
Robotics and Autonomous Systems 174 (2024) 104632

A
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Object and relation centric representations for push effect prediction
Ahmet E. Tekden a,b,∗, Aykut Erdem c, Erkut Erdem d, Tamim Asfour e, Emre Ugur a

a Computer Engineering Department, Bogazici University, Turkey
b Electrical Engineering Department, Chalmers University of Technology, Sweden
c Computer Engineering Department, Koç University, Turkey
d Computer Engineering Department, Hacettepe University, Turkey
e Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Germany

A R T I C L E I N F O

Keywords:
Push manipulation
Effect prediction
Parameter estimation
Graph neural networks
Interactive perception
Articulation prediction

A B S T R A C T

Pushing is an essential non-prehensile manipulation skill used for tasks ranging from pre-grasp manipulation to
scene rearrangement, reasoning about object relations in the scene, and thus pushing actions have been widely
studied in robotics. The effective use of pushing actions often requires an understanding of the dynamics of the
manipulated objects and adaptation to the discrepancies between prediction and reality. For this reason, effect
prediction and parameter estimation with pushing actions have been heavily investigated in the literature.
However, current approaches are limited because they either model systems with a fixed number of objects or
use image-based representations whose outputs are not very interpretable and quickly accumulate errors. In
this paper, we propose a graph neural network based framework for effect prediction and parameter estimation
of pushing actions by modeling object relations based on contacts or articulations. Our framework is validated
both in real and simulated environments containing different shaped multi-part objects connected via different
types of joints and objects with different masses, and it outperforms image-based representations on physics
prediction. Our approach enables the robot to predict and adapt the effect of a pushing action as it observes
the scene. It can also be used for tool manipulation with never-seen tools. Further, we demonstrate 6D effect
prediction in the lever-up action in the context of robot-based hard-disk disassembly.
1. Introduction

Pushing is a fundamental non-prehensile (manipulation without
grasping) motion primitive that gives robots great flexibility in manip-
ulating objects [1,2]. Using push actions, a robot can navigate objects
to goal configurations even when objects are not graspable [3]; it can
manipulate objects under uncertainty [4], or bring an object to the
graspable area [5]. Compared to grasping actions, it is not as restrictive;
however, the issue is that the robot does not have direct control over
the state of the manipulated objects. This results in greater complexity
in planning and control as the dynamics of the manipulated objects
are often required to be taken into consideration [1]. Effect prediction
of pushing has many applications [2,6], including scene rearrange-
ment [7], object segmentation [8], object singulation [9,10], pre-grasp
manipulation [10–13]. However, action-effect prediction of pushing
actions depends on many factors [14] and requires adaptation when
mispredictions occurs. Fig. 1 shows an example illustration. The initial
prediction of the robot will be objects getting scattered. However, after
seeing some of the objects moving together, the robot will understand
that their future motion will continue reflecting this dynamic.

∗ Corresponding author at: Electrical Engineering Department, Chalmers University of Technology, Sweden.
E-mail address: tekden@chalmers.se (A.E. Tekden).

In many environments, robots work with object clutters contain-
ing different shaped and weighted objects with possible articulations
between them. A robot should be able to reason about the influence
of shape and mass of objects, physical connections like contacts or
different types of articulations between objects, propagation of mo-
tions between objects, and correction of unknown or partially known
objects or object parts in the environment. Current approaches model
environments with a fixed number of objects or use image data, an
object-independent representation. While there has been great progress
on effect prediction using raw sensory data [15–18], using them at
the decision-making level has been difficult and required tasks to be
generated on pixel level. While there are certain advantages of such
approaches, many tasks often require more interpretable representa-
tions for the task to be defined. Humans decompose environments
into objects and use their interactions for physical reasoning [19–
21], so there is certainly value in using such representations in effect
prediction. We propose using graph neural networks (GNNs) for push
effect prediction. Graph neural networks [22] can exploit the graph
structure of multi-objects systems by exploiting and using object- and
vailable online 17 January 2024
921-8890/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.robot.2024.104632
Received 22 February 2023; Received in revised form 14 September 2023; Accepte
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 8 January 2024

https://www.elsevier.com/locate/robot
https://www.elsevier.com/locate/robot
mailto:tekden@chalmers.se
https://doi.org/10.1016/j.robot.2024.104632
https://doi.org/10.1016/j.robot.2024.104632
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2024.104632&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Robotics and Autonomous Systems 174 (2024) 104632A.E. Tekden et al.
Fig. 1. We will normally expect the action of the robot on the left image to scatter contacted objects. However, seeing the contacted objects moving together, the robot should
correct its belief to enable this dynamic.
relation-centric representations and they are heavily used in modeling
physics [21,23–29].

In this paper, we propose a general-purpose learnable physics en-
gine in which object- and relation-centric representations are learned
via a shared propagation network and used for physics prediction and
parameter estimation in push manipulation tasks.1 We use articulation
based graph representations that use cylinder- and cuboid-shaped ob-
jects and their possible interactions via contacts or joints for modeling
multi-part object systems. We resort to a two-step training scheme
where our framework is first trained for effect prediction, then using
learned object and relation representations, it is trained for param-
eter estimation. Our framework can predict low-level trajectories of
groups of articulated objects given robot actions and estimate the
mass of observed objects and joint relations between them based on
their interaction history. Using an articulation based representation,
novel tools that are not encountered during training can be built by
connecting multiple cuboids via fixed joints, and they can be used in
planning in tool manipulation tasks. In addition, we have shown that
our framework can make 6D effect predictions.

In our previous work [30], we introduced a GNN based network for
effect prediction and parameter estimation. In this current work, we
have significantly extended and improved upon our previous approach
in several key aspects. Initially, our model in [30] relied on two inde-
pendent networks: one for physics prediction and one for parameter
estimation. However, we have now devised a novel weight-sharing
mechanism that enables the fusion of object- and relation-centric rep-
resentations. This has led to a significant reduction of approximately
thirty percent in the number of learnable parameters. Additionally,
while our earlier work [30] was limited to modeling cylindrical ob-
jects, our current approach extends the input representations to handle
diverse object shapes. We can now represent complex-shaped objects
constructed from multiple cuboids and cylinders, and predict object
masses. This significant extension empowers our framework to handle
a wide range of tools and objects not encountered previously, making
it more versatile and applicable to real world scenarios. In addition
to these advancements, we have also improved the training process
of the underlying networks by incorporating scheduled sampling [31],
enhancing data distribution, and refining parameter estimation su-
pervision. These comprehensive enhancements collectively elevate the

1 Project page: https://fzaero.github.io/push_learning/.
2

capabilities and performance of our approach in both physics predic-
tion and parameter estimation tasks. Overall, our extended GNN-based
network not only outperforms our previous work [30] but also demon-
strates greater adaptability and robustness, making it a promising tool
for effect prediction in complex robotic systems. More specifically, the
general contributions of our framework can be listed as follows:

• We develop a graph neural network based framework for pa-
rameter estimation and physics prediction in push manipulation
tasks.

• We utilize a weight-sharing mechanism to transfer learned repre-
sentations that are usable in new tasks.

• We show the feasibility of articulation based graph representa-
tions for modeling multi-part objects and show that it outperforms
object-centric image based representation in physics prediction
task.

• We show that the proposed network outperforms a coarse-physics
based baseline on model predictive control.

