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Abstract

Barley (Hordeum vulgare ssp. vulgare) is cultivated globally across a wide range of

environments, both in highly productive agricultural systems and in subsistence agri-

culture and provides valuable feedstock for the animal feed and malting industries.

However, as the climate changes there is an urgent need to identify adapted barley

varieties that will consistently yield highly under increased environmental stresses.

Our ability to predict future local climates is only as good as the skill of the climate

model, however we can look back over 100 years with much greater certainty. His-

torical weather datasets are an excellent resource for identifying causes of historical

yield variability. In this research we combined recently digitised historical weather

data from the early 20th century with published Irish spring barley trials data for two

heritage varieties: Archer and Goldthorpe, following an analysis first published by Stu-

dent in 1923. Using linear mixed models, we show that interannual variation in

observed spring barley yields can be partially explained by recorded weather variabil-

ity, in particular July maximum temperature and rainfall, and August maximum tem-

perature. We find that while Archer largely yields more highly, Goldthorpe is more

stable under wetter growing conditions, highlighting the importance of considering

growing climate in variety selection. Furthermore, this study demonstrates the bene-

fits of access to historical trials and climatic data and the importance of incorporating

climate data in modern day breeding programmes to improve climate resilience of

future varieties.
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1 | INTRODUCTION

Spring barley (Hordeum vulgare ssp. vulgare) is the most widespread

spring crop in Ireland and approximately 120,000 ha are sown each

year (TEAGASC, 2020). It has been grown in Ireland since the 1800s

and is well suited to the Irish soils and long growing season, which

offer high yield potential (TEAGASC, 2017). As the climate changes

and extreme weather events become more frequent, identification of

spring barley varieties that prosper and consistently produce high

yields is a priority.

Within barley's germplasm there are genotypes that can tolerate

abiotic stresses such as drought and heat (Bindereif et al., 2021;
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Ivandic et al., 2000; Wu et al., 2017). Barley landraces can also grow

well in biogeographical zones with reduced soil fertility in which mod-

ern elite barley varieties fail to reach maturity (Schmidt et al., 2019).

As environmental stresses become more frequent and there is a need

for varieties demanding fewer resource inputs, heritage varieties may

provide valuable genetic variation and a possible resource for these

wild-type traits.

A well-documented set of spring barley trials data for 1901–1906

exists, comparing two heritage spring barley varieties: Archer and

Goldthorpe. Archer is a two-row narrow-eared variety that originated

in East of England and outperformed the long-running favourite Che-

valier in yield, quality and straw strength (Hunter, 1913). Goldthorpe is

a two-row wide-eared barley known for its high malting quality. In

1889 a single wide ear was found in a field of Chevalier near Gold-

thorpe, Yorkshire and was selected and propagated to become Gold-

thorpe (Gothard et al., 1983; Malcolm, 1983; Reid et al., 1929).

Analysis of these trials data by William Gosset in Student (1923)

concluded that the chief difficulty in comparing variety performance

was that differences between varieties are small compared with varia-

tions due to weather. While weather was recorded during this period

at various locations across Ireland (Section 2.1), these data were not

accessible to Student at that time.

On the approach to its centenary, Student's, 1923 paper “On

testing of Cereal Varieties” remains noteworthy. It was published in

the early days of establishing methods of variety testing and lists rea-

sons why yield trials are necessary which have not changed—

environmental conditions ‘evoke different responses in strains’; ‘the
soil on which plants are grown is never uniform’; and ‘the effects of

soil and weather are far greater than the differences [between varie-

ties] which we have to investigate’.
A recent data rescue project has extended the temporal coverage

of digitally available daily maximum and minimum air temperature and

rainfall observations to include this early 20th century period (Mateus

et al., 2020; Ryan et al., 2021). Historical climate data has been shown

to be valuable for identifying the climatic influence on crops

(e.g. Kahiluoto et al., 2019; Lopes, 2022; Rezaei et al., 2015; Trnka

et al., 2010) as well as the impact of the interaction between geno-

type and the environment (G � E) on yield (e.g. de los Campos

et al., 2020; Fabio et al., 2017). Understanding how crops respond to

weather and climate variability is vital for identifying crops and varie-

ties that will perform well in our rapidly changing climate. Despite this,

few studies take advantage of the benefits of combining historical

crop trials data with historical weather data in barley (Gillberg

et al., 2019).

In this study we show that by combining spring barley trials data

with climate data, interannual variation in early 20th century spring

barley yields can be partially explained by recorded weather variabil-

ity. We demonstrate the relative stabilities of Archer and Goldthorpe

varieties and show the importance of considering the growing climate

in variety selection. We also explore a range of variable selection

methods and modelling tools to identify the most suitable modelling

techniques for highly correlated, multi-dimensional yield and climate

data. Finally, we discuss the benefits of access to trials data and the

importance of incorporating climate data in modern day breeding pro-

grammes to improve the climate resilience of future varieties.

