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ABSTRACT

We have developed a neural network-based pipeline to estimate masses of galaxy clusters with a known redshift directly from photon
information in X-rays. Our neural networks were trained using supervised learning on simulations of eROSITA observations, focusing
on the Final Equatorial Depth Survey (eFEDS). We used convolutional neural networks that have been modified to include additional
information on the cluster, in particular, its redshift. In contrast to existing works, we utilized simulations that include background
and point sources to develop a tool that is directly applicable to observational eROSITA data for an extended mass range – from
group size halos to massive clusters with masses in between 1013 M� < M < 1015 M�. Using this method, we are able to provide, for
the first time, neural network mass estimations for the observed eFEDS cluster sample from Spectrum-Roentgen-Gamma/eROSITA
observations and we find a consistent performance with weak-lensing calibrated masses. In this measurement, we did not use weak-
lensing information and we only used previous cluster mass information, which was used to calibrate the cluster properties in the
simulations. When compared to the simulated data, we observe a reduced scatter with respect to luminosity and count rate based
scaling relations. We also comment on the application for other upcoming eROSITA All-Sky Survey observations.

Key words. methods: numerical – galaxies: clusters: intracluster medium – large-scale structure of Universe – X-rays: galaxies –
X-rays: galaxies: clusters

1. Introduction

Improving our understanding of the mass function of galaxy clus-
ters enables us to improve our inference with respect to key cos-
mological parameters. These parameters include ΩM , the density
parameter of matter in the Universe, and σ8, which describes the
dispersion of linear density fluctuations. The ongoing eROSITA
(extended ROentgen Survey with an Imaging Telescope Array)
All-Sky Survey (Predehl et al. 2021) on board the Spectrum
Roentgen Gamma mission (Sunyaev et al. 2021) will provide us
with the largest intra-cluster medium (ICM) selected galaxy clus-
ters to date, which promises to provide tight constraints on cos-
mology through cluster abundance measurements (Merloni et al.
2012). A key ingredient in this analysis is to understand the
cluster masses associated with a selected underlying sample
(Bulbul et al. 2019). Traditionally this is performed with weak-
lensing (WL) calibrated scaling relations in the context of the
eROSITA cluster census or using dynamical mass measure-
ments (Mamon et al. 2013; Old et al. 2014, 2015) in situations
where the data allow for this approach. In the context of eROSITA,
the former procedure has been demonstrated on the Final Equa-
torial Depth Survey (eFEDS) using the Hyper-Supreme Camera
WL mass measurements (see Bahar et al. 2022; Chiu et al. 2022).

Cosmology analyses through cluster abundances detected in
the X-ray or SZ surveys heavily rely on the availability of exter-
nal WL mass measurements (Mantz et al. 2015; Bocquet et al.
2019; Grandis et al. 2019). This procedure requires the knowl-
edge of cluster masses through WL surveys and introduces bias
and scatter in the final cosmology contours if the survey data
are not deep enough. Unaccounting for these biases and selec-
tion differences may affect the final cosmology measurements
(Ramos-Ceja et al. 2022). Recently, applications of new machine
learning (ML) tools and methods on large astronomy data and
numerical simulations presented a promising method for reduc-
ing scatter in such cluster mass calibration using X-ray images
(see Ntampaka et al. 2019; Green et al. 2019; Yan et al. 2020),
SZ Compton y-maps (Cohn & Battaglia 2020; Wadekar et al.
2023a,b), and using optical data (Ntampaka et al. 2015; Ho et al.
2019, 2021, 2022; Kodi Ramanah et al. 2020).

In this work, we present a method that avoids the explicit
knowledge of these WL measurements by using X-ray data and
the redshift of clusters. In spirit, this is the same approach as
using existing scaling relations on a new cluster sample. To cali-
brate (or, to put it differently, to train our ML model) we use sim-
ulations and the accuracy of these methods is determined by the
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cluster model in the training data. To reliably apply this method
on new observations, we focus on training our ML model with a
realistic cluster sample, namely, simulated clusters which repre-
sent our knowledge on clusters based on previous observations
and represent the observational setting. In comparison to stan-
dard scaling relations, this ML model is more flexible as it can
combine different features in a non-linear model. Furthermore,
we consider models that utilize most of the information avail-
able, including the observation’s energy and spatial information,
rather than preprocessed features such as the luminosity (pro-
files) of a galaxy cluster. Given the success in other domains
with similar data structures (e.g., in computer vision tasks on
images Krizhevsky et al. 2017), a natural candidate for such
models are convolutional neural networks (CNNs). The poten-
tial of these methods for estimating galaxy cluster masses has
been previously demonstrated in Ntampaka et al. (2019), where
a reduced mass scatter compared to luminosity-based methods
was reported. In this work, we modify these methods to address
a cluster sample at a larger redshift (0.01 < z < 1.3) and mass
range (1013 < M/M� < 1015). Additionally, we account for
emissions from other X-ray sources, for instance, active galac-
tic nuclei (AGN), which are major contaminators in cluster anal-
yses. Here, we present a method where additional filtering for
such point sources is not required.

