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Abstract

Multigrid methods are algorithms for solving partial differential equations (PDE) by
generating a hierarchy of successively coarser discretizations and recursively using
the solution on a coarser grid to update the solution on a finer grid. The methods
are attractive as they avoid the need for an expensive solver with quadratic cost
on the fine discretization of the problem. Algebraic Multigrid (AMG) generalizes
this concept to problems that do not originate as the discretization of a PDE but
build up the hierarchy on the system matrix of the linear system. Because of its
robustness and efficiency, AMG has become a central component of many scientific
computing applications in academia and industry. With modern supercomputers
increasingly incorporating GPU accelerators and low precision support, its popularity
raises demand for redesigning to leverage the fine-grain parallelism of GPUs and
employ mixed precision strategies to reduce the runtime and memory footprint.

In this dissertation, we design and implement the first open-source high-performance
AMG implementation that allows users to choose the precision format used in the
distinct grid levels individually while providing platform portability across GPUs from
AMD, Intel, and NVIDIA. We note that the development of this algorithm is heavily
intertwined with the development of the Ginkgo open-source software library. For
this reason, the dissertation also includes significant detail on how the mixed precision
AMG algorithm influenced and extended the design and capabilities of the Ginkgo
library. We explain how we extended the scope of Ginkgo from supporting NVIDIA
GPUs to supporting GPUs from AMD and Intel. We discuss how the sparse matrix
vector product (SpMV) is the backbone of many sparse applications and demonstrate
that optimizing this kernel improves AMG performance immediately. We show that
the developed high-performance AMG embraces flexibility in terms of AMG options
and portability in terms of supporting different hardware platforms while remaining
competitive with vendor libraries like NVIDIA’s AmgX implementation. Finally,
we introduce the idea of using lower precision formats for subsequent matrices to
enhance the performance and memory footprint. We use experiments on real-world
applications to showcase the numerical challenges that can arise and discuss problem-
specific algorithmic strategies to overcome these. In performance experiments, we
demonstrate that using low precision or a hierarchy of lower precision formats can
reduce the overall execution time when using AMG in production for real-world
problems.





Kurzfassung

Merhgittermethoden sind Algorithmen zur Lösung von partiellen Differenzialgleichun-
gen (PDE), die eine Hierarchie von sukzessive gröber werdenden Diskretisierungen
generieren und anschließend die Lösung eines gröberen Gitters rekursiv benutzen, um
die Lösung eines feineren Gitters zu aktualisieren. Die Methoden sind attraktiv, da
sie keine teuren Löser, deren Kosten quadratisch mit der Größe der Diskretisierung
steigt, benötigen. Algebraische Mehrgittermethoden (AMG) erweitern dieses Konzept
zu Problemen, die nicht von der Diskretisierung einer PDE stammen. Dabei wird
die Hierarchie alleine aufgrund der Systemmatrix gebildet. Durch die Robustheit
und Effizienz der AMG ist diese Methode zu einer Schlüsselkomponente für viele
Anwendungen des wissenschaftlichen Rechnens in der Forschung und Industrie. Mit
der steigenden Benutzung von GPU-Beschleunigern und verringerter Genauigkeit
auf modernen Supercomputern steigt auch der Bedarf AMG neu zu designen, um
die massive Parallelität der GPUs auszunutzen und ihre Laufzeit und Speicherbedarf
mithilfe von gemischter Genauigkeit zu verringern.

In dieser Dissertation designen und implementieren wir die erste Open-Source high-
performance AMG, die es Nutzern erlaubt, die Präzision für jedes einzelne Hierarchie-
Level zu bestimmen, und gleichzeitig portabel auf GPUs von AMD, Intel, und
NVIDIA eingesetzt werden kann. Diese Entwicklung ist eng mit der Open-Source
Bibliothek Ginkgo verknüpft. Daher enthält diese Dissertation auch wichtige De-
tails, wie die gemischte Präzision AMG das Design und die Fähigkeiten von Ginkgo
beeinflusst und erweitert hat. Wir erklären, wie wir Ginkgo erweitert haben, neben
NVIDIA GPUs auch AMD und Intel GPUs zu unterstützen. Wir beschreiben die
Wichtigkeit des Matrix-Vektor-Produkts für dünnbesetzte Matrizen (SpMV) für viele
wissenschaftliche Anwendungen und zeigen, dass die Optimierung dieses Kernels,
die Performanz des AMG direkt steigert. Wir zeigen die Flexibilität der entwickelte
high-performance AMG Implementierung in Bezug auf Methoden-bezogene Optio-
nen und Portabilität auf verschiedene Hardware-Plattformen. Gleichzeitig bleibt
die Implementierung kompetitiv mit Herstellerbibliotheken wie NVIDIAs AmgX.
Zum Schluss führen wir Matrixformate mit verringerter Präzision ein auf tieferen
Hierarchie-Level ein, um die Performanz und Speicherplatzbedarf zu verbessern. Mit-
tels Praxis-relevanten Anwendungen werden mögliche numerischen Herausforderungen
dargestellt und wir diskutieren problemspezifische Lösungsstrategien. In Performanz-
Experimenten zeigen wir, dass die hierarchische Benutzung von niedriger Präzision
innerhalb der AMG die gesamte Laufzeit zur Lösung relevanter Probleme verringern
kann.
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1. Introduction and Motivation

With the success of deep learning and the importance of high-performance computing
(HPC), the hardware landscape is changing, with more and more general-purpose
graphics processing units (GPUs) being integrated into the leadership supercomputers
in the USA and Europe. AMD, Intel, and NVIDIA are the leading vendors providing
GPUs and the corresponding ecosystem. The Exascale computing project (ECP) in
the USA setups three HPC systems from three vendors: Summit with NVIDIA V100,
Frontier with AMD MI250X, and Aurora with Intel Data Center GPU Max 1550
(Intel Max1550). HPC systems equipped with different GPUs and programming
ecosystems are not only presented in the US but also in Europe. The European
High-Performance Computing Joint Undertaking (EuroHPC JU) also builds LUMI
with AMD MI250X and Leonardo with NVIDIA A100. Leibniz-Rechenzentrum
installs the Intel Max1550 on the SuperMUC-NG supercomputer. This trend hints
that software libraries should consider portability on different GPUs with different
ecosystems.

Mixed precision is an increasingly important area in deep learning and high-performance
computing. Applications and hardware use low-precision computations to improve
performance. Sometimes, we can use low precision directly because the problem
only requires low accuracy. However, we usually aim for high accuracy in the final
output but use the low precision to accelerate the performance. As operations on
sparse matrices are usually memory-bound, a lot of research focused on reducing
communication and data access. Mixed precision also follows this idea by partially
reducing the data size. Without a doubt, changing everything to low precision
can improve performance. However, we can not achieve the same accuracy as high
precision. While algorithms exist that base the selection of the precision formats on
pre-defined accuracy, most mixed precision algorithms aim to preserve high precision
while using low precision for faster execution.

