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Approaches to developing large-scale superconducting quantum 
processors must cope with the numerous microscopic degrees of freedom 
that are ubiquitous in solid-state devices. State-of-the-art superconducting 
qubits employ aluminium oxide (AlOx) tunnel Josephson junctions as 
the sources of nonlinearity necessary to perform quantum operations. 
Analyses of these junctions typically assume an idealized, purely sinusoidal 
current–phase relation. However, this relation is expected to hold only in the 
limit of vanishingly low-transparency channels in the AlOx barrier. Here we 
show that the standard current–phase relation fails to accurately describe 
the energy spectra of transmon artificial atoms across various samples 
and laboratories. Instead, a mesoscopic model of tunnelling through 
an inhomogeneous AlOx barrier predicts percent-level contributions 
from higher Josephson harmonics. By including these in the transmon 
Hamiltonian, we obtain orders of magnitude better agreement between 
the computed and measured energy spectra. The presence and impact of 
Josephson harmonics has important implications for developing AlOx-based 
quantum technologies including quantum computers and parametric 
amplifiers. As an example, we show that engineered Josephson harmonics 
can reduce the charge dispersion and associated errors in transmon qubits 
by an order of magnitude while preserving their anharmonicity.

The Josephson effect1,2 is the keystone of quantum information  
processing with superconducting hardware: it constitutes a unique 
source of low-loss nonlinearity, which is essential for the implementa-
tion of superconducting quantum bits, and it plays a similarly funda-
mental role as the nonlinear current–voltage relation of diodes in 
semiconductor circuitry. In particular, tunnel Josephson junctions 

( JJs), formed by two overlapping superconducting films separated by 
a thin insulating barrier, have enabled superconducting hardware to 
become one of the leading platforms for the realization of fault-tolerant 
quantum computers3–6. JJs are also at the heart of quantum limited 
amplification7, metrological applications8 such as the definition of 
the voltage9 and a possible future current standard10, and they enable 
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to tunnel together in groups of m, which correspond to the sin(mφ) 
terms in the CφR.

In the limit Tn → 0, only the sinφ term of equation (2) survives.  
If all channels in a JJ are in this limit, we recover the purely sinusoidal 
CφR of equation (1), with the critical current of the junction Ic pro-
portional to the sum of transparencies. Assuming a perfectly homoge-
neous barrier, for a typical junction with ~μm2 area and resistance 
comparable to the resistance quantum, one expects N ≈ 106 and Tn ≈ 10−6 
(refs. 24,25), leading to negligible (below 10−6) corrections to the purely 
sinusoidal CφR.

But is this the reality? Here we argue that in the presence of  
contaminants, atomic scale defects26 and random crystalline orienta-
tions of the grains in contact, evidenced by scanning transmission elec-
tron microscope (STEM) images and molecular dynamics simulations 
(Fig. 2c and Supplementary Section IV), we have reasons to doubt it.  
In fact, about two decades ago, AlOx barrier inhomogeneity moti-
vated the transition in magnetic junctions to more uniform oxides 
such as MgO (refs. 27–29). Consequently, we expect a distribution 
of transparencies in AlOx (refs. 30,31) with possibly a few relatively 
high-transparency channels32,33 introducing measurable corrections to 
the CφR (Fig. 1). The microscopic structure of each barrier is therefore 
imprinted on the CφR of the JJ, and the challenge is how to experimen-
tally access this information.

For our study of tunnel JJs, we use transmon devices34, in which 
a JJ is only shunted by a large capacitor to form a nonlinear oscillator 
with the potential energy defined by the CφR of the junction (Fig. 2e). 
The resulting individually addressable transition frequencies in the 
microwave regime can be measured using circuit quantum electro-
dynamics techniques35. We compare the spectra of multiple samples 
to the prediction of the standard transmon Hamiltonian based on a  
sinusoidal CφR (equation (1)) and find increasing deviations for the 
higher energy levels of all samples, as sketched in Fig. 2e,f. Only by 
accounting for higher harmonics in the CφR are we able to accurately 
describe the entire energy spectrum. A similar methodology was  
used in ref. 18 to reconstruct the CφR of a semiconductor nanowire 
Josephson element. While our study focuses on transmon qubits, the 
conclusions we draw regarding the CφR of tunnel junctions should 
trigger a re-evaluation of the current models for tunnel-JJ-based devices 
used in quantum technology and metrology35–39.