Finally, our neural network (NN) method incorporates a
measure of uncertainty alongside the respective mass predic-
tion. To estimate the uncertainty, we assume that the logarithm
of our cluster masses is distributed according to some underly-
ing Gaussian distribution with an associated mean and standard
deviation. Both can be inferred using the log-likelihood asso-
ciated with this normal distribution (cf. Sect. 3 for a detailed
description). In addition, to account for the model uncertainty of
our NN, we use a frequentist ensemble approach for our final
mean and standard deviation. We train and validate our method
on simulations of eROSITA galaxy clusters dedicated for eFEDS
observations (Comparat et al. 2020; Liu et al. 2022b; Seppi et al.
2022).

This allows us to apply our method on the eFEDS clus-
ter sample (Liu et al. 2022a) and provide, for the first time, the
ML mass estimates on cluster observations. When comparing
the performance of our mass estimates with those obtained from
WL-calibrated scaling relations using count rate measurements
(Chiu et al. 2022) on the simulations we find a reduced scatter.
Our results on simulations are of similar scatter as using ide-
alised luminosity information.

The paper is organized as follows: In Sect. 2, we describe the
respective data products used in this work. Section 3 describes
our machine learning approach and we discuss the results of
our numerical work in Sect. 4. Our conclusions are presented
in Sect. 5.

Throughout this paper, our simulated observations are
obtained using a flat ΛCDM cosmology close to that of
the Planck Collaboration (Planck Collaboration VI 2020), with
H0 = 67.74 km s−1 Mpc−1, Ωm = 0.308900, Ωb = 0.048206, and
σ8 = 0.8147 as described in Comparat et al. (2020). Our masses
M500c refer to the mass included in the region with a mean den-
sity of 500 times the critical density.

2. eROSITA X-ray and simulated observations

This section presents the data we have used to train and test
our machine learning method. We restricted ourselves to the
data corresponding to the performance verification mini-survey
of eROSITA, eFEDS (Brunner et al. 2022), the data analysis

pipeline (Liu et al. 2022b), and the corresponding eFEDS sim-
ulations (see Comparat et al. 2019 for the procedure on how
AGNs were simulated, Comparat et al. 2020 how galaxy clus-
ters were painted for M500c > 1013.7 M�, and Seppi et al. 2022
for the extension to lower masses M500c > 1013 M�). We com-
ment on the extension of our method to the eROSITA All-Sky
survey (eRASS) observations in our conclusions in Sect. 5.

2.1. eROSITA X-ray Images

The 140 deg2 eFEDS field, designed as a performance verifica-
tion survey, had a uniform depth of 2.2 ks (1.2 ks after correct-
ing for vignetting) approximately equal to the depth of the final
eROSITA All-Sky Survey (Brunner et al. 2022). In this field, a
total of 542 cluster candidates were detected with an extent like-
lihood threshold larger than six and detection likelihood larger
than five (see Liu et al. 2022a, for details). Of these 542 candi-
dates, 477 galaxy groups and clusters were confirmed with the
follow-up optical data with redshift measurements (Klein et al.
2022). The clusters detected in the point source catalog were
excluded in this analysis due to differences in the selection crite-
ria (Bulbul et al. 2022). We used the subsample of 463 optically
confirmed clusters, which have WL-calibrated features between
1013 M� < M500 < 1015 M�. This selection was applied as this
corresponds to the mass range on which our networks are trained
on, namely, the cluster sample from the eFEDS simulations sub-
sequently described.

To create X-ray images, we used the eROSITA Standard
Analysis Software System (eSASS Brunner et al. 2022), ver-
sion eSASSusers_201009. The calibrated event lists were cor-
rected for good time intervals, dead times, corrupted events and
frames, and bad pixels. Images were generated in ten equally
spaced energy intervals of 205 eV each in the soft band for the
range 0.25−2.30 keV, using the eSASS tool evtool. Multiple
energy bands were selected to maximize the information on the
X-ray images, taking advantage of the superb soft sensitivity of
eROSITA. We kept X-ray photons in a fixed square of 300 pixels
(corresponding to 1200′′) centered on the X-ray centroid identi-
fied by eSASS.

