (MCSs).
However, the general positive influence of Aeolus over the AEJ-North region for longer
lead-times in the ECMWF OSEs (see Table 6.1) is promising for further studies exploring
the impact of Aeolus on the propagation of African Easterly Waves (AEWs) and related
precipitation.

As shown in Table 6.1, the upper troposphere shows a positive impact for all OSEs
with an improvement of more than 2% for most lead times, especially in the southern
and northern part of the TEJ (Fig. 6.12, Fig. 6.13), despite being more neutral for the
ECMWF2020 OSE. The ECMWF2019BC OSE also shows a systematic improvement
in the upper troposphere as well as in the TEJ region, indicating the added value of
using a temperature-dependent bias correction for Rayleigh-clear winds. Those regions
correspond to cloud-free outer branches of the Hadley cell, while the RMSE is more
patchy within the TEJ convective outflow region. The general better forecast quality in
the upper troposphere can possibly be related to the denser sampling together with the
smaller measurement uncertainties.
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Our findings are consistent with Rennie et al. (2021), who have highlighted the benefits
of assimilating Aeolus wind observations in the tropics and the southern hemisphere
with peak improvements in the tropical upper troposphere. In addition to wind, they
also find improvement in other variables such as temperature or humidity. Žagar et al.
(2021) also reported that the improvement observed in the upper troposphere can partly
be attributed to the improvement of the representation of vertically propagating Kelvin
waves in layers with a strong zonal wind shear forecast. Lastly, the improvements in the
predictions are significant and consistent across the African region, despite the complex
meteorology of the WAM and the assumed random errors and biases of the Aeolus
measurements. Beyond this, it should be noted that the forecast improvement observed
in Africa may depend on upstream areas where the influence of Aeolus on the analysis
is more direct and propagates over time.

6.4 Concluding remarks

This study addresses the impact of Aeolus wind observations on the West African
Monsoon (WAM) circulation in the Integrated Forecasting System (Integrated Fore-
casting System (IFS)) of the European Centre for Medium-Range Weather Forecasts
(ECMWF) and in the global non-hydrostatic ICOsahedral Model (Icosahedral Nonhydro-
statico (ICON)) of the German Weather Service (DWD). In particular, we investigated
the crucial role of Aeolus in terms of its ability to complement the sparse conventional
observing network and improve the low predictability in this region. The complementary
wind observations in clear and cloudy atmospheric conditions are of great importance
in a region with a broad range of cloud features and aerosol types. Accordingly, we
assessed and compared the representation of the WAM wind subsystems in the analysis
and forecast fields of four observing system experiments (OSEs) across both analysis
and forecast fields during the 2019 and 2020 boreal summers. The main conclusions
from these investigations are:

1. Aeolus Rayleigh-clear and Mie-cloudy channels complement each other well in a
complex region like the WAM, which is characterised by many different cloud types
and aerosols. Rayleigh-clear primarily samples in cloud-free regions surrounding
the Intertropical Convergence Zone (ITCZ) and broken cloud scenes within it,
while Mie-cloudy measures in the heart of the convective region across a range of
different cloud types such as cumulonimbus, congestus or altocumulus clouds, as
well as aerosols from biomass burning and within the Saharan Air Layer. These
different atmospheric components are embedded in the main circulation features
of the WAM and allow for a good representation of the mid-level AEJ-North and
upper troposphere TEJ in both channels.

2. The assignment of observation errors for the HLOS wind measurements at ECMWF
and DWD are determined using Observation minus background (O-B) statistics
and Desroziers diagnostics but follow different formulations. While ECMWF
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assumes values mainly based on the L2B processor instrument error combined
with representativeness error estimates, the DWD assigned observation errors are
based on a look-up table for different altitude levels. In the ECMWF OSEs, the
assigned Rayleigh-clear observation error is largest within the convective active
region and can be attributed to a larger signal-to-noise ratio in broken cloud
scenes. In the ECMWF2020 OSE, the assigned observation error in the Rayleigh-
clear channel is larger compared to 2019, and can be explained by the decreasing
atmospheric path signal. For Mie-cloudy, the largest errors are visible in aerosol
dominated regions (BB and SAL) compared to cloudy regions. The overall assigned
error for DWD is smaller than for ECMWF, with a general height-dependent error
yielding similar values for Mie-cloudy and Rayleigh-clear winds.

3. Throughout the different OSEs, Aeolus changes the representation of the main
zonal wind features of the WAM. First, a weakening of the southern edge of
the AEJ-North is apparent in all ECMWF OSE analyses. This weakening is
accompanied by a strengthening of the AEJ-North towards the eastern part of
the Sahel in the ECMWF 2019 OSEs. In the DWD OSE, the influence over
the AEJ-North is less pronounced. Secondly, the assimilation of Aeolus data
strengthens the TEJ core by about 0.4 ms−1 in the ECMWF analyses and,
conversely, weakens the southern edge of the TEJ by more than 0.5 ms−1 in the
DWD OSE analysis. This may imply the strengthening/weakening of the updraft
in the convective region, leading to more/less divergence in the upper levels, which
in turn would affect precipitation in the ECMWF or DWD models, respectively.
This will be explored in future studies. Finally, the assimilation of Aeolus brings
the ECMWF and DWD 2020 analyses closer together, in particular in the upper
ITCZ and southern TEJ region, which is dominated by Mie-cloudy measurements
and where the systematic differences between DWD and ECMWF zonal winds
reach 4 m/s. In cloud-free regions, however, the analyses deviate slightly from
each other, which may possibly be caused by the additional vertical-dependant
bias correction present in the DWD OSE.

4. Background departures were analysed to assess the behaviour of the HLOS ob-
servations with respect to the model equivalents and to disentangle the orbital
and channel contribution to the observed analysis differences. Primarily, the
combined Rayleigh-clear and Mie-cloudy departures show a similar structure to
the zonal wind analysis difference. This indicates the presence of a height- and
orbital-dependent bias in the Rayleigh-clear channel, which causes the winds to
speed up in the morning and slow down in the evening. However, correcting this
bias using a temperature-dependent approach shows that the magnitude of this
bias is too small to have a significant influence on the analysis and prediction fields.
Although this influence is small, the temperature bias correction provides a better
representation of the Rayleigh-clear diurnal winds. Despite the model differences
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between ECMWF and DWD, both Rayleigh-clear and Mie-cloudy behave similarly
with respect to their model equivalents.