Since transmons are widely available in the community, we  
are able to measure and model the spectra of multiple samples from 
laboratories around the globe: fixed-frequency transmons fabricated 
and measured at the Karlsruhe Institute of Technology (KIT; Supple-
mentary Fig. 18) in three cooldowns (CDs; Supplementary Fig. 19) and 
Ecole Normale Supérieure (ENS) Paris (same device as in ref. 40), a 
tunable transmon subject to an in-plane magnetic field at the University 
of Cologne (Köln; identical setup and similar device as in ref. 41; Sup-
plementary Fig. 23) and 20 qubits from the IBM Hanoi processor (IBM).  
All transmons are based on standard Al–AlOx–Al tunnel junctions  
(Fig. 2) and are measured in either a three-dimensional architecture or 
a two-dimensional coplanar waveguide geometry (for detailed descrip-
tions of each sample, see Supplementary Section III). The spectroscopy 
data consists of (1) transition frequencies f0j into transmon states 
j = 1, 2, … up to j = 6, each measured as j-photon transitions at frequen-
cies f0j/j, and (2) the resonator frequencies fres, j  depending on the 
transmon state j = 0, 1 (Methods).

In Fig. 3, we compare the measured transition frequencies to pre-
dictions f model

0j , obtained by exact diagonalization of two different 
model Hamiltonians. The first model is the standard transmon model, 
which has served the community for over 15 years34

Hstd = 4EC(n − ng)
2 − EJ cosφ + Hres , (3)

where EC is the charging energy, EJ is the Josephson energy, ng is the 
offset charge and the operators n and φ represent the charge 

quantum detectors such as the microwave photon counter11. With the 
advancement12–14 of superconducting artificial atom technology, the 
measurement and understanding of subtle features in the Josephson 
effect, similar to the fine structure discovered in natural atoms, is 
increasingly relevant in setting the accuracy of both circuit control 
and circuit models.

Although the mesoscopic dimensions of JJs imply the existence 
of many conduction channels, for tunnel junctions this complexity 
is usually condensed into a single effective parameter, the critical  
current Ic, in the well-known Josephson current–phase relation,  
CφR (grey line in Fig. 1):

I(φ) = Ic sinφ , (1)

where φ is the superconducting phase difference across the junction. 
This simplification is remarkable given the fact that other types of 
junctions, such as weak links, point contacts and ferromagnetic JJs, 
generally exhibit non-sinusoidal CφRs containing higher Josephson 
harmonics: sin(2φ), sin(3φ) and so on15–21. Here we show that Josephson 
harmonics are also relevant for tunnel JJs (Fig. 1).

To understand the limits of the approximation equation (1)  
for tunnel junctions, we have to take a closer look at commonly used 
Al–AlOx–Al JJs, fabricated by shadow evaporation22 and schematized 
in Fig. 2a–c, which reveals a complex microscopic reality. The  
CφR of the junction is obtained by summing the supercurrents of  
N conduction channels, I(φ) = ∑N

n=1 In(φ). Each channel (Fig. 2b) has  
a transparency-dependent CφR (refs. 16,23) that can be expressed as  
a Fourier series:

In(φ) ∝
Tn sinφ

√1 − Tnsin
2(φ/2)

=
∞
∑
m=1

cm(Tn) sin(mφ) . (2)

The conduction channel transparency Tn is defined as the tunnel prob-
ability for an electron impinging on the insulating barrier of channel 
n, and cm(Tn) are the order m Fourier coefficients for In(φ). These coef-
ficients alternate in sign and decay in magnitude with increasing order 
m (Fig. 2d). The ratio ∣cm+1/cm∣ of successive coefficients increases with 
Tn (Supplementary Section IA): the more transparent a channel, the 
more relevant the contribution of higher harmonics. To put it simply, 
in higher-transparency channels, it is more likely for Cooper pairs  

–π

I(φ)

Ic

–Ic
sin φ
sin φ + harmonics

I(φ)