2.2. eROSITA Simulated Images

The mock observations used in this study have the same exposure
depth and field area to match the eFEDS observations. A method
developed in Comparat et al. (2020) and Seppi et al. (2022) is
employed to generate the mock photons for our training, valida-
tion, and test sets. A full-sky dark matter-only simulation provides
the halo sample. Based on the properties of the dark matter halos,
the X-ray properties of the sources are impainted using a Gaussian
process model, which has been fit using previous cluster obser-
vations. These properties are then used to generate a source list
passed to the SIXTE software (Dauser et al. 2019), which outputs
the survey mock photons. It is worth stressing that these include
not only cluster photons but, in addition, also point sources.

Within the eFEDS simulation, 18 realizations of the same
eFEDS field were created to have enough sources for statistical
analysis (see Liu et al. 2022a). All realizations together contain
148 833 clusters, whereas a single realization contains approxi-
mately 8000 clusters. To train our neural networks on a repre-
sentative sample, we restricted ourselves to the same thresholds
for cluster selection used for the eFEDS catalog (eSASS software
version eSASSusers_211214). This gave a final sample of 7947
clusters. We found that these selection criteria improved our ML
performance compared to using more clusters utilizing the ones
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Fig. 1. Example X-ray image as input to our neural networks. All ten bands of the image of the galaxy cluster (SRC_ID: 10006566 from realization
5) of the eFEDS simulations. Each image has a dimension of 50 × 50. Due to our smoothing, the photon values are continuous. This cluster has a
mass log (M500/M�) = 15 and is located at a redshift of 0.11.

with smaller detection and extent likelihoods. As for the obser-
vations, we used X-ray photons in a fixed square of 300 pixels
centered around the halo cluster center, noting no performance
difference between the simulated cluster center and the eSASS
detected center.

2.3. Neural network input datasets

These respective images were in a standard data format for
images in machine learning processed as a three-dimensional
(3D) array, where the first two dimensions carried the spa-
tial information and the third dimension respectively carried
the “color" information. We modified the images to make our
machine-learning pipeline more efficient.

To render the input less sparse and to have fewer memory
requirements, we scaled the boxes of size 300×300×10 down to
a size of 50× 50× 10, and we applied Gaussian smoothing in all
three directions, including the energy direction. The respective
formula can be found in Appendix A.

We did not remove background photons or identified point
sources, but we clipped the pixel number at 36 to avoid insta-
bilities in our neural network training. An example of such an
energy-band-image (EBI) can be found in Fig. 1. To resolve the
ambiguity between a less luminous cluster at low redshift and a
highly luminous cluster at high redshift, we also used the redshift
information as input to our network. We optimized the spatial
region and smoothing used for the EBI, ensuring that in almost
all cases, the entire cluster is visible in the image. It is important
to stress that these input images are independent of R500c as such
a selection would automatically include information about the
cluster mass.

The respective mass and redshift distributions of clusters in
eFEDS simulations and our eSASS selected sample are shown
in Fig. 2. From all the realizations of the simulations, we end
up with 7947 clusters from which we used 70% for our training,
15% for our validation, and 15% for our test set.

3. Machine learning method

As a proof of concept, we utilized a standard architecture
using convolutional and pooling layers, followed by at least one

Fig. 2. Simulated cluster sample with and without the applied fil-
ters used for training and evaluation with their respective redshift and
mass distribution. The total number of simulated and filtered clusters is
25 031 and 7947, respectively.

dense layer. We provide the network with information about the
source’s redshift at the first of these dense layers. We discuss
the impact of uncertainty of this feature on the performance
in Appendix C, which turns out to be irrelevant for our pur-
poses. To avoid overfitting, we utilized preprocessing layers,
which perform random rotations and flips during training, effi-
ciently augmenting the training dataset. We found that this sig-
nificantly improved performance. We leave a discussion on how
other types of architectures, for instance, using geometric deep
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Fig. 3. Overview of our neural network architecture and training. Left: neural network architecture of our best performing model. We used a batch
size of 100 and Adam as an optimizer with a starting learning rate of 10−4. Right: training behavior of our network.

learning (see Bronstein et al. 2021), affect the performance for
the future1.