2 | MATERIALS AND METHODS

2.1 | Datasets

The barley trials dataset analysed by Student (1923) consists of two

spring varieties—Archer and Goldthorpe—in unreplicated 2-acre plots

at 18 distinct farm locations across the barley-growing districts in

Ireland (Figure 1a,b). Locations for each trial site are recorded by the

town and district, from which a latitude and longitude has been esti-

mated. The number of trial sites increases each year from four in

1901 to 12 in 1906. Yield data was recorded in barrels and stones per

acre and price was recorded in pounds, shillings and pence (£sd) per

acre. To give the values modern context, these have been converted

to tonnes/ha and £/ha, respectively.

Each trial site was paired with weather data for the 1901–1906

growing seasons from the nearest weather station open during the

period (Table 1 and Figure 1b). Here growing season is defined as

1 March to 31 August, based on current spring barley growing prac-

tices. Daily temperature data was obtained from the recently released

Ireland Long-term Maximum and Minimum Air Temperature dataset

(ILMMT), for which raw daily observations from 12 long-term and

21 short-term maximum and minimum air temperature series were

rescued from archives (Mateus et al., 2020). Daily rainfall data was

obtained for the period 1901–1906 from Met �Eireann and forms part

of Ireland's pre-1940 rainfall records (Ryan et al., 2021).

Both daily climate datasets are the product of a large data rescue

project by Met �Eireann and Maynooth University, which also forms

part of the worldwide data rescue effort I-DARE (https://www.idare-

portal.org/). Part of this project involves digitising Met �Eireann's pre-

1960s rainfall and climate station records, including manuscripts and

daily weather reports (Mateus et al., 2020; Ryan et al., 2021).

To enable long term localised climate analysis, daily temperature

data for the weather stations closest to the trial sites (Table 1) from

the digitised ILMMT data was combined with data from the Met
�Eireann website for the duration of opening of each station (https://

www.met.ie/climate/available-data/historical-data). Monthly rainfall

totals for 1850–2010 for these weather stations (Table 1) were also

downloaded where available (https://www.met.ie/climate/available-

data/long-term-data-sets) (Noone et al., 2016).

In addition to weather station data, the European Centre for

Medium-Range Weather Forecasts (ECMWF) twentieth century rea-

nalysis dataset (ERA-20C) (Poli et al., 2016) was used to add a gridded

and regional context to the weather stations and as a further quality

control check. ERA-20C is a gridded dataset spanning 1900–2010,

with a resolution of 125 km � 125 km. Here we used the monthly

means of daily means for 2 m (i.e. air temperature at 2 m height) tem-

perature (K) and total precipitation (m) was downloaded from http://

apps.ecmwf.int/datasets/data/era20c-daily/. Monthly means of daily

means for photosynthetically active radiation (PAR) at the surface
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F IGURE 1 1901–1930 growing season climate for Ireland. (a) The location of Ireland relative to Europe and North Africa. (b) Weather
stations open between 1901 and 1906 and closest to barley trial sites (+). Stations with rainfall only (blue circle), temperature only (red �) and
both rainfall and temperature data are shown. Growing season (March–August) average temperature (�C) (c) total rainfall (mm) (d) and surface
photosynthetically active radiation (MJ/m2) (e) for 1901–1930, calculated using ERA-20C (Poli et al., 2016).

TABLE 1 The closest weather stations to the barley trials sites with daily data for 1901–1906.

Station
number Station name County

Daily rainfall data availability
(Ryan et al., 2021)

Monthly rainfall data availability
(Noone et al., 2016)

Daily temperature data availability
(Mateus et al., 2020)

438 Ardee

(Lisrenny)

Louth 1886–1913

119 Birr Castle Offaly 1875–1951; 1954–2009 1850–2010 1880–2009

1823 Dublin

(Glasnevin)

Dublin 1834–1958; 1961–2020

108 Foulkesmill

(Longraigue)

Wexford 1874–1906; 1914–1940;
1941–2020

1850–2010

338 Greenore Louth 1876–1940

175 Phoenix Park Dublin 1850–2010 1831–1959; 1961–2012

1004 Roches Point Cork 1873–1940; 1941–1996;
2008–2016

1850–2010 1872–1999; 2009–2020

Note: The period of daily rainfall and temperature data is given for each station, along with monthly rainfall.
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(J/m2) were also downloaded to supplement the lack of solar radiation

observations from the weather stations. Analysis of this data for the

growing season for the first 30-year period (1901–1930) shows that

the driest and sunniest region in Ireland is in the south-east

(Figure 1a–c), where the majority of trial sites are focussed

(Figure 1b).