φ

φ

ππ/2–π/2

Fig. 1 | Josephson harmonics are relevant for the CφR of tunnel junctions. 
The nonlinear CφR is the fingerprint of a JJ, which relates the supercurrent 
I(φ) to the phase φ (inset). For tunnel JJs, the CφR has been considered to be 
purely sinusoidal (dashed grey line; equation (1)), with the maximum given by 
the critical current Ic. However, as we show in this work, even in tunnel JJs, the 
underlying microscopic complexity of the charge transport can manifest in the 
contribution of higher harmonics to the CφR. As an example, the red line shows 
a CφR consistent with measured data (CD1 of the KIT sample), which includes 
the harmonics expected from a mesoscopic model assuming an inhomogeneous 
AlOx barrier. The shaded red area shows the difference from the purely sinusoidal 
CφR. We provide CφRs for all other measured samples in Supplementary Fig. 7.
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normalized by twice the electron charge and the phase difference across 
the junction, respectively. All models include the readout resonator 
Hamiltonian given by Hres = Ωa†a + Gn(a + a†) , where Ω is the bare 
resonator frequency, G is the electrostatic coupling strength and a† (a) is  
the bosonic creation (annihilation) operator. Including Hres ensures 
that dressing of the states due to transmon-resonator hybridi zation is 
taken into account34,35,42,43.

We obtain the parameter set (EC, EJ, Ω, G) of the standard trans-
mon model in equation (3) by solving the inverse eigenvalue problem 
(IEP)44–47 for the measured spectroscopy data (Methods). For the Köln 
sample, these data include the offset charge dispersion (additional data 
for different magnetic fields are given in Supplementary Section IID).  
We note that the IEP is the very same science problem that was histo-
rically solved to model the energy spectra of natural atoms and mole-
cules (see for example refs. 48–50), which led to the discovery of the 
fine structure.

In Fig. 3a, we show that the standard transmon model in equa-
tion (3) fails to describe the measured frequency spectra for all samples. 
The observed deviations are much larger than the measurement impre-
cision, for which we can set a conservative upper bound on the order of 
1 MHz. While the standard transmon model with two parameters can 
trivially match the f01 and f02 transitions, the measured f03 can already 
deviate by more than 10 MHz. The deviations are positive for the KIT, 
ENS and Köln samples, while the IBM transmons mostly show negative 
deviations (Supplementary Section IC5). It is important to remark that 
other corrections, such as the stray inductance in the JJ leads, hidden 
modes coupled to the qubit, the coupling between qubits as present on 

the IBM multi-qubit device, or an asymmetry in the superconducting 
energy gaps, while being relevant, cannot fully account for the meas-
ured discrepancy (Supplementary Section ID). Notably, similar devia-
tions can be found in previously published transmon spectra41,51–53, as we 
detail in Supplementary Fig. 4 and Supplementary Sections IC2 and IC4.

In Fig. 3b, we demonstrate that orders of magnitude better  
agreement with our measured spectra can be achieved by using the 
Josephson harmonics model:

Hhar = 4EC(n − ng)
2 − ∑

m≥1
EJm cos(mφ) + Hres . (4)

In general, the values EJm are a fingerprint of each junction’s channel- 
transparency distribution ρ(T) with many degrees of freedom. Here 
we consider two simplified models (further models are discussed in 
Supplementary Section IC): (1) a phenomenological model truncated 
at EJ4 (top panel) and (2) a mesoscopic model of tunnelling through a 
non-uniform oxide barrier (bottom panel). We note that the pheno-
menological EJ4 model guarantees agreement for the lowest four transi-
tions (Methods), and while many samples have physically reasonable 
EJm coefficients when truncating at EJ4, a few JJs require terms up to EJ6 
(Supplementary Section IC3).

The mesoscopic model allows us to derive ρ(T; d̄,σ)  based on  
a Gaussian thickness distribution with average thickness d̄  and  
standard deviation σ (Supplementary Section IB4). As a consequence, 
all Josephson harmonics for m ≥ 2 are parameterized in terms of the 
two parameters d̄  and σ according to
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Fig. 2 | Josephson harmonics result from junction barrier inhomogeneity. 
a, False-coloured scanning electron microscope image of a typical Al–AlOx–Al 
JJ fabricated at KIT. The bottom and top electrodes are coloured blue and 
yellow, respectively. Inset, circuit symbol for a JJ with phase difference φ across 
the barrier. b, Cross-section schematic of the superconductor–insulator–
superconductor JJ at the location indicated by the dash-dotted line in a. The 
supercurrent In(φ) of each conduction channel n = 1, …, N depends on its 
transparency Tn (equation (2)). We sketch a distribution of multiple low and a few 
high transparencies T1, …, TN in green and red, respectively. c, False-coloured 
high-angle annular dark field STEM image centred on the AlOx tunnel barrier of 
a typical JJ fabricated at KIT, with average thickness d ≈ 2 nm as indicated by the 
white arrow. Individual columns of atoms of the Al grain in the top electrode 
are visible due to zone axis alignment, which is not the case for the bottom Al 
electrode (additional STEM images with thickness variations and structural 