• We design a novel 6D action-effect prediction in lever-up task in
the context of hard-disk drive disassembly.

• Through simulated and real world experiments, we verify our
framework in joint relation and mass prediction, physics predic-
tion, and tool manipulation and planning tasks.

2. Related work

Learning dynamics/modeling physics. Modeling intuitive physics has at-
tracted considerable interest in recent years [32]. For instance,
Battaglia et al. [33] proposed a Bayesian model called Intuitive Physics
Engine and showed that the physics of stacked cuboids could be
modeled with this model. Similarly, Hamrick et al. [34] showed that
humans could reason about object masses from their interactions and
modeled it with Bayesian models. Smith et al. [35] have modeled
expectation violation in intuitive physics. They discuss how humans
surprise when their physical expectations mismatch with reality, and
they modeled this with deep learning methods. Deisenroth et al. [36]
suggested a probabilistic dynamic model that depends on Gaussian
Processes and that is capable of predicting the next state of a robot
given the current state and the action. Recently, these studies have been
extended through the use of deep learning methods. Lerer et al. [37]
trained a deep network to predict the stability of the block towers given
their raw images obtained from a simulator. Groth et al. [38] extended

https://fzaero.github.io/push_learning/
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this idea by allowing stacking of objects with different geometries.
They showed that their proposed network could predict the stability
of given towers in this more difficult setup. The tower stacking task
has continued to be an important environment for intuitive physics
problems [39].

A specific topic of interest within modeling physics with deep
learning is motion prediction from images, which has gained increasing
attention over the last few years. Mottaghi et al. [40] trained a Convo-
lutional Neural Networks (CNN) for motion prediction on static images
by casting this problem as a classification problem. Mottaghi et al. [41]
employed CNNs to predict movements of objects in static images in
response to applied external forces. Fragkiadaki et al. [42] suggested a
deep architecture in which the outputs of a CNN are used as inputs to
Long Short Term Memory (LSTM) cells [43] to predict movements of
balls in simulated environments.

Graph neural networks (GNNs) for learning physics. As deep structured
models, GNNs allow learning useful representations of entities and
relations among them, providing a reasoning tool for solving struc-
tured learning problems. Hence, it has found extensive use in physics
prediction. Interaction network by Battaglia et al. [23] and Neural
Physics Engine by Chang et al. [24] are the earliest examples of
general-purpose physics engines that depend on GNNs. These models do
object-centric and relation-centric reasoning to predict the movements
of objects in a scene. While they were successful in modeling dynamics
of several systems such as n-body simulation and billiard balls, their
models had certain shortcomings, especially when movements of ob-
jects have a chain effect on other objects (e.g., a pushed object pushes
a group/sequence of objects it is contacting with) or when the objects
are composed of complex shapes. These shortcomings can be partly
handled by including a message passing structure within GNNs as done
in the recent works such as [21,25,26]. Most of these networks used
simple neural networks for encoding object and relation information.
Kipf et al. [44] showed that variational autoencoders could be used
in encoding object and relation information, where their network was
shown to encode object information directly from trajectories of the
objects in an unsupervised way.

Another approach was acquiring object information directly from
images. Ye et al. [45] used image and detected the location of objects
to predict the latent representation of the next time step. This latent
representation was then decoded to create the image expected to be
observed in the next time step. Watters et al. [27] and van Steenkiste
et al. [28] proposed hybrid network models which encode object
information directly from images via CNNs and predict the next states
of the objects via GNNs. Lately, these networks have been extended to
handle even more complex environments. Sanchez-Gonzales et al. [29]
showed that GNNs could be used for learning particle-based simulations
that consist of more than 1000 particles.

Effect prediction in robotics. Action-effect prediction has been investi-
gated using model-based approaches that use analytical models [14,
46], data-driven methods that use machine learning methods and hy-
brid methods that incorporate machine learning into analytical model-
ing [47,48]. The effect prediction methods can be further divided into
two categories depending on the number of involved objects. In order to
deal with predicting action effects on single objects, object masks have
been heavily used [11,49–51]. Recently, Kopicki et al. [52] proposed
learning multiple motion predictor models for different shaped single
objects, where a vision system selects a predictor depending on the
context. Seker et al. [53] investigated how changing object shapes
affects low-level object motion trajectories and modeled it using CNNs
and LSTMs.

In the context of end-to-end learning, Agrawal et al. [54] trained
forward and inverse models for learning how to poke an object to move
it into a target position. This network uses latent vectors of CNN to
3

train predictive models. The forward model tries to predict the latent
representation of the final image using the current image, and the in-
verse model took latent representations of both final and initial images
to find the parameters of the poke action. Finn et al. [15] proposed a
convolutional recurrent neural network [55] to predict the future image
frames using only the current image frame and actions of the robot.
Byravan et al. [17] presented an encoder–decoder like architecture
to predict SE(3) motions of rigid bodies in depth data. However, the
output images get blurry over time, or their predictions tend to drift
away from the actual data due to the accumulated errors, making it
not straightforward to use for long-term predictions in robotics.

The previous data-driven methods that directly used object-centric
representations cannot deal with multiple (any number of) objects
and relations as the predictors have generally fixed input and output
dimensions. End-to-end approaches can handle multiple objects as their
inputs and outputs are images, however, the pixel-based prediction
quickly accumulated, resulting in blurry long-term predictions. Re-
cently, GNNs that can represent multiple objects in an object-centric
way have started being employed in robotics research as well [56].
Janner et al. [57] used GNNs to learn object representations from
perception and physics prediction jointly. Ye et al. [58] learned object-
centric forward models for planning and control. Their model takes
object bounding boxes as input and learns future state prediction from
object embeddings generated by CNNs. Tung et al. [59] similarly use
object bounding boxes with GNNs for effect prediction and control.
Lin and Weng et al. [60] employed GNNs for learning cloth dynamics.
Paus et al. [6] used GNNs for action-effect prediction. Sanchez-Gonzales
et al. [61] have used graph networks as learnable physics engines in
robotic setups. While previous GNN based robotic effect prediction
models were successful in modeling physics, they largely overlook
unknown or partial information. Our model can also handle more
complex shaped objects by modeling them as a group of articulated
simple shaped objects.

Parameter estimation. Wu et al. [62] proposed a deep approach for find-
ing the parameters of a simulation engine that predicts the future posi-
tions of the objects that slide on various tilted surfaces. Zheng et al. [63]
used perception prediction networks, a type of graph neural network,
for learning latent object properties from interaction experience to
simulate system dynamics.

In many scenarios, simply observing the scene may not yield enough
information, and the robot may need to actively engage with the
environment to perceive more. In these cases, the robot can improve
its perception by actions [64]. Li et al. [65] used recurrent neural
networks to predict the center of mass from object mask and interaction
experience. Xu et al. [66] used a deep learning architecture for learning
object properties. In their settings, a robot slides an object from an
inclined surface and cause it to collide with another. Using a sequence
of dynamic interactions, they showed that their model could learn to
predict object representations. Kumar et al. [67] trained policy and
predictor networks to estimate the mass distribution of articulated
objects. They showed that their policy network improves the mass
prediction capacity of the predictor network compared to the random
policy. However, their approach was limited to articulated objects with
a fixed number of parts.

