

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  FEBRUARY 08 2024

Hyperstretching in elongational flow of densely grafted
comb and branch-on-branch model polystyrenes
Valerian Hirschberg   ; Lorenz Faust; Mahdi Abbasi  ; Qian Huang  ; Manfred Wilhelm  ;
Manfred H. Wagner 

J. Rheol. 68, 229–246 (2024)
https://doi.org/10.1122/8.0000781

 29 February 2024 13:16:44

https://pubs.aip.org/sor/jor/article/68/2/229/3262754/Hyperstretching-in-elongational-flow-of-densely
https://pubs.aip.org/sor/jor/article/68/2/229/3262754/Hyperstretching-in-elongational-flow-of-densely?pdfCoverIconEvent=cite
https://pubs.aip.org/sor/jor/article/68/2/229/3262754/Hyperstretching-in-elongational-flow-of-densely?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0001-8752-930X
javascript:;
javascript:;
https://orcid.org/0000-0001-6099-421X
javascript:;
https://orcid.org/0000-0001-8777-4241
javascript:;
https://orcid.org/0000-0003-2105-6946
javascript:;
https://orcid.org/0000-0002-1815-7060
javascript:;
https://doi.org/10.1122/8.0000781
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063177&setID=592934&channelID=0&CID=754862&banID=520996507&PID=0&textadID=0&tc=1&scheduleID=1989078&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fsor%22%5D&mt=1709212604001858&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Fsor%2Fjor%2Farticle-pdf%2F68%2F2%2F229%2F19583971%2F229_1_8.0000781.pdf&hc=03ad5a4202e7aeaa0d8a88c770e5f8ae97654fa5&location=


Hyperstretching in elongational flow of densely grafted comb and
branch-on-branch model polystyrenes

Valerian Hirschberg,1,a),b) Lorenz Faust,1 Mahdi Abbasi,2 Qian Huang,3 Manfred Wilhelm,1,b)

and Manfred H. Wagner4,c)

1Institute of Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT),
Engesserstraße 18, 76131 Karlsruhe, Germany

2Borealis Polyolefine GmbH, Innovation Headquarters, 4021 Linz, Austria
3State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University,

610065 Chengdu, China
4Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1,

10587 Berlin, Germany

(Received 18 October 2023; final revision received 14 January 2024; published 8 February 2024)

Abstract

Strain hardening of long-chain branched polymers in elongational flow occurs due to the stretch of the backbone chain between branch
points. With an increasing number of side arms, the length of the backbone chain segment between two branch points of a comb decreases.
Of particular interest is the case when the number Nb of arms per entanglement length of the polymer is larger than one. This leads not only
to larger strain hardening but also to hyperstretching, i.e., the elongational stress growth shows an enhanced increase with strain. We consider
elongational data reported by Abbasi et al. [Macromolecules 50(15), 5964–5977 (2017)] and Faust et al. [Macromol. Chem. Phys. 224(1),
2200214 (2023)] on a series of comb and branch-on-branch polystyrene (PS) melts with the average number Nb of branches per entanglement
segment of the backbone ranging from Nb= 0.2 to Nb= 9.5. In addition, we present measurements of the elongational viscosity of two PS
combs with Nb= 4.7 as well as of blends consisting of 5 to 50 wt. % of a PS comb and a monodisperse linear PS. Analysis by the hierarchical
multimode molecular stress function model shows that while backbone chains of loosely grafted combs with Nb< 1 are stretched affinely in
elongational flow, backbone chains of more densely grafted combs with Nb > 1 show increasing hyperstretching with increasing Nb. The elon-
gational data of the comb/linear blends confirm that hyperstretching is an intrinsic property of the comb macromolecule with Nb > 1, indepen-
dent of its concentration in the blend. While this is of considerable interest from a modeling point of view, hyperstretching causing an
enhanced increase of the elongational stress growth can also have a significant impact on the processability of polymers, and quantification of
this effect is, therefore, important. © 2024 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1122/8.0000781

I. INTRODUCTION

With the rapidly rising worldwide production of polymers
and their waste [1], the need for a more sustainable use of
polymeric materials also increases, and, therefore, enhanced
processing properties and recyclability of polymers are of
high importance. For processing of polymer melts, the opti-
mization of strain hardening in extensional flows is a key
goal. The rheological properties of homogeneous polymer
melts are controlled especially by their molecular topology.
By optimizing the topology of macromolecules, rheological
properties beyond those of linear polymers can be obtained.
Optimizing molecular topology allows creating new material
properties and enables innovative applications and defined
upcycling of polymers.

According to the tube model, chain stretching on the
molecular level causes strain hardening in elongational flow
[2,3]. Linear low-disperse polymers show rather weak strain
hardening in elongational flow at strain rates _ε above the
inverse of the Rouse relaxation time τR, and no strain harden-
ing can be observed at strain rates below the inverse of τR,
i.e., at _ε , 1/τR [4,5]. Higher processing temperatures are
very beneficial by reducing the shear viscosity, but high tem-
peratures also reduce τR and, therefore, increase the
minimum strain rate needed to initiate strain hardening of
linear polymers. Consequently, polymers featuring strain
hardening at high processing temperatures are extremely
desirable. It is well-known that strain hardening can be
induced by long-chain branching (LCB) [6,7]. The resistance
of the branch points being pulled into the backbone tube
increases the stress in the backbone, and so the chain seg-
ments between two branching points are stretched [8,9].
Consequently, in order to induce strain hardening via
polymer topology in elongational flow, at least two branching
points in the polymer molecule are needed, and the molecu-
lar design of branched polymers and the prediction of the
resulting elongational properties are of considerable interest.
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In terms of polymer processing, the industrially most impor-
tant branched polymer is low-density polyethylene (LDPE),
which has an undefined comb and branch-on-branch structure
and a strain hardening factor (SHF) typically around
SHF = 10. By comparing commercial and experimental
LDPEs, Stadler et al. [10] found that the SHF increases with
the number of branches in the high-molecular-weight fraction.
Well-defined branched model topologies investigated in the
literature are star [11,12], comb [13–17], bottlebrush [18–20],
H-shaped [21,22], pom-pom [23–26], and branch-on-branch
topologies [27,28]. The rheological properties of blends are a
nonlinear combination of the properties of the blend compo-
nents [29], and, therefore, many blends of linear and branched
polymers have been investigated [30–34].