defects such as grain boundaries are shown in Supplementary Fig. 27).  
d, Normalized Fourier coefficients cm(Tn) of the JJ CφR (equation (2)) for a low 
(10−6, green) and high (10−2, red) transparency channel. Note the alternating sign 
for even and odd order m and the fact that high-transparency channel coefficients 
(in red) remain relevant to higher order. e, Sketch of how the higher-order terms 
in the JJ Hamiltonian modulate the potential and shift the energy levels (red) of 
superconducting artificial atoms compared to a purely cosφ potential (grey). In 
this Article, we focus on transmon devices, which consist of a large capacitor in 
parallel to the JJ (refer to the circuit schematic inset). The discrepancy between 
the models generally increases at higher levels. f, The higher-order Josephson 
harmonics also influence the charge dispersion of the transmon levels versus 
offset charge ng. The two branches per energy level correspond to a change 
between even and odd charge parity (that is, quasiparticle tunnelling79,80; 
Supplementary Fig. 23 in Supplementary Section IIIC).
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EJm(d̄,σ) ∝ ∫
1

0
cm(T)ρ(T; d̄,σ)dT , (5)

where the Fourier coefficients cm(T) (equation (2) and Fig. 2d) are 
weighted by the channel-transparency distribution ρ(T; d̄,σ). In this 
model, relatively large ratios ∣EJm/EJ1∣ originate from higher-transparency 
contributions from the narrower regions of the barrier (compare  
the STEM images in Supplementary Fig. 27). The model can describe 
the samples at KIT, ENS and Köln (Fig. 3b) but not the IBM device  
(Supplementary Section IB4). The model parameters d̄  and σ (Fig. 3b) 
are comparable to results from molecular dynamics simulation and 
STEM pictures of the oxide barrier (Supplementary Section IV).

In Fig. 3c, we indicate the ranges of EJm coefficients consistent  
with the measured spectra. The bars represent the lower and upper 
limits of Josephson harmonics ratios ∣EJm/EJ1∣. The corresponding 
sin(mφ) contribution to the CφR is given by m∣EJm/EJ1∣ (see Fig. 1 for  
the KIT sample). The ratios lie between two limiting cases spanning  
the physical regime (shaded grey area): (1) the upper limit, ∣EJm/EJ1∣ =  
3/(4m2 − 1), corresponds to an open quantum point contact—that is, 
one channel with T = 1—and (2) the lower limit, ∣EJm/EJ1∣ ≈ (T/4)m−1/m3/2, 
corresponds to a perfectly homogeneous low-transparency barrier 
(Tn = T = 10−6 for all n). For the scanning routine, we include harmonics 
up to EJ10 to obtain results within the physical regime and to see  
when truncation is possible (Methods). Remarkably, for all samples, 
the EJ2 contribution is in the few percent range even after considering 
additional corrections such as series inductance or gap asymmetry in 
the superconducting electrodes (Supplementary Section ID).

The Josephson harmonics ratios computed from the mesoscopic 
model in equation (5) are shown with turquoise markers. Notice that the 
barrier evolved between CDs of the KIT sample due to ageing (CD1 to 
CD2) and thermal annealing (CD2 to CD3) (Supplementary Section IIIA). 
Even for the most homogeneous barrier (CD3), the second-harmonic 
contribution is EJ2/EJ1 ≈ −2.4%, implying that there would be at least 
one conduction channel with a transparency T ≥ 0.29 (Supplementary 
Section IA). The methodology presented in Fig. 3 can serve as a tool to 

characterize Josephson harmonics and tunnel barrier homogeneity, 
independent of circuit design.