Scientific applications need to change their design and algorithms to be able to run on
different vendors’ GPUs and improve performance from mixed precision. Adapting to
different GPUs requires to optimize the algorithms for different architectures. It will
be more challenging if applications want to use the native software ecosystems from
vendors because it may require reimplementing the kernels in quite different ways.
When using a portability language to implement algorithms, applications may need to
allow some additional overhead or lack of cutting-edge features. Building algorithms
with mixed precision is another challenge. The mixed precision algorithm must reach
the same high accuracy as the original algorithm. Additionally, applications may face
the lack of mixed precision routines from math libraries, such that algorithms require
additional workaround or implement the high-performance math routines. This
additional workaround may lead to the mixed precision implementation being worse
than the original implementation. Thus, the mixed-precision and high-performance
math libraries on these GPUs are essential for these scientific applications.

Algebraic Multigrid (AMG) has received considerable attention from many applica-
tions. MFEM [And+21; Mfe] is a scalable C++ library for finite element methods.
It supports arbitrary high-order finite element meshes/spaces and a wide variety
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of finite element discretization approaches on GPU. MFEM uses AMG to solve
2D/3D diffusion problems, elasticity eigenproblems, Laplacian problems, and topol-
ogy optimization problems. OpenCARP [ope+23; Pla+21] is an open-source cardiac
electrophysiology simulator. The openCARP bidomain implementation relies on
AMG’s performance for the elliptic solve component of the electrics computations.
NekRS [Fis+22] is a fast and scalable computational fluid dynamics (CFD) focus-
ing on high-fidelity turbulence simulation and thermal fluid simulation. NekRS
uses AMG as the coarsest solver of the p-multigrid solver. AMG performance and
portability are important for these applications.

Based on the above observations, we propose to design and implement a portable
mixed-precision algebraic multigrid on high-performance GPU with optimized and
flexible kernels and SpMV. In this dissertation, we develop the first open-source
and platform portable AMG solver that can also use mixed precision. We heavily
rely on the sustainable, open-source, and high-performance sparse linear algebra
library - Ginkgo. To achieve platform portability, we extend Ginkgo backends
from NVIDIA GPUs to AMD and Intel GPUs. Thanks to Ginkgo’s design, we
can use the native software ecosystem to achieve high performance. We develop
competitive sparse matrix vector multiplication (SpMV) and extend the support
for comprehensive mixed precision SpMV, which is one of the backbones of the
AMG algorithm. We design a composable AMG library, which can reuse the existing
Ginkgo’s solvers and preconditioners. The implementation based on our design is
competitive with the state-of-the-art AMG library - NVIDIA’s AmgX. Our AMG
design gives users the possibility to set the numerical precision flexibly, thereby
enabling the mixed-precision AMG. Using low precision in the lower levels of a
multigrid method can accelerate the computations without impacting the accuracy
of the final result.

This dissertation is composed of six themed chapters. Chapter 2 introduces the
background and the necessary information for the dissertation’s topics. Chapter 3
illustrates the sustainable design of Ginkgo, the portability challenges, and our
solution. Chapter 4 shows the competitive implementation and mixed-precision
capabilities of Ginkgo’s SpMV. Chapter 5 introduces Ginkgo’s AMG design
and demonstrates it being competitive in performance with the state-of-the-art
NVIDIA’s AmgX due to high-performance SpMV in Chapter 4 and low overhead
AMG design. Chapter 6 contains the design of mixed-precision AMG and the
performance improvements coming with the use of low precision. Thanks to flexible
SpMV in Chapter 4 and our AMG design in Chapter 5, we also check several
mixed-precision configurations in Chapter 6. With the portability structure from
Chapter 3, all components in Chapters 4 to 6 are available on AMD, Intel, and
NVIDIA GPUs. Finally, we conclude our ideas, observations, and experiments in
Chapter 7.

The main contributions of this dissertation are as follows:

• Extend Ginkgo support from NVIDIA GPUs to AMD/NVIDIA/Intel GPUs.

• Design and implement high-performance SpMV competitive with vendors’
libraries.

• Extend high-performance SpMV to support mixed precision.
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• Design a portable and highly flexible AMG that is competitive with the state-
of-the-art NVIDIA’s AmgX under the same double-precision configuration.

• Extend the design to mixed-precision AMG that outperforms the double-
precision AMG.

• Analyze the convergence and performance implications of mixed-precision AMG
in comparison with standard AMG.

The content of this dissertation is largely based on the following first-authored
publications:

• Sparse Linear Algebra on AMD and NVIDIA GPUs - The Race Is On [TCA20]

• Preparing Ginkgo for AMD GPUs - A Testimonial on Porting CUDA Code to
HIP [Tsa+21]

• Porting Sparse Linear Algebra to Intel GPUs [TCA22]

• Providing Performance Portable Numerics for Intel GPUs [TCA23]

• Mixed Precision Algebraic Multigrid on GPUs [TBA23a]

• Three-precision Algebraic Multigrid on GPUs [TBA23b]
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We want to solve a linear system Ax = b with the matrix A and the right-hand side
from applications on high-performance GPUs. We go through the architecture and
their ecosystems from AMD, Intel, and NVIDIA in Section 2.1 to raise the need
for a portable math library in Chapter 3 due to the inconsistency among vendors.
With the roofline model in Section 2.2, we observe that SpMV and SpMV-centric
algorithms (like AMG and iterative solvers) are memory-bound kernels. Reducing the
memory footprint can improve the performance, which inspires the mixed-precision
design to improve the performance of AMG in Chapter 6. We introduce the different
precision format in Section 2.3 and the sparse matrix format in Section 2.4 such that
we can efficiently store the matrix in a particular format with a certain precision.
Section 2.3 also indicates the accuracy and range from different precision formats,
which affect the accuracy of solvers. Hence, the mixed-precision design also needs
to consider the effect of lower precision operations. We finally introduce Multigrid
algorithms in Section 2.5, and Krylov solvers and the iterative update scheme in
Section 2.6 for latter Chapters 5 and 6.
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Figure 2.1: H100 GPU architecture figure from NVIDIA whitepaper [Nvia]

Figure 2.2: MI250X GPU architecture figure from AMD Hot Chip presentation
[SJ22]

2.1 Heterogeneous Architectures and Software Eco-
systems

Modern supercomputers often feature GPU accelerators. As of today, we primarily
see GPUs deployed from NVIDIA, AMD, and Intel. While the hardware designs share
some similarities (see Figures 2.1 to 2.3), the vendors do not share a common pro-
gramming ecosystem. Instead, the different GPUs come with their hardware-native
programming model: NVIDIA GPUs with CUDA, AMD GPUs with ROCm/HIP,
and Intel GPUs with SYCL. Although some programming languages aim for several
vendors’ devices, they can only provide the common part among these devices and
do not provide the excellent performance as the vendors’ languages. This poses a
challenge to software developers that aim at platform portability.