Only a few systematic rheological investigations on the
elongational rheology of polymer model systems with comb
architecture are reported in the literature. Restricting attention
to polystyrene (PS) combs, especially the works of Lentzakis
and co-workers [14] as well as of Abbasi and co-workers
[13] have to be mentioned. Lentzakis and co-workers
focused on the impact of the molecular weight of the
branches at a constant backbone molecular weight of Mw,bb

= 275 and 860 kg/mol, while keeping the number of branches
per molecule in the range from 26 to 30. In contrast, Abbasi
et al. investigated the impact of the number of branches from
3 up to 190 at a constant backbone molecular weight of Mw,

bb = 290 kg/mol and constant branch molecular weight of
Mw,br = 44 kg/mol. The average number Nb of branches per
entanglement segment of the backbone varies from far less
than one (Nb = 0.2) up to nearly 10 branches per entangle-
ment (Nb = 9.5). As a consequence of the increasing number
of branches, a transition of the linear-viscoelastic flow behav-
ior from starlike for loosely grafted combs to the behavior of
densely grafted combs and to bottlebrush combs was
reported. In elongational flow, high strain hardening was
observed and the SHF increases significantly with an increas-
ing number of branches. Even higher strain hardening factors
with SHF > 1000 were reported by Faust et al. [27] for three
PS combs with the branch-on-branch topology.

The development of constitutive models based on molecu-
lar topology and their validation by comparison with rheo-
logical data of well-defined model systems are consequently
of utmost importance. Based on the Doi--Edwards (DE)
model [35,36], many constitutive models have been proposed
to comprehend and predict the extensional rheology of poly-
mers. While the original DE model is limited to linear poly-
mers, later models like the pom-pom model [1] take into
account the effect of LCB and assume that the chain segment
between two branch points is stretched affinely up to a criti-
cal stretch, when the arms and their branch points are with-
drawn into the tube of the backbone chain at sufficiently
large deformations. Refinements of the pom-pom model are
summarized, e.g., in [37]. However, for modeling of polydis-
perse LCB melts, at least two nonlinear fitting parameters
per relaxation mode are needed, namely, a topological param-
eter and a stretch relaxation time. As pointed out in [38], this
may be due to the preaveraging of the stretch in pom-pom
models, which creates the need of a separate empirical stretch
relaxation spectrum fitted to experimental data [37]. In

contrast, the molecular stress function (MSF) model [39] and
further advanced models based on it such as the hierarchical
multimode MSF (HMMSF) model [40–42], consider stretch
as a relative quantity, i.e., stretch depends on the deformation
of an entanglement segment between the time of its creation
by diffusion and the time of stress observation. The HMMSF
model is based on the concepts of hierarchical relaxation and
dynamic dilution and features only one nonlinear material
parameter in extensional flow, the dilution modulus. It was
shown to be in agreement with the elongational rheology of a
wide range of polydisperse linear and LCB polymers and
also with two of the well-defined comb polymers investigated
by Lentzakis and co-workers [40]. The ultimate aim of the
HMMSF model is to fully predict strain hardening based
solely on the linear-viscoelastic rheological characterization
of the polymer melt by small amplitude oscillatory shear
(SAOS) flow, which reflects the full impact of the topology
of a polymer on its rheology. This was achieved recently for
a series of model pom-pom PS melts with systematic varia-
tion of the molecular weight of the backbone as well as of
the number and molecular weight of the branches [43]. The
HMMSF model was found to be in quantitative agreement
with the elongational rheology without any nonlinear mate-
rial parameter, using only the spectrum of relaxation times
and a dilution modulus, which for this series of pom-pom
melts was equal to the plateau modulus. Another interesting
research topic is brittle fracture at high strain rates in elonga-
tional flow [42,44–46], i.e., the elastic rupture of the polymer
sample with a clear fracture surface. According to the entro-
pic fracture criterion [46], brittle fracture occurs when the
strain energy of a stretched entanglement segment exceeds
the bond-dissociation energy of a single carbon–carbon
bond.

The objective of this article is to investigate the impact of
the number Nb of branches per entanglement segment on the
stretch of the backbone of combs and combs with
branch-on-branch side arms, and thereby on the strain hard-
ening in elongational flow. In particular, we consider the
case when there is more than one branch point per entangle-
ment segment of the backbone, Nb > 1, and show that this
leads to hyperstretching, i.e., the elongational stress growth
coefficients ηþE (t) shows a stronger increase with time t and
the elongational stress growth σþ

E (ε), an enhanced increase
with the Hencky strain ε than expected for the affine stretch.
Predictions of the HMMSF model are compared to experi-
mental data of comb and branch-on-branch model polysty-
renes as reported by Abbasi et al. [13] and Faust et al. [27].
In addition, we present measurements of the elongational
stress growth coefficient of the combs PS310-100-15k
and PS310-100-40k with a backbone molecular weight of
Mw,bb = 310 kg/mol and 100 branches of molecular weights
of Mw,br = 15 and 40 kg/mol, respectively, which corresponds
to a branch density of Nb = 4.7 branches per entanglement of
the backbone. We also investigated elongational viscosities
of blends consisting of 5–50 wt. % of comb PS310-100-15k
and a monodisperse linear polystyrene PS43k with
Mw= 43 kg/mol. As we will show in the following, the
HMMSF can quantitatively describe the tensile stress growth
coefficient of the combs with Nb < 1 assuming the affine
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stretch of the backbone. The only input parameters are the
linear-viscoelastic relaxation spectrum and a single nonlinear
parameter, the dilution modulus. At branching densities of
Nb > 1, the analysis of the elongational stress growth data
reveals a steeper increase of strain hardening with increasing
Hencky strain than expected from the assumption of the
affine stretch. This hyperstretching effect increases with
increasing branching density and can well be predicted by
implementing hyperstretching into the evolution equation of
stretch. Additionally, with the blend series consisting of
comb PS310k-100-15k and the linear PS43k, we confirm
that hyperstretching is an intrinsic property of the comb mac-
romolecule for Nb > 1, independent of its concentration in the
blend.

II. HIERARCHICAL MULTIMODE MOLECULAR
STRESS FUNCTION (HMMSF) MODELWITH
HYPERSTRETCHING

The HMMSF model is a generalized tube model with
varying tube diameter, which takes hierarchical relaxation
and dynamic dilution of tube segments into account as
shortly summarized below. The extra stress tensor of the
HMMSF model is given by [38,40,41],

σ(t) ¼
X
i

ðt

�1

@Gi(t � t0)
@t0

f 2i (t, t
0)SIADE(t, t

0)dt0: (1)

The relaxation modulus G(t) of the polymer melt is repre-
sented by discrete Maxwell modes with partial relaxation
moduli gi and relaxation times τ i,

G(t) ¼
X
i

Gi(t) ¼
X
i

gi exp(t/τ i), (2)

where SIADE is the Doi and Edwards (DE) strain tensor assum-
ing an independent alignment (IA) of tube segments, which
is five times the second-order orientation tensor S,

SIADE(t, t
0) ; 5

u0u0

u02

� �
o

¼ 5S(t, t0): (3)

The bracket � � �h io denotes an average over an isotropic
distribution of unit vectors u(t0) at time (t0) and can be
expressed as a surface integral over the unit sphere

� � �h io;
1
4π

ðð
� [. . .]sin θo dθo dfo: (4)

At the observation time t, the unit vectors are deformed to
vectors u0, which are calculated from the affine deformation
hypothesis [with deformation gradient F�1(t, t0) being the rel-
ative deformation gradient tensor] as

u0(t, t0) ¼ F�1(t, t0)†u(t0), (5)

where u0 indicates the length of the vector u0.