Growing degree days (GDD) were calculated for of each weather

station closest to trial sites (Table 1) across their period of opening

using daily temperature data for growing season months March to

August and the following equation:

GDD 0ð Þ¼
PTmin þTmax

2
,
Tmin þTmax

2
>0

0,
Tmin þTmax

2
≤0

,

8
><

>:
ð1Þ

where Tmin is daily minimum temperature and Tmax is daily maximum

temperature. GDD 0ð Þ gives a day-by-day sum of the number of

degrees by which the mean temperature exceeds 0�C (Baron

et al., 2012; Bauer et al., 1992; Juskiw et al., 2001). To ensure that

missing data did not incorrectly reduce the final GDD value, growing

seasons with at least 1 day of missing maximum and/or minimum tem-

perature data were dropped. Roches Point was missing data from

18 years (1872, 1994–2008, 2010, 2015), Dublin was missing 9 years

(1959, 1960, 1963, 1965–1967, 1969, 1988, 2020) and Birr Castle

3 years (1952–1954). None of the years in 1901–1906 study period

were missing data.

In the climate analysis two averaging periods were used: the full

record of selected weather datasets, to provide context for extreme

events, and the relevant 30-year period, as the basis for the calcula-

tion of anomalies. For the weather station data, the 30-year period

used was 1891–1920, however for the gridded reanalysis dataset

ERA-20C, which begins in 1900, this was 1901–1930.

2.2 | Modelling Irish spring barley and climate data

The spring barley variety trials are located across different sites, creating a

clustered dataset where trial yields are not independent and not all farms

were used each year. At a given site, the yields are all dependent on the

same environmental factors such as rainfall and soil type, as well as the

same farmer and agronomy. Therefore, the following linear mixed-effect

model was used so that both farm and year could be included as random

effects, using REML through lmer from lme4 (Bates et al., 2020) in R:

yijk ¼ μþTjkþPjkþviþ rjþvTijkþvPijkþ sjk þeijk ð2Þ

where yijk is the yield of variety i in year j at farm k, μ is the overall trial

series mean, Tjk is the effect of monthly temperature in year j at farm

k, Pjk is the effect of monthly precipitation in year j at farm k, vi is the

effect of variety i, rj is the effect of year j, with year included as a fac-

tor variable, vTijk is the interaction between variety i, monthly temper-

ature Tijk in year j at farm k, and vPijk is the interaction between

variety i and monthly precipitation P in year j at farm k and eijk is the

residual term. sjk is the effect of site (farm) within years, representing

the interaction between year term rj and farm term fk . This term

means each farm is treated as different each year, which is a more

accurate representation given the exact location of fields is unknown

and may have varied.

The monthly variables Tjk and Pjk encompass the growing season

(March–August) monthly precipitation and temperature. The site term

sjk and year term rj are fitted as random effects. The two genotype-

by-environment terms (G�E) variety� temperature vTijk and varie-

ty� rainfall vPijk terms are fitted as fixed effects as the specific reac-

tion of individual varieties (genotype) with the climate covariates

(environment) is of interest.

2.2.1 | Variable selection methods

To reduce the dimensionality of the data and identify the most signifi-

cant monthly temperature and precipitation variables in determining

yield to include in (2), best subset selection, forwards and backwards

stepwise selection, the lasso (Tibshirani, 1996) and elastic net (Zou &

Hastie, 2005) were used on the linear model run using lm in R:

yijk ¼ μþTjkþPjk þeijk ð3Þ

These were implemented in R using the functions and arguments

detailed in Table S1. Significant variables (p < .05) in each of the

selected models were identified using an analysis of variance

(ANOVA). For each method, the root mean squared error (RMSE) and

adjusted R2 were calculated for the selected model. Residuals from

the models were checked and found to conform to the assumptions

of the analysis.

Mixed-effect model backwards elimination was also carried out

using step in Equation (2) modelled using lmer from lmerTest package

(Kuznetsova et al., 2017).

2.2.2 | Pearson's correlation and principal
component analysis

Pearson's correlation analysis was used to identify the climate covari-

ates with the highest correlation with yield as well as the degree of

correlation between the climate covariates.

A principal component analysis (PCA) was implemented using the

ggcorr function from GGally (Schloerke et al., 2021) and prcomp func-

tion from stats. A PCA approach was adopted to test whether linear

combinations of the monthly climate variables, rather than the individ-

ual climate variables themselves, could be used to model yield.

2.2.3 | Akaike information criterion

Each climate variable was input into Equation (2) iteratively and the sig-

nificance of that variable and accompanying model Akaike information
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citerion (AIC) was calculated. The AIC was then compared with (2) with-

out any climate variables to see if the additional variable improved the

fit, using anova(model1,model2) in R. Additional climate variables were

iteratively added and their significance and model AIC inspected.

