KIT | KIT-Bibliothek | Impressum | Datenschutz

Brownian motion of droplets induced by thermal noise

Zhang, Haodong 1; Wang, Fei ORCID iD icon 1; Ratke, Lorenz; Nestler, Britta 2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract:

Brownian motion (BM) is pivotal in natural science for the stochastic motion of microscopic droplets. In this study, we investigate BM driven by thermal composition noise at submicro scales, where intermolecular diffusion and surface tension both are significant. To address BM of microscopic droplets, we develop two stochastic multiphase-field models coupled with the full Navier-Stokes equation, namely, Allen-Cahn-Navier-Stokes and Cahn-Hilliard-Navier-Stokes. Both models are validated against capillary-wave theory; the Einstein's relation for the Brownian coefficient D$^∗$∼k$_B$T/r at thermodynamic equilibrium is recovered. Moreover, by adjusting the co-action of the diffusion, Marangoni effect, and viscous friction, two nonequilibrium phenomena are observed. (I) The droplet motion transits from the Brownian to Ballistic with increasing Marangoni effect which is emanated from the energy dissipation mechanism distinct from the conventional fluctuation-dissipation theorem. (II) The deterministic droplet motion is triggered by the noise induced nonuniform velocity field which leads to a novel droplet coalescence mechanism associated with the thermal noise.


Download
Originalveröffentlichung
DOI: 10.1103/PhysRevE.109.024208
Scopus
Zitationen: 5
Web of Science
Zitationen: 3
Dimensions
Zitationen: 6
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2024
Sprache Englisch
Identifikator ISSN: 2470-0045, 2470-0053
KITopen-ID: 1000168869
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Physical Review E
Verlag American Physical Society (APS)
Band 109
Heft 2
Seiten 024208
Vorab online veröffentlicht am 13.02.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page