According to Doi and Edwards [see Eq. (A9) in [35]], the
line density n/l, i.e., the number n of Kuhn segments (or stat-
istically equivalent “monomer units”) of length b that are
found per length l of the tube, is a well-defined thermody-
namic quantity and is given by n/l ¼ a/b2 with a being the
tube diameter. If we apply this relation to a deformed tube
segment of length li with diameter ai containing ni monomer
units, the molecular stress functions fi ¼ fi(t, t0) of Eq. (1) are
given by

fi(t, t
0) ¼ li

ai0
¼ ai0

ai(t, t0)
, (6)

with ai0 ¼
ffiffiffiffiffiffiffiffi
nib2

p
being the equilibrium tube diameter. Thus,

the molecular stress functions fi = fi(t,t0) are the inverse of the
relative tube diameters ai of each mode i and are functions of
both the observation time t and the time t0 of creation of
entanglement segments by diffusion. According to Eq. (6),
stretch is caused by a reduction of the tube diameter, i.e., by
“tube squeeze.” Neglecting stretch relaxation, the molecular
stress functions fi ¼ fi(t, t0) can be derived from an evolution
equation

@fi
@t

¼ fi(K : S), (7)

where k is the velocity gradient and for simplicity, we have
dropped the dependence on (t,t0). Equation (7) has the analyt-
ical solution [39]

fi ¼ exp
�hln (u0)i0� � hu0i0, (8)

which reflects an affine stretch of entanglement segments
characterized by the average of the length of deformed unit
vectors according to Eq. (5). From Eqs. (6) and (8) follows
that the normalized tube segment volume vi reduces with
deformation according to

vi ¼ fi(ai/ai0)
2 ¼ exp

��hln (u0)i0
� � hu0i�1

0 : (9)

i.e., inversely proportional to the average stretch hu0i0, while
affine stretch and reduction of the tube segment volume were
found to be in agreement with the rheology of linear and ran-
domly long-chain branched (LCB) polymers [41,42] as well
as for model Pom-Pom PS [38], a different approach may be
appropriate for the case of combs with densely grafted side
chains, if there is more than one side chain per entanglement
segment of the backbone, i.e., if Nb> 1. In loosely grafted
combs with Nb< 1, branch points and entanglements pin the
backbone chain to the deforming continuum of the surround-
ing chains, which results in affine stretch of the entanglement
segments of the backbone. As far as stretching is concerned,
there is no difference between branch points and entangle-
ments (when viewed as localized topological constraints,
e.g., in the form of slip links), except that branch points
restrain chain retraction. However, in the case of densely
grafted combs with Nb> 1, there are several branch points
per entanglement segment of the backbone, causing
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additional topological constraints on length scales smaller
than the entanglement length and therefore creating extra
tension. We assume that this extra tension can be expressed
by a higher exponent scaling between molecular stress func-
tion fi and inverse relative tube diameter ai0/ai,

fi ¼ ai0
ai

� �1þk

¼ exp
�
(1þ k)hln(u0i0)

� � hu0i1þk
0 , (10)

where we have introduced the hyperstretch factor k with k > 0
for Nb> 1, and k = 0 for Nb < 1. The normalized tube
segment volume vi is then given by

vi ¼ fi(ai/ai0)
2 ¼ exp

�
(k � 1)hln(u0)i0

� � hu0ik�1
0 : (11)

For the case of k = 1, the normalized tube segment
volume is vi = 1, i.e., due to hyperstretching the volume of
the entanglement segment does not change with deformation
but remains constant. From Eq. (10), the stretch increases
then according to hu0i20, which we may consider tentatively as
maximal hyperstretching. From Eq. (10), the evolution equa-
tions of the molecular stress functions fi are given by

@fi
@t

¼ (1þ k)fi(K : S): (12)

Restricting attention to comb polymers in extensional
flows and accounting for the effects of stretch relaxation
[43], which in the case of LCB polymers depends on the
relaxation times τ i and not the Rouse time of the chain, the
evolution equation for the molecular stress function fi of each
mode i can be expressed as

@fi
@t

¼ (1þ k)fi(K : S)� fi � 1
τ i

(1� w2
i )�

( f 5i � 1)
5τ i

w2
i , (13)

with the initial conditions fi(t = t0,t0) = 1. The first term on the
right-hand side represents the hyperstretching rate, the
second term takes into account stretch relaxation, and the
third term limits stretch due to enhanced relaxation of stretch
on smaller length scales as shown in [47], leading to a
stretch relaxation term that is proportional to the 5th power of
the stretch fi.

The stretch relaxation terms of Eq. (13) depend on the
weight fractions wi of the relaxation modes, and account for
hierarchical relaxation and dynamic dilution because chain
segments with shorter relaxation times dilute those with
longer relaxation times. The weight fractions wi are derived
from the linear-viscoelastic spectrum by distinguishing two
dilution regimes during the relaxation process, namely, “per-
manent” dilution and “dynamic” dilution. Permanent dilution
is caused by oligomeric chains and unentangled/fluctuating
chain ends. Dynamic dilution starts when the relaxation
modulus G(t) at time t ¼ τD has reached the dilution
modulus GD � G0

N , which is a free parameter of the model
and which is fitted to nonlinear viscoelastic experimental
data, since the fraction of oligomeric chains and fluctuating
chain ends is often not known. Chain segments, which

relaxed at times t � τD, are assumed to be permanently
diluted. The weight fraction wi of dynamically diluted linear
or LCB polymer segments with relaxation time τ i . τD is
determined by the ratio of the relaxation modulus at time
t ¼ τ i to the dilution modulus GD,

w2
i ¼

G(t ¼ τ i)
GD

¼ 1
GD

Xn
j¼1

gjexp(�τ i/τ j) for τ i . τD,

w2
i ¼ 1 for τ i � τD: (14)

The value of wi obtained at t ¼ τ i is attributed to the chain
segments with relaxation time τ i. Segments with τ i , τD are
considered to be permanently diluted, i.e., their weight frac-
tions are fixed at wi = 1. As shown by Narimissa et al. [48],
these assumptions allow modeling the rheology of broadly
distributed polymers, largely independent of the number of
discrete Maxwell modes used to represent the relaxation
modulus G(t).

Thus, the HMMSF model for LCB polymer melts consists
of multimode stress Eq. (1), a set of evolution equations for
the molecular stresses fi, Eq. (13), and a hierarchical proce-
dure to quantify the fraction of dynamically diluted chain
segments according to Eq. (14) with two free nonlinear
parameters, the dilution modulus GD and the hyperstretch
factor k. Once the linear-viscoelastic relaxation spectrum of a
polydisperse polymer melt is known, the weight fractions wi

in the evolution of Eq. (13) can be obtained by fitting the
value of GD to the elongational viscosity. The parameter GD,
in conjunction with the hyperstretch factor k, determines the
extent of strain hardening. These two free parameters are suf-
ficient for modeling extensional flows of comb polymers.