2.3 | Comparison of standard error of difference
between means

Student (1923) calculates the standard error of the mean difference in

variety means. To understand if the models run in this analysis can

improve on this value, this was first repeated using the equation

SE dð Þ¼ sdffiffi
n

p , where sd is the standard deviation of the differences and n

is the number of paired trials. After checking this against Student

(1923), the value was then converted to t/ha.

To find an estimate of the standard error of difference between

the varieties in the selected model, the emmeans function in R was

used. The model and variable of interest, variety vi, were specified.

The contrast function was then applied to this, using

method = ‘pairwise’. This calculates the estimate of difference, stan-

dard error, degrees of freedom, t ratio and p value for the variety pair.

The statistical significance of the difference in mean values was then

checked by calculating the t-statistic.

3 | RESULTS

3.1 | Spring barley yields show high variation

Median yields varied from year-to-year by up to 50% for Archer and

up to 58% for Goldthorpe (Figure 2). For both varieties the lowest

yields occurred in 1903 (combined mean 2.2 ± 0.5 t/ha), and highest

in 1905 (combined mean 3.2 ± 0.4 t/ha). There was large variation in

yields within years, in particular for Archer in 1903 (SD = 0.59 t/ha)

and for Goldthorpe in 1901 (SD = 0.67 t/ha). This was despite the

number of trials increasing each year.

Only three farmers were involved in all 6 years of the trials: Haw-

kins, McCarthy and Wolfe (Figure 3). There were clear differences

from farm to farm in yields reflecting the differences in climate, soil

type, topography, farm management practices and years. All three

farms showed similar interannual variability: 1903 was the lowest

yielding year while 1902 and 1905 were the highest. Yields fluctuated

by up to 50% with average yields increasing approximately 45%

(1.8 t/ha) between 1903 and 1905, indicating low stability in these

varieties.

3.2 | Spring barley price shows similar variation to
yield

Student used price as a measure of quality of the crop. The lowest

quality of both varieties occurred in 1903 and highest in 1905

(Figure 4), as with yield (Figure 2). Student (1923) acknowledged that

the value of the crop per acre was mostly dependent on the yield.

3.3 | Irish climate analysis

3.3.1 | Long-term climate reveals anomalous years

Growing season rainfall anomalies show large interannual variability,

with differences of up to 300 mm between neighbouring years

(Figure 5). Averaged across all stations, the lowest yielding year 1903

was the wettest of the 6 barley trial years 1901–1906, with a large

F IGURE 2 Barley trials yields (t/ha) (black dots) for 51 trials across 18 farms between 1901 and 1906, for two varieties: Archer (blue) and
Goldthorpe (yellow). The box forms the interquartile range in yield and the middle line in the box is the median yield. Outliers (diamonds)
represent trial yields in the 5th and 95th percentiles. There were 51 trials per variety, increasing from 4 in 1901 to 12 in 1906. Data from Student
(1923). A dot and a diamond side-by-side and partially overlapping are the same data point.
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positive anomaly relative to the 1851–2010 average. Nationally the

1903 growing season received over 20% more rainfall than average.

1901 and 1902 were drier than average across the stations.

Over the 1874–2020 period, significant long-term increases in

growing degree days of 0.76�C/year (r = 0.26, p = 0.003, t-test) and

2.3�C/year (r = 0.66, p < .001, t-test) have been seen at Birr Castle

and Dublin respectively (Figure 6). The more extreme increase in seen

at Dublin is likely due to increased urbanisation and industrialisation

in the city (Dublin City Council, 2017), decreasing the city's albedo,

increasing absorption of solar radiation and local temperatures. In

addition to being the wettest of the 6 years, the 1903 growing season

has the 11th lowest GDD recorded at both Birr Castle and Dublin sta-

tions across the period.

3.3.2 | 1891–1920 climatology reveals extreme
wetness in 1903 and high temperature variability across
the trials period

Comparing years 1901–1906 to the climate of 1891–1920 places the

data in the context of the general climate at the time. The 6-year

period showed some extreme wetness and temperatures.

F IGURE 3 Interannual spring barley yield (t/ha) variability for three farms with data for the entire period 1901–1906. Error bars show the
difference between Archer and Goldthorpe variety yields. Data from Student (1923).