In [68–71], researchers also studied estimating the joint relations
between objects for real-time tracking and prediction of the articulated
motions in challenging interactive perceptual settings. These works,
however, assume expert knowledge about the joint types and hard-code
the corresponding transformation matrices [69], candidate template
models [68], specific measurement models [70,71] to detect kinematic
structures. Our system assumes no prior knowledge about joint dy-
namics, and the robot learns the dynamics of categories purely from
observations. Therefore, the learning dynamics of completely novel
relation types is possible with our system. Exceptionally, in [68], Sturm
et al. proposed to learn articulation dynamics from data; however, it

was only realized on a single-pair of objects from a single articulation
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Fig. 2. Our framework extracts object- and relation-centric latent representations from the current physical scene. The latent representations are initially used to update unknown
parameters of the scene graph, then with the planned motor commands, they are used for predicting future motion of the manipulated objects.
observation (garage door motion). Furthermore, these studies do not
learn or predict how the pairs or chains of non-articulated touching
objects would propagate the applied forces along the cluster/chain. In
contrast, our system can predict the propagated effect on groups of
touching non-articulated objects.

In our work, we verified the prediction and reasoning capability of
the robot in use of tools that are composed of basic primitive shapes.
While our main focus is not on decomposing objects into primitives, it
should be noted that this topic has been studied in the literature. For
example, Deng et al. [72] showed that from input images, objects can
be decomposed into convex hulls. In addition, they showed that these
convex hulls could be used for physics simulation. Similarly, Pashevich
et al. [73] proposed a framework that can propose different part sets
where objects can be divided into, and then reconstruct the divided
object in the real world with a robot using the available primitives in
the workspace.

3. Proposed framework

We propose methods and framework that are capable of learn-
ing object- and relation-centric representations for different physical
scenes. These representations can be used across various tasks. In this
work, we designed our framework around solving two complementary
tasks, namely belief regulation and physics prediction. Fig. 2 shows a
graphical illustration of our framework. First, object- and relation-
centric representation for each object and their object-object relations
are learned using propagation network. By giving these representations
to RNN networks, our framework finds unknown object and relation
parameters and acquires an updated graph of the scene. By passing the
updated scene graph and future robot actions to the same propagation
network, our framework predicts the future motion of the manipulated
objects by chaining the effect predictions. In the rest of the section,
more technical details will be provided.
4

3.1. Preliminaries

In this work, we employ graph neural networks to capture the
dynamics of multi-object systems, elucidating how each object responds
to the fundamental principles of physics. Our approach encompasses
two complementary tasks: physics prediction and belief regulation.
Physics prediction involves the forecasting of physical system behavior,
offering insights into how objects interact within dynamic environ-
ments. Concurrently, belief regulation entails the estimation of essential
parameters required for constructing an accurate model of the physical
system, leveraging available data. For this, we concentrate on push
manipulation scenarios featuring multiple objects, where the robot’s
primary action involves linearly pushing an object situated on a ta-
ble. In these scenarios, the physics prediction task corresponds to
modeling how objects move with respect to the motion of the robot.
In parallel, belief regulation focuses on deducing crucial object- and
relation-specific parameters, notably encompassing joint types and ob-
ject masses. Throughout this work, we operate under the assumption
of having access to object shape and tracking information up to the
current timestep.

Physical system as a graph. From a physical system with multiple
interacting objects, we form a graph 𝐺 = ⟨𝑂,𝑅⟩ where each object 𝑂
is represented by the nodes (of cardinality 𝑁𝑜) 𝑂 = {𝑜𝑖}𝑖=1∶𝑁𝑜 and the
relations 𝑅 between objects such as a contact or a joint are represented
by the edges (of cardinality 𝑁𝑟) 𝑅 = {𝑟𝑘}𝑘=1∶𝑁𝑟 of the graph.

Representing push manipulation tasks. We are interested in representing
the push manipulation task as a robot interacting with an object clutter.
The clutter could contain many objects that may have different parts
with different mass distributions, objects with possible articulations,
etc. We plan to represent such a system with the aforementioned graphs
𝐺 = ⟨𝑂,𝑅⟩.

Each node 𝑜𝑖 =
⟨

𝑥𝑖, 𝑎𝑜𝑖
⟩

store object or part vectors where for object
𝑖, 𝑥𝑖 = ⟨𝑞𝑖, �̇�𝑖⟩ is the state of the object, with its pose 𝑞𝑖 and velocity
�̇� , and 𝑎𝑜 stands for object properties such as shape or mass. Between
𝑖 𝑖
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Fig. 3. Comparison between object-centric vs. object- and relation-centric representations. On the left, the process of handling graph-based input is illustrated, with boxes representing
nodes and connecting lines representing the edges within the graph. On the right, we depict the procedure for processing image-based input. For each box, the latent representation
of the orange object is estimated. Blue and yellow colored objects correspond to the robot, and the other objects that are used in this estimation, respectively. Colors between
objects correspond to their articulation type. The representation on the left allows the network to capture object details in a more compositional way, allowing it to propagate
action-effects between objects and predicting action-effects of each object more accurately. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
each 𝑖, 𝑗 node pair, there is an edge 𝑟𝑘 =
⟨

𝑑𝑘, 𝑠𝑘, 𝑎𝑟𝑘
⟩

that represents
object-object relations where 𝑑𝑘 = 𝑞𝑖 − 𝑞𝑗 stands for displacement
vector, 𝑠𝑘 = �̇�𝑖 − �̇�𝑗 stands for velocity difference, and 𝑎𝑟𝑘 corresponds to
properties of relation 𝑘 between objects 𝑖 and 𝑗.

Previously, push-effect prediction tasks were often represented with
object-centric image-based representations. Compared to these repre-
sentations, our graph based representations can represent scene in
both object- and relation-centric way. The visualization of both rep-
resentations are shown in Fig. 3. This inductive bias allows our net-
work to capture scene dynamics more accurately and efficiently. For
object-centric representations, action-effect for each object has to be
calculated separately which may more often result in inconsistent
predictions.

Representation of robot. We propose representing the end-effector of the
robot as a part of the graph. For this, a robot flag and a control vector
𝑢 that shows how the end-effector will move in the next step are used.

Leveraging graph representation. For this work, our representation cov-
ers cylinders, cuboids, and objects that can be represented with the
combination of two. Objects in the scene are represented with their
shape, state, and other object features such as mass. Shape of objects
are represented with their dimensions (the radius for cylinder and
edge lengths for cuboid) and their orientations. Orientations of ob-
jects are represented with vector [𝑐𝑜𝑠(𝜃), 𝑠𝑖𝑛(𝜃)] for 2D cases, and with
quaternions for 3D cases. To make the system position and orientation
invariant, object position and orientations are not included in node
representation. Only relative position and orientations are provided in
the edge representations. This essentially leads to representing each
object in its canonical pose and the acquiring object- and relation-
centric representations shown in Fig. 3. Unlike previous work [68–71],
the system has no prior information about how joints behave, and the
articulation dynamics are left for the network to learn. That is, our
framework only has access to labels of the joints during training.

3.2. Physics prediction

Propagation network. We use propagation network as a base for learn-
ing object- and relation-centric representations. In this network, first,
the state of each object and the relations between them are encoded
5

separately. This step is shown in Fig. 2 (Encoding-Step). The encoding
process is achieved by use of 𝑓 𝑒𝑛𝑐

𝑅 and 𝑓 𝑒𝑛𝑐
𝑂 encoders where former

process relation features 𝑟𝑘,𝑡, while the latter process the object features
𝑜𝑖,𝑡. 𝑐𝑟𝑘,𝑡 and 𝑐𝑜𝑖,𝑡 are the latent encodings of the objects and the relations,
where 𝑡 corresponds to timestep.