We add a note on finite extensible nonlinear elasticity
(FENE) here: As explained in [42], due to dilution of the
backbone chain by side chains, FENE effects can be
neglected as long as deformation rates are sufficiently small
so that side chains are not stretched. Also, FENE effects are
expected to be of significance at large strains, while the
effect of hyperstretching is already affecting the start-up
stress growth as soon as stretching begins (see Figs. 9 and
11). Thus, the effect of hyperstretching is fundamentally dif-
ferent from the effect of FENE. We also note that “affine
stretch” is not equivalent to “affine deformation” as imple-
mented in the multimode Oldroyed B model or its integral
version, the Lodge rubberlike equation [4,38]

σ(t) ¼
ðt

�1

@G(t � t0)
@t0

C�1(t, t0)dt, (15)

with C�1 ¼ F�1(FT )
�1 ¼ 3hu0u0i0 being the relative Finger

strain tensor. While affine deformation assumes that the
end-to-end vectors of entanglement segments are deformed
as prescribed by the macroscopic deformation of the material,
constitutive models of the type of Eq. (1) and its preaveraged
approximations [38] distinguish between the effects of chain
orientation and chain stretch.
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In elongational flow of polymer samples showing strong
transient strain hardening, brittle, or elastic fracture at higher
strain rates is frequently observed [44,45]. According to the
entropic fracture hypothesis [42,43,46], a fracture will occur
when the strain energy of a chain segment reaches the bond
energy U of a carbon–carbon bond. Due to thermal fluctua-
tions, the total strain energy of the chain segment will be
concentrated on one C–C bond by thermal fluctuations and
the bond ruptures. This leads to crack initiation and within a
few milliseconds to macroscopic fracture. The critical stretch
fi,c at fracture is given by

fi,c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U

3kT
1
wi

r
, (16)

with k being the Boltzmann constant and T the absolute tem-
perature. The ratio of bond-dissociation energy U to thermal
energy 3kT is approximately U/3kT = 32 and 31 at tempera-
tures of T = 160 and 180 °C, respectively. This fracture crite-
rion has been shown to be in agreement with experimental
evidence of polymer melts and solutions, see, e.g.,
[32,42,43,46,47].

III. MATERIALS AND EXPERIMENTAL DATA

The linear PS was synthesized by living anionic polymeri-
zation, and the comb PS by a combination of living anionic
polymerization and grafting as shown schematically in
Fig. 1. PS anions (Mw,a = 15 and 44 kg/mol) as arms were
grafted onto a postfunctionalized PS backbone (Mw,bb = 290
and 310 kg/mol), yielding the long-chain branched comb
topology. In more detail, first, a linear PS was synthesized by
anionic polymerization (a) and then postfunctionalized via a

Friedel−Crafts acylation (b). In a third step (c), the arms
were prepared by anionic polymerization and (d) added to
the postfunctionalized backbone from step (b), so that they
were grafted onto it. A more detailed explanation of this syn-
thesis route and the molecular characterization with
SEC-MALLS and NMR of the obtained comb model
systems can be found in [13,49].

The molecular characteristics of the comb model systems
are shown schematically in Fig. 2(b) and are summarized in
Table I, listing Mw,bb, the branch number Nbr, the number of
branched per entanglement segment of the backbone Nb, the
molecular weight of the branches Mw,br, the total molecular
weight Mw, and the dispersity of the comb Dt. The number
of branches per entanglement segment of the backbone is
given by Nb ¼ Nbr/zbb. The number of entanglement seg-
ments of the backbone is zbb ¼ Mw,bb/Me, with the entangle-
ment molecular weight taken as Me = 14.5 kg/mol [13]. Nb

ranges from 0.2 up to 9.5. Plateau modulus G0
N and

zero-shear viscosity η0 of the PS combs at T = 180 °C are
summarized in Table II.

The branch-on-branch PS was synthesized similar to the
comb PS by a combination of living anionic polymerization
and grafting as shown schematically in Fig. 2(a), using a
long-chain branched comb as the precursor instead of a
linear PS as for the combs. PS anions (Mw,br,BoB = 14 kg/
mol) as BoB arms were grafted onto a postfunctionalized
comb PS as the precursor, yielding the branch-on-branch
topology. Therefore, first a comb PS was synthesized as
described in Fig. 1, and then again postfunctionalized via a
Friedel−Crafts acylation (1). In the next step (2), the arms
were prepared by anionic polymerization and (3) added to
the postfunctionalized comb precursor from step (1) so that
they were grafted onto it. A more detailed explanation of this

FIG. 1. Reaction scheme for the synthesis of model PS combs with the four steps: (a) Anionic polymerization of the backbone. (b) Postfunctionalization of the
backbone by Friedel−Crafts acylation. (c) Anionic polymerization of the living side chains. (d) Grafting of the PS anions as side chains onto the acetylated
backbone.
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synthesis route and the molecular characterization with
SEC-MALLS and NMR of the obtained BoB model systems
can be found in [27]. The molecular characteristics of the
BoB model systems are shown schematically in Fig. 2(b) and
are summarized in Table III, and plateau modulus G0

N and
zero-shear viscosity η0 at T = 180 °C are given in Table IV.

The linear PS used for blending with PS310-100-15k has
a molecular weight of Mw= 43 kg/mol and a dispersity of
Ð = 1.04 and was used before as a blend component in [43].

The blends were made by a four-step solvent blending proce-
dure similar to the one described in the literature [43,50].
First, linear and comb PSs were both dissolved in tetrahydro-
furan (THF) at room temperature and stirred overnight, fol-
lowed by slow evaporation, and, finally, drying under
vacuum for 24 h at 40 °C and a final 2 h drying at 115 °C,
slightly above the glass transition temperature (Tg) of PS to
remove the last remaining traces of THF. A summary about
the weight content of the comb in the linear PS43k and the
rheological properties of the comb/linear blends is given in
Table V.

TABLE II. Zero-shear viscosity η0, plateau modulus G0
N , dilution modulus

GD, number Nb of branches per entanglement segment of the backbone, and
hyperstretch factor k of PS combs at T = 180 °C.

Comb η0(kPa s) G0
N (kPa) GD(kPa) Nb (—) k (—)

PS290k-3-44k 344 200 5 0.2 0
PS290k-10-44k 1920 220 5 0.5 0

PS290k-14-44k 751 210 80 0.7 0
PS290k-30-44k 241 250 250 1.6 0.2
PS290k-60-44k 89 210 210 3.0 0.5
PS290k-120-44k 170 250 250 6.0 0.6
PS290k-190-44k 5750 190 190 9.5 1

TABLE I. Molecular characteristics of investigated PS combs, assuming
Me = 14.5 kg/mol.