Since the charge dispersion increases for higher transmon levels 
(even for the standard transmon Hamiltonian34; Fig. 2f) and is expo-
nentially sensitive to the shape of the JJ potential (Fig. 2e), a natural 
question arises: what are the consequences of the Josephson har-
monics on the transmon’s susceptibility to offset charges? In Fig. 4a,  
we show the measured charge dispersion δf0j of the Köln device  
for states j = 1, 2, 3 versus the first transition frequency f01, which is 
tuned by an in-plane magnetic field B∥ of up to 0.4 T (see Supplemen-
tary Section IIIC for details). The charge dispersion predicted by the 
standard model (dashed grey lines) falls short of the measurements by a 
factor of 2–7 for the three measured transitions. In contrast, when using 
the Josephson harmonics model, the computed charge dispersion 
matches the data (blue lines). We emphasize that for both models, we 
use the same parameters as in the Fig. 3 analysis (that is, the standard 
model and the EJ4 model) and vary the first Josephson energy to match 
the qubit frequency f01 for different magnetic fields while keeping the 
EJm/EJ1 ratios constant.

Interestingly, the presence of large Josephson harmonics, as in 
the case of the IBM qubits (Fig. 3c), can also reduce the charge disper-
sion, which directly decreases charge noise decoherence. We show 
evidence for this in Fig. 4b, on the first three IBM qubits, for which 
the charge dispersion of the qubit transition can be a factor of 4 lower 
than expected from the standard transmon model. This observation 
indicates a possible optimization route in which Josephson harmon-
ics are engineered (for example, by shaping the channel transpar-
encies or adding inductive elements in series) and the spectrum is 
steered towards regions of reduced charge dispersion and increased  
anharmonicity (Supplementary Fig. 8). A recent work54 proposes a 
similar approach to engineer arbitrary-shaped CφRs using networks 
of effective high-transparency JJs, each of which is a series of tunnel JJs.

The main reason for the failure of the standard transmon model 
in describing the charge dispersion (when fitted to f01 and f02) is that it 
misjudges the value of EJ/EC. To quantify this effect, in Fig. 4c we plot  
the values of EJ1/EC from the Josephson harmonics model against 
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Fig. 3 | Standard transmon model fails to describe the measured frequency 
spectra. a, Differences between the frequencies fmodel

0j  predicted by the standard 
transmon model in equation (3) and the measured transitions f experiment

0j . The 

markers indicate the different experiments at KIT (red stars), ENS (yellow 
squares), Köln (blue diamonds) and IBM (green circles). For the KIT experiment, 
we show results for three successive CDs of the same sample (CD1–3, dark red to 
bright red, respectively). For the Köln experiment, we chose a set of measured 
transitions at a fixed magnetic field (blue arrow in Fig. 4a). For the IBM 
experiment, we show results for 20 qubits in the IBM Hanoi device, using 
different marker sizes and shades of green. Measurement imprecisions are on the 
order of 1 MHz and not visible in the figure. Note that the scale on the vertical axis 
is linear between ±100 MHz and logarithmic onward. Dashed and dotted lines are 
guides to the eye. b, Same as a, with fmodel

0j  given by the Josephson harmonics 
Hamiltonian in equation (4). Top, model truncated at EJ4. Bottom, mesoscopic 

model of tunnelling through an inhomogeneous AlOx barrier, where EJm(d̄,σ) is 
parameterized in terms of the average barrier thickness d̄  and the standard 
deviation σ (equation (5); the fit values are listed in the table inset). c, Ranges of 
the Josephson harmonics ratios ∣EJm/EJ1∣ that are consistent with the measured 
spectra. The ranges are represented by coloured vertical bars using the same 
colouring as in a. For the IBM Hanoi device, we show the ranges for qubits 0–2 
from left to right (ranges for the other qubits are shown in Supplementary 
Section IC3). The shaded grey area highlights the region between two limiting 
cases: the fully open quantum point contact with unit transparency and a 
homogeneous barrier with Tn = 10−6 for all n. Turquoise markers on the vertical 
bars indicate the harmonics ratios calculated from the mesoscopic model,  
where the average thickness d̄  and the standard deviation σ are given in b.  
Inset, an Al–AlOx–Al junction obtained from molecular dynamics simulations 
(Supplementary Fig. 25) with average barrier thickness d̄ = 1.5nm (Fig. 2c).
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the value of EJ/EC from the standard model. Indeed, the EJ1/EC ranges  
for many of our measurements are not compatible with the standard 
model EJ/EC ratio (dashed diagonal). We note that when evaluated for 
the same EJ/EC, the Josephson harmonics correction to the charge 
dispersion is relatively small (inset of Fig. 4c).