𝑐𝑟𝑘,𝑡 = 𝑓 𝑒𝑛𝑐
𝑅

(

𝑟𝑘,𝑡
)

, 𝑘 = 1…𝑁𝑟 (1)

𝑐𝑜𝑖,𝑡 = 𝑓 𝑒𝑛𝑐
𝑂

(

𝑜𝑖,𝑡
)

, 𝑖 = 1…𝑁𝑜 (2)

Next, the network incorporates interactions between objects and
propagations of these interactions between non-neighbor objects (e.g.,
force transmission between non-contacting objects) into object and
relation latent vectors. This step in shown in Fig. 2 (Propagation Step).
For this, 𝑐𝑟𝑘,𝑡 and 𝑐𝑜𝑖,𝑡 are passed to propagator functions 𝑓 𝑙

𝑅 and 𝑓 𝑙
𝑂

respectively for estimating propagation latent vectors 𝑒𝑙𝑘,𝑡 for relation
𝑘 and 𝑝𝑙𝑖,𝑡 for object 𝑖, for each propagation step 𝑙 at time 𝑡. Using these
functions in subsequent propagation steps allow for nodes and edges to
accumulate propagated information from nodes and edges connected
to them in 𝑒𝑙𝑘,𝑡 and 𝑝𝑙𝑖,𝑡.

𝑒𝑙𝑘,𝑡 = 𝑓 𝑙
𝑅

(

𝑐𝑟𝑘,𝑡, 𝑝
𝑙−1
𝑖,𝑡 , 𝑝𝑙−1𝑗,𝑡

)

, 𝑘 = 1…𝑁𝑟 (3)

𝑝𝑙𝑖,𝑡 = 𝑓 𝑙
𝑂

⎛

⎜

⎜

⎝

𝑐𝑜𝑖,𝑡, 𝑝
𝑙−1
𝑖,𝑡 ,

∑

𝑘∈𝑖

𝑒𝑙−1𝑘,𝑡

⎞

⎟

⎟

⎠

, 𝑖 = 1…𝑁𝑜 (4)

where 𝑖 stands for set of relations object 𝑖 is part of.
Effect propagation allows the network to pass information between

not connected objects. This allows force transmission when the robot
pushes objects towards another one, effectively pushing both objects
while contacting only one of them. Fig. 4 shows a simple illustration
of how the robot initiates a chain of interaction and how force applied
by the robot end-effector propagates. In the initial propagation step,
how the force that emerges from the motion of the robot is passed
to contacted objects is shown. In the second propagation step, this
force propagates to non-directly interacted objects. The number of
subsequent propagation steps to apply can be chosen based on the
difficulty of the task.

Resulting encodings 𝑒𝑙𝑘,𝑡 and 𝑝𝑙𝑖,𝑡 represent the objects and their
relations in the graph and they can be further passed to other networks
for physics prediction and belief regulation.
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𝑞

Fig. 4. This illustration shows how the graph of the scene is constructed and how the force emerging from robot end-effector motion is passed to the faraway objects. After graph
construction, each node holds state information of their corresponding objects, including the robot. Considering how state information of robot is passed, in the first propagation
step, it is passed to nodes of objects that contact the robot end-effector. In the second propagation step, via nodes of objects that the robot initially contact, this state information
is passed to nodes of non-contacted objects.
𝑎

𝑎

Effect prediction. Effect prediction refers to predicting the future states
of all objects one timestep at a time from their present states and
the ongoing robot actions. The object embeddings acquired from the
propagation network can be used for this task. For each object, the
latent vector 𝑝𝑙𝑖,𝑡 is used to estimate the next state of the object 𝑥𝑖,𝑡+1.
For this, object velocity �̇�𝑖,𝑡+1 at time 𝑡+1 is first predicted, then utilized
to estimate the object pose 𝑞𝑖,𝑡+1 at time 𝑡 + 1.

̇𝑖,𝑡+1 = 𝑓 𝑝ℎ𝑦
𝑂

(

𝑝𝐿𝑖,𝑡
)

, 𝑖 = 1…𝑁𝑜 (5)

𝑞𝑖,𝑡+1 = 𝑞𝑖,𝑡 + 𝛥𝑡 �̇�𝑖,𝑡+1 𝑖 = 1…𝑁𝑜 (6)

For simplicity, in our work, we assume 𝛥𝑡 = 1. As the underlying ob-
ject representation is orientation invariant, the velocity of each object is
estimated in terms of the object’s own frame from the poses of objects.
Before estimating the new pose of the object, it is transformed back into
the global frame in which each object has its own orientation. Then,
the predicted state information is fed back to the physics prediction
network to estimate future object states. Given the states of the objects
in time 𝑡, our framework can be used for predicting the trajectory
rollout of objects between time 𝑡 and 𝑡 + 𝑇 by chaining its estimates,
using the predictions as an input for estimating subsequent states of
objects.

3.3. Belief regulation

Temporal propagation network. We propose a temporal propagation net-
work to estimate and correct object and relation properties over time.
The propagation network is augmented with long short-term memory
(LSTM) networks to regulate object and relation beliefs. The illustration
of the temporal propagation network is shown in Fig. 2. Node and edge
embeddings estimated through the propagation network can be used
independently of the graph topology with LSTM. With this, sequences
of propagation latent vectors 𝑒𝐿𝑘,𝑡 and 𝑝𝐿𝑖,𝑡 are passed to LSTM-based
encoder functions 𝑓 𝑡𝑚𝑝

𝑅 and 𝑓 𝑡𝑚𝑝
𝑂 .

𝑃𝑖,𝑡 = 𝑓 𝑡𝑚𝑝
𝑂

(

𝑝𝐿𝑖,𝑡, 𝑃𝑖,𝑡−1
)

, 𝑖 = 1…𝑁𝑜 (7)

𝐸𝑘,𝑡 = 𝑓 𝑡𝑚𝑝
𝑅

(

𝑒𝐿𝑘,𝑡, 𝐸𝑘,𝑡−1

)

, 𝑘 = 1…𝑁𝑟 (8)

Resulting encodings 𝑃𝑖,𝑡 and 𝐸𝑘,𝑡 can be used to estimate missing
object and relation parameters, such as joint types and mass. With
each newly observed timestep, the encodings 𝑃𝑖,𝑡 and 𝐸𝑘,𝑡 are updated.
Note that graph topology is updated for each timestep based on the
current observed or estimated states of the objects. Propagations are
6

not performed across time. Once embeddings 𝑒𝐿𝑘,𝑡 and 𝑝𝐿𝑖,𝑡 are estimated
for the nodes and edges for a given graph at the current timestep, these
embeddings remain independent of the graph’s topology. In this way,
the temporal propagation network estimates and corrects object and
relation properties by considering their overall state history during the
robot execution.

Belief regulation. Belief regulation refers to the estimation of object-
and relation-related parameters and their correction over time using
motion trajectories of all objects until the present state. The belief
regulation module can continuously regulate beliefs regarding objects
and relations states (𝑜𝑖,𝑡 and 𝑟𝑘,𝑡) using the encodings 𝑃𝑖,𝑡 and 𝐸𝑘,𝑡.