The vendors do not only use different programming models, but also different terms
for their programming concepts, even though these are often very similar. We
provide an overview of technical terms in Table 2.1. In general, this dissertation uses
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Figure 2.3: Xe GPU architecture figure from Intel Hot Chip presentation [Bly20].
Intel Max1550 packs two tiles together.

CUDA HIP SYCL
thread thread work-item
block block work-group
warp wavefront sub-group
subwarp subwavefront no1

register register private memory
shared memory shared memory local memory

Table 2.1: The technical terms in different vendors’ languages.
1Intel extensions do not officially support it yet. In this dissertation, we may use sub-sub-group as
a virtual concept.

the CUDA-style terms when discussing the concepts. We use specific terms when
only discussing a specific ecosystem. SYCL currently does not allow sub-sub-group
operations like CUDA/HIP, so we must have the same conditions and sub-group
operation for an entire sub-group. We use the term sub-sub-group only for the
algorithm description and ensure all threads in the same sub-group execute the same
instruction in SYCL.

The different vendors’ GPUs share a hierarchical programming model, but how
memory is handled differs. We visualize the common memory model in Figure 2.4.
The model describes the hierarchy of memory and parallelism. Developers try
accessing the low-latency memory more than the high-latency memory to improve
the kernel performance. The hierarchy of memory also shows the hierarchy of memory
latency: (low) registers < shared memory < global memory (high). The size of
memory is also: (small) registers < shared memory < global memory (large). Threads
own their registers which are not shared with the other threads. If the threads are
part of the same warp (or subwarp), they can exchange the register data with some
specific hardware instruction. Subwarp sizes are restricted to powers of 2, and it
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Figure 2.4: The common memory model among AMD, Intel, and NVIDIA GPUs.
We label the items with their own technical terms. One term: all use the same name;
two terms: AMD/NVIDIA use the first name, but SYCL uses the second one; three
terms: NVIDIA uses the first name, AMD uses the second one, and SYCL uses the
last one.

indicates the operations only in a small range, not the whole warp. All threads in
the same block have access to the same shared memory such that they can share or
exchange data via the shared memory. Threads part of one thread block can not
access the shared memory part of another thread block. However, threads of distinct
thread blocks can exchange information over the global device memory. There is a
cache to fetch the data from shared memory and global memory, so programmers
need to synchronize correctly (block synchronization for shared memory or device
synchronization for global memory) or use hardware instruction to ensure that the
data is not outdated. Note that we do not account for the thread block clusters
model and distributed shared memory from NVIDIA Hopper architecture[Nvib] in
this model and this dissertation.
To abstract the memory control and synchronization across levels of the hardware
hierarchy, CUDA 9 introduced cooperative groups in [Coo]. For example, it provides
the same interface for subwarp with different sizes and entire warp to exchange the
register data. Also, the synchronization functions are the same across different levels.
We do not need to worry about passing the wrong mask to the warp synchronization
function. The abstraction is handy for programming and allows the reuse of the
same code for different subwarp sizes. HIP added a similar interface after 4.5. SYCL
does not have a similar interface for this abstraction. We show a workaround to
minimize the gap between the ecosystems in Chapter 3.
Kernel launches differ in the different programming models. In Listing 2.1 and
Listing 2.2, we compare the kernel launch in CUDA (HIP) with the kernel launch
in SYCL. CUDA launches kernels with the <<<>>> syntax: grid size, block size,
(optional) dynamic shared memory size, and (optional) stream. The memory ordering
follows the first index first (blockx). CUDA allocates the static memory in the kernel,
so it is not shown in this example. HIP has the same launching style as CUDA. SYCL
uses a queue-based kernel launch syntax. A SYCL queue is similar to a CUDA stream
if we enable the in_order property. SYCL needs to allocate the shared memory out
of the kernel no matter if it is static1 or dynamic. Another big difference is that the
memory order uses the last axis first. That means, we need to reverse the order to
launch a thread configuration identical to the CUDA/HIP configuration. SYCL only

1Intel provides an extension to allocate static shared memory in the kernel.
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needs the number of total threads (grid × block in the example), not the number
of blocks(work-groups). We discuss the difference in more detail in terms of kernel
aspects in Chapter 3. Understanding these differences in hardware and programming
language syntax and concepts is essential to addressing the portability challenges.

1 // CUDA launch k e r n e l
2 cuda_kernel <<<dim3(gridx , gridy , gridz ), dim3(blockx , blocky , blockz ),

dynamic_memory_size , stream > > >(...);

Listing 2.1: Launch CUDA kernel

1 // SYCL launch k e r n e l
2 queue -> submit ([&]( sycl :: handler & cgh) {
3 sycl :: accessor <.... > dynamic_shared_memory (cgh);
4 sycl :: accessor <.... > static_shared_memory (cgh);
5 cgh. parallel_for (
6 sycl :: nd_range <3 >( range <3 >( gridz , gridy , gridx ) * range <3 >( blockz , blocky ,

blockx ),
7 range <3 >( blockz , blocky , blockx ) /∗ work−group s i z e ∗/),
8 [=]( sycl :: nd_item <3> item_ct1 ) {
9 sycl_kernel (... , item_ct1 , dynamic_shared_memory ,

static_shared_memory );
10 });
11 });

Listing 2.2: Launch SYCL kernel

2.2 Roofline Model

Figure 2.5: The roofline model.

The roofline model introduced in [WWP09] is a performance model to identify the
performance bound of kernels on specific architectures. The roofline model needs to
know the Arithmetic Intensity (or operational intensity) of the kernel, which is
computed by the number of operations and the memory traffic. The formula is

Arithmetic Intensity = number of operations
memory traffic

We can measure the peak bandwidth and peak performance using a mini app such
as BabelStream[Eva] and mixbench[KC17], or compute the theoretical bounds from
hardware’s characteristics. With the peak performance and peak bandwidth, we can
get the performance formula with the given Arithmetic Intensity:

Performance = min (Peak Performance, Peak Bandwidth × Arithmetic Intensity)
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Figure 2.6: The roofline model with kernels of fast multipole method from [YB12]
on NVIDIA C2050 GPU. SFU is the special function unit and FMA is the fused
multiply-add instruction. The order of multipole expansions was set to 15.

and plot the figure like Figure 2.5. With the roofline model, we can put the
kernels into two categories: memory-bound (Arithmetic Intensity ≤ Peak Performance

Peak Bandwidth )
or compute-bound (Arithmetic Intensity ≥ Peak Performance

Peak Bandwidth ) kernels. Peak Performance
Peak Bandwidth is

called the machine balance, which is a cut-off point for compute-/memory-bound
kernels. On the left side of Figure 2.5, the memory bandwidth limits the performance
of the kernels. On the right side, the architectures’ operations performance limits
the performance of kernels. As Section 2.1 mentioned, current accelerators follow a
hierarchical design that contains several layers for memory and particular computing
units, so some papers such as [CP14; IPS14] extend the roofline model with more
bound from different layers of the modern devices.