To enable stable training for a large variety of hyperpa-
rameters, we first trained our networks using several standard
regression loss functions (e.g., mean squared error loss of the
logarithmic mass). A few hundred epochs of training are typi-
cally sufficient. To assess the performance beyond the values for
the losses, we check the scatter of masses on the respective train-
ing and validation sets for additional biases. More details on our
choices and associated scans can be found in Appendix B.

In our hyperparameter scan, we identify several promising
architectures and perform further analysis of these architectures.
In particular, we train our network from scratch using a nega-
tive log-likelihood for each data sample to predict the mean and
standard deviation of a Gaussian:

− log pθ(yn|xn) =
log

(
σ2
θ(xn)

)
2

+
(yn − µθ(xn))2

2σ2
θ(xn)

+ constant, (1)

where xn denotes the data, yn the data label, σθ, µθ are our pre-
dictions which depend on the neural network parameters θ. The
relevant hyperparameters and the training curve for one of our
well-performing models can be found in Fig. 3.

Finally, to address the systematic uncertainty in the neu-
ral network prediction, we opt for an ensemble method as pre-
sented in Lakshminarayanan et al. (2016) and leave Bayesian
approaches for the future (Gal & Ghahramani 2015). In practice,
we repeated the training procedure with N random weight initial-
izations and the final predictions are calculated via:

log M
NN
500c =

1
N

N∑
i=1

µθi (x), (2)

σ2
∗(x) =

1
N

N∑
i=1

σ2
θi

(x) + µ2
θi

(x) − µ2
∗(x). (3)

We now turn to a discussion of the results obtained using this
approach for mass estimation.

4. Results

To analyze the performance of our neural networks on eFEDS
simulations, we first compare the predicted and actual mass dis-
tributions in the simulations. As shown in Fig. 4, predictions on
1 In this work, we utilize Keras (Chollet et al. 2015) and Tensor-
flow (Abadi et al. 2015) for our experiments.

the test set and the scatter follow the ideal slope very closely. We
observe a scatter of σ = 0.188 on the test set. Our mean error
prediction is identical to this value with a mean error of 〈σ∗〉 =
0.188. As shown in Fig. 5, we observe a bias for the mass range
of 13.0 < log M500/M� < 13.5 where we are over-predicting the
mass on average. In the mass range 14.5 < log M500/M� < 15.0
we are under-predicting the masses respectively. To interpret
these biases, we performed two experiments:

To improve the quality of our training and test sample, we
used a cluster sample that has a detection and extent likelihood
larger than 60. This reduces the scatter to σ = 0.159 on the test
set using the same likelihood cuts. In addition, we see a reduction
of the bias for high-mass objects. Clearly this cut reduces the
number of available clusters significantly (from 7947 to 1156 in
total). In addition, it is very encouraging to see that our mean
uncertainty also reduces to 〈σ∗〉 = 0.158.

Furthermore, to change the number of clusters at high and
low-mass respectively, we weigh our samples to effectively
generate a uniform distribution in mass during training. This
ensures, in particular, that the network is more strongly penal-
ized when falsely predicting high-mass clusters. We find that the
scatter is slightly increased but we reduce the bias for the high-
mass clusters from −0.177 to −0.097 and for the low-mass clus-
ters from 0.121 to 0.082. This is encouraging as we only know
approximately the observed distribution of cluster masses and
our method should be able to compensate for small differences
in the distribution.

These respective scatters in the mass predictions have to be
compared with the underlying probabilistic cluster model and
the application of scaling relations. First of all, there is the intrin-
sic scaling relation in the data where in our case the luminosity-
mass scaling relation has a scatter of σ = 0.2 (cf. Fig. 6 in
Comparat et al. 2020) and the temperature-mass scaling relation
which has a σ = 0.07. We see that the scatter in our method
depends on the quality of the dataset, namely, when selecting
clusters with high detection and extent likelihood, we reduced
the scatter below the luminosity scaling relation. Next, when
comparing our scatter with scaling relations, a natural caveat is
whether the respective scaling relation provides similar results
as a scaling relation which is calibrated on this cluster sample,
for instance, using WL observables. To do this, we utilized scal-
ing relations which have been calibrated for the eFEDS cluster
sample. These scaling relations were calibrated using the three-
year (S19A) WL data from the Hyper Suprime-Cam (HSC) Sub-
aru Strategic Program survey, simultaneously fitting the count
rate and shear profiles to obtain the best-fit scaling relations. We
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Fig. 4. NN on simulations: overview of mass estimation on eFEDS simulations using our ensemble of 30 convolutional neural networks trained
with our likelihood loss from Eq. (1) (cf. Fig. 3 for the hyperparameters). Left: mass scatter between predicted mean masses and masses from the
simulations on the training set. The colors indicate our predicted standard deviation. Middle: our mean mass predictions on the test set. Right top:
distribution of our error log10 (µ∗/M�) − log10

(
Mtrue

500c/M�
)
. Right bottom: distribution of our error estimates, which show a mean uncertainty of

0.189 on the test set.