̃𝑜𝑖,𝑡 = 𝑓 𝑏𝑙𝑓
𝑂

(

𝑃𝑖,𝑡
)

, 𝑖 = 1…𝑁𝑜 (9)

̃𝑟𝑘,𝑡 = 𝑓 𝑏𝑙𝑓
𝑅

(

𝐸𝑘,𝑡
)

, 𝑘 = 1…𝑁𝑟 (10)

�̃�𝑜𝑖,𝑡 and �̃�𝑟𝑘,𝑡 are used to estimate object and relation parameters
and update them over time as more observations are acquired. Specif-
ically, �̃�𝑜𝑖,𝑡 and �̃�𝑟𝑘,𝑡 corresponds to object masses and joint types in this
work, and we assume we have access to object shape information. The
updated object and relation parameters allows physics prediction to
compensate for errors that arise from unknown or partial information
regarding the scene. This allows our network to close the gap between
its physics predictions and reality.

Weight sharing. After training the propagation network for physics pre-
diction, learned weights can be reused in belief regulation, preventing
the framework from having to learn two separate networks. This de-
creases the number of parameters by about thirty percent.2 The weight
sharing significantly lowers the training time. In addition, it allows
easier inference as it is easier to load a single model to the employed
system. As we show in our experimental analysis, the representation
used with physics prediction well represents the environment and can
be used in transfer learning without affecting the system performance.

4. Experimental setups

In this section, we explain the details of the experimental setups
that are designed to evaluate how our model can be used for pre-
dicting object properties, relations between objects, and future object
trajectories.

2 The multiple part setup has 1,653,509 parameters with weight-sharing
and 2,253,061 without weight sharing which gives around 27% decrease.
However, since this setup does not require 𝑓 𝑏𝑙𝑓

𝑂 and 𝑓 𝑡𝑒𝑚𝑝
𝑂 , the actual decrease

is even higher (∼35%, from 1,726,468 to 1,126,916).
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Table 1
Explanations of the joint types and their effects.

Note: Objects and the robot are shown with single-edged and double-edged circles respectively, and the lines between objects represent different joint types. The arrow shows how
the robot end-effector will move.
4.1. Robotic setup

Experiments are conducted with a 6 DoF UR10 robot arm with
a cylindrical shaped end-effector both in simulation and real world.
For simulation experiments, we use CoppeliaSim [74] with Pyrep
toolkit [75]. For demonstrating prediction capacity of our framework,
we define two different object setups, namely Multiple Parts Setup
and Different Masses Setup. The former setup includes a diverse set
of interactions in the form of joints and is designed with the aim of
showing the full capacity of our framework. As the physical effects of
object parameters are limited in the former setup, the latter setup is
designed with the aim of showing the performance of our framework in
setups where the effect variation can occur from object parameters. In
these setups, edges between objects are dynamically created as objects
approach to each other. As the robot interacts with the objects in the
environment, only a certain subset of objects will be in the same sub-
graph of the robot (this can be seen in the graph shown in Fig. 4),
and accordingly, this allows the system to encounter sub-graphs with a
different number of objects and relations.

Multiple Parts Setup: This setup consists of a group of articulated ob-
jects where our framework should learn dynamics of objects, including
cylinders and cuboids, with complex spatial relations between them.
The objects may be connected to each other through three different
joint relation types, namely fixed, revolute and prismatic joints, or they
may have no joint connections between them (no-joint). An illustration
of these joint relations and their explanations are shown in Table 1.

Different Masses Setup: This setup consists of differently massed
cylindrical objects where masses of objects have an effect on their fu-
ture motion. From the motion trajectories of the objects, our framework
should be able to predict their masses. The masses are sampled from
three intervals: 0.2–0.5 kg, 1.0–2.0 kg, 8.0–10.0 kg, representing light,
normal and heavy objects, respectively.

For both of these setups, we generated datasets containing 30,000
training and 1000 validation trajectories with 9 objects. Since it is
hard to exactly tune end-effector velocity to match the physics of
the realworld, end-effector velocity of the robot is changed between
different trajectories so that it can generalize to different values. For
testing the generalization capacity of the network to changing number
of objects, we used trajectories consisting of 9, 6, and 12 objects, each
with 1000 trajectories.
7

4.2. Implementation details

Generation of graph. For each object in the scene and close-by object
pair, i.e., objects with Euclidean distance less than 35 cm; a node
and two directed edges, the receiver and the sender (corresponding
to incoming and outgoing edges, respectively), are created. Each ob-
ject propagates forces from its sender edges, which correspond to
receiver edges for the other close-by objects, to the other objects. To
make the system position and orientation invariant, object position and
orientations are not included in the node features. Instead, for each
object-object relation, the pose of the object on the sender side of the
relation is encoded with respect to frame of the object on the receiver
side of the relation. After the motion of an object on its own frame is
predicted, it is transformed back to the global frame.

Network information. 𝑓 𝑒𝑛𝑐
𝑂 is a two 256-dim hidden layer MLP, and 𝑓 𝑒𝑛𝑐

𝑅
is a three 256-dim hidden layer MLP. 𝑓 𝑙

𝑂 and 𝑓 𝑙
𝑅 are MLPs with 256-

dim single hidden layer. 𝑓 𝑙
𝑂 and 𝑓 𝑙

𝑅 are chosen to have a low number of
layers since these networks are called multiple times successively and
therefore are more costly to use than 𝑓 𝑒𝑛𝑐

𝑂 and 𝑓 𝑒𝑛𝑐
𝑅 . Finally, 𝑓 𝑡𝑚𝑝

𝑂 and
𝑓 𝑡𝑚𝑝
𝑅 are LSTM with 256 neurons. For physics prediction, the output

of 𝑓 𝑙
𝑂 is given to 𝑓 𝑝ℎ𝑦

𝑂 , an MLP with one 256-dim hidden layer and
one linear layer, to predict velocity (�̇�𝑖) of each object; and for belief
regulation, outputs of 𝑓 𝑡𝑚𝑝

𝑂 and 𝑓 𝑡𝑚𝑝
𝑅 are given to 𝑓 𝑏𝑙𝑓

𝑂 and 𝑓 𝑏𝑙𝑓
𝑅 with a

single linear layer to predict object masses and joint relations. During
the belief regulation step, the shared propagation network requires the
same input as the physics prediction. For this reason, for parameters
that are unknown, we use values that do not have any correlation with
the actual values and remain constant at training and inference time to
not add any bias to the system.

In the belief regulation module, as more interaction experience
is acquired, the framework is expected to have higher accuracy in
identifying initially unknown parameters of the environment. For this
reason, the loss function is scaled in a way that further time-steps have
a higher loss value compared to earlier time-steps. This incentives the
network to improve its accuracy over time, while not penalizing errors
in initial steps significantly, where the robot has limited interaction
experience with the objects. Besides, to make networks predictions
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smooth and preventing them from oscillating between different out-
comes, the outputs of 𝑓 𝑡𝑚𝑝

𝑂 and 𝑓 𝑡𝑚𝑝
𝑅 are regularized by applying MSE

loss between latent vectors of successive time-steps.
The network is trained with batch-size of 16 and 3e−4 learning

rate using Adam optimizer [76] with AMSgrad [77]. The learning rate
is reduced by 0.8 when the validation error stops decreasing for a
window of 20 epochs. Networks are trained for 1000 epochs. The
physics prediction module is trained with epochs of 10,000 batches
of randomly sampled time-steps, and for the training belief regulation,
200 batches of randomly sampled trajectories from the training scenes
are used.