Comb
Mw,bb

(kg/mol)
Nbr
(—)

Nb

(—)

Mw,br

(kg/
mol)

Mw

(kg/
mol)

Dt

(—)

PS290k 290 — — — 290 1.10
PS290k-3-44k 290 3 0.2 45 420 1.11
PS290k-10-44k 290 10.4 0.5 44 750 1.15
PS290k-14-44k 290 13.8 0.7 45 900 1.08
PS290k-30-44k 290 29.8 1.6 43 1600 1.03

PS290k-60-44k 290 59.5 3.0 44 2900 1.03
PS290k-120-44k 290 120 6.0 44 5570 1.11
PS290k-190-44k 290 189.3 9.5 44 8620 1.07
PS310k-100-40k 310 100 4.7 40 4200 1.13
PS310k-100-15k 310 100 4.7 15 1810 1.33

FIG. 2. (a) Reaction scheme for the synthesis of model branch-on-branch (BoB) PS using a long-chain branched comb PS as the precursor.
(1) Functionalization of the LCB comb PS310-100-40 by adding carbonyl functional groups (■) via Friedel–Crafts acylation, similar to the comb synthesis
shown in Fig. 1. (2) Anionic polymerization of living arms with Mw,br,BoB≈ 14 kg/mol. (3) Grafting of the BoB arms onto the acetylated comb precursor. The
carbonyl groups turn into branch points (▴). (b) Schematic of polymer topologies considered: From comb to bottlebrush to branch-on-branch.

234 HIRSCHBERG et al.
 29 February 2024 13:16:44



The experimental protocol for the rheological measure-
ments in shear and elongation with the extensional viscos-
ity fixture (EVF) is reported in [13]. In addition to the
elongational viscosity data of Abbasi et al. [13], we
present elongational viscosity measurements using a fila-
ment stretching rheometer (FSR) [51] for several systems
of the PS290-Nbr-44k comb series. The FSR measurement
data are indicated in Figs. 5–8 by red symbols. Except at
low strain rates, a good agreement between the elonga-
tional data obtained by EVF and FSR is observed, which
supports the validity of the data set. For PS310-100-15k
and its blends, the oscillatory shear and uniaxial exten-
sional rheology were conducted on an ARES-G2 rheome-
ter (TA Instruments, Newcastle, USA) using a 13 mm
plate–plate geometry for the shear measurements as well
as an EVF for uniaxial elongational tests. The dried
blends were hot-pressed at 180 °C for 10 min under
vacuum. Shear rheology was measured between 130 and
220 °C, using an angular frequency range of ω = 0.1 to
100 rad/s. The elongational tests were performed at 160 or
180 °C, at Hencky strain rates of _ε ¼ 0:003 to 10 s−1 with
a maximum Hencky strain of ε = 4 for the EVF. The FSR
extensional experiments were performed at 180 °C and at
low and medium strain rates up to ε = 7 or up to the
breakage of the samples.

For all samples investigated, linear-viscoelastic master
curves of storage and loss modulus, G0 and G00 were obtained
by time-temperature superposition (TTS) and are shown in
Figs. SI.1–SI.9 of the supplementary) material [54]. The TTS
factors are given in Tables SI.1–SI.3. The mastercurves were
fitted by parsimonious relaxation spectra by the IRIS soft-
ware [52,53] and are also summarized in the SI. The plateau
modulus G0

N is taken as the value of the storage modulus G0

at the high frequency G0 minimum of the loss tangent δ. In a
few specific cases such as for comb PS290k-190-44k
(Fig. SI.7) and the BoB polymers [Figs. SI.8(b)–SI(d)],
the terminal regime has not been reached. However,
the linear-viscoelastic master curves of storage and loss

modulus extend down to frequencies of 10−4 rad/s or lower,
and thus the experimental window of the elongational
stress growth coefficients ηþE (t) measured at elongation rates
of _ε � 0:01 s�1 was sufficiently covered by the truncated
relaxation spectra.

IV. COMPARISON OF ELONGATIONAL VISCOSITY
DATA OF COMBS TO MODEL PREDICTIONS

Figures 3 and 4 compare the experimental data (symbols)
of the elongational stress growth coefficient ηþE (t) as a func-
tion of time t and the elongational stress σþ

E (ε) as a function
of Hencky strain ε for the loosely grafted combs
PS290k-3-44k and PS290k-10-44k with 3 and 10 branches
corresponding to Nb= 0.2 and Nb= 0.5 branches per entan-
glement segment, respectively. Agreement of the ηþE (t) as
well as σþ

E (ε) data is obtained with predictions (lines) of the
HMMSF model for a dilution modulus of GD ¼ 5:0� 103 Pa
and without assuming hyperstretching, i.e., k = 0 for both
comb systems. This is in agreement with earlier results for
randomly branched LCB polymers [41].

Again, without hyperstretching, i.e., k = 0, the elonga-
tional data of comb PS290k-14-44k (Fig. 5) can be quantita-
tively described by the HMMSF model. Due to the higher
number of branches, dynamic dilution is more pronounced
and a dilution modulus of GD ¼ 8:0� 104 Pa is found to be
in agreement with the experimental data. With 14 branches,
PS290k-14-44k has Nb= 0.7 branches per entanglement
segment of the backbone and is, therefore, in the regime of
Nb , 1.

In addition to the elongational data (black symbols)
obtained by the EVF, Figs. 5–8 show measurements with a
FSR at medium and low strain rates and indicated by data
symbols in red. Within experimental accuracy, agreement
between measurements with EVF and FSR is found at the

TABLE III. Molecular characteristics of the branch-on-branch (BoB) PS having the same long-chain branched comb precursor with Mw,br∼ 40 kg/mol as a
first generation and then 123, 236, and 461 short arms of Mw,br,BoB∼ 14 kg/mol grafted onto the first generation, respectively.

BoB Mw,bb (kg/mol) Nbr (—) Nb (—) Mw,br (kg/mol) NBoB (—) Mw,br,BoB (kg/mol) Mw (kg/mol) Dt (—)

PS310k-100-40k-g-120-14 k 310 98 4.7 39 123 14 5 900 1.10
PS310k-100-40k-g-240-14 k 310 98 4.7 39 236 14 7 600 1.11
PS310k-100-40k-g-460-14 k 310 98 4.7 39 461 13 10 100 1.15

TABLE IV. Zero-shear viscosity η0, plateau modulus G0
N , dilution modulus

GD, number Nb of branches per entanglement segment of the backbone, and
hyperstretch factor k of BoB polymers and precursors at T = 180 °C.