Sparse routines and Basic Linear Algebra Subprograms (BLAS) 1/2 routines, which
do dense vector-vector or matrix-vector operations, are usually memory-bound, but
BLAS 3 routines for dense matrix-matrix operations are compute-bound kernels. As
an example, Rio and Lorena [YB12] collect the Arithmetic Intensity of several kernels
of the fast multipole method in Figure 2.6. In addition, Figure 2.7 shows that the
trend of machine balance tends to increase in the future. With the roofline model, we
know that we should reduce the memory traffic for memory-bound kernels but reduce
the operations for compute-bound kernels to improve the kernel performance. The
mixed-precision idea is to use a lower precision format (Section 2.3) to reduce the
memory traffic. Because the lower precision will affect the accuracy, mixed precision
also needs to take the accuracy into account.

2.3 Precision Format Scheme
In computational mathematics, numbers are represented in a machine-internal floating
point format of limited accuracy. We need to select the precision to store our data
in the matrices Section 2.4 and vectors. The precision format affects the range
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Figure 2.7: The trend of machine balance from [Abd+21]

of representable values and the solvers’ accuracy, making the mixed-precision a
challenging topic in Chapter 6. The common (IEEE standard-like) floating point is
composed of three segments:

• Sign bit: The sign of the number.

• Exponent: Exponent field stores the exponent value in offset-binary rep-
resentation. The actual exponent value for the number is stored_value −
(2bitsizeof(Exponent)−1 − 1), where bitsizeof(Exponent) gives the number of bits
for the exponent field. 2bitsizeof(Exponent)−1 − 1 is also called exponent bias. The
bias makes the unsigned integer can represent a negative value. Two precision
formats have the same range if they have the same number of bits for exponent.

• Significand precision(fraction): The value represents the significand decimal
digits. It assumes the leading digit before the decimal point is 1 for a normal
number.

By combining these three segments of bit representation, we can have the following
formula for floating point.

(−1)sign(1.fraction)2 × 2exponent−bias

We collect the three segments for the representation of formats in Table 2.2. There
are two most common floating point formats from the IEEE 754 standard [Iee]:
double precision uses 64 bits (DP) and single precision uses 32 bits (SP), which most
compilers support. There are two 16-bit floating point number representations: half
precision (HF) from IEEE 754 standard and bfloat16 precision (BF) introduced in
[Dil+17] from Google Brain. The 16-bit formats are gaining popularity due to their
use in artificial intelligence (machine learning). Some precision formats do not use
multiple times of 2 bytes (16 bits) as size, such as NVIDIA’s TensorFloat introduced
in [Kha20] with A100 release uses 18 bits.

There are some special meanings for specific exponent encoding.
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total bits sign bit exponent fraction IEEE standard machine epsilon
double(DP) 64 1 11 52 Yes 2−52

single(SP) 32 1 8 23 Yes 2−23

half(HF) 16 1 5 10 Yes 2−10

bfloat16(BF) 16 1 8 7 No 2−7

Table 2.2: Different precision formats for floating point number

• All zeros in exponent: It is zero if the fraction part is also all zeros.
Otherwise, it represents the subnormal numbers.

• All ones in exponent: It represents the infinite(Inf) if the fraction part is all
zeros. Otherwise, it represents the Not-a-Number(NaN).

The subnormal number fills the underflow gap between the smallest normal number
and zero and prevents underflows when using addition and subtraction on two floating
point numbers. The subnormal number representation is

(−1)sign(0.fraction)2 × 21−bias

2.3.1 Rounding Error in Floating Point Formats

We use the widespread variant definition for machine epsilon (ϵmachine): machine
epsilon is the difference between 1 and the next larger floating point number. That
is 2−bitsizeof(fraction) in Table 2.2. This definition is widely used in programming
languages (such as C++, Python, and Rust), scientific software (such as MATLAB
and Mathematica), and papers [Hig02; QSS07], which is slightly different from the
formula in [And+99; Dem]. As we can not always store the value in the floating
point representation exactly, the truncation error represents the difference between
the stored value and the actual value. There are two special cases, which are usually
not considered in the numerical analysis, in the truncation error: underflow - the
value is too small such that it is zero in the precision format, and overflow - the
value is too large such that it is infinite in the precision format. We use fl : R− > F ,
F is the set of represented values in a given floating-point representation. That is,
v = fl(x) gives the actual stored value v when storing x in the representation. We
have the following formula:

fl(x) = x(1 + ϵ), which |ϵ| ≤ ϵmachine

Besides the truncation error, we also have an error from the operation by using
floating point schemes. The rounding error represents the difference between the
result produced by a given algorithm using exact arithmetic and floating-point
arithmetic. Ideally, the floating-point operation (FLOP) produces the correctly
rounded result, i.e., x flop y = fl(x op y), where flop is the floating-point version
of arithmetic operation op. For example, the IEEE standard achieves this ideal as
long as x op y is within the range of a floating-point system. We have the standard
model for the rounding error [Hea18]

fl(x op y) = (x op y)(1 + ϵ), which |ϵ| ≤ ϵmachine
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The error from the precision format is bound by the machine’s epsilon. Also, there
is a heuristic rule for the solver accuracy from [Wat04] on the solution x′ by solving
the linear system Ax = b in

∥x′ − x∥
∥x∥

≈ ϵmachine × cond(A)

cond(A) is the conditioner number of the matrix A, and it is always larger than or
equal to 1. The precision formats have different machine epsilon as in Table 2.2.
Hence, the precision format selection is important for accuracy. Suppose we require
an accuracy that is less than the machine epsilon of single precision. In that case,
we can not use single precision throughout an algorithm but need to design, for
example, a smart algorithm that combines single precision computations with a
double precision outer loop to retrieve high-precision output.

2.4 Sparse Matrix Formats
A simple way of storing a matrix is the DENSESection 2.4.1 format storing all
matrix entries in row- or column-major order in an array. However, if a matrix
contains mostly zeros, a more efficient strategy is to store only the nonzero values
explicitly. We call the matrices containing many zeros “sparse matrices”. For sparse
matrices, we can design sparse data formats, such as only storing the nonzeros, that
reduce the memory footprint and the computational cost of operations involving
the matrix. [Bar+94]. According to processors’ parallel design, some matrix formats
also store unused elements as padding to improve memory access and data parallel
efficiency like ELL [BG09]. In the following, we describe the following matrix formats
as we will use these in the Chapter 4. We describe the main formats DENSE, CSR,
COO, ELL, and HYBRID with the example of Figure 2.8. We also calculate the
memory consumption on an m×n matrix with nnz nonzeros. All indices use 0-based
indexing in the following description.