In summary, we have shown that for ubiquitous AlOx tunnel  
junctions, the microscopic structure, currently underappreciated in 
its complexity, causes level shifts and modifies the charge dispersion 
in superconducting artificial atoms. In order to fully describe the  
measured transmon energy spectra, we amend the standard sinφ 
Josephson CφR for tunnel junctions to include higher-order sin(mφ) 
harmonics, with the relative amplitude of the m = 2 term in the few 
percent range. We confirm this finding in various sample geometries 
from four different laboratories, and we argue that the source of the 
Josephson harmonics is the presence of relatively higher-transparency 
channels with T ≫ 10−6 in the AlOx tunnel barrier. The methodology 
shown here can reveal percent-level deviations from a sinusoidal  
CφR, which are hard to detect in more standard measurements  
based on asymmetric direct current superconducting quantum  
interference devices55.

The observation of Josephson harmonics in tunnel junctions high-
lights the need to revisit established models for superconducting circuits. 
Our work directly impacts the design and measurement of transmon 
qubits and processors: As an illustration, we show that by engineer-
ing Josephson harmonics, the dephasing due to charge noise can be 
reduced by an order of magnitude without sacrificing anharmonicity.  
These results ask for future research studying the implications of  
Josephson harmonics and associated Andreev bound states in other 
tunnel-JJ-based circuits, for example fluxonium or generalized flux qubits56.

In general, we expect the inclusion of the harmonics will refine the 
understanding of superconducting artificial atoms and will directly 

benefit, among others, quantum gate and computation schemes 
relying on higher levels57–63, quantum-non-demolition readout fideli-
ties64–66 and frequency crowding mitigation in quantum processors67. 
Josephson harmonics will probably also have to be accounted for in 
topological JJ circuits68–70, parametric pumping schemes employed 
in microwave amplifiers and bosonic codes71,72, amplification and 
mixing7,73,74, JJ metrological devices8–10, Floquet qubits75,76, protected 
Josephson qubits68,70,77 and so on, and they can be harnessed to realize 
Josephson diodes78. As devices become increasingly sophisticated  
with progressively smaller error margins, higher-order Josephson  
harmonics will need to be either suppressed via the development 
of highly uniform and low-transparency barriers or engineered and 
included as an integral part of the device physics.
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Methods
Diagonalizing the Hamiltonians to obtain model predictions
We construct the matrices of Hstd in equation (3) and Hhar in equa-
tion (4) by first diagonalizing the bare transmon matrix (excluding 
Hres) in the charge basis {|n⟩}, where 4EC(n − ng)

2 = ∑n4EC(n − ng)
2 |n⟩ ⟨n| 

is diagonal and −EJm cos(mφ) = −∑nEJm/2 (|n⟩ ⟨n +m| + |n +m⟩ ⟨n|)  has 
constant entries −EJm/2 on the mth subdiagonal (we ensure enough 
terms by generally verifying that the predictions do not change if more 
terms are included). This yields the transmon eigenenergies Ej and  
eigenstates | j⟩. Then we diagonalize the joint transmon-resonator 
Hamiltonian Hstd/har = ∑jEj | j⟩ ⟨ j| +Ωa†a +∑j,j′G | j⟩ ⟨ j| n | j′⟩ ⟨ j′| (a + a†), 

where a = ∑k√k + 1 ||k⟩ ⟨k + 1|| . To each resulting eigenenergy El  and  

eigenstate ||l ⟩, we assign a photon label k and a transmon label j  

based on the largest overlap maxk, j| ⟨kj|l ⟩ | (this only works for small k;  
Supplementary Section IIC), which yields the dressed energies Ekj  and 
states ||kj ⟩. This procedure is done for both ng = 0 and ng = 1/2. From  

the resulting dressed energies Ekj(ng), we compute the transmon transi-

tion frequencies f model
0j (ng) = (E0j(ng) − E00(ng))/2π  and the resonator  

frequencies fmodel
res, j (ng) = (E1j(ng) − E0j(ng))/2π  (setting ℏ = 1). The pre-

dicted frequencies are then given by fmodel
0j = (fmodel

0j (0) + fmodel
0j (1/2))/2, 

fmodel
res,j = (fmodel

res,j (0) + fmodel
res,j (1/2))/2 , and the charge dispersion is 

δfmodel
0j = | fmodel

0j (0) − fmodel
0j (1/2)|. We consistently use n = −N, …, N with 

N = 14 and thus 2N + 1 = 29 charge states, j = 0, …, M − 1 with M = 12  
transmon states and k = 0, …, K − 1 with K = 9 resonator states, where 
N, M and K have been chosen by verifying that the model predictions 
change by less than a few kHz when adding more states.