Comb/BoB
η0

(kPa s) G0
N (kPa) GD(kPa)

Nb

(—)
k

(—)

PS310k-100-40k 139 220 220 4.7 0.6
PS310k-100-40k-g-120-14k 536 220 220 4.7 1
PS310k-100-40k-g-240-14k 711 250 250 4.7 1
PS310k-100-40k-g-460-13k 896 270 270 4.7 1

TABLE V. Pom-pom/linear PS blends of comb PS310k-100-15k and linear
PS43k. w indicates the weight percent of the PS comb in the blends.
Zero-shear viscosity η0, plateau modulus G0

N , dilution modulus GD, number
Nb of branches per entanglement segment of the backbone, and hyperstretch
factor k at 160 °C.

fPS310 k�100�15 k

(wt. %) η0 (kPa s) G0
N (kPa) GD(kPa) Nb (—) k (—)

100 550 320 320 4.7 0.6

50 66 180 180 4.7 0.6
20 16 200 200 4.7 0.6
10 5.0 160 160 4.7 0.6
5 4.8 200 200 4.7 0.6
PS43k 3.0 — — — —
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medium strain rates, while some deviations are seen at the
lowest strain rates due to possible sagging of the samples at
small elongational stresses and long measurement times. We
note that the measuring principles of EVF and FSR differ
significantly with EVF relying on global sample deformation
versus FSR focusing on local deformation, and, therefore, the
general agreement of EVF and FSR measurements is encour-
aging and supports the validity of the uniaxial extensional
data presented. The measurements by FSR extend to larger
Hencky strains and confirm the approach to a steady-state
elongational stress at lower strain rates, while filament frac-
ture occurs at higher strain rates, in general agreement with
the entropic fracture criterion of Eq. (16). The approach to a
steady state is seen in the σþ

E (ε) plots of Figs. 6 and 7, which

also show that the apparent overshoot of the elongational
stress growth coefficient ηþE (t) is likely due to loss of sample
homogeneity at very high strains.

A first indication of hyperstretching is revealed by close
inspection of the elongational flow data of comb
PS290k-30-44k (Fig. 6) with 30 branches. Hyperstretching is
hardly discernible by examining the elongational stress
growth coefficient ηþE (t) in Fig. 6(a), where experimental
data are in reasonable agreement with HMMSF predictions
using the affine stretch assumption with k = 0. However, the
elongational stress growth σþ

E (ε) is slightly underpredicted
by the HMMSF model with k = 0. Substantially improved
agreement between experimental data and predictions of both
ηþE (t) and σþ

E (ε) can be obtained by use of a hyperstretch

FIG. 3. Experimental data (symbols) of (a) elongational stress growth coefficient ηþE (t) as a function of time t, and (b) elongational stress σþ
E (ε) as a function

of Hencky strain ε for the comb PS290k-3-44k at T = 180 °C. Lines are predictions of the HMMSF model with GD ¼ 5:0� 103 Pa and k = 0.

FIG. 4. Experimental data (symbols) of (a) elongational stress growth coefficient ηþE (t) as a function of time t and (b) elongational stress σþ
E (ε) as a function of

Hencky strain ε for the comb PS290k-10-44k at T = 180 °C. Lines are predictions of the HMMSF model with GD ¼ 5:0� 103 Pa and k = 0.
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FIG. 5. Experimental data measured with EVF and FSR (black and more crowded symbols) of (a) elongational stress growth coefficient ηþE (t) as a function of
time t and (b) elongational stress σþ

E (ε) as a function of Hencky strain ε for the comb PS290k-14-44k at T = 180 °C. Lines are predictions of the HMMSF
model with GD ¼ 8:0� 104 Pa and k = 0.

FIG. 6. Experimental data measured with EVF and FSR (black and more crowded symbols) of elongational stress growth coefficient ηþE (t) as a function of
time t and elongational stress σþ

E (ε) as a function of Hencky strain ε for the comb PS290k-30-44k at T = 180 °C. Lines are predictions of the HMMSF model
with GD ¼ G0

N ¼ 2:5� 105 Pa and k = 0 (a), and k = 0.2 (b), respectively.
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factor of k = 0.2 [Fig. 6(b)]. Comb PS290k-30-44k has, on
average, Nb= 1.6 branches per entanglement length of the
backbone, and we conclude that hyperstretching occurs as
soon as the number Nb of branches per backbone entangle-
ment is larger than one, i.e., Nb . 1.

We also note that for all combs PS290k-Nbr-44k with
Nbr > 30 investigated, the dilution modulus GD is identical to
the plateau modulus G0

N (Table II), i.e., dynamic dilution of
the backbone according to Eq. (14) starts as soon as the
relaxation modulus G(t) has reached the value of the plateau
modulus. For combs PS290k-60-44k with 60 branches and
Nb= 3 (Fig. 7) and PS290k-120-44k with 120 branches and

Nb= 6 (Fig. 8), agreement between experimental data and
HMMSF model predictions is obtained by the use of hyper-
stretch factors of k = 0.5 and k = 0.6, respectively. Deviations
are only seen at the lowest strain rates, where also EVF and
FSR measurements deviate. For PS290k-120-44k, the effect
of hyperstretching on the elongational stress growth coeffi-
cient ηþE (t) is demonstrated by comparing predictions of the
HMMSF model with k = 0 [Fig. 8(a)] to predictions with
k = 0.6 [Fig. 8(b)]. Hyperstretching leads to a significantly
steeper increase and larger maximal value of the elongational
stress growth coefficient than the assumption of affine
stretch.

FIG. 7. Experimental data measured with EVF and FSR (black and more crowded symbols) of (a) elongational stress growth coefficient ηþE (t) as a function of
time t and (b) elongational stress σþ

E (ε) as a function of Hencky strain ε for the comb PS290k-60-44k at T = 180 °C. Lines are predictions of the HMMSF
model with GD ¼ G0

N ¼ 2:1� 105 Pa and k = 0.5.

FIG. 8. Experimental data measured with EVF and FSR (black and more crowded symbols) of elongational stress growth coefficient ηþE (t) as a function of
time t for the comb PS290k-60-44k at T = 180 °C. Lines are predictions of the HMMSF model with k = 0 (a) and k = 0.6 (b). GD ¼ G0

N ¼ 2:5� 105 Pa.
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Figure 9 compares experimental data of elongational flow
of comb PS290k-190-44k with 190 branches to predictions
of the HMMSF model without hyperstretching (k = 0) and
with maximal hyperstretching, i.e., k = 1. We recall from
Eq. (10) that k = 0 corresponds to affine stretch in proportion
to hu0i0, while the stretch increases with hu0i20 for k = 1. It is
obvious that the elongational stress growth coefficient ηþE (t)

exhibits a steeper slope, and the elongational stress growth
σþ
E (ε), a stronger increase with the Hencky strain than

expected for affine stretch, i.e., for k = 0 [Fig. 9(a)]. Also as
shown in Fig. 9(b), the Lodge rubberlike liquid, Eq. (15),
based on the assumption of affine deformation underpredicts
the elongational stress growth data substantially. Although
the experimental data show some scatter as most clearly seen

FIG. 9. Experimental data (symbols) of elongational stress growth coefficient ηþE (t) as a function of time t and elongational stress σþ
E (ε) as a function of

Hencky strain ε for the comb PS290k-190-44k at T = 180 °C. Lines in (a) and (c) are predictions of the HMMSF model with GD ¼ G0
N ¼ 1:9� 105 Pa and

k = 0 (a), and k = 1 (c), respectively. Lines in (b) are predications of the Lodge rubberlike liquid, Eq. (15).
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in the elongational stress growth data, general agreement of
data and the HMMSF model is achieved by a hyperstretch
parameter of k = 1 [Fig. 9(c)]. For 290k-190-44k, the number
of branches per entanglement is Nb≅ 10, i.e., in each entan-
glement segment of the backbone with Me = 14.5 kg/mol,
there are, on average, 10 branches of Mw,br≅ 44 kg/mol. It is
conceivable that this leads to maximal hyperstretching of the
backbone. We also find that the fracture criterion according
to Eq. (16) is in agreement with experimental data of σþ

E (ε),
which show fracture at Hencky strains of ε � 3.