Figure 2.8: A 4 x 4 matrix with 6 nonzeros example.

2.4.1 DENSE
DENSE stores all values of the matrix explicitly. Two popular data-storage layouts
to store the data are row-major and column-major. The row-major way stores
the data row by row, that is, storing the first row and then the next row. The
column-major way stores the data column by column. Sometimes, it stores the
data with padding by stride or leading dimension number, which fills the matrix
with unused data until it reaches a certain number before storing the next row
in row-major (or next column in column-major). The padding can be used for
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(a) DENSE matrix format stored in row-
major fashion.

(b) DENSE matrix format stored in
column-major fashion.

Figure 2.9: DENSE matrix format.

Figure 2.10: COO format stores the
row index, column index, and value
for each nonzero.

Figure 2.11: CSR format stores the
column index and value for each
nonzero, and the row pointer as the
row offsets.

coalesced memory access or packing several matrices together. We use the example
to visualize the row-major method in Figure 2.9a and the column-major method in
Figure 2.9b. They need m×stride×sizeof(value) bytes in the row-major method or
stride × n × sizeof(value) bytes in the column-major method. Storing the example
in DENSE format requires 4 × 5 × 8 = 160 bytes (without stride: 128 bytes) with
double precision values.

2.4.2 COO
The most straightforward idea is to store nonzeros by their coordinates (row index,
column index, and value), which is the COO format as in Figure 2.10. For a general
case, COO requires nnz × (sizeof(value) + 2 × sizeof(index)) bytes of storage.
With double precision for value and 4-byte integer coordinates, this example needs
6 × (8 + 2 × 4) = 96 bytes.

2.4.3 CSR
If we always sort the elements by row index like Figure 2.10, the row index in the same
row is repeated. Thus, Compressed Sparse Row (CSR) compresses those row indices
to the row pointer format, which is visualized in Figure 2.11. The row pointer gives
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Figure 2.12: ELL format only stores column index, value for each nonzero by enforcing
every row storage having the same number of elements

the index of the beginning of the row inclusively and the end of the row exclusively.
The i-th row elements are in [row_ptr[i], row_ptr[i+1]) of the col_idx and val array.
CSR also provides a more structured format than COO because CSR allows us to
access the elements in certain rows in sequence. Because of the easy access to certain
rows, algorithms often rely on the CSR format. In COO, we still need to search
elements from a certain row even if the COO matrix is stored sorted. CSR is also
called CRS (Compress Row Storage). We note that compared to COO, it is much
more difficult to add nonzero elements to a CSR data structure. The memory formula
is nnz × (sizeof(value) + sizeof(index)) + (m + 1) × sizeof(index) bytes. With
double precision for value and 4-byte integer, we need 6 × (8 + 4) + (4 + 1) × 4 = 92
bytes for this example.

2.4.4 ELL
ELL (ellpack) uses padding in rows to enforce all rows to have the same number of
stored elements, including the unused padding. Though this introduces overhead, it
stores the data in column-major fashion such that the parallel resources can efficiently
access and operate on the data in a SIMD fashion. Furthermore, the row-pointer
is no longer needed as the number of stored columns reveals how many elements
are stored in each row. In Figure 2.12, we need to fill the padding elements in rows
(marked as “U”) if the rows have fewer elements than the given width of ELL (usually
the longest row length). We need to distinguish “U” and stored elements from the
storage, so we can not put anything like usual padding “X” case. We need to use
some special value to mark it as not a value in a matrix. Although the “U” value
depends on the implementation, “U” in col_idx usually uses -1 to mark the value as
unused. There is a parameter stride or leading dimension number like DENSE. The
memory usage is stride×width×(sizeof(value)+sizeof(index)) bytes. Figure 2.12
needs 5 × 2 × (8 + 4) = 120 bytes (without stride: 96 bytes) when using double
precision value and 4-byte integer to store the matrix in ELL format.

2.4.5 HYBRID
The HYBRID format tries to find a balance between ELL and COO. ELL is preferable
for matrices whose rows contain the same number of elements. Thus, if the matrix
is more balanced, it will be more suitable for ELL. The COO format handles the
coordinates of elements without any compression or packing, so it will not be affected
a lot by the matrix distribution. HYBRID splits the matrix to ELL and COO
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Figure 2.13: HYBRID format splits the matrix into two parts: one is stored in ELL,
and the other is stored in COO. This example splits the first elements of each row
into ELL and the rest into COO.

like Figure 2.13. It lets ELL handle the balanced part to achieve high parallel
efficiency and leaves COO to handle the rest part of the matrix. Assuming i-th row
contains nnzi, the memory consumption of HYBRID is ELL_stride×ELL_width×
(sizeof(value)+sizeof(index))+COO_nnz × (sizeof(value)+2×sizeof(index)),
where COO_nnz = ∑ (nnzi − ELL_width)+, whose (∗)+ only keeps positive values
or zero for negative values. In the example Figure 2.13, it uses 4 × 1 × (8 + 4) + 2 ×
(8 + 2 × 4) = 80 bytes with double precision value and 4-byte integer.

2.4.6 Summary
This section describes the most common formats - DENSE, COO, CSR, ELL,
HYBRID. Even with a small example like Figure 2.8, the sparse matrix formats
all use less memory than the DENSE format. We will focus on optimizing and
implementing these formats later in Chapter 4. For completeness, we mention that
there exist more formats like Sellp in [ATD14], SELL-c-σ in [Kre+14], or different
kinds of hybrid formats. The formats are still increasingly being developed for
specific applications or better performance due to the common usage of sparse matrix
operations in scientific applications.