First, our network is trained on physics prediction. After the training
is complete, the weights of the shared part of the network are frozen,
and then the belief regulation module is trained. To increase the
performance of physics prediction, we used scheduled sampling [31].
This enables the network to recover more easily from predictions that
are slightly off, e.g., the effect predictions in which objects slightly pen-
etrate each other. Using Nvidia P100 GPU, the physics prediction and
belief regulation modules are trained for two and one days respectively.

5. Results

For quantitative analysis, our framework is evaluated on joint pre-
diction and mass prediction tasks. For the relation prediction case,
our results are compared with PropNets with three different relation
assignment strategies.

1. Oracle: This relation assignment strategy utilizes ground-truth
relations. In the ideal case, as more interactions are observed,
the performance of our framework should be similar to that of
oracle.

2. No-Joint: This relation assignment strategy assumes there are
no joints in the scene.

3. All-Fixed: This relation assignment strategy assumes a fixed
joint between every contacting object pair.

5.1. Quantitative analysis in multiple parts setup

For evaluating the physics prediction module, we compared our
graph-based architecture with an CNN-based physics prediction archi-
tecture that takes rendered object-centric images of pushed objects and
predicts the displacement vector. Both architectures are tested with the
oracle relation assignment strategy in multiple parts setup. In this setup,
while collecting each trajectory, the robot executes 9 linear pushes of
30 cm, making contact with a most diverse set of objects. For both
architectures, outputs of physics predictions are chained to predict
multiple time-step trajectory roll-outs (i.e., essentially simulating the
environment with network predictions). These trajectory roll-outs are
used in evaluation. Specifically, we estimate the Root Mean Squared
Error (RMSE) between each predicted and corresponding ground truth
trajectory rollout for all timesteps and take their averages. These tra-
jectory rollouts are 30 and 50 timestep length. Fig. 5 presents the
performance in scenarios with different numbers of objects. Compar-
ing error values, it can be seen that both architectures are able to
generalize to different number of objects. However, our architecture
performs significantly better than then CNN-based one as errors for our
network are skewed towards low values while CNN-based architecture
errors are skewed towards high values. Regardless, as the length of
predicted trajectory roll-outs increase, the errors in a higher number
of trajectories accumulate. This is because the propagated errors from
earlier predictions affect the accuracy of physics prediction for each
subsequent time-step. This causes the trajectories to drift away from
the ground truth. However, our method has significantly lower com-
pounding error than the CNN-based one: for our architecture, in Fig. 5
on the left, as the roll-out length is shorter in each environment setup,
8

more than 600 trajectories have lower mean error than 0.1 cm, and most
of the remaining trajectories have a lower mean error than 0.4 cm. On
the right, the roll-out length is longer, and less than 400 trajectories
have a lower mean error than 0.1 cm. Additionally, for the rest of the
trajectories, there are more trajectories in high mean error bins.

Next, the belief regulation3 module is evaluated on the prediction of
joint relations. As shown in Fig. 6, as the robot interacts with the objects
and more observation data is acquired, our network becomes better
at predicting the joint relation types more accurately. The number of
observed timesteps used with belief regulation for joint prediction is
shown in the 𝑥 axis of the figure. Fig. 6A shows that our method
performs similarly independent of the number of objects used due to
the underlying graph structure. In Fig. 6B, no joint (blue) and prismatic
joint (green) lines show that networks are good at identifying whether
there is a joint between two objects and whether this joint is prismatic.
Compared to the prismatic joint, the model is more likely to make
erroneous predictions on whether a joint is fixed or revolute. This
is likely because without interaction experience, it is easier for the
network to mix these two joints. Nonetheless, from Fig. 6C, we can see
that the model can correct its predictions on fixed and revolute joints
as it observes more robot interactions. The Fig. 6B and C shows that the
model abstains from predicting a joint as prismatic unless it is certain.
This may be because prismatic joint dynamics are similar to no-joint
dynamics unless the robot gains enough observations about objects that
are connected to the joint.

Finally, the coupled results of the physics prediction and the belief
regulation modules can be seen in Fig. 7. In these results, we predict
joint relations with the belief regulation module using the observed
timesteps. The number of observed timesteps are shown in the 𝑥 axis
of the plots. The estimated joint relations are used in predicting 50-
timestep trajectory rollouts. Then, we estimate the error the same way
as we do for physics prediction results. We compare our network with
other alternative relation assignment strategies. In Fig. 7, the lines show
the mean errors, and the shaded regions show the standard deviation.
As expected, physics prediction done with no-joint and all-fixed relation
assignment strategies performed poorly. This is because these relation
assignment strategies do not learn from interactions. As the number of
observed time-steps increases, the mean error of the coupled modules
decreases and eventually in 40 time-steps, it reaches to the mean
error of the physics prediction of the oracle system that has access to
ground-truth joint relations.

5.2. Quantitative analysis of belief regulation for mass prediction

We design different masses experimental setup for further testing
he object-centric prediction capacity of our framework. In this setup,
n each trajectory, the robot executes a total of 3 linear pushes of
0 cm, scattering objects as much as possible. In this experiment, our
ramework should predict object masses, and as the robot acquires
ore observations, it should improve its mass prediction accuracy

urther. We predict the object masses using the observed timesteps
or each trajectory. Using these masses, RMSE between predicted and
round truth masses are estimated. We take the average of RMSE
orresponding to each trajectory. This is performed on a timestep level
o show how mass prediction improves over time. The results for mass
rediction are shown in Fig. 8. Considering the distribution masses, our
odel manages to decrease mass errors over time as it acquires more

bservations. However, the predictions seem to not go below a certain
alue. This may be because the robot has limited interaction with the
bjects in the scene, and this limits the capacity of the model to predict
asses of objects correctly.

To further analyze the performance of our system in mass predic-
ion, we prepared two controlled environment test setups to examine
hy mass error does not decrease below a certain value. These setups

3 Referred to as BR in some of the figures due to space limitations.
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Fig. 5. Physics prediction results on articulated object environments. Error distribution of our network is skewed towards lower error, while CNN-based architecture that uses
object-centric images has error distribution skewed towards higher error.
Fig. 6. Belief regulation results on articulated object environments. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
can be seen in Fig. 9. In these setups, we only change the mass of

objects while keeping the same robot action, initial positions of objects,

and shapes of objects same. The robot manipulates each object, so it
9

should be possible for the network to predict mass if it is predictable.