F IGURE 4 Barley trial price per hectare (£/ha) (black dots) for 1901–1906 for two varieties: Archer (blue) and Goldthorpe (yellow). The box
forms the interquartile range in price and the middle line in the box is the median price. Outliers (diamonds) represent trial yields in the 5th and
95th percentiles. There were 51 trials per variety, increasing from 4 in 1901 to 12 in 1906. Data from Student (1923).
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March 1903 was the wettest March in the 1891–1920 30-year

period for Ardee, Birr and Foulkesmill stations and nationally

(Figure 7). The coastal stations Roches Point and Greenore saw more

‘normal’ rainfall amounts, with the former recording its highest March

rainfall for the 30-year period in 1905. Cumulatively, 1903 was the

wettest growing season in the 30-year period at Foulkesmill and

nationally, recording over 600 mm rainfall. It was also the wettest

growing season in the period 1901–1906 at Ardee, Birr and

Greenore.

The less extreme temperature values seen at Roches Point are

related to its coastal location, with higher mean minimum tempera-

tures and lower mean maximum temperatures (Figures 8 and 9). 1906

saw extremely low monthly mean minimum temperatures in April at

all three stations, as well as the highest mean minimum temperature

for August in the 30-years at Dublin. The mean minimum tempera-

tures at Roches Point and Birr Castle for this month were closer to

the average highlighting that climate extremes vary spatially and can

be localised, contributing to the range in observed yields. March 1902

saw relatively high mean minimum and maximum temperatures while

May 1902 saw much lower than average mean maximum tempera-

tures (Figure 9). July 1901 and 1905 both experienced particularly

high mean minimum and maximum temperatures combined with low

rainfall (Figures 7–10).

3.3.3 | Mapping climate anomalies

Analysis of growing season rainfall data from the gridded reanalysis

dataset ERA-20C for 1901–1906 relative to the 1901–1930 averages

(pre-1900 data was unavailable) shows that 1903 was much wetter

than average across Ireland, the UK and much of Europe (Figure 10).

1906 was driest in the trials period. High rainfall is generally associ-

ated with a reduction in solar radiation and the 1903 growing season

also received approximately 5% less PAR than the 1901–1930

F IGURE 5 Growing season
rainfall anomalies (mm) (March–
August) for Birr Castle,
Foulkesmill and Roches Point
stations and nationally for 1850–
2010. Years 1901–1906 are
shown in red. The anomalies were
calculated by subtracting the
mean growing season rainfall for

each station. The national average
anomaly was calculated using the
Island of Ireland precipitation
series published by Noone
et al. (2016).
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average in Ireland (Figure 11). 1901 and 1904 show the largest posi-

tive PAR anomalies over the growing season. Breaking this down into

months, the 4 years 1901, 1902, 1904 and 1905 all have positive PAR

anomalies in July in sync with the grain fill period.

1905 was the only growing season in the period when Ireland

had a positive temperature anomaly, of approximately 0.3�C. Higher

than average temperatures were also experienced across the UK and

most of central, eastern and northern Europe (Figure 12). 1903 was

the coldest growing season in Ireland, about 1�C below the 1901–

1930 average.

3.4 | Modelling Irish spring barley and climate

3.4.1 | Variable selection methods

We found the best subset selection, forwards and backwards selec-

tion and the elastic net methods did not significantly reduce the cli-

mate model (3) and still contained at least 13 variables each. This was

too many whence to include the selected climate covariates in the

mixed model with year, variety and site (2) (Table S2). A combination

of using too many highly correlated variables (Figure S1) and too few

farm growing seasons likely contributed to this. The worst performing

was backwards stepwise selection which did not drop any variables.

The two lasso methods reduced the model complexity from 19 to less

than 7 climate variables, but these models had very low adjusted R2

values of close to 0, indicating a poor model fit (Table S3). Using the

mixed-model backwards elimination approach, we found that all the

climate variables were dropped. In all methods except this, July maxi-

mum temperature was kept in the model

3.4.2 | Pearson's correlation and PCA

In yield-climate correlation analysis we found July rainfall and July

maximum temperature have the largest absolute correlation with

yield: �0.49 and 0.45, respectively (Figure S2). These variables have a

strong negative correlation. To test the importance of weather in the

F IGURE 6 Growing season
growing degree days (�C) for Birr
Castle, Roches Point and Dublin
stations for 1874–2020. Growing
degree days is the sum of the
mean temperature on days when
mean temperature is above 0�C
from March to August. Roches
Point is missing data for

1998–2008.
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months leading up to drilling, we also tested the correlation between

temperature and rainfall from January and February and yield

(Table S4). This indicated that high rainfall in these months can have

yield penalties, which could be linked to delays in drilling date.

PCA was explored to reduce multi-collinearity in the climate

data set and as input to the linear mixed model (Table S5). How-

ever, using the PCs as predictors proved to be inadequate because

each PC was not defined by a small number of climate variables,

F IGURE 7 Cumulative monthly rainfall (mm) for Ardee, Birr Castle, Foulkesmill, Greenore, Roches Point stations and the national average

across 25 stations for 1901, 1902, 1903, 1904, 1905 and 1906. The 1891–1920 average is shown (solid black line) along with the period 10th
and 90th percentile values (grey lines) and the period minimum and maximum values (dashed black line). Ardee station only has data for 1891–
1913 therefore the averages are for this period instead. Data from Ryan et al. (2020).
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and so an easily interpretable and simple model was not

forthcoming.