2.5 Multigrid
A multigrid method is an algorithm for solving differential equations using a hierarchy
of discretizations. The main idea of multigrid is to accelerate the convergence of
a basic iterative method (known as relaxation) by a global correction of the fine
grid solution approximation from time to time, accomplished by solving a coarse
problem. Some stationary iterative methods reduce the high-frequency error rapidly,
but low-frequency error much more slowly. It causes a poor asymptotic rate of
convergence. We call them smoother because they smooth the high-frequency error.
Multigrid will generate the hierarchy from the matrix such that the low-frequency
error of fine matrices is the high-frequency error of coarse matrices. Thus, when we
apply the smoother to approximately solve the coarse matrices, smoothers can solve
the high-frequency error rapidly on coarse matrices, which may be the low-frequencies
error in the fine matrices. We recursively generate the hierarchy until a certain
criterion such as the cost of direct solution in the coarsest grid is negligible compared
to the cost of one relaxation sweep on the fine grid.
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There are two Multigrid variants: geometric multigrid (GMG) and algebraic multigrid
(AMG). A geometric multigrid derives the grid hierarchy from geometry information,
i.e., the spatial discretization of the problem. An algebraic multigrid operates
on the matrix representation of the problem and derives the hierarchy from the
graph representation of the matrix. In both cases, a multigrid algorithm follows
the steps outlined in Algorithm 1 to generate the hierarchy of a series of matrices.
Different coarsening methods give different kinds of prolongation in Line 2 to lead
different coarse matrices in Line 4. Falgout et al. [FS14] give a different way than
the Galerkin product to generate the coarse matrix. The matrix generated from
Algorithm 1 at the coarse level is smaller than the matrix at the fine level. There
exist different coarsening strategies for AMG such as Parallel Maximum Independent
Set introduced in [Lub85], Ruge-Stueben in [RS87], Pairwise Aggregation in [Not10],
Parallel Modified Independent Set in [DSYH06], and Parallel Graph Match in
[Nau+15].

Algorithm 1 Multigrid generation.
1: procedure Multigrid Preparation(F )
2: Define the prolongation(interpolation) P from F by the coarsening method.
3: Define the restriction R (usually R = P T )
4: Generate the Coarse Matrix C = RFP (Galerkin product)
5: if Reach the criterion for generation then
6: Generate the coarsest solver on C
7: else
8: Generate the presmoother/postsmoother on C
9: Continue Multigrid Preparation(C)

10: end if
11: end procedure

2.5.1 Multigrid Cycles

After hierarchy generation, multigrid cycles describe how to use the hierarchy to solve
a problem. There are several kinds of cycles to use the hierarchy to solve the problem,
like V-cycle in Algorithm 2 or W-cycle in Algorithm 3 with µ = 2. Restriction and
prolongation connect the information between the coarse level and the fine level.
Restriction passes the residual (= b − Ax in Line 7 in Algorithm 2) from the fine to
the coarse level, and prolongation passes the solution update back to the fine level.
(Pre/Post)-smoothers usually use less expensive operations to update the correction
within a few iterations because we expect the smoothers solve the high-frequency
error quickly. We visualize the computation components in Figure 2.14 on a two-level
structure of multigrid. Figure 2.14 shows the important components with the icon:
The circle icon (•) indicates the smoother for the solution update by smoothing the
high-frequency error, the arrow-down icon (↘) indicates the restriction to the coarser
level, and the level-up icon (↗) indicates the prolongation to the finer level. We reuse
these icons in Figures 2.15a and 2.15b to describe the complete multigrid hierarchy
for a V and a W cycle. The V-cycle only goes to the coarse level once in Figure 2.15a,
but W-cycle uses the coarse level many times in Figure 2.15b. Figure 2.15a shows the
different matrix sizes handled by different levels. How much the multigrid hierarchy
decreases the matrix size depends on the coarsening strategy and the target problem.
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Additionally to the V and W cycle, other multigrid cycles have been developed, such
as the Full Multigrid V Cycle [BHM00] and the K-cycle [NV08].

Algorithm 2 V-cycle multigrid method.
1: procedure Vcycle(A, x, b)
2: if it is the coarsest level then
3: Solve Ax = b by the coarsest solver.
4: Return
5: end if
6: x = PreSmooth(x, b)
7: r = b - Ax
8: g = Restrict(r)
9: e = zero

10: Vcycle(Coarse, e, g)
11: x += Prolong(e)
12: x = PostSmooth(x, b)
13: end procedure

Algorithm 3 µ-cycle multigrid method is a general representation from [BHM00].
µ = 1 results in V-cycle like Algorithm 2 and µ = 2 results in W-cycle

1: procedure µ-cycle(A, x, b)
2: if it is the coarsest level then
3: Solve Ax = b by the coarsest solver.
4: Return
5: end if
6: x = PreSmooth(x, b)
7: r = b - Ax
8: g = Restrict(r)
9: e = zero

10: apply µ-cycle(Coarse, e, g) µ times
11: x += Prolong(e)
12: x = PostSmooth(x, b)
13: end procedure

2.5.2 Coarsening Methods, Prolongation, and Restriction

Here, we discuss two coarsening strategies for algebraic multigrids, i.e., to generate
a coarse matrix from a fine matrix. One is the classical-based method, which is
inspired by the geometric multigrid. The point i strongly depends on the point j
if

−Aij ≥ θ × max
k ̸=i

{−Aik}

with given a threshold value 0 < θ ≤ 1. If the point i strongly depends on the point
j, then the point j strongly influences the point i. Classical-based methods try to
select the coarse point by the following two heuristic criteria from [BHM00]:
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Figure 2.14: Computation components on the two-level structure of multigrid.
Smoothers update the solution in the circle icon, restrictions pass the residual from
the fine to the coarse level in the arrow-down icon, and prolongations pass the
solution from the coarse to the fine level. Also, different levels have different system
sizes, as shown in the square size in the middle.

(a) V-cycle multigrid visualization
with the matrices size. V-cycle only
visits the coarse levels once.

(b) W-cycle multigrid visualization. Unlike
the V-cycle, it visits the coarse levels more
often.

Figure 2.15: Multigrid cycle visualization.
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Figure 2.16: AMG generates coarse points by classical methods on the left side and
aggregation-based method on the right side.

Figure 2.17: AMG generates prolongation by classical methods on the left side and
(unsmoothed) aggregation-based method on the right side.

• H-1: For each fine point i, every point j ∈ Si that strongly influences i should
be in the coarse interpolatory set Ci or should strongly depend on at least one
point in Ci.

• H-2: The set of coarse points C should be a maximal subset of all points with
the property that no C-point strongly depends on another C-point.

However, the algorithm may not always satisfy both H-1 and H-2, so the classical
method enforces H-1 but uses H-2 as a guide or vice versa. The classical method
selects the coarse points first and then forms the prolongation matrix such that each
fine point relies on several coarse points. The other one is the aggregation-based
method that only groups the strongly influenced points together. The aggregation-
based method forms the disjoint coarse aggregations groups, so the fine points in
the same group only rely on one coarse point. It gives one nonzero per row in
the prolongation matrix, which is also called unsmoothed prolongation. Smoothed
prolongation is obtained by applying matrix M (e.g., I − ωA) to smooth original
prolongation matrix P0, i.e., P = MP0. Figure 2.16 and Figure 2.17 briefly visualize
the difference of coarse points and prolongation generations between classical methods
and (unsmoothed) aggregation-based methods. In coarse points generations, classical
methods select a subset of fine points as coarse points, but aggregation-based methods
group the points together as coarse points in Figure 2.16. In generating prolongation
step Figure 2.17, classical methods compute the values of fine points from more than
one coarse point, but unsmoothed aggregation-based methods compute the values of
fine points directly from the coarse point which they belong to.