In total, we collect 1000 trajectory rollouts for this analysis. In this

experiment, we estimate the mass using all timesteps of the trajectories.
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Fig. 7. Results of coupled system on articulated object environments.
Fig. 8. Belief regulation results on mass prediction. As more observations of motion are gathered from the scene, mass prediction error decreases, but eventually converges to
about 2.7 kg mean error.
Fig. 9. Visualization of controlled environment setups for mass prediction. In these configurations, object masses are changed between different runs while keeping robot motion
and object shapes the same.
Fig. 10. Mass prediction results in controlled environments. In many cases, our model acquires low error, however there are still many cases that have high error.
The results obtained in these controlled settings are provided in Fig. 10.
Considering the mass distribution of the objects, the first two bars
of both plots show that our framework predicts light and medium
10
within their cluster correctly half of the time. The third and fourth
bin shows that our framework sometimes confuses light and medium
objects and medium and heavy objects. For three objects, the fifth bin
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Fig. 11. Mass predictions for two very close observations. For the given two-object (A–B) and three-object (C–D) setups, the same observations are acquired for two different mass
configurations, and our framework could not differentiate between the two. Our framework makes the correct prediction for scenes A and D, and incorrect prediction for scenes
B and C.
shows that our framework confuses light and heavy objects in rare
cases.4 A number of representative correct and incorrect predictions are
provided in Fig. 11. We investigated setups where the network made
high-error mass predictions and observe that there are cases where
objects of different mass configurations have similar object motions.
In Fig. 11C and D, the robot observes very similar trajectories with
0.15 cm difference between them, despite the interacted objects having
very different masses. In these scenes, the network makes very similar
predictions. However, only in the former scene, it is correct.

5.3. Qualitative analysis — tool usage

We design a tool manipulation and planning experiment. Given a
goal position, the aim is to select the best tool and action sequence to
bring a given object to the goal position using the corresponding tool.
In addition, this experiment aims to show generalization capacity of
our framework by transferring representation and the network trained
in multiple parts setup for modeling novel tools that are not encountered
in the training distribution.

In this experiment, we use novel tool objects as shown in Fig. 12A: a
stick, L-shaped tool, inv-L-shaped tool, and their various configurations.
These tools are represented as multi-part objects composed of cuboids
and fixed joints, and are attached to robot end-or. The robot uses
linear pushes in principal directions to manipulate the object on the
table. In these actions, tool motion is modeled kinematically and not
updated from the network prediction. It is important to note that a
new network is not trained and the results obtained by the previously
trained network are reported.

In each test case, the robot should select one of the available tools
and apply three pushes of 20 cm in principle directions to move an
object to a given goal position. For every test scenario, the initial
end-effector position is fixed, as depicted in Fig. 12B. To make all
test cases feasible, goal points are generated through simulation. More
specifically, 24 uniform initial positions are generated from −0.7 ≤ 𝑥 ≤

4 Videos of the results are available at project page.
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−0.1 and −0.5 ≤ 𝑦 ≤ 0.5 (these initial points are shown in Fig. 12B).
Then, on each of these initial positions, a cylindrical object is generated,
and all possible action sequences are applied using each of the tools.
The final positions of objects are recorded. These final positions are
filtered where if a final position of object is less than 5 cm away from
its initial position, it is removed. In addition, if the difference between
any two initial and final position pair is lower than 5 cm, one of them
is removed as well. In this way, a dataset for tool and action selection
that contains 166 completely diverse solvable initial and final position
pairs is generated.

The task is defined as the selection of the best tool and best action
sequence from all possible tools and action sequences. The network
is run for all the initial-target position pairs for each possible tool
and action sequences. For each of these pairs, the tool and action
sequence that gives the lowest RMSE between the final position of the
manipulated object and the target position is selected. In addition, for
comparison, to see whether our framework can utilize each of the tools,
the best action sequences for each tool are found as well. Then, each
solution is transferred to simulation to test their correctness.

The results can be seen in Fig. 13. The left column shows the
prediction errors of selected action sequences, and the right column
shows actual errors of selected actions when they are run in simu-
lation. The first row shows the error between the final positions of
manipulated objects and the goal positions. The second row shows the
number of successful action sequences (i.e., action sequences where
the final position of the object is less than 5 cm away from its target
position). Each bar corresponds to the result for action selection with
a particular tool. In the last bars of each bar plot, corresponding to all
tools label, results for both tool and action selection are shown. From
the figure, it can be seen that our framework manages to utilize all
tools for solving about 40 of the tasks, and when all tools are allowed
to be used, about 130 of the tasks are solvable. Comparing prediction
and simulation results shows that predictions made by our framework
are plausible, and there is just marginal loss of performance when
found action sequences are transferred to simulation. Our framework
is successful in tool manipulation and action selection despite it not
being designed for such a task.
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Fig. 12. (A) Tools used in tool selection and planning experiments, (B) initial end-effector position and initial positions utilized for generating feasible goal points.
Fig. 13. Tool results. As the robot is allowed to use wider variety of tools, success rate increases and error amount decreases.
5.4. Qualitative analysis — model predictive control

In this experiment, we show that our physics prediction model can
be employed in model predictive control (MPC). Given a goal position
on the table, the task of the robot is to push the given cylindrical
or cuboid target object to the goal position in the presence of other
objects. These other objects may affect how the pushed target object
moves in the scene.

For generating each test scene, four objects, which are placed
closely to one another and with random sizes and joint configurations,
are generated on the table. In addition, the goal location is sampled
12
on the left side of the table. The target object is always initialized in
the same location. These generation areas are shown in Fig. 14. We
utilize the shooting method [78] to acquire the robot control vector 𝑢
that moves the target object as close as possible to the goal position on
the table. We employ our physics prediction network to perform a 20-
step simulation of the scene. We then use gradient descent to update
the control vector by minimizing the distance between the predicted
positions of the target object and the goal location:

argmin𝑢
1

20
∑

𝐿goal(𝜙(𝐺0, 𝑢1∶𝑡), 𝑞goal) = (𝑞target,𝑡 − 𝑞goal)2 (11)

20 𝑡=0
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𝑞

Fig. 14. Scene generation for the MPC task. The task of the robot is to push the light blue object to the center of the purple area. Dark blue and green region approximately
corresponds to generation areas for the four yellow objects and the goal location, respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Table 2
MPC results.

Target object Ours Coarse physics

Position error (cm) Cuboid 𝟐.𝟏𝟖 9.52
Cylinder 𝟐.𝟐𝟖 7.64

Accuracy (%) Cuboid 𝟗𝟓 30
Cylinder 𝟗𝟓 40

where 𝜙 takes the current state of the scene 𝐺0 and sequence of
control vector 𝑢 up to time 𝑡 and predicts the pose of the target object
̂target,𝑡. In order for the gradient descent to find a plausible solution
for object pushing, it requires the robot end-effector to be in contact
with the target object during the motion, as the push dynamics are
discontinuous. To handle this, we initialize the MPC with 16 different
initial robot locations that are in contact with the target object and
initial control vectors that move the robot to the goal location. We
then optimize these 16 control vectors and select the one that leads to
the minimum loss value. The robot performs the first 5 steps of this
control vector, and then proceeds to generate a new control vector.
This continues until (1) the target object is within one 𝑐𝑚 of the goal
location, (2) it does not move in the last robot motion, or (3) when the
robot finishes its 10th motion.

We compare our method with a coarse physics model from [79].
In this model, during contact, the pushed object moves with the same
velocity as the robot end-effector. We use two metrics to evaluate our
method. The first is the Euclidean distance between the final location
of the target object and the goal location. The second is the accuracy
of task completion: if the target object is within 5 cm of the goal
location, the task is counted as a success. We perform the experiment
with 20 test scenes each for cuboid and cylindrical target objects.
Our results are shown in Table 2. Our method acquires a high task
success rate and significantly outperforms this baseline, as the baseline
does not consider the multi-object dynamics present in the scene. One
important detail is that the coarse physics model, being a simpler
model, is faster than our method. In contrast, our method might require
a longer execution time due to the iterative nature of gradient descent
steps required to estimate optimal actions. However, it is crucial to
13
Table 3
6D effect prediction results (cm)

Ours Coarse physics

Final position error 𝟓.𝟎𝟒 20.99
Trajectory error 𝟏.𝟕𝟐 11.20

emphasize that our proposed method offers the substantial advantage
in handling complex scenarios, as demonstrated by the results.