Solving the IEP to obtain model parameters
The inverse problem47,81 to obtain the parameters xstd of the standard 
model Hamiltonian in equation (3) and xhar of the harmonics model  
Hamiltonian in equation (4), such that the linear combinations  
of eigenvalues f = ( fmodel

01 , fmodel
02 ,… , fmodel

0Nf
, fmodel

res,0 , fmodel
res,1 )  agree with the  

measured data, is an instance of the Hamiltonian parameterized  
IEP (HamPIEP; Supplementary Section IIA2). We solve the HamPIEP 
using the globally convergent Newton method82 with cubic line  
search and backtracking83 and the Broyden–Fletcher–Goldfarb–
Shanno algorithm84 as implemented in TensorFlow Probability85,86. The 
Jacobian ∂f/∂x is obtained by performing automatic differentiation 
through the diagonalization with TensorFlow. For the EJ4 model shown 
in Fig. 3b, the IEP is solved unambiguously for x = (EJ1, EJ2, EJ3, EJ4, Ω, G) 
using the lowest four transmon transition frequencies, and we fix the 
values EKITC /h =  242 MHz, EENSC /h =  180 MHz and EIBMC /h =  300 MHz, 
respectively, to make the models consistent with further avail able 
information such as accurate finite-element simulations (Supple-
mentary Section IIIA) or knowledge of the transmon capacitance.  
For the mesoscopic model (Supplementary Section IB4), the para-
meters x = (d̄,σ, EC, EJ,Ω,G)  are found by minimizing the function 

∑Nf
j=1 | f

model
0j /j − f experiment

0j /j| + ∑1
j=0 | f

model
res, j − f experiment

res, j | using the Broyden– 

Fletcher–Goldfarb–Shanno algorithm. The initial values for the mini-
mization are given by d̄ = 1.64nm (taken from the molecular dynamics 
result in Supplementary Section IV), σ = d̄/4 (also Supplementary Table 2)  
and (EC, EJ, Ω, G) from the standard transmon model. For the Köln  
data, where 288 data points have to be described by the same model 
para meters x (Fig. 4a) and only the Josephson energy is varied, we use  
cubic interpolation as a function of fmodel

01  and include only a few  
central points for the available frequencies in the solution of the IEP 
(the residuals are given in Supplementary Fig. 17). All model parameters 
are provided in the repository87 accompanying this manuscript.

Scanning the Josephson energies
To obtain the range of suitable Josephson energies {EJm} (shown in  
Fig. 3c) that are consistent with a measured spectrum, we use an  

exhaustive scanning procedure. A spectroscopy dataset of Nf mea-
sured transition frequencies f0j, j = 1, …, Nf and two resonator frequen-
cies fres,0  and fres,1  uniquely determines—via the HamPIEP—the  
values x = (EJ1,… , EJNf ,Ω,G). We then scan the values of four additio-
nal ratios y = (EJNf+1/EJ1,… , EJNf+4/EJ1) for each of these four EJm/EJ1 over  
16 geometrically spaced values between the point contact limit  
3(−1)m+1/(4m2 − 1) and (−1)m+1 min{10−7, |EJm+1/EJ1|} (always skipping the 
first to ensure ∣EJm/EJ1∣ > ∣EJm+1/EJ1∣). Additionally, we include y = (0, 0, 0, 0) 
to see if truncation at EJNf  is allowed. For each combination y, we solve 
the HamPIEP for the spectroscopy data to obtain the unique solu-
tion x. We call the ratios e = (1, EJ2/EJ1,… , EJNf+4/EJ1) a trajectory that can  
reproduce the spectrum. However, the trajectory e may not be physical, 

since (1) some of the leading ratios EJm/EJ for m ≤ Nf might be beyond  
the quantum point-contact limit, (2) the Josephson energies might not 
be strictly decreasing in absolute value for increasing order m, or  
(3) the signs might not be alternating. Note that this can also happen 
when the Josephson harmonics model in equation (4) is truncated at 
too-low orders (Supplementary Section IC3). For all EJm, the maximum 
and minimum possible ratios ∣EJm/EJ∣ define the vertical bars in Fig. 3c.

Data availability
The spectroscopy data and the model parameters that support the 
findings of this study are available in the Jülich DATA repository at 
https://doi.org/10.26165/JUELICH-DATA/LGRHUH.
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