Fig. 5. NN biases on simulations: mass predictions on eFEDS simulation test sets for different mass ranges to evaluate respective biases between
NNs trained on datasets with the three different datasets described in the main text.

refer the reader to Chiu et al. (2022) for a detailed description.
When using the cluster luminosities and the luminosity mass
scaling relations reported in Eq. (67) of Chiu et al. (2022), we
recover a scatter of σ = 0.197 on our test dataset with detec-
tion likelihood larger than 5 and extent likelihood larger than 6,
where we have used the actual luminosities in the simulation.
This is comparable to the luminosity scatter in the simulation
and 4.8% larger than the scatter we observe for our NN masses.
When applying to the higher quality cluster sample, the scatter
reduces to σ = 0.186 but is significantly above the NN scat-
ter. To apply these scaling relations we have used an appropriate
selection function based using the cluster luminosity and red-
shift, although we note only a small effect on the ensemble level.
In this analysis, the luminosity is normalized with the factor:

N =

[
M500

Mpiv

](δLX ln
[

1+z
(1+zpiv

]) [
E(z)

E(zpiv)

]CSS,LX
[

1 + z
1 + zpiv

]γLX

, (4)

where the evolution factor E(z) = H(z)/H0, the pivotal mass
Mpiv = 1.4 × 1014 M� and the pivotal redshift zpiv = 0.35. More-
over, the scaling relation parameters as calibrated in the analysis
are δLX = −0.07, CSS,LX = 2 and γLX = −0.51. For this scal-
ing relation analysis, a fiducial flat ΛCDM cosmology was used
with H0 = 70 km s−1 Mpc−1, Ωm = 0.3, Ωb = 0.05, σ8 = 0.8,
and ns = 0.95.

Furthermore, to provide an outlook on inference of cosmo-
logical parameters, the scatter is worse when using the count
rate scaling relations on the data with a detection likelihood
larger than 5 and extent likelihood larger than 6 with the mea-

sured count rate, where we find a scatter of σ = 0.265. We note
that this is without applying the selection function, which (in
light of the effect on the luminosity scaling relation) appears to
have a minor effect in terms of changing the mass predictions
for this sample. Such a selection function is currently not avail-
able for this sample. A more detailed comparison of our system-
atic uncertainties with systematic uncertainties appearing for the
scaling relations between the count rate and WL mass as dis-
cussed in Grandis et al. (2021) is left for the future.

For both scaling relations we find a significant reduction in
scatter. The amount of reduction depends significantly on the
data used for training, this does not only dependent on the mass
and redshift distribution.

One further advantage of the NN-based mass estimation is
that the training networks use the full morphology information
of the input clusters in the X-ray images (Ghirardini et al. 2022)
compared to other methods and are not impacted by the line-of-
sight structure or assumed 3D morphology of the source when
estimating masses (ZuHone et al. 2023) or hydrostatic mass bias
often a problem for X-ray mass measurements (Scheck et al.
2023).

We note that the predicted means and the respective standard
deviations do not vary hugely on an ensemble level. In particu-
lar, we observe that the ratio of the individual σ-values for each
network and the correspond ensemble prediction σ∗ is given as
〈σ/σ∗〉 = 0.951 ± 0.039, where we quote the single standard
deviation values and where we have averaged over all clusters in
the test sample. On an individual level we report the clusters with
the highest and smallest differences in the predicted masses (see
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Fig. 6. All ten channels of the EBI of the galaxy cluster with the high-
est and lowest ∆µ = µmax − µmin, where µmax (µmin) corresponds to
the highest (smallest) predicted mass by the ensemble members. Top:
this cluster, located as usual at the center of the EBI, has a mass of
log M500/M� = 13.959 and is at redshift z = 0.211 in the simula-
tions (Object with SRC_ID: 10003763 from realization 18). The lowest
and highest predicted mean values in our ensemble are µmin = 13.323
and µmax = 14.587, respectively. For illustration purposes, to make the
actual cluster visible, we have clipped the photon values at 1. The final
mass predictions are log M500/M� = 14.079 ± 0.305. Bottom: exam-
ple of a cluster with little differences among the ensemble (SRC_ID:
10006556 from realization 9), it has a mass of log M500/M� = 13.873
and is at redshift z = 0.305. We obtain µmax = 14.095 and µmin = 13.994
and our final prediction for this cluster is log M500/M� = 14.042±0.161.