5.5. Qualitative analysis in simulation - 6D motion prediction

Finally, we designed an experimental setup where we can test our
framework on 6D rigid body motion prediction. In this setup, the robot
is tasked to lever up a printed circuit board (PCB) from a hard drive disk
(HDD) with a screwdriver tool. A PCB is placed on top of the HDD, and
at each side of the HDD, there may be a ledge that PCB may contact
while being levered up. PCB and HDD are represented as a set of boxes,
and their sizes change between runs. Note that some sides of the HDD
may have no ledge in different scenes, and therefore, while representing
a scene in a graph, the number of nodes changes between runs.

For scene generation, the lengths of both sides of the HDD are set
to 20 cm. There is either a ledge of size between 0 to 8 cm, or no
ledge at each side of the HDD. In the middle of the HDD, a PCB with
its side lengths between 10 to 20 cm is generated. For each generated
scene, one lever-up motion with the screwdriver tool is applied from
a random location on each side of the PCB. During the PCB level,
our method needs to correctly determine when the PCB should start
rotating around the ledge or continue to slide linearly on the HDD
case in the absence of a ledge. The network is trained using 500 lever-
up interactions on scenes with 125 different procedurally generated
hard-disks (One lever-up action from each side of the HDD).

A sample prediction can be seen in Fig. 15. To evaluate our method,
we compare it with a coarse physics model [79], in which the PCB
moves with the same velocity as the screwdriver tool. Specifically, we
evaluate our method on two metrics: final position error and trajectory
error. The final position error quantifies the RMSE between the final
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Fig. 15. Snapshots of 6D effect prediction. The ground truth pose of the object is shown with a transparent cuboid. For easier visibility, the ledges of the HDD are shown with
different colors. Our method successfully models how the ledges work, and can correctly predict the trajectory of PCB. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 16. Snapshots of a robot interaction in a real-world setting. Our framework continuously updates its joint predictions as it observes the motion of objects and predicts their
future positions.
timesteps of predicted and ground truth PCB trajectories. For the tra-
jectory error, we compute the RMSE for all timesteps and calculate their
average. Our results are found in Table 3. Our method significantly
outperforms the baseline model, as our model successfully models the
changes in the ledge sizes and their absence, and adapts to different
scenes. Additional results on this setup can be found on the project
page. In this setup, our network makes plausible predictions that match
well with the ground truth.

5.6. Analysis of our framework in real world

In this section, our framework is evaluated with a real world dataset,
presented in [30]. In this dataset, a UR10 robot arm holds a hammer
and uses it for pushing objects. The dataset contains cylinder-shaped
objects and possible fixed joints between them. The effect of a fixed
joint between objects is mimicked by placing customized card-boards
under them. A sample created scene and how the robot makes its
manipulation on objects can be found in Fig. 16. As the dataset does
not have angle information, our network is retrained with the angles of
cylinders removed. Since it is also possible for our network to predict
revolute or prismatic joints, predictions are limited only to no-joint
and fixed joint relations5 (By selecting the joint relation with the max
probability between no-joint and fixed joint relations.).

The dataset contains scenes with 2 to 5 cylindrical objects and 1 to 3
fixed joint relations between them. In total, there are 102 different test
setups in the dataset. On average, objects move 19.5 cm, and our physics
prediction network achieves an average RMSE of 3.5 cm in predicting
final object positions where [30] achieved 6.6 cm in the same test. Our
coupled framework is further analyzed with the same dataset in Figs. 17
and 18. In these analyses, for each trajectory, we use joint relations
estimated using the observed timesteps for predicting the rest of the
trajectory. The number of observed timesteps is given on the 𝑥 axis for

5 Unlike [30], we do not retrain our network with only cylindrical objects
and fixed joints; we only remove angle information of cylindrical objects.
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each bar. We then calculate the RMSE for all timesteps of the predicted
trajectory and calculate their averages. In Fig. 17, similar to [30], we
test our framework on exact timesteps where the first contact between
robot and objects occurs. Our network manages to acquire better results
than the one in [30] for both physics prediction with ground truth
and with predicted relations. In [30], prediction with ground truth and
predicted relations acquires 6.5 cm and 8.5 cm at time 𝑡 and 4 cm and
6.5 cm at time 𝑡 + 5. In Fig. 18, performance of our framework on
different time-steps is shown where predictions of our framework catch
up to the ground truth as more observations are acquired.

6. Conclusion

We presented methods and a framework for learning action-effects
in object and relation-centric push manipulation tasks. Our framework
allows the robot to correct its belief about object and relation pa-
rameters as it interacts with the scene and observe the effects of its
actions. It then can continuously predict the future dynamics of objects.
We have tested belief regulation and physics prediction performance
on multiple experiments, including a real world one, where there is
a sim-to-real gap between learned physics. We have shown that our
framework can predict joint types in articulated object settings with
different object and relation types, masses of objects, and their future
motion. We have shown that our framework can be extended for 6D
trajectory prediction. Furthermore, we also validated our framework
on action selection in a tool manipulation task. Although we do not
train a new network that includes situations that are not present in
our articulated object setting, our network was successfully transferred
to this new domain and succeeded in finding action sequences that
complete the given tasks.

One important assumption of our work is that the belief regulation
requires accurate object tracking for parameter estimation. Unless the
object or relation parameters are known beforehand, our method has
to estimate them by taking object trajectories as input. However, once
these parameters are identified, our method can even aid in predicting
future object poses when they are not available through tracking. To
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Fig. 17. Average errors (in cm) change in real world as robot makes its first contact with the objects.
Fig. 18. Average errors (in cm) change in real world as our framework acquires more object tracking information.
address this assumption and reduce our reliance on object tracking,
we plan to explore the use of signed distance function based object
representations [80]. This will not only alleviate the need for precise
tracking but also expand our method’s applicability beyond cylindrical
and cuboid objects, or their combinations, as different object shapes
can be effectively represented using signed distance functions.

As our framework is very generic, we believe it can be further
refined and extended. Firstly, our framework can benefit from intel-
ligent exploration strategies that can generalize to a changing number
of objects. Secondly, our physics prediction network can be finetuned
in the real world to narrow the sim-to-real gap, further improving
the model’s real world applicability. Moreover, analytic models such
as the ones used in [68–71] can be incorporated into our method.
Analytic articulation models have been mainly employed in tracking,
specifically on semi-dynamic objects, where only one part undergoes
motion (i.e., the tracked part), while the rest remains static. In the
future, we plan to investigate how the analytic articulation dynamic
models could be integrated into our framework. We believe this will
yield substantial benefits, making our system more data-efficient and
robust in handling articulated objects. It has been shown that combin-
ing analytic and learned dynamic models have advantages for learning
pushing dynamics [48], and a similar approach could be considered for
articulation dynamics. Finally, it is important to note that learning of
unsupervised representations for objects via interactions can be very
powerful for the visual grounding of objects. In future work, we plan
to extend our framework for these adaptations.
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