2.5.2.1 Parallel Modified Independent Set (PMIS)

Hypre [FY02] introduced the parallel modified independent set algorithm (PMIS) [DSYH06]
which is slightly different from Luby’s parallel maximum independent set algo-
rithm [Lub85]. The PMIS is one of the classical-based coarsening methods. PMIS
is based on enforcing H-2 and has a less stringent requirement H-1’[KS01]: Each
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F-point needs to strongly depend on at least one C-point. Algorithm 4 gives the
procedure to generate C and F points sets with PMIS. After we generate the C and

Algorithm 4 parallel modified independent set algorithm in [DSYH06]
1: procedure PMIS(A)
2: Generate weight w(i) = #ST

i + rand([0, 1])
3: Set F-point set F = i ∈ V |#ST

i = 0
4: Set C-point set C = ∅
5: Remove F-points in V, V’ = V \ F and G’ = g(V’, S)
6: while V’ != ∅ do
7: Choose the independent set I of V’ in G’, whose weight is larger than

their neighbors. I = i ∈ I|w(i) > w(j) with i, j ∈ E ′

8: Add I into C-points, C = C ∪ I
9: Make all elements of V’ \ I that are strongly influenced by a new C-point,

F = F ∪ j ∈ V ′ \ I|∃i ∈ I : i ∈ Sj

10: Remove all new C-points and F-points from V’, V’ = V’ C ∪ F and G’ =
g(V’, S)

11: end while
12: end procedure

F points sets, we can have three sets for each element i - Ci is the subset of the
C-points used in prolongation for element i. They are usually the nearest neighbors
of element i. Ds

i contains the points which strongly influence i, but are not in Ci and
Dw

i of points connected to but not strongly influencing it. The following formula can
construct the prolongation(interpolation) matrix,

wi,j = −1
ai,i + ∑

k∈Dw
i

ai,k

ai,j +
∑

k∈Ds
i

ai,kak,j∑
m∈Ci

ak,m


However, PMIS may encounter two strongly connected F-points that may not have a
common C-point, which means the ∑

m∈Ci
ak,m can be zero. Thus, the PMIS proposed

another formula with an additional set: F_i is the set of strongly connected neighbors
of i, which are F-points and do not share the common C-point,

wi,j = −1
ai,i + ∑

k∈Dw
i ∪F ai,k

ai,j +
∑

k∈Ds
i \Fi

ai,kâk,j∑
m∈Ci

âk,m


, where âi,j = 0 if sign(ai,j) = sign(ai,i), otherwise ai,j.

2.5.2.2 Parallel Graph Match (PGM)

PGM [Nau+15] is one of the aggregation-based methods. The algorithm tries to
group the two nodes, which are each other’s strongest neighbors, together (with
aggregation size 2). If

|Ai,j| ≥ |Ai,k|, ∀k ̸= i,

the point j is the strongest neighbor of the point i. PGM algorithm in Algorithm 5
is the one we choose to evaluate the AMG implementation and mixed precision benefit,
so we also detail the algorithm with more implementation detail in Algorithm 17.
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Algorithm 5 Parallel Graph Match Algorithm in [Nau+15]
1: procedure PGM(A)
2: W is the set of vertex of A
3: while W != {ϕ} do
4: for v ∈ W do
5: Get the v’s strongest neighbor w = sn(v)
6: end for
7: for v ∈ W do
8: if sn(w) = v then
9: Form aggregate i (set P matrix elements Pvi = Pwi = 1)

10: Remove these vertex W = W \ {v, w}
11: end if
12: end for
13: end while
14: end procedure

PGM has two phases: First, each node extends its hand to its strongest neighbor.
Then, if they extend their hands to each other, they form the aggregation group. It
uses unsmoothed aggregation, P matrix aggregates the nodes without considering
the values. The P matrix is defined such that there is only one nonzero per row in P
matrix.

2.6 Solvers and Smoothers
Building upon the previously presented dense and sparse matrix formats in Section 2.4,
solvers solve a system of equations represented as a matrix. We introduce common
solvers and smoothers used with multigrid such as the Conjugate Gradient method
(CG), weighted Iterative Refinement (IR), Chebyshev Iteration, Jacobi, and ℓ1-
Jacobi. Besides these solvers or preconditioners, [Saa03] and [Bar+94] introduce
several iterative solvers for sparse matrices additionally.

Solvers often need a preconditioner to help the convergence. Suppose we would like
to solve x from a nonsingular linear system

Ax = b

For any nonsingular matrix M, the system

M−1Ax = M−1b

has the same solution. If we use an iterative solver to solve M−1Ax = M−1b,
the convergence will depend on the properties of M−1A not A. If we choose the
preconditioner M well, solving M−1Ax = M−1b may be more rapid than Ax = b. To
ensure it is useful in practice, we should be able to compute M−1A quickly. Usually,
we do not form the M−1 explicitly but compute the solution y of the preconditioner
system:

My = c

Conjugate Gradient method (CG) [Saa03] in Algorithm 6 is an efficient Krylov
solver for a symmetric positive definite (SPD) system. The symmetric postive definite
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matrix A satisfies symmetric A = AT and positive definite xT Ax > 0, ∀x ∈ R \ {0}.
It expands the Krylov subspace in each iteration. With the SPD property, CG only
needs to search the minimization on the new Krylov vector because the new Krylov
vector is orthogonal to the previous space. Thus, we do not need to keep the full
Krylov space to solve the system.

Algorithm 6 Conjugate Gradient (CG)
1: procedure CG(A, x, b, M)
2: Compute r = b − Ax
3: Set ρprev = 1 and p as zero vector with the same size of x
4: for i = 1, 2, ... do
5: Solve z from Mz = r
6: Compute ρ = rT z
7: Set β = ρ

ρprev

8: Compute p = z + βp
9: Compute q = Ap

10: Set α = ρ
pT q

11: Update the solution x = x + αp
12: Update the residual r = r − αq
13: Store ρprev = ρ
14: end for
15: end procedure

Iterative Refinement (IR) [Bar+94] is a simple iterative scheme. It computes
the residual and then obtains a solution for the residual by an approximated inner
solver. We detail the algorithm step in Algorithm 7. With a weighted version, it can
also be called modified Richardson Iteration.

Algorithm 7 weighted Iterative Refinement (IR)
1: procedure IR(A, x, b, ω, M)
2: for i = 1, 2, ... do
3: Compute the residual r = b − Ax
4: Solve z from Mz = r
5: Update the solution x = x + ωz
6: end for
7: end procedure

Chebyshev Iteration [Bar+94] is a more advanced iterative refinement scheme. It
is developed based on the first kind of Chebyshev polynomial. Unlike IR which relies
on the weight parameter from users, Chebyshev Iteration requires knowledge of the
eigenvalue region of the matrix. Algorithm 8 requires the maximum and minimum
eigenvalue of the preconditioned matrix M−1A.