3.4.3 | Akaike information criterion

To understand if adding temperature or rainfall climate variables to

the mixed model (2) improves the fit, the AIC of the mixed model of

(2) without any climate covariates was first calculated (Table 2). We

then added each climate variable and its interaction with variety to

the model one at a time. None of the interactions with variety were

significant, the variety � climate interaction term was dropped from

the model and the models with each climate variable were looped

through again.

Only three variables—July maximum temperature, August maxi-

mum temperature and July total rainfall—were significant (p < .05,

F-test) when included in the model. The models which included either

July maximum temperature or August maximum temperature

improved the AIC and model fit, with the July maximum temperature

model selected as the best model based on its AIC value. Notably all

the models that contained temperature had a lower AIC and better fit

than any of the rainfall models, including the significant July rainfall

model (Table 2).

Both July mean maximum temperature and August mean maxi-

mum temperature had a positive relationship with yield (Table 2), such

that yield increased by approximately 1/4 t/ha per 1�C increase in

July mean maximum temperature and by approximately 1/5 t/ha per

1�C increase in August maximum temperature. Increased July rainfall

decreased yield by �0.7 t/ha/100 mm.

3.5 | Comparison of standard error of difference
between means

The mean difference in the variety values is £1.52/ha (12 shillings/

acre) with a standard deviation of £2.95/ha (23.9 shillings/acre) and

corresponding standard error of the mean difference £0.41/ha (3.3

shillings/acre), in accordance with Student (1923). This corresponds to

a t-statistic of 3.680, which was statistically significant (p = .0006) at

the 95% level (df = 50). This provided strong evidence that there was

a difference in varietal performance.

Calculating the standard error of difference between variety

values in the three mixed models containing significant climate effects

(Table 2) gives identical values (to 2 s.f.) of £0.41/ha (3.3 shillings/

acre). This indicates that this model does not reduce the standard

error, which is expected given no variety x climate interactions were

F IGURE 8 1891–1920 monthly mean minimum temperatures (�C) for Birr Castle, Roches Point and Dublin stations for the growing season.
The range in temperatures for the coldest 5%, coldest 10%, warmest 10% and warmest 5% mean minimum temperatures are shown. Monthly
mean minimum temperatures for 1901, 1902, 1903, 1904, 1905 and 1906 are also presented. Data from Mateus et al. (2020).
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included in the final models. The climate variables simply partitioned

the effects of Farm and Year and did not affect the Variety effect.

4 | DISCUSSION

4.1 | Climatic causes of yield variability

Use of recently digitised weather data for the early 20th century has

allowed us to show that contrasting climatic conditions in 1903 and

1905 coincided with variation in spring barley varietal performance. In

1903 a wet March (Figure 7) likely made it challenging to drill the

crop, resulting in delayed planting shortening the growing season and

potential difficulties in crop establishment. Furthermore, a significant

storm event was recorded across Ireland and the UK on 26–27th

February 1903, which will have contributed further to high levels of

soil moisture at the time of planting, increasing the possibility of

delayed drilling and potentially contributing to the negative correla-

tion between February rainfall and yield (Table S4) (Craig &

Hawkins, 2020; Shaw, 1903). Nationally, the 1903 growing season

received over 20% more rainfall than average (Figure 5), contributing

to greater cloud coverage and lower than average growing season

PAR (Figure 11), notably during April, May, June and July. Reduced

solar radiation interception during the grain fill period in June and July

constrains photosynthesis, reducing the contribution to final ear

weight amassed in this period (TEAGASC, 2017). The 1903 growing

season was also cooler than average (Figure 12) with low GDDs

(Figure 6). This coincides with the year of lowest mean yields and

greatest yield variability for Archer, but much lower variability for

Goldthorpe (SD = 0.22 t/ha) (Figure 2).

A more recent experiment detailed by Gothard et al. (1983) found

that Goldthorpe outperformed Archer when spring and summer rainfall

was high. Along with our results, this suggests Goldthorpe may be able

to withstand much higher soil moisture and waterlogging. Hunter

(1929) notes that Goldthorpe requires plenty of moisture to produce

the best yields and quality, supporting this theory. Continual damp-

ness can also increase disease pressures for diseases such as Barley

Scald (Rhynchosporium) which prefer cool wet weather and which, if

present early in the season, can reduce tiller survival and potential

yields (TEAGASC, 2017). If Barley Scald was present in 1903, the

results may indicate greater resistance of Goldthorpe to the disease at

that time.