Fig. 6). We often find upon visual inspection that the largest dif-
ferences in the predicted masses occur when other bright X-ray
sources are present in the EBI and our cluster of interest is a less
luminous source.

Having seen that our method provides sensible looking mass
estimates on eFEDS simulations, we now estimate the masses
for the eFEDS cluster sample with extent likelihood larger than
6 and detection likelihood larger than 5. We use the ensemble
of neural networks which we have trained on data with the same
selection criteria. We show the scatter between our NN predicted
masses and the masses obtained using WL-calibrated luminos-
ity scaling relations in Fig. 7. We use WL calibrated masses
here because they are less affected by non-thermal astrophysi-
cal processes unlike hydrostatic masses. Additional cuts on the
sample would be required to compare with clusters with hydro-
static masses from temperature measurements (cf., Bahar et al.
2022), which in addition is not accounted for in our selection
function. Hence, we compare with the WL-calibrated masses,
which are used for cosmology analysis from eROSITA cluster
observations.

We observe that both predictions agree for clusters where our
NN ensemble predicts a low uncertainty of σ∗ < 0.185 (more
visible points correspond to clusters with such a low uncer-
tainty). We note that for the few clusters present in the eFEDS
cluster sample with a mass below the range we have trained on,
our neural network ensemble still predicts masses in the mass
regime it was trained on and does not generalize for these data
outside of the known regime.

Furthermore, to compare our predicted masses with the
luminosity-mass estimates of the clusters, we show the scatter

between the luminosity and our mass estimates on the right side
of Fig. 7. Overall, we find a linear relation which is close to
the slope identified via the WL-calibrated scaling relation. How-
ever, we find deviations from the WL-calibrated masses at high
masses. Further analysis of the features being used by the NN
ensemble, ultimately aiming at a data-driven scaling relation, is
beyond the scope of this paper.

5. Conclusions

We have demonstrated that galaxy cluster masses can be esti-
mated using NN ensemble predictions when applied to the
eFEDS-field of eROSITA, both to the respective simulations and
actual observations. Depending on the training data, we observe
a significant reduction in scatter in comparison to luminosity
based scaling relations fromσ = 0.186 toσ = 0.159 on a sample
with higher detection and extent likelihood and from σ = 0.197
to σ = 0.188 on the entire sample. Compared to count rate
based scaling relations, the improvement is from σ = 0.265
to σ = 0.188. Our approach is applicable to clusters at differ-
ent redshifts and we are not required to remove other clusters
or point sources from the respective images to mimic a realis-
tic observational set-up. Going beyond existing NN methods for
cluster mass estimation, our method provides uncertainty mea-
surements of the NN predicted masses for each cluster. Our ML
approach can be integrated into a highly developed workflow for
estimating cluster masses and their subsequent use for cosmo-
logical parameter inference. The interplay with each of these
components is important to understand shortcomings and poten-
tials for improved mass estimates in the future:

– WL and other additional measurements: given the depen-
dence on our simulations of eFEDS clusters, our NN
methods do not require in addition WL measurements for (a
subset of) the X-ray selected cluster sample. Any constraints,
for instance, for a subsequent cosmological analysis, arising
from the requirement of availability of WL information can
be circumvented.
Our model can be easily expanded and improved by adding
new features and observations, similar to using redshift
information to the network. For instance, richness informa-
tion coming from optical observations of clusters of galax-
ies, as being developed in the context of Euclid, promises
to improve the NN-predictions in the high-mass end (e.g.,
Euclid Collaboration 2023). As in any other model, adding
new multi-wavelength data requires appropriate calibration
and will be used in future work.

– Simulations: as our ML approach is obtained from the under-
lying data model, it heavily depends on the data used for
training. To make our method work, it is crucial that the train-
ing data are of sufficient quality. This requires, for instance,
that the training data contains clusters in the appropriate
mass regime and that the clusters in the training sample
are ideally very close to the cluster sample the method is
applied on. At this stage, a generalization beyond properties
captured by the training data is not guaranteed. Through-
out this project, we often encountered performance deterio-
ration when including different cluster samples for training.
Addressing the independence of the training data is a clear
future goal but (as demonstrated here) can be circumvented
by utilizing a dedicated training set. Implicitly, our method
depends on the data used to shape the simulations and in
particular on the underlying scaling relations. However, we
crucially observe that the mass distribution of clusters in the
training sample is not of high importance as showcased when
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Fig. 7. NN on eFEDS observed data: comparison of WL calibrated mass estimates (using luminosity scaling relations as in Eq. (67) of Chiu et al.
2022) and masses obtained from our ensemble neural networks. Left: respective mass predictions on eFEDS clusters. The uncertainties on the
mass predictions are color-coded and correspond to the NN uncertainties. Right: correlation between predicted masses on eFEDS observations
and the measured luminosities as presented in Chiu et al. (2022).