Scalar Jacobi [Saa03] in Algorithm 9 is a kind of cheap preconditioner. It only
needs to know the inversion of the diagonal part of the matrix.

ℓ1-Jacobi is a ℓ1 variant version of scalar Jacobi in Algorithm 10. The paper [Bak+11]
introduces ℓ1 variant that makes smoother use the matrix by adding the value of the
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Algorithm 8 Chebyshev Iteration
1: procedure Chebyshev(A, x, b, λmax, λmin, M)
2: Set the center of eigenspace c = λmax−λmin

2
3: Set the radius of eigenspace r = λmax+λmin

2
4: Compute the residual r = b − Ax
5: for i = 1, 2, ... do
6: Solve z from Mz = r
7: if i == 1 then
8: Set p = z
9: Set α = 2

d

10: else
11: Set β = ( cα

2 )2

12: Set α = 1
d−β

13: Compute p = z + βp
14: end if
15: Update the solution x = x + αp
16: Update the residual r = r − αAp(= b − Ax)
17: end for
18: end procedure

Algorithm 9 (scalar) Jacobi
1: procedure Jacobi(A)
2: Extract diagonal entries from A to D
3: Return the solver for D−1

4: end procedure
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off-diagonal block to the diagonal value to get better convergence. With the given
block structure for smoother, we can have two sets for each row i. Diagonal block set
Ω(i) contains the column index of the same block as row i. Off-diagonal block set Ωi

o

contains the remaining column index out of the block of row i. Then, the ℓ1 variant
uses Dℓ1

ii = ∑
j∈Ω(i)

o
|Aij| for iteration update. In the scalar Jacobi version, each row i

forms one block, so we get Ω(i) = {i} and Ωi
o = {j|∀j ̸= i}. Thus, the ℓ1-Jacobi uses

diag(Aii + ∑
j ̸=i |Aij|) not diag(Aii) in Algorithm 10

Algorithm 10 ℓ1-Jacobi
1: procedure ℓ1-Jacobi(A)
2: Extract diagonal entries from A to D
3: Add the absolute value of off-diagonal to the diagonal matrix: Dii = Dii +∑

j ̸=i |Aij|
4: Return the solver for D−1

5: end procedure

We have used the following type of smoother in Chapter 5 and Chapter 6:

• weighted Jacobi smoother: IR in Algorithm 7 with the Jacobi in Algorithm 9
as the inner solver(M)

• ℓ1-Jacobi-chebyshev smoother: Chebyshev Iteration in Algorithm 8 with the
ℓ1-Jacobi in Algorithm 10 as the inner solver(M)

If the matrix is the symmetric positive definite (SPD), ℓ1-Jacobi can ensure the
eigenvalue bounded by 1 with the following formula.

∥M−1A∥∞ = maxi

∑
j

|M−1
ii Aij| = maxi

∑
j

|Aij|∑
j |Aij|

= 1

, where M is the ℓ1-Jacobi of A, so it is diag{Aii + ∑
j ̸=i |Aij|} = diag{∑

j |Aij|} when
the matrix A is SPD matrix. Thus, if A is SPD, the eigenvalues of M−1A are in (0,
1]. With the property ensuring the bound of eigenvalue, we do not need to estimate
the eigenvalue for the problem when using ℓ1-Jacobi-Chebyshev smoother on SPD
matrices. The paper [EHANN22] also uses this kind of smoother for their multigrid
setup.

2.7 Hardware Used in This Dissertation
In this dissertation, we run the experiments on the following GPUs found in the
largest HPC systems - AMD MI250X (1GCD), Intel Max1550 (1tile), and NVIDIA
H100(PCIE). AMD MI250X contains two graphics compute dies (GCDs), but they
are considered separately from the system’s point of view. To use them together, we
need to go through the MPI layer, so we consider 1GCD as the unit of MI250X. Intel
Max1550 contains two tiles like AMD MI250X. Intel Max1550 provides the implicit
scaling mode to use the two tiles as one GPU without an MPI layer. However, The
implicit scaling splits the work and memory equally into two tiles, so it does not work
well on the imbalance work, which is common with sparse matrix. The relatively
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GPU Peak Perf. (DP) Peak Perf. (SP) Mem. size Bandwidth Type

GPUs used in the experiments of this dissertation

AMD MI250X (1 GCD) 24 TFLOP/s 24 TFLOP/s 64 GB 1.6 TB/s Server
NVIDIA H100 (PCIE) 26 TFLOP/s 51 TFLOP/s 80 GB 2.0 TB/s Server
Intel Max1550 (1 Tile) 22.8 TFLOP/s 22.8 TFLOP/s 64 GB 1.6 TB/s Server

GPUs we use in papers we refer to

AMD MI100 11.54 TFLOP/s 23.1 TFLOP/s 32 GB 1.2 TB/s Server
AMD RadeonVII 13.44 TFLOP/s 3.36 TFLOP/s 16 GB 1 TB/s Consumer
NVIDIA V100 (SXM2) 7.8 TFLOP/s 15.7 TFLOP/s 16 GB 0.9 TB/s Server
Intel UHD P630 0.12 TFLOP/s 0.46 TFLOP/s RAM 0.042 TB/s Integrated

Table 2.3: GPU characteristics. In addition to the GPUs we use in this dissertation,
we list also the GPUs we use in papers we refer to.

slow communication between the two tiles usually results in low performance in the
sparse routine. Thus, we only focus on one tile as the base unit of Intel Max1550.
We collect the GPU characteristics in Table 2.3.

We use the compiler and vendor libraries provided by the maintainers on these
supercomputers as the following:

• CUDA environment: We use CUDA 12.0 as the device-side vendor compiler
and GCC 8.5 as the host compiler to compile the application on NVIDIA H100
(PCIE) from BwUniCluster 2.0, bwHPC, Germany.

• HIP environment: We use HIP 5.3 as the device-side vendor compiler and Cray
clang 15.0 as the host compiler to compile the application on AMD MI250X (1
GCD) from Frontier, Oak Ridge National Laboratory, USA.

• SYCL environment: We use DPCPP 2023.1 as the device-side vendor compiler
and host compiler to compile the application on Intel Max1550 (1 tile) from
Sunspot, Argonne National Laboratory, USA.

2.8 Performance Profile
Because we run our experiments on a large set of matrices, we need a way to
summarize and compare performance on one graphic. In this dissertation, we use the
performance profile [HH05]. The performance profile uses an x-axis for the slowdown
factor and a y-axis for the ratio of the problems that can be solved by a certain
algorithm within the slowdown factor times of the best timing. The value y is decided
by the algorithm and given x, that is,

y(x, algorithm) =
∑

∀problems{timealgorithm < x × timebest}
#{total