The results obtained for the comb systems
PS290-Nbr-44k are supported by elongational measurements
of comb PS310k-100-40k [27] with backbone Mw,bb

= 310 kg/mol and 100 branches of molecular weight M
w,br

≅ 40 kg/mol. Agreement between experimental data of the
elongational stress growth coefficient ηþE (t) and the elonga-
tional stress σþ

E (ε) with predictions of the HMMSF model is
obtained by a hyperstretch factor of k = 0.6 (Fig. 10) This
corresponds to the same hyperstretching as seen for comb
PS290k-120-44k, which has Nb≅ 6 branches per entangle-
ment segment of the backbone, while the comb
PS310k-100-40k has Nb ≅ 5. The dilution modulus GD of
comb PS310k-100-40k is again identical to the plateau
modulus G0

N , as in the case of the densely grafted comb poly-
mers of PS290k-Nbr-44k with Nbr≥ 30 and Nb > 1.

We finally note that there is a remarkable qualitative dif-
ference between the elongational behavior of densely grafted
combs with Nb> 1 and so-called pom-pom polymer melts.
While the arms of combs are statistically distributed along
the backbone, the branches of pom-poms are all located at
either end of the backbone, i.e., a pom-poms may be consid-
ered as a comb with its branches placed each half of them at
the two ends of the backbone. The PS pom-poms investi-
gated in [43] have formal values of Nb between 0.7 and 6.5,
if the number of backbone entanglements is divided by the
total number of arms at both ends of the backbone. The

HMMSF model was found to describe well the elongational
rheology of all 10 pom-poms investigated, independently of
the value of Nb, by assuming affine stretch (i.e., k = 0) of the
backbone and without any signature of hyperstretching
effects. Thus, it is not only the average number of branches
per entanglement that determines hyperstretching, but the
exact location of the branches along the backbone. Only if
there is more than one side chain within an actual entangle-
ment segment, these side chains act as additional topological
constraints or “subentanglements” on length scales smaller
than the tube diameter and create the extra tension, which
leads to hyperstretching.

V. COMPARISON OF ELONGATIONAL VISCOSITY
DATA OF COMBS WITH BRANCH-ON-BRANCH
TOPOLOGY TO MODEL PREDICTIONS

The comb PS310k-100-40k with 100 first-generation
long-chain branches (lcbs) of Mw,lcb = 40 kg/mol served as
the precursor for the synthesis of the dendrigraft-type
branch-on-branch (BoB) structures by adding a second gener-
ation of 120 to 460 short-chain branches (scbs) with Mw,scb

≅ 14 kg/mol on the long-chain branches [27]. In Fig. 11,
experimental data of the elongational stress growth coeffi-
cient ηþE (t) of the BoB 310k-100-40k-g-120-14k are com-
pared with predictions of the HMMSF model without
hyperstretching (k = 0) and maximal hyperstretching (k = 1).
Again, the experimental data of elongational stress growth
coefficient ηþE (t) and elongational stress growth σþ

E (ε) show a
much stronger increase with time and Hencky strain than
expected for affine stretch, i.e., for k = 0 [Fig. 11(a)]. In spite
of some inconsistencies of the experimental data as clearly
seen in the elongational stress growth σþ

E (ε), general agree-
ment of data and the HMMSF model is achieved by a hyper-
stretch parameter of k = 1 [Fig. 11(b)]. The same result is
obtained for BoB 310k-100-40k-g-240-14k and BoB

FIG. 10. Experimental data (symbols) of (a) elongational stress growth coefficient ηþE (t) as a function of time t and (b) elongational stress σþ
E (ε) as a function

of Hencky strain ε for the comb PS310k-100-40k at T = 180 °C. Lines are predictions of the HMMSF model with GD ¼ G0
N ¼ 2:2� 105 Pa and k = 0.6.
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310k-100-40k-g-460-13k (Fig. 12). The 120 to 460 short-
chain branches grafted onto the 100 long-chain branches
create substantial extra entanglements, which increase not
only the relaxation times and the zero-shear viscosity of the
BoB polymers (Table IV), but also lead to extremely high
transient strain hardening with strain hardening factors of up
to 600 [27] and maximal hyperstretching. This is caused by
five BoB side chains per entanglement segment of the back-
bone (Nb≅ 5) in combination with the 120 to 460 branch
points on the BoB side chains, which leads to higher friction
and extra tension. For BoB 310k-100-40k-g-460-13k, agree-
ment of experimental data and predictions of the HMMSF
model is found at higher strain rates, while at lower strain
rates, there are some deviations between the experiment and
the model.

VI. MODELING ELONGATIONAL VISCOSITY OF
COMB/LINEAR BLENDS

The results obtained for the comb system PS290-Nbr-44k
are further supported by elongational measurements at
160 °C of the comb PS310k-100-15k with backbone Mw,bb

= 310 kg/mol and 100 branches of molecular weight M
w,br

≅ 15 kg/mol, respectively. Again, as in the case of the pure
comb PS310k-100-40k, agreement between experimental
data of the elongational stress growth coefficient ηþE (t)
and the elongational stress σþ

E (ε) with predictions of the
HMMSF model is obtained by a hyperstretch factor of
k = 0.6 (Fig. 13). The molecular weight of the branches,
Mw,br ≅ 15 kg/mol versus Mw,br≅ 40 kg/mol, has seemingly
no influence on hyperstretching as long as the branches are at
least marginally entangled.

FIG. 11. Experimental data (symbols) of elongational stress growth coefficient ηþE (t) as a function of time t and elongational stress σþ
E (ε) as a function of

Hencky strain ε for the BoB 310k-100-40k-g-120-14k at T = 180 °C. Lines are predictions of the HMMSF model with GD ¼ G0
N ¼ 2:2� 105 Pa and k = 0 (a),

and k = 1 (b), respectively.
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FIG. 12. Measurements (symbols) of elongational stress growth coefficient ηþE (t) as a function of time t for (a) BoB 310k-100-40k-g-240-14k and (b) BoB
310k-100-40k-g-460-13k at T = 180 °C. Lines are predictions of the HMMSF model with k = 0 and k = 1. GD ¼ G0

N as given in Table IV.