5. The ECMWF and DWD zonal wind forecasts verified with ERA5 revealed that
Aeolus has a positive influence on the WAM zonal winds. The positive impact is
most notable in the upper troposphere because of denser observation sampling
together with smaller measurement uncertainties. Cloud-free regions exhibit lower
RMSE deterioration relative to cloudy regions, owing to the lower signal to noise
ratio in broken-cloud scenes for Rayleigh-clear winds. Short forecast ranges of
+24h show larger deterioration, possibly due to verification problems in data-sparse
regions. Despite the presence of cumulonimbus clouds, the representation of the
TEJ is positively impacted by Aeolus in most OSEs and lead-times. Although the
AEJ-North also shows improvement, it is more modest compared to the TEJ and
only apparent in the ECMWF OSEs.

6. The radiosonde verification in the ECMWF OSEs over West Africa showed that
the vertically averaged total wind random errors in the 2019 and 2020 OSEs
are reduced by 0.45% and 1.95%, respectively, with the effects peaking in the
upper troposphere. The reduction of the latter would be comparable to a 1-2 year
average reduction in the RMSE vector wind error (at 250 and 850 hPa) of the
ECMWF +44h forecast verified against radiosondes in the tropics (Haiden et al.
(2021), Fig. 17). The improvement is raised to 1.45% in the 2019 OSE, when a
temperature-dependent bias correction in the Rayleigh-clear channel is applied,
highlighting the usefulness of the correction.
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7. Impact of Aeolus wind observations
on the representation of equatorial
waves

Equatorial Waves (EWs) are an important source of variability and predictability in the
tropics. In this chapter we explore the benefits of Aeolus in improving the representation
of EWs by examining the impact of Aeolus on both dynamical and precipitation fields
in the two European Centre for Medium-Range Weather Forecasts (ECMWF) and
Deutscher Wetterdienst (DWD) systems. We then investigate the dynamical mechanisms
that contribute to these improvements by analysing a high-impact event in the DWD
system observed over the Pacific associated with the El Niño-Southern Oscillation
(ENSO) phase change from neutral to La Niña.

7.1 Influence of Aeolus on equatorial wave predictions

In this section, the impact of Aeolus on the representation of EWs in both ECMWF and
DWD analyses and forecast fields is investigated. EWs are identified using the Wheeler
and Kiladis (1999) (WK) and Yang et al. (2003) (YANG) methods (see section 4.5) for
zonal wind fields in the upper and lower troposphere over the tropical belt (24°S-24°N)
during July-September 2021. EWs were also identified from precipitation fields, which
is only possible when using the WK method.

7.1.1 Impact in the ECMWF forecasting system

Figure 7.1 shows the relative error reduction in the zonal wind fields and related
EW signals in both the ECMWF2020 OSE analysis and forecast fields relative to the
ERA5 reanalysis. Interestingly, the raw and EWs analyses including Aeolus (EXP)
are further apart from the ERA5 reanalysis when compared to the control (CTRL).
This phenomenon may be the result of the lack of observational data in the tropics for
direct comparison, which can can lead to a verification problem. Indeed, the absence
of Aeolus in ERA5 brings CTRL closer to ERA5, as both assimilate a similar set of
observations. In general, the greatest improvement occurs in the upper troposphere (200
hPa), with raw forecast fields showing an error reduction of up to 1% for a lead time
of +72h. This improvement in prediction is related to forecast improvements in most
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Figure 7.1: Relative reduction in Root Mean Square Error (RMSE) of zonal wind
analysis and forecasts filtered for different EW types for the ECMWF2020 Observing
System Experiment (OSE) compared to the ERA5 reanalysis at 200 hPa (a) and
850 hPa (b). The fields are averaged between 23°N and 23°S during the period
July-September 2020. The EWs are identified using both Wheeler and Kiladis (1999)
(WK) and Yang et al. (2003) (YANG) methods.

.

wave types using both WK and YANG methods. In particular, WK Kelvin and the
slower wave types WK Equatorial Rossby waves (ER), YANG Equatorial Rossby wave
with meridional mode number 1 (R1), and WK Madden-Julian Oscillation (MJO) show
error reductions on longer lead times (up to +144h), while WK Mixed Rossby gravity
waves (MRG) and WK TD result in error reductions on shorter time scales (up to +72h).
Interestingly, Kelvin waves isolated with the YANG method show almost opposite skill
changes to those identified with the WK method. The reason for these discrepancies is
unknown, but may be due to the fundamentally different methods used to identify the
waves. In particular, during the boreal summer, Kelvin wave propagation can be shifted
off-equatorially, which can be a limitation for the YANG method. Indeed, the latter uses
a spatial constraint when projecting the dynamical fields onto theoretical wave patterns,
which restricts its ability to capture off-equatorial Kelvin wave propagation. Overall,
the error reduction for meridional winds and related EWs is more modest than for zonal
winds (not shown here). In the lower troposphere (850 hPa), the improvements are more
mixed. The error reductions up to +72h in the wind fields are mostly related to WK
ER and WK MRG. Again, discrepancies in the skill of similar wave types obtained by
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Figure 7.2: Relative reduction in RMSE of zonal wind (a) and associated EWs (b-f)
at +48h forecast time for the ECMWF2020 OSE compared to the ERA5 reanalysis at
200 hPa. The EWs are identified using the WK methodology.

different methods may be related to the level of confidence in the results or to variations
related to the methodology used.

To identify how the skill varies across different regions in the tropics, Fig. 7.2 shows
the error reductions of the +48h zonal wind forecast for EWs as identified by the WK
method. The skill change of the raw field is mixed across the tropics with small scale
noise, especially over the Maritime Continent and Indian Ocean region. However, the
Atlantic region, the South American continent and some parts of the Pacific Ocean show
noticeable increases in the forecast skill of up to 15%. This enhancement is associated
with error reductions in Kelvin waves, ER, MJO and MRG wave types. Although the
MRG and ER are EWs, it should be noted that extratropical Rossby waves originating
from mid-latitudes can interact and interfere with them, especially in the outer areas
of the tropics. Slight degradation is noticeable for Tropical Disturbances (TDs), but
this wave type usually does not play an important role in the dynamics of the upper
troposphere.

Finally, we investigate the relationship between forecast improvements of EWs isolated
using zonal wind fields with EWs identified from precipitation forecasts (see Fig. 7.3).
First, somehwat disappointingly, we find that Aeolus improves the RMSE of precipitation
forecasts by up to 0.1% on average for a forecast time of +24h, with no improvement
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Figure 7.3: Relative reduction in RMSE of precipitation forecasts and associated
EWs for various lead times of the ECMWF2020 OSE verified against Global Precipi-
tation Mission (GPM) Integrated Multi-Satellite Retrievals for Global Precipitation
Measurement (IMERG) precipitation product. The fields are evaluated over the
tropical domain between 23°N and 23°S. The various EWs are determined using the
WK method.

for longer forecast times. The RMSE, although often used as a verification metric, is
not optimal for rainfall verification. Due to the skewed distribution of precipitation,
small errors on non-event days can have a disproportionate effect on the overall error
compared to larger precipitation events. Another problem is that when forecasting a
shift of a feature with strong gradients, the forecast s penalised twice, for missing the
feature in the correct location and for the false alarm in the wrong spot. Nevertheless,
in this setup, the verification is performed on a 1° grid resolution, hence an improvement
of the RMSE can still be considered a positive outcome in terms of averages reduction
of the error magnitude. The RMSE of EWs derived from precipitation is less prone
to such issues, since the rainfall fields are smoothed in time and space. Most notably,
the largest and longest (up to +144h) error reduction are visible for the Kelvin wave
type and the MJO, reaching up to 1% improvement. This observed improvement is
coherent with the improvements observed for EWs identified from zonal wind forecasts,
suggesting a good representations of the coupling between dynamics and convection for
those wave types. Other improvements are visible for the MRG wave type, while TD
and ER show some degradation on short-range predictions. This degradation may be
the reason for the relatively short +24h lead time rainfall forecast performance.
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Figure 7.4: Same as Fig. 7.1, but for the DWD2020 OSE.

7.1.2 Impact in the DWD forecasting system

Now the impact of Aeolus on EW predictions in the DWD2020 OSE is explored. Fig.
7.4 shows the relative RMSE reduction of DWD zonal wind forecasts and related EWs
in the tropics. The observed improvement in forecasts field is very large, when compared
to the ECMWF2020 OSE (Fig. 7.1). At 200 hPa, the error reduction in the raw fields
reaches more than 4% at +24h lead time before gradually decreasing to 1% improvement
at +144h lead time. These improvements are related to error reduction in most EWs,
regardless of the wave identification method used. The biggest improvements are in
WK Kelvin, YANG Kelvin, WK ER and WK MJO, the latter achieving over 5% error
reduction up to +144h. At shorter lead times, improvements are also observed in WK
MRG and YANG Westward moving Mixed Rossby Gravity wave (WMRG), YANG R1.
Curiously, the improvements in WK MRG and YANG WMRG have a similar magnitude
in the case of DWD, while they exhibit a very different skill in the case of ECMWF.
In the lower troposphere (850 hPa), we observe a consistent improvement in the raw
zonal wind forecast between +24h and +144h forecast time of about 1% on average.
The corresponding error reduction in the predictions of EWs is of similar magnitude
and is consistent across wave types regardless of the method used. Finally, note that
the analyses at both 200 and 850 hPa approach to the ERA5 reanalysis when Aeolus is
assimilated. This behaviour is in contrast to what is observed for the ECMWF2020 OSE.
The reasons for this are unknown, but could be related to the large model differences
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Figure 7.5: Same as in Fig. 7.2, but for the DWD2020 OSE.
.

between DWD and ERA5 as well as the different amount and nature of the assimilated
data in each system.

Next, we examine the regional perspective on the impact of Aeolus in the DWD2020
OSE. Fig. 7.5 shows the horizontal impact of Aeolus on the zonal wind and associated
EW forecasts at +48h and 200 hPa. In the raw zonal wind field (Fig. 7.5a), it is evident
that the improvement varies region-wise. The largest improvements are observed over
the Atlantic Ocean in the winter Hadley cell region and over the East Pacific and South
American continents, exhibiting error reductions exceeding 20%. Interestingly, the
improvements do not correspond to warm and humid regions, such as the Intertropical
Convergence Zone (ITCZ) or the Maritime Continent Warm Pool. Improvements are
more pronounced in drier and colder sea surface temperature (SST) regions such as the
South Atlantic and Eastern Pacific. The region of maximum improvement occurs over
the eastern Pacific and correspond exactly to the timing of the ENSO phase change
between the neutral phase and the La Niña phase (Martin et al., 2023). The latter is
associated with colder SST, making it the coldest region in the tropics. The improvement
in the zonal wind forecast appears to be related to large improvements in the Kelvin and
ER forecasts. Improvements associated with the MJO are also evident, but more noisy,
while TD does not show any improvements, as expected, since this wave type does not
affect the dynamics of the upper troposphere much. MRG also show improvements, but
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Figure 7.6: As in fig. 7.3, but for the DWD2020 OSE.
.

to a lesser degree. Again, note that MRG and ER can be influenced by non-tropical
Rossby wave signals.

Finally, we examine the influence of Aeolus on rainfall and associated EW forecasts (Fig.
7.6). First, the raw precipitation forecasts show progressive improvement with lead time,
ranging from 0% error reduction at +24h to 0.8% at +144h. The improvements are
related to error reductions in Kelvin, TD, and ER wave types during longer lead times.
While MRG waves show moderate forecast improvement, MJO reveals negative skill at all
lead times except for the +24h forecast step. This deterioration in precipitation-filtered
MJO forecasts accompanied by improvement in zonal wind-filtered MJO forecasts (Fig.
7.4) indicates that the coupling of the MJO with convection is not well represented in
the DWD forecasting system. This point needs further investigation in the future.

7.2 Case study in the DWD forecasting system

Having identified the regions where the impact of Aeolus is particularly strong in
the DWD2020 OSE, various underlying mechanisms contributing to the observed
improvements are now being investigated. In particular, we study the strong impact
observed over the Pacific Ocean, which occurs simultaneously with the ENSO phase
change from neutral to La Niña.

7.2.1 Observed impact

Fig. 7.7 shows the temporal evolution of the vertical profile of zonal wind of ERA5 during
July-September 2020 (a) together with the mean difference of EXP minus CTRL (b) and
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Figure 7.7: Time-altitude cross-section of zonal wind from ERA5 (a), mean difference
Aeolus (EXP) - Control (CTRL) of +48h zonal wind forecast from the DWD2020 OSE
and relative reduction in RMSE of the +48h zonal wind forecast verified against ERA5
zonal wind. The fields are averaged over the eastern Pacific region [0°-10°S,100°W-
80°W]. The vertical dotted lines represent the period of maximum impact of Aoelus
between 8 August 2020 and 13 August 2020.

the +48h forecast error reduction (c) over the eastern Pacific [0°-10°S, 100°W-80°W].
The zonal wind in the upper level shown in Fig. 7.7a reveals a weekly alternation
between easterly and westerly winds, as opposed to the lower level where the wind
direction is predominately easterly. This change in wind direction is primarily related to
the focus region being in a crossover zone between the meridional upper branch of the
Hadley cell and the westerly subtropical jet. In this in-between region, changes in the
wind direction can be attributed to a combination of factors, such as atmospheric waves
and teleconnection effects. The low-level easterlies are predominantly related to trade
winds. Following Martin et al. (2023) the phase change to La Niña occurred around
8 August 2020, when the SST anomaly exceeded the -0.5 K threshold. At this time,
large changes in vertical zonal wind shear are visible in the Upper Troposphere and
Lower Stratosphere (UTLS) region (Fig. 7.7a, 400-150 hPa), with a dipole-like structure
corresponding to the mean wind differences between the CTRL and EXP +48h zonal
wind forecast, exceeding 10 ms−1 and lasting about a week. These observed differences
are associated with a particularly high impact (Fig. 7.7c) in the same period and domain,
nearing almost 100% error reduction. Before and after the ENSO-shift period, which
occurred during 8 - 13 August 2020, some dipole-like changes are also apparent in the
UTLS, concomitant with high error reductions, although less pronounced compared to
the ENSO phase transition period.
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Figure 7.8: Vertical profile of the Aeolus Rayleigh Clear wind observation along the
Horizontal Line of Sight (HLOS) (solid blue line) and corresponding model-equivalents
of the EXP (blue dashed line) and CTRL (blue dashed line) experiments of the
DWD2020 OSE (a); zonal wind predictions for different lead times of the CTRL (b)
and EXP (c) experiments of the DWD2020 OSE. The black solid line represents the
ERA5 zonal wind vertical profile. The fields are averaged over the eastern Pacific
[0°-10°S, 100°W-80°W] during the period of greatest impact of Aeolus data between 8
and 13 August 2020.

Figure 7.8 specifically examines the area of highest impact occurring between 8 and 13
August, demarcated with dotted lines in Fig. 7.7. Fig. 7.8a shows the vertical zonal wind
profile of ERA5 (black, continuous) together with the Aeolus Rayleigh-clear HLOS wind
and the corresponding first-guesses of the run including Aeolus (EXP, blue dashed) and
the control run (CTRL, blue dashed). The inspected region features pronounced vertical
wind shear, with the zonal wind undergoing five changes in wind direction throughout
the troposphere. Interestingly, the Aeolus and ERA5 wind fields are nearly identical,
although the Rayleigh clear measurement slightly exceeds the 400 hPa ERA5 wind
peak by about 2 ms−1. The corresponding Mie-cloudy profile is not shown here as it is
mainly sampling at the top of the boundary layer, indicating clear-sky conditions. The
first-guess in EXP matches the Rayleigh-clear wind profile well, while the first-guess of
CTRL shows large discrepancies with ERA5, especially between 400 and 100 hPa, where
differences up to 5 ms−1 between both first-guesses can be found. The improvement of
the first-guess with respect to ERA5 reanalysis can be attributed to the "cycling effect",
which is an iterative improvement of the first-guess during each Data Assimilation (DA)
cycle. Figures 7.8b and c shows the corresponding zonal wind analysis and forecasts
for different lead times for the CTRL and EXP run, respectively. Generally, it appears
that the improvement of the mean profile persists in the forecasts, as they follow the
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Figure 7.9: Vertical Temperature profile from ERA5 reanalysis (a), and differences
between ERA5 and DWD analyses and forecasts up to +96h lead time for both CTRL
(b) and EXP (c) runs.

shape of the first-guess closely. This leads to dramatic improvements in the 100 - 400
hPa altitude range in the EXP run.

7.2.2 Dynamical scenarios for the observed improvements

The aim of this section is to examine various hypothetical mechanisms that could be
related to the observed improvements during the ENSO phase change from neutral to
La Niña conditions in the eastern Pacific when Aeolus is assimilated into the DWD
system. A plausible mechanism to explain larger errors during this period and time is
that the cooling of the SST leads to a very stable atmosphere with enhanced subsidence
and reduced convective activity. This enhanced stability renders the atmosphere highly
sensitive to even small model errors. Especiallly in the UTLS region, radiative processes,
including greenhouse gases and water vapour, play a crucial role in the temperature and
energy balance. Small variations in temperature or radiative gases can trigger significant
changes in radiative forcing, which is a particular challenge for models to accurately
represent (de F. Forster and Shine, 1997; Forster and Shine, 2002; Zhang et al., 2004).

In addition to this sensitivity, the region of interest is in a remote and data-poor region
of the eastern Pacific. In the absence of in situ observations and satellite measurements,
the DA process can lead to heavy reliance on the model first-guess. Indeed, in situ wind
observations are sparse and most satellite observations are derived from Atmospheric
Motion Vectors (AMVs). The lack of convective activity during La Niña results in lower
cloud cover and unstructured water vapour patterns, which limits the amount of AMVs
measurements. Temperature observations are also available from satellite radiation
measurements, but since there is no geostrophy in the tropics, assimilation of temperature
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data can generally not be used to derive wind information. Especially with the DWD
DA system, the amount of assimilated satellite data is significantly lower compared to
the ECMWF. Moreover, the difference between ECMWF Four-Dimensional Variational
assimilation (4D-Var) and DWD Three-Dimensional Variational assimilation (3D-Var)
DA, which is less effective in extracting wind information from mass observations, as
well as the different model physics between the Integrated Forecasting System (IFS) and
Icosahedral Nonhydrostatico (ICON) may contribute to the lower impact in ECMWF
compared to DWD. Hence, Aeolus likely plays an important role as it is the only
available wind information with vertical resolution in this region, in particular for the
DWD.

Nevertheless, an insufficient representation of the temperature in the model first-guess
can also lead to inaccuracies in the wind estimation. Figure 7.9a shows the vertical profile
of the ERA5 temperature in the focus region. A relatively weak temperature gradient
is evident, with a temperature inversion occurring near the tropopause at 100 hPa.
The corresponding differences between ERA5 reanalysis and DWD2020 temperature
analyses and forecasts are shown for both CTRL (Fig. 7.9b) and EXP (Fig. 7.9c)
runs. First, there are no noticeable improvements nor strong departures in temperature
predictions relative to ERA5 (Fig. 7.9b,c). However, around 250 hPa, we observe an
increase in analysed temperature of 0.5°C of the EXP run with respect to ERA5 (Fig.
7.9c), which corresponds to the lower edge of the high impact region. However, this
change is not related to forecast improvements in temperature in the EXP run (Fig.
7.9c). Thus, the inaccurate first estimate in the CTRL run seems to be mainly a result
of the unavailability of wind observations in this region, which Aeolus can compensate
for by improving the vertical wind shear.

7.3 Concluding remarks

In this chapter, we have investigated the impact of Aeolus data on the propagation
of EWs in the ECMWF and DWD forecasting systems. The aim was to evaluate the
improvements in zonal wind and precipitation forecasts associated with the variation of
different wave types and lead times, and to explore the different mechanisms leading to
the observed improvements.
In this context, we have used two different techniques to isolate EWs in space and time,
namely the Wheeler and Kiladis (1999) (WK) and Yang et al. (2003) (YANG) methods.
The EWs were identified from zonal wind field forecasts using both methods and verified
against the ERA5 reanalysis. In general, the results showed that the impact was larger
in the upper troposphere, with DWD demonstrating a more substantial positive impact
compared to ECMWF. Most notably, at + 24 h forecast lead time, DWD achieved
improvements of more than 4% for most wave types, compared to 1% for ECMWF.
Furthermore, variations in forecast improvement also depend on wave type and lead
time. For DWD, improvements that persist over longer lead times are mainly associated
with the MJO, Kelvin and ER wave types, while for ECMWF they are mostly linked to
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the MJO and Kelvin wave types. In addition, for both forecasting systems, short-term
improvements in the zonal wind forecast were found to be associated with the MRG and
WMRG wave types. Generally the observed improvements vary geographically for both
ECMWF and DWD forecasts, with ECMWF achieving error reductions up to 15% in
the +48h 200 hPa zonal wind forecast over the Pacific Ocean, while DWD achieves up to
+20% error reduction over the eastern Pacific. Furthermore, significant improvements
were also identified over the Atlantic winter Hadley Cell region and the South America.
It is interesting to note that while both the YANG and WK methods show similar
performance for the same wave types for DWD, there is a lack of consistency between
the two methods for ECMWF. This can possibly be the result of the inherent differences
in the used methods and to limited statistical significance.
To explore the coupling between EWs and convection, we also identified EWs on rainfall
predictions using the WK method that were validated against GPM IMERG rainfall
product. The analysis revealed improvements in both ECMWF and DWD forecast,
particularly in the DWD forecasting system. The DWD improvements were particularly
notable in accurate predictions in Kelvin, TD and ER waves types, with error reductions
up to 1 %. For ECMWF, the improvements are mostly visible in MJO and Kelvin
wave types. Strikingly, although the MJO is well represented in the zonal wind fields,
its performance deteriorates in the precipitation fields in the DWD system, while the
opposite is true for ECMWF. This highlights the need to further examine the complex
dynamics of the MJO and its coupling with convection and precipitation in the DWD
system.
The study found that the most significant improvements were seen in cooler and drier
regions of the tropics, especially in the DWD system. In particular, during the ENSO
transition period between neutral and La Nina in the eastern Pacific in August 2020,
the DWD system showed huge error reductions of more than 50%. The observed
improvements were particularly pronounced in the UTLS region, which is characterised
by high wind shear. Remarkably, Rayleigh-clear winds and ERA5 zonal wind in this
region were closely aligned, leading to improvements in the first-guess of up to 5 ms−1

and forecasts at different lead times when Aeolus was assimilated. The limited number of
observations in this remote area, and the limited availability of AMV satellite information
due to low cloud cover and unstructured water vapour patterns, highlights the critical
role of Aeolus in this region to compensate for the lack of conventional observations.
This holds particularly true for DWD, which assimilates fewer satellite observations
than ECMWF, resulting in a larger impact of Aeolus.
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With the advent of Aeolus, a revolution in Numerical Weather Prediction (NWP) has
taken place. Equipped with the first Doppler Wind Lidar (DWL) in space, Aeolus
demonstrated excellent instrumentation and performance. In particular, Aeolus has
addressed the long-standing shortage of wind observations in the tropics by providing
unprecedented Horizontal Line of Sight (HLOS) wind profiles from space. Especially in
this latitude band, wind cannot be inferred from mass information, giving Aeolus the
potential to significantly improve the representation of the tropical circulation in NWP
models. In this thesis, we provided a comprehensive analysis of the impact of Aeolus in
the tropics.

First, we evaluated the quality of Aeolus data products by characterising the errors
of both Rayleigh-clear and Mie-cloudy wind observation types in a complex tropi-
cal atmospheric environment. To achieve this, Aeolus wind observations were vali-
dated against radiosondes that were deployed as part of Joint Aeolus Tropical Atlantic
Campaign (JATAC) across the tropical Atlantic ocean during the months of August-
September 2021. During this period, the atmosphere in this region consists of a mixture
of convective clouds associated with the Intertropical Convergence Zone (ITCZ) and the
West African Monsoon (WAM), and dust aerosols within the Saharan Air Layer (SAL).
This allows to investigate the error sensitivity of Aeolus wind observations with respect
to mineral dust and cloud features.

RQ 1.1 What is the quality of Aeolus L2B wind products in the tropics
in terms of systematic and random errors?
In terms of systematic error, Rayleigh-clear has a mean bias of −0.5 ± 0.2 ms−1

and falls within the European Space Agency (ESA) recommendation of 0.7 ms−1.
An altitude and orbital-dependant bias in the Rayleigh-clear channel was also
found with respect to both radiosondes and model equivalents. For Mie-cloudy, the
systematic error lies on average at −0.9 ± 0.3 ms−1 within the ESA specifications
when the uncertainty of the bias is taken into account. For Rayleigh-clear, the
random error is evaluated accounting for a range of representativeness errors and
lies within 3.8 - 4.3 ms−1 and 4.3 - 4.8 ms−1 for the height ranges of 2 - 16 km
and 16 - 20 km, respectively. In both cases the random errors do not meet the
ESA recommendations of 2.5 ms−1 and 3 ms−1 respectively. For Mie-cloudy the
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random error between 2–16 km amounts to 1.1 − 2.3 ms−1, which lies within the
ESA specifications.

RQ 1.2 What are the error dependencies of Rayleigh-clear in terms of
co-location features and the presence of clouds and dust?
In terms of co-location features, Rayleigh-clear and Mie-cloudy measurements do not
indicate a strong error dependency on the co-location radius, while they are more
sensitive to the co-location time. Both systematic and random errors are altitude
dependent, with larger errors occurring in the lower troposphere, presumably due
to signal attenuation by clouds and dust, and in the upper troposphere, related
to lower air density that causes reduced signal return. The Error Estimate (EE),
which is inversely proportional to the square root of the normalized useful signal,
has a similar error structure. It was found that when the normalised useful signal is
strongly attenuated by the presence of clouds and dust, Rayleigh-clear measurements
exhibit large random errors, which exceed the EEs of Aeolus.

RQ 1.3 What are the error dependencies of Mie-cloudy in terms of
co-location features and the presence of clouds and dust?
Mie-cloudy mainly samples from cloud tops, while most measurements within dust
layers are rejected by the Quality Control (QC). As expected, Mie-cloudy mea-
surements have a decreasing random error with increasing cloud cover, as most
of the strong backscatter signal comes from cloud tops. However, the additional
presence of dust in cloudy conditions increases Mie-cloudy errors, presumably due
to the weak backscattering of dust, mainly below clouds, where the useful signal is
attenuated. This increase in error is not well captured by the Mie-cloudy EE, as it
is similar in magnitude in both dusty and non-dusty conditions.

Having carried out a comprehensive characterisation of Aeolus wind observation errors
in the complex tropical atmosphere, we subsequently assessed the impact of these
observations when assimilated into NWP models. More specifically, we investigated
the impact of Aeolus wind observations on the atmospheric circulation of the WAM
in the operational systems of European Centre for Medium-Range Weather Forecasts
(ECMWF) and Deutscher Wetterdienst (DWD). This geographical area is of particular
interest due to its very low predictability, its very sparse observational coverage and its
socio-economic relevance.

RQ 2.1 Which atmospheric features of the WAM can Aeolus effectively
sample?
Rayleigh-clear primarily samples the clear sky portion of the WAM away from the
ITCZ, especially in the upper troposphere. It also samples the Tropical Easterly
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Jet (TEJ) and to a lesser extent the African Easterly Jet North (AEJ-North), despite
the presence of convective clouds. Mie-cloudy, on the other hand, captures the heart
of the WAM convective systems across the full range of cloud types and aerosols.
As a result, Mie-cloudy provides a good detection of the AEJ-North and TEJ. For
ECMWF, the Rayleigh-clear assigned observation error is largest in the convectively
active region, while for Mie-cloudy it is largest in the aerosol-rich layers. For the
DWD the assigned observational error has comparable values for Rayleigh-clear
and Mie-cloudy winds.

RQ 2.2 What is the influence of Aeolus on wind analysis in the WAM in
the ECMWF and DWD operational systems?
Throughout the four Observing System Experiment (OSE)s, Aeolus brings signif-
icant changes in the representation of the main zonal circulation features of the
WAM. While no significant effect on the AEJ-North is visible in the DWD, the
ECMWF indicates a weakening of the southern edge of the AEJ-North. On the
other hand, the TEJ core exhibits a strengthening of 0.4 ms−1 in the ECMWF
analysis, while the southern edge of the TEJ is weakened by more than 0.5 ms−1

in the DWD analysis. Rayleigh-clear background departures show a height- and
orbital-dependent bias causing the winds to accelerate and decelerate on half-day
basis. Correcting for this bias using a temperature-based approach provides a more
realistic representation of the diurnal cycle.

RQ 2.3 What is the impact of Aeolus on wind forecasts in the WAM in
the ECMWF and DWD operational systems?
Both ECMWF and DWD zonal wind forecasts show a positive impact over the
WAM region. In general, the impact is greatest in the upper troposphere and in
cloud-free regions. In particular, the AEJ-North shows modest improvements in the
ECMWF OSEs, while no positive effects are visible for the DWD. The TEJ, on the
other hand, shows large improvements for most lead times, despite the presence of
cumulonimbus clouds. Verification with radiosondes at ECMWF shows a reduction
in the mean error of 0.45% and 1.95% in 2019 and 2020, respectively. It reaches
1.45% in 2019, when a temperature dependent bias correction in the Rayleigh-clear
is introduced, highlighting the benefit of using such a bias correction.

To gain a more holistic understanding of the impact of Aeolus in the tropics, a further
stage in the investigation was to examine the tropical large-scale dynamics, focusing in
particular on Equatorial Waves (EWs). Specifically, we examine the impact of Aeolus
on EWs predictions using two identification methods, namely the Wheeler and Kiladis
(1999) (WK) and Yang et al. (2003) (YANG) methods applied to the ECMWF and
DWD operational systems.
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RQ 3.1 What is the impact of Aeolus on EWs predictions in the tropics?
In both the ECMWF and DWD forecasting systems, Aeolus contributes positively
to EWs forecasts isolated from zonal wind fields, especially in the upper troposphere,
with stronger improvements in the case of DWD. For DWD, the improvements,
which persist over longer forecast lead times, are mainly related to the Madden-
Julian Oscillation (MJO), Kelvin and Equatorial Rossby waves (ER) wave types,
while for ECMWF they are mainly associated with the MJO and Kelvin waves.
Forecast improvements in the ECMWF reach up to 15% error reduction in the +48h
zonal wind forecast over the Pacific, while in the DWD system, the error is reduced
by more than 20% in the eastern Pacific. Significant improvements are also ob-
served over the Atlantic winter Hadley Cell region and the South American continent.

RQ 3.2 How does Aeolus affect the modulation of tropical rainfall associ-
ated with EWs?
Improvements in EWs identified in precipitation forecasts were found in both the
DWD and ECMWF forecast systems, most notably in the DWD system. For the
ECMWF, the improvements are mainly related to improvements in Kelvin waves
and the MJO, while the DWD improvements are associated with accurate predic-
tions of Kelvin, TD and ER wave types, in some cases reaching error reductions of
1%. Strikingly, the MJO shows a deterioration in performance in the DWD system,
while being very well represented in the zonal wind fields. This discrepancy suggests
the need to further investigate the coupling between the MJO and convection in
the DWD forecast system, underlining the complex EW-dynamics at play in precip-
itation forecasting.

RQ 3.3 What are the dynamical mechanisms that contribute to the
observed improvements?
Notably, the DWD improvements were mostly observed in cooler and drier regions
of the tropics. In particular, the DWD system showed significant improvements
during the El Niño-Southern Oscillation (ENSO) transition from neutral to La
Niña conditions in the eastern Pacific during August 2020. During that time, error
reductions of up to 100% were observed, covering the Upper Troposphere and Lower
Stratosphere (UTLS) region where strong wind shear is found. Aeolus Rayleigh-clear
and ERA5 zonal winds are in close agreement, improving the first guess by up to 5
ms−1 at 150 hPa and forecasts at different lead times over the UTLS. This large
impact is likely related to the lack of observations in the area and the large model
errors making DWD heavily reliant on Aeolus observations.

The presented results provide important new insights into the nature of Aeolus wind data
and their influence in the ECMWF and DWD forecasting systems in the tropics. Firstly,
Calibration/Validation (Cal/Val) activities revealed variations in the quality of Aeolus
wind products with respect to tropical atmospheric constituents. While Mie-cloudy
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observations meet ESA’s recommendations, the quality of Rayleigh-clear observations
is affected by cloud attenuation, causing an underestimation of the corresponding EE.
This holds particularly true for the WAM region, which is characterised by a range of
convective cloud types and an abundance of aerosols. The observed degradation and
EE miscalibration of Rayleigh-clear, combined with differing definitions of the assigned
observation error across both ECMWF and DWD NWP systems, limits improvements
in the representation of wind features in convective regions such as the mid-level
AEJ-North. In particular, the DWD does not take into account the effect of clouds
when defining the assigned observation error. The higher quality of the Mie-cloudy
wind observations does not seem to be sufficient to compensate for this effect. Despite
the sensitivity of Rayleigh-clear data to the presence of clouds and the existence of an
altitude and orbit-dependent bias, significant improvements are observed in the tropics,
particularly over the UTLS region over remote and data sparse regions where clear sky
conditions prevail. These enhancements improve the representation of vertical wind
shear, planetary-scale wave phenomena and associated precipitation forecasts, especially
in the DWD forecasting system. Overall, Aeolus has transformed NWP by providing
ground-breaking and unique wind observations from space, enabling unprecedented
contributions to the understanding of tropical phenomena and assimilation of wind
observations in the tropics.
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9. Outlook

Aeolus, the groundbreaking wind mission launched in 2018, has now completed its five-
year lifetime, exceeding expectations in terms of technological and scientific achievements.
Over its lifetime, the Aeolus mission generated a substantial economic benefit, estimated
at €2.5 billion, exceeding the cost of the mission estimated at €480 million (London
Economics Space Team, 2022). Despite the challenges encountered during the mission,
including complex biases and instrument-related noises, Aeolus achieved significant
Numerical Weather Prediction (NWP) impacts, particularly in the tropics.

To realise the full potential of Aeolus, further refinements in processing algorithms and
instrumentation should be addressed. For instance, a more comprehensive characterisa-
tion of the Rayleigh-clear error can be achieved by including additional noise terms such
as detector and readout noise, and by considering more parameters such as temperature,
pressure and scattering ratio in the definition of the Rayleigh response. Likewise, opti-
mising the Mie core algorithm such as the fitting function or the classification algorithm
can contribute to an improved Mie-cloudy error characterization. Further studies are
needed to better characterise the contribution of the cross-talk effect in the quality of
Rayleigh-clear measurements, particularly in dusty regions. Additionally, the underlying
cause of the observed orbital-dependent bias in the Rayleigh-clear channel remains
unidentified. More research is needed to better understand the factors contributing
to this bias, as the relationship with temperature or wind speed has not been clearly
established. Finally, a better consideration of the Aeolus errors in the processing chain
and in models can be of advantage, especially in the convectively active or aerosol-loaded
regions of the tropics. In particular for the Deutscher Wetterdienst (DWD), the error
characterisation of Rayleigh-clear in clear and cloudy regions in the data assimilation
process can be improved by including the Error Estimate (EE) in the definition of the
assigned observation error.

In terms of NWP impact, further research is needed to investigate the impact of
Aeolus on rainfall forecasts in convectively active regions and relationships with the
propagation of planetary-scale Equatorial Waves (EWs). Especially over the West African
Monsoon (WAM) region, the distinct influence of Aeolus on key circulation features such
as the Tropical Easterly Jet (TEJ) and African Easterly Jet North (AEJ-North) can affect
the propagation of African Easterly Waves (AEWs) and related Mesoscale Convective
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Systems (MCSs). This could also potentially affect the forecast of tropical cyclones and
hurricanes over the downstream Atlantic Ocean, which are closely related to AEWs
(Brammer and Thorncroft, 2015). A positive impact of improving data assimilation in
the WAM may also be observed remotely in the midlatitude Euro-Atlantic region (Bielli
et al., 2010; Gaetani et al., 2011; Pante and Knippertz, 2019) and the Mediterranean
basin (Raicich et al., 2003) through teleconnection effects. Investigating the impact
of Aeolus data on long-term forecasts, from weekly to subseasonal scales, and their
relationship with the propagation of EWs can also provide valuable information for
understanding predictability in the tropics. Finally, the underlying mechanism for the
large wind model errors observed in the DWD system during the El Niño-Southern
Oscillation (ENSO) phase transition should be further clarified, whether these errors
arise from data scarcity or from inherent model-related problems.

The success of Aeolus has now paved the way for its successor, Aeolus-2, which has
already been approved by European Space Agency (ESA). Scheduled for launch in
2029, the Aeolus-2 wind mission aims to surpass the performance of its predecessor
by achieving a more profound impact on global weather forecasting. With projections
already indicating the potential to generate €7.1 billion over its planned lifetime (London
Economics Space Team, 2022), the arrival of Aeolus-2 is very promising in terms of
improving global weather forecasting and benefiting societies around the world. This
PhD work has created a blueprint for analysis in the tropics that could and should be
repeated with Aeolus-2.
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Acronyms

3D-Var Three-Dimensional Variational assimilation

4D-Var Four-Dimensional Variational assimilation

ACCD Accumulation and Control and Calculation Device

ACMF Aeolus Calibration and Monitoring Facility

AEJ-North African Easterly Jet North

AEWs African Easterly Waves

AISP Annotated Instrument Source Packets

ALADIN Atmospheric LAser Doppler INstrument

AMVs Atmospheric Motion Vectors

AOD Aerosol Optical Depth

APF Aeolus Processing Facility

ASPEN Atmospheric Sounding Processing Environment

AVATAR-T Aeolus Validation Through Airborne Lidars in the Tropics

BRC Basic Repeat Cycle

BB Biomass Burning

BRC Basic Repeat Cycle

CADDIWA Clouds-Atmospheric Dynamics–Dust Interactions in West Africa

Cal/Val Calibration/Validation

CAMS Copernicus Atmosphere Monitoring Service

CPEX-AW Convective Processes Experiment-Aerosols and Wind campaign

CT Cloud Type

DA Data Assimilation

DCO Detection Front Offset
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DFG German Research Foundation

DFU Detection Front End Unit

DLR German Aerospace Center

DISC Data Science and Innovation Cluster

DKE Difference Kinetic Energy

DWD Deutscher Wetterdienst

DWL Doppler Wind Lidar

ECMWF European Centre for Medium-Range Weather Forecasts

EE Error Estimate

EDA Ensemble Data Assimilation

EnKF Ensemble Kalman Filter

ENSO El Niño-Southern Oscillation

ER Equatorial Rossby waves

ESA European Space Agency

ESRIN European Space Research Institute

EVAA Experimental Validation and Assimilation of Aeolus observations

EWs Equatorial Waves

EIG Eastward Inertio-Gravity waves

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites

FFT Fast Fourier Transform

FSOI Forecast Sensitivity to Observation Impact

FPI Fabry-Perot Interferometers

GCMs Global Circulation Models

GCOS Global Climate Observing System

GOS Global Observing System

GPM Global Precipitation Mission

GNSS Global Navigation Satellite Systems

GTS Global Telecommunication System

HLOS Horizontal Line of Sight

HRES High-RESolution forecasts
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ICON Icosahedral Nonhydrostatico

IFS Integrated Forecasting System

IMERG Integrated Multi-Satellite Retrievals for Global Precipitation Measurement

ITCZ Intertropical Convergence Zone

ITD Intertropical Discontinuity

JATAC Joint Aeolus Tropical Atlantic Campaign

KE Kinetic Energy

KNMI Royal Netherlands Meteorological Institute

KIT Karlsruhe Institute of Technology

L0 Level 0

L1A Level 1A

L1B Level 1B

L2A Level 2A

L2B Level 2B

L2C Level 2C

LETKF Local Ensemble Transform Kalman Filter

LOS Line Of Sight

LWDA Long-Window Data Assimilation

MADI Mean Absolute Difference

MARS Meteorological Archival and Retrieval System

MCSs Mesoscale Convective Systems

MD Mean Differences

MJO Madden-Julian Oscillation

MRG Mixed Rossby gravity waves

MSG METEOSAT geostationary satellites

NRT Near-Real Time

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NOAA National Oceanic and Atmospheric Administration

NWP Numerical Weather Prediction
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OSE Observing System Experiment

O-B Observation minus Background

O-RS Observation minus RadioSonde

PR Puerto Rico

PCFs Parabolic Cylindrical Functions

PDGS Payload Data Ground Segment

QBO Quasi-Biennial Oscillation

QC Quality Control

RMSE Root Mean Square Error

R1 Equatorial Rossby wave with meridional mode number 1

R2 Equatorial Rossby wave with meridional mode number 2

RBS Range Bin Settings

RMSD Root Mean Square Differences

SAFNWC Satellite Application Facility for supporting NoWCasting and very short
range forecasting

SAL Saharan Air Layer

SCRX Saint CRoiX

SEVIRI Spinning Enhanced Visible and Infrared Imager

SMAD Scaled Median Absolute Deviation

SNR Signal-to-Noise Ratio

SR Scattering Ratio

SST sea surface temperature

STD Standard Deviation

STJ Subtropical Jet

SW Shallow Water

TCWV Total Column Water Vapour

TDs Tropical Disturbances

TEJ Tropical Easterly Jet

TS Tropical Storm

TRMM Tropical Rainfall Measurement Mission
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UPRM University of Puerto Rico at Mayagüez

UTLS Upper Troposphere and Lower Stratosphere

VarEnKF Hybrid Variational Ensemble Kalman Filter

VarQC Variational Quality Check

W2W Waves to Weather

WAM West African Monsoon

WMRG Westward moving Mixed Rossby Gravity wave

WCRP World Climate Research Programme

WIG Westward Inertio-Gravity waves

WMO World Meteorological Organisation
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Symbols

R Rossby radius of deformation
f Coriolis parameter
g Gravitational acceleration
H Depth of the vertical atmospheric system
Ω Earth rotation rate
Θ Latitude
β Rossby parameter
he Equivalent depth
c Gravity wave phase speed
w Frequency
k Zonal wave number
n Meridional wave number
u Zonal wind component
v Meridional wind component
ϕ Geopotential height
VLOS Wind velocity along the Line Of Sight (LOS)
λ Laser wavelength
∆f Frequency Doppler shift
γ Scattering ratio
γA Particulate backscatter coefficient
γMol Molecular backscatter coefficient
RRay Rayleigh response
RMie Mie response
IA Intensity transmitted through Fabry-Perot Interferometers (FPI) filter A
IB Intensity transmitted through FPI filter B
x0 Mie fringe centroid position of the transmitted pulse
σRay Rayleigh response error
σMie Mie response error
σA Noise term of FPI filter A
σB Noise term of FPI filter B
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EEMie Mie error estimate
EERay Rayleigh error estimate
EEtot Total error estimate
EEAeolus Error estimate provided by the Aeolus L2B product
θ Local incidence angle
SNRA Signal-to-Noise Ratio (SNR) of FPI filter A
SNRB SNR of FPI filter B
HLOSAEOLUS Aeolus wind speed along the Horizontal Line of Sight (HLOS)
LOSAEOLUS Aeolus wind speed along the LOS
VRS Total horizontal wind speed measured by the radiosonde
ϕRS Wind direction measured by the radiosonde
HLOSRS Wind speed measured by the radiosonde along the HLOS
ψ Azimuth angle
σass European Centre for Medium-Range Weather Forecasts (ECMWF) assigned HLOS wind observation error
σinstr Level 2B (L2B) processor reported instrument error standard deviation
σtot Standard deviation of the total difference between Aeolus and radiosonde observations
σRS Standard deviation of the radiosonde observation error
σrep Standard deviation of the representativeness error
σAeolus Standard deviation of the Aeolus HLOS winds observation error
α L2B processor instrument error estimate scaling factor
µ Total mean difference
ϵµ Uncertainty of the mean bias
∆diffHLOS

Bin-to-bin wind speed difference between Aeolus and radiosonde along the HLOS
Zm,i Modified Z-score
J(x) Cost function
B Background error covariance matrix
R Observation error covariance matrix
H Observation operator
H Tangent linear of the observation operator
I Identity matrix
M Model
M Tangent linear of the model
K Kalman gain
xb Background state
xa Analysis state
yo Observation vector
yb Background state in observation space
Xa Analysis perturbation matrix
Xb Background perturbation matrix
Yb Background perturbation matrix in observation space
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xb Background state
xa Analysis ensemble mean
xb Background ensemble mean
w Mean weighting vector
A Analysis error covariance matrix
N Ensemble size
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