Fig. 8. NN trained on uniform cluster sample: overview of mass estimation on eFEDS simulations using our deep ensemble trained with class
weights such that the effective mass distribution is close to uniform, illustrating the robustness to uncertainty in the underlying mass distribution.
Left: mass scatter between predicted means and masses from the simulations on the training set. The colors indicate our predicted standard
deviation. Middle: our mass predictions on the test set. Right: comparison of the residuals and distribution of standard deviations in our test set
mass distributions between our normal training procedure with masses distributed as shown in Fig. 2 and our weighted clusters. The distribution
of our error estimates shows a mean uncertainty of 0.228.

using a uniform distribution of masses (Fig. 8). This is par-
ticularly encouraging, as this allows for generalization across
different mass distributions from different cosmologies.

– ML versus known astrophysical features: there are two
approaches for predicting masses using ML; either using
known astrophysical features (e.g., measured luminosities or
count rates) as the input (cf., Green et al. 2019) or directly
using the photon information. Here, we explore the lat-
ter and demonstrate that it provides competitive mass esti-
mates. Future studies will provide more information on
which method ultimately predicts the most accurate mass
estimates. It would be very interesting to compare the
ML features with previously identified features (e.g., using,
appropriate dimensional reduction and symbolic regression;
see Wadekar et al. 2023b for a work in this direction).

Finally, we summarize the advances from the ML-based
mass predictions, presented here:

– We demonstrate, for the first time, that meaningful uncer-
tainty measures can be provided with the mass estimates in
X-ray cluster mass estimations with ML and, in particular,
neural networks. This is a crucial requirement for integrating
ML-based methods into cosmological analyses with cluster
counts.

– As our simulations also include clusters with masses as low
as 1013 M�, we are able to demonstrate for the first time
that this neural network approach to X-ray cluster mass esti-
mates also works in this mass regime without introducing
large biases. A further successful extension to the low-mass
regime would be very interesting and could dramatically
increase the sample utilized for cosmology, we found that
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objects with a high detection and extent likelihood provide
an avenue forward.

– Instead of a single channel that can only capture informa-
tion about the total number of photons, we utilize an input
format that also captures the energy information of photons.
Our EBIs enable the neural networks, at least in principle,
to utilize energy-dependent information such as the cluster
temperature.

One of the immediate next objectives is to apply our method to
other eROSITA cluster samples, in particular, the upcoming All-
Sky Survey data. To make our method applicable to these obser-
vations, our pipeline follows the standard automatised pipeline
for the detection of sources in eROSITA and the only change is
that we need to ensure that the performance does not decrease
due to the different exposure times for individual clusters in
those samples, as the first All-Sky survey data are shallower than
the eFEDS data used in this work. A further extension to obser-
vations of other X-ray telescopes (e.g., XMM, Chandra), despite
being very interesting, would require dedicated datasets to train
the ML method appropriately.

As this paper was in its final stage, the preprint Ho et al.
(2023), which discusses a similar question, appeared on astro-ph.
Our approach differs from Ho et al. (2023) by the use of the sim-
ulation data sets for training. The sample of simulated clusters
used in this work represents the eROSITA cluster selection. Our
method could thus be successfully and self-consistently applied
to the eROSITA survey observations and compared with the
observational WL mass measurements utilized for the same sam-
ple. Through this work, we also provide a clear path toward using
ML-based masses in cosmological analyses. Additionally, we
successfully utilize a likelihood loss for the first time, enabling
uncertainty estimates, namely, a prerequisite for employing ML-
based masses in future scaling relations and cosmology analyses.
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Appendix A: Gaussian Kernel

X-ray astronomical maps correspond to the spatial distribution
of the detected photons. Depending on the source luminosity, the
amount of detected photons emitted by the source can be very
sparse and can lead to a difficult recognition of the source shape.
In fact, some EBI contain only a couple of source photons. In
the EBI generation, we use Gaussian blur to support the learning
process of our models. Gaussian blur is usually used in image
processing to reduce the noise and detail. In our case, our aim is
to smooth the sparse distribution of detected photons.

We utilize the kernel operation:

Ĩ(x, y, E) =

X∑
i=−X

Y∑
j=−Y

Z∑
k=−Z

I(x − i, y − j, E − k)G(i, j, k) , (A.1)

where I denotes our original EBI-array and Ĩ the smoothed array.
For the convolution, we use the following kernel G(i, j, k)

G(i, j, k) =
1
N

exp
(
−

(i/X)2 + ( j/Y)2 + (k/Z)2

2σ2

)
, (A.2)

where N is the normalizing factor and σ the distributions stan-
dard deviation. We observed that smoothing also along the chan-
nel dimension, enhances the source structure in each channel
of our EBIs and leads to improvements in our models’ perfor-
mance. The final choice of the filter size is (3, 3, 11), which cor-
responds to (X,Y,Z) = (1, 1, 5) in (A.1) and a standard deviation
of σ = 0.75. We use scipy.signal.convolve (Virtanen et al.
2020) to perform this smoothing.

Appendix B: Hyperparameters

To identify well-performing neural networks we have performed
a hyper-parameter search on which we provide an overview in
this appendix.

– CNN hyperparameters: we run standard variations of the
kernel size, and number of filters in convolutional blocks.
We found that average pooling worked better than maxpool-
ing. Furthermore we varied the activation functions (relu and
leaky relu) and the number and dimensions of the final dense
layers.

– Different network architectures: we have also observed
that locally connected convolutional layers did not increase
the performance. They were comparable to our CNN
approach. In our hyper-parameter analysis, we have compare
the behaviour of different pooling layers, and have varied the
size and number of hidden layers, kernel sizes moderately.
We find for a range of hyperparameters good performance.

– EBI hyperparameters: we have varied the extraction size
among 100, 200, 300, and 500 pixels. 300 pixels showed the
best performance and it corresponds to a size where essen-
tially all cluster photons are contained within the extraction
range. We also experimented with larger extraction sizes and
could not find an improvement in performance. We found
no difference between using the eSASS cluster center or the
cluster center provided from the simulations as the center for

our EBI image, that is, training with either of them resulted
in no difference in performance. We also tried rescaling the
EBI images according to redshift but could not identify bet-
ter performance.

– Regression losses: besides our likelihood loss we have
experimented with various standard regression losses (mean
squared error, mean average percentage error, and mean
squared logarithmic error). We find that they are generally
lead to similar behaviour on the mass scatter.

– Classification versus regression: as classification tasks
are sometimes easier learning problems than regression in
machine learning, we have experimented with classification
where the classes correspond to different mass bins. It turned
out that this approach did not lead to improved performance
in comparison to our current CNN-based approach.

– Optimizers: we have used Adam and generally found reduc-
ing the learning rate on plateau to be useful for performance
and scanned through minimal learning rates. A batch size of
a 100 was chosen, with variations not showing an increased
performance.

Overall, we identify in this search several models with different
hyperparameters, which do perform similarly. We think that this
robustness is encouraging for these NN approaches.

Appendix C: Redshift uncertainty

Table C.1. Importance of redshift for our ensemble NN mass predictors.

Noise-level Training Set Test Set

σN = 0 σ = 0.180 σ = 0.188
σN = 0.01 σ = 0.178 σ = 0.186
σN = 0.1 σ = 0.191 σ = 0.204
σN = 0.2 σ = 0.208 σ = 0.224

Notes. We show the respective standard deviations between the true
and predicted masses observed on the training and test set. We find that
increasing the noise level leads to worse predictions.

We utilized the redshift as the input for our mass estimation net-
work. Here, we discuss the relevance of this feature and how
erroneous redshifts do affect our mass predictions. For this pur-
pose, we compared a single CNN with and without redshift
information on our best hyperparameter choice. In this case, we
find a deterioration from σ = 0.186 to σ = 0.253 when provid-
ing no redshift information on the training set (respectively, it
increases from σ = 0.196 to σ = 0.274 on the test set).

To estimate the effect of uncertain redshifts, we artificially
added Gaussian noise with standard deviation σN of varying size
on the redshifts and re-train our ensemble of networks with this
data. The higher the level of this noise, the more our mass predic-
tions worsen (as expected). Our observed results are summarized
in Table C.1. We find that the expected uncertainty, which is well
below 10%, is not relevant for our method. The small improve-
ment is for a noise level of σN = 0.1 is attributed to fluctuations
due to different NN initializations.
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