FIG. 13. Measurements (symbols) of (a) elongational stress growth coefficient ηþE (t) as a function of time t and (b) elongational stress σþ
E (ε) as a function of

Hencky strain ε for the comb PS310k-100-15k at T = 160 °C. Lines are predictions of the HMMSF model with GD ¼ G0
N ¼ 3:2� 105 Pa and k = 0.6.
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Figure 14 shows measurements (symbols) of elongational
stress growth coefficient ηþE (t) as a function of time t (left
panels) and elongational stress growth σþ

E (ε) as a function of
Hencky strain ε (right panels) for blends of the comb
PS310k-100-15k and linear PS43k at T = 160 °C. We note
that the Rouse time of PS43k at 160 °C can be estimated as
0.02 s [14], and thus at elongation rates _ε � 50 s�1, the PS43k
chains will not be stretched but act simply as a diluent.
Remarkably, with the same hyperstretch factor of k = 0.6 as
for the neat comb PS310k-100-15k, and with dilution
modulus GD being identical to the plateau modulus, i.e.,
GD ¼ G0

N (Table III), agreement between experimental data

and the HMMSF model is obtained for all blends with
5–50 wt. % of comb PS310k-100-15k investigated. This
shows that hyperstretching is an intrinsic property of the comb
macromolecule with Nb > 1, independent of the comb concen-
tration in the blend. From a practical point of view, adding
even 5% of densely grafted comb structures with hyperstretch-
ing performance to a low-molecular-weight linear polymer
results in significant SHF under extensional deformation. This
can be used as a toolbox for polymer blends to adjust the melt
rheological properties via low amount of hyperstretching poly-
mers and keep the performance in solid mechanical properties
through the molecular weight of the linear polymer.

FIG. 14. Experimental data (symbols) of elongational stress growth coefficient ηþE (t) as a function of time t (left panels) and elongational stress σþ
E (ε) as a

function of Hencky strain ε (right panels) for blends of the comb PS310k-100-15k (in wt. %) and linear PS43k at T = 160 °C. Lines are predictions of the
HMMSF model with k = 0.6 and GD ¼ G0

N as given in Table IV.
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VII. CONCLUSIONS

We have extended the hierarchical multimode molecular
stress function (HMMSF) model to account for hyperstretching
of densely grafted combs with Nb > 1 branches per entangle-
ment segment of the backbone by introducing a hyperstretch
factor k. While affine stretch leads to a reduction of the volume
of tube segments with increasing deformation and is character-
ized by a hyperstretch factor of k = 0, maximal hyperstretching
is characterized by a constant tube segment volume and a hyper-
stretch factor of k = 1. We considered the elongational flow data
of the comb series PS290k-Nbr-44k with the number of
branches Nbr ranging from 3 to 190 corresponding to an
average number Nb of branches per entanglement segment of

the backbone from Nb≅ 0.2 to Nb≅ 10. A detailed analysis by
the HMMSF model reveals that while backbone chains of
loosely grafted combs with Nb< 1 are stretched affinely in elon-
gational flow (k = 0), backbone chains of more densely grafted
combs with Nb > 1 show increasing hyperstretching with
increasing Nb, which can be quantified by hyperstretch factors
0 , k � 1. Maximal hyperstretch is found for comb
PS290k-190-44k with 190 branches and Nb≅ 10 with k = 1.
We may conclude that in loosely grafted combs with Nb< 1,
branch points and entanglements pin the backbone chain to the
deforming continuum of the surrounding chains, leading to
affine stretch of entanglement segments of the backbone, while
in densely grafted combs with Nb > 1, the additional branch
points within an entanglement segment create additional

FIG. 14. (Continued)

244 HIRSCHBERG et al.
 29 February 2024 13:16:44



tension in the backbone, i.e., lead to hyperstretching. In contrast,
pom-pom melts with the branches placed exactly at the two
ends of the backbone do not show hyperstretching in elonga-
tion, even if formally, the value of Nb of branches per entangle-
ment segment of the backbone is larger than one.

These results are supported by the analysis of elongational
flow measurements of comb PS310-100-40 k with backbone
Mw,bb= 310 kg/mol and 100 branches of Mw,br≅ 40 kg/mol, and
a similar comb with shorter but still entangled branches,
i.e., PS310-100-15k with branches of molecular weight
Mw,br≅ 15 kg/mol. Excellent agreement of experimental data
and HMMSF model predictions is obtained by a hyperstretch
factor of k = 0.6. The same amount of hyperstretching is seen for
comb PS290k-120-44k with Nb≅ 6 branches per entanglement
segment of the backbone, while 310k-100-15k has Nb≅ 5. It
seems that in the range of Mw,br from 15 to 40 kg/mol, hyper-
stretching is predominantly caused by the number Nb of branches
rather than their length, at least as long as the branches have a
molecular weight Mw,br equal or larger than the entanglement
molecular weight Me. On the other hand, the dendrigraft-type
branch-on-branch (BoB) polymers with 120 to 460 scb with
Mw,scb≅ 14 kg/mol grafted onto the 100 long-chain branches of
Mw,br≅ 40 kg/mol display maximal hyperstretching (k = 1). This
is caused by the branch points on the BoB side chains, leading to
additional friction and increasing the tension in the backbone.

Remarkably, the same amount of hyperstretching with
k = 0.6 as for the pure PS310-100-15k is also found in blends
of 5–50 wt. % of comb PS310k-100-15k and linear PS43k.
This shows that hyperstretching is an intrinsic property of the
comb macromolecule with Nb > 1, independent of its concen-
tration in the blend. Hyperstretching can have a significant
impact on the processability of polymer melts, and the quan-
tification of this effect is, therefore, important.

The HMMSF model is based on the concepts of hierarchi-
cal relaxation and dynamic dilution. Dynamic dilution of
chain segments with longer relaxation times by chain seg-
ments with shorter relaxation times starts as soon as the relax-
ation process has reached the dilution modulus GD � G0

N . In
general, the dilution modulus GD is a free parameter of the
constitutive model, which needs to be fitted to nonlinear vis-
coelastic experimental evidence. However, for the comb
systems PS290k-Nbr-44k with Nbr≥ 30 as well as for
PS310k-100-15k, PS310-100-40k, and the BoB polymers
based on PS310-100-40k, dynamic dilution of the backbone
starts as soon as the relaxation modulus G(t) has reached the
value of the plateau modulus. For the well-defined combs
investigated with Nb > 1, the dilution modulus GD is identical
to the plateau modulus G0

N of the polymer. This is even true
for the blends of 5–50 wt. % of comb PS310k-100-44k and
linear PS43k, for which the assumption of the dilution
modulus GD being identical to the plateau modulus, i.e.,
GD ¼ G0

N , leads to excellent agreement between experimental
data and the HMMSF model for all blends investigated.
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