In contrast, the 1905 growing season was warmer than average

(Figure 12) with high growing season GDDs (Figure 6). There was low

growing season PAR (Figure 11), but high PAR in July, when high solar

radiation is important for grain fill. The growing season was drier than

F IGURE 9 1891–1920 monthly mean maximum temperatures (�C) for Birr Castle, Roches Point, and Dublin stations for the growing season.
The range in temperatures for the coldest 5%, coldest 10%, warmest 10% and warmest 5% mean maximum temperatures are shown. Monthly
mean maximum temperatures for 1901, 1902, 1903, 1904, 1905, and 1906 are also presented. Data from (Mateus et al., 2020).
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average, starting wet but drying in June and July (Figure 7). These

favourable conditions likely contributed to the relatively high yields

seen in 1905 for both varieties.

Of the farms with 6 years of trials data, Farmer Wolfe performed

the best on average (Figure 3). This farm was located approximately

30 km south-west of Birr Castle and experienced higher summer tem-

peratures and less summer rainfall than the other two farms. Other

factors such as favourable agronomy, farm management and soil type

may also have encouraged higher yields here.

4.2 | Statistical methods

Through trialling various variable selection methods, we have

highlighted the importance of identifying collinearity early on in

analysis involving multiple covariates. The use of these methods

and PCA was limited by the high correlation between covariates

within a small dataset, but it was still possible to extract information

on the most important variables using simple mixed models. We

were able to show that July maximum temperature and August

maximum temperature had a positive relationship with yield and

that July total rainfall had a negative relationship with yield

(Table 2). July rainfall can also be used as a proxy for solar radiation,

so a wet July would usually be associated with more cloud cover,

reducing solar radiation interception during grain fill. Likewise wet

weather during grain filling can encourage ear and grain diseases,

such as fusarium ear blight and ergot, which can cause shrivelled

grain and mycotoxins (AHDB Cereals & Oilseeds, 2018). Hence the

plant benefits from more solar radiation and less rainfall in July.

Higher July maximum temperature implies less daytime cloud cover

intercepting solar radiation, hence the correlation between these

two July variables and yield is of opposite polarity. In future analysis

of more recent crop yield data, inclusion of solar radiation data in

the models would be desirable to directly quantify the relationship

between solar radiation and yield.

Our finding that July temperatures are positively correlated with

spring barley yield contrasts with other published research which

shows that warmer temperatures during anthesis and grain fill can

have a detrimental effect (Addy et al., 2021; Hakala et al., 2020). This

result is highly likely due to July maximum temperatures in Ireland in

the early 20th century falling well short of those more regularly seen

today in some major UK spring barley growing areas. Specifically,

maximum temperature did not exceed 28�C during the 6-year trials

period whereas those in South-East England now regularly exceed

30�C in summer months. This finding shows the importance of

region-specific crop-climate research: despite the proximity of the UK

to Ireland their climates differ and the same relationships between

weather variables and yield cannot be assumed.

F IGURE 10 Growing season (March to August) rainfall anomalies (%) relative to the 1901–1930 average. Brown corresponds to drier than
average and blue corresponds to wetter than average. Data from ERA-20C (Poli et al., 2016).
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F IGURE 11 Growing season (March to August) total photosynthetically active radiation (PAR) anomalies (%) relative to 1901–1930 average.
Purple corresponds to less PAR than average while orange corresponds to more PAR than average. Data from ERA-20C (Poli et al., 2016).

F IGURE 12 Growing season (March to August) mean temperature anomalies (�C) relative to 1901–1930 average. Blue corresponds to colder
than average while red corresponds to warmer than average. Data from ERA-20C (Poli et al., 2016).
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We were unable to detect any G�E within the mixed models

used. The lack of significance throughout of climate variety interac-

tions may well be related to the relatively small trials dataset, approxi-

mation of site locations and sometimes large distances to weather

stations. However, it is clear from the higher performance of Gold-

thorpe in 1903 relative to Archer coupled with wider evidence

(Gothard et al., 1983; Reid et al., 1929) that G�E is a driver of perfor-

mance here. This highlights the importance of considering the local cli-

mate in crop variety selection.

The last few years have seen a surge in the growing of heritage

barley varieties from the early 20th century. Goldthorpe, its prede-

cessor Chevalier and offspring Irish Goldthorpe, as well as hybrids of

Archer, such as Plumage Archer, have been grown for breweries

across the UK and Ireland and are currently being investigated by

organisations such as New Heritage Barley. Some heritage varieties

display highly desirable traits, such as Fusarium fungal disease resis-

tance in Chevalier (UKRI, 2015). How these varieties perform in the

current and future climate is of interest given the performance of

these varieties in the 1901–1906 trials. It is hoped that Archer and

Goldthorpe will be trialled on large scale field plots to allow for com-

parisons with the yields from 1901–1906, but also to enable appli-

cation of our modelling using current climate data with larger

datasets.

4.3 | Historical perspective of Student's, 1923
paper

Student's comments in 1923 on the requirement for large scale farm

testing remains as relevant today. In recent years a greater emphasis

is also placed on grower input through participatory breeding

approaches (Ceccarelli et al., 2007; Weltzien & Christinck, 2017) and

large-scale farm trials in strip tests (Lacoste et al., 2022; Marchant

et al., 2019; Piepho et al., 2011).

Student states that the advantage for the farmer of large scale tri-

als is that s/he ‘…always has a healthy contempt for gardening’ and …

‘some varieties which have come out well on the small scale have not

done as well in the field, though this is not at all common'. That said,

two-acre plots (0.8 ha) are very large, as Student recognises, even for

large-scale plots, though the produce was also intended to provide

seed for subsequent manufacturing tests, presumably including malt-

ing, though we have no record that they took place.

The importance of collaboration is also commented on: here

between farmers in carrying out large scale experiments—‘… it is only

by co-operation [between farmers] that enough evidence can be

obtained to be of any value’, though he sees such co-operation as

being most likely co-ordinated by government bodies. It is unfortu-

nate that, as far as we are aware, any collaboration that has occurred

TABLE 2 Statistical significance (F-test) and corresponding coefficient of each climate variable in the mixed model (2) with year, variety and
sites within years.

Climate variable Significance in model Coefficient AIC Marginal R2 Conditional R2 RMSE

- - - 127.5 0.033 0.78 0.207

Jul_temp_max 0.004 0.27 123.6 0.22 0.79 0.209

Aug_temp_max 0.024 0.20 127.4 0.16 0.81 0.208

Jul_rain_tot 0.028 �0.0069 135.0 0.17 0.77 0.207

Apr_temp_min 0.06 �0.097 130.0 0.091 0.80 0.207

Jun_temp_min 0.09 �0.11 130.4 0.061 0.81 0.207

May_temp_min 0.1 �0.10 130.5 0.067 0.78 0.207

Mar_temp_min 0.1 �0.095 130.7 0.068 0.79 0.207

Jun_temp_max 0.1 0.11 130.6 0.084 0.78 0.206

Jun_rain_tot 0.1 �0.0037 137.4 0.068 0.77 0.206

Mar_rain_tot 0.2 �0.0035 137.7 0.080 0.79 0.207

May_temp_max 0.2 0.098 131.2 0.066 0.80 0.207

Jul_temp_min 0.3 �0.075 131.9 0.048 0.80 0.206

May_rain_tot 0.5 0.0034 137.8 0.047 0.81 0.206

Aug_temp_min 0.5 �0.044 132.5 0.039 0.79 0.206

Apr_rain_tot 0.6 0.058 132.0 0.036 0.80 0.206

Mar_temp_max 0.6 �0.0020 138.6 0.042 0.79 0.206

Aug_rain_tot 0.6 0.062 131.5 0.037 0.79 0.206

Apr_rain_dmax 0.7 �0.0013 139.0 0.033 0.79 0.206

Apr_temp_max 0.8 �0.026 131.7 0.033 0.79 0.206

Note: Significant variables are shown in bold. The Akaike Information Criterion (AIC) of the overall model is given, with lower values corresponding to a

better model fit. Marginal R2, conditional R2 and root mean square error (RMSE) are also given. The conditional R2 takes both the fixed and random effects

into account while the marginal R2 considers only the variance of fixed effects (Nakagawa et al., 2017).
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has not incorporated evaluations of sets of varieties across farms and

has not been published.

Another laudable feature of Student's paper is that he made the

data available. Admittingly this was largely to illustrate the method of

analysis, but full data release is still not the norm. Subsequently, the

data was reanalysed by Patterson (1997), also for educational pur-

poses. We do not know whether Student had soil and weather

records available to him (he was analysing the yield data when it was

already 20 years old) or whether he would have felt it advantageous

to include them. In fact, we find near identical results to Student:

Archer yields more than Goldthorpe. In the absence of any detectable

variety � climate variable interactions (as here), this is expected. The

climatic variables which are available to us have, however, been used

to identify drivers of yield differences between sites and years in a

dataset approximately 120 years old.

5 | CONCLUSION

Through combining recently published historical rainfall and tempera-

ture data with spring barley trials data, it has been possible to identify

climatic influences on spring barley yield variability seen in early twen-

tieth century trials data in Ireland, building on the earlier findings of

Student (1923).

Despite being available for approximately 100 years, we have dem-

onstrated that there is value in adding historical climate data to this small

trials' dataset. Today's large-scale trial datasets provide a great opportu-

nity for further insight on crop-climate interactions in a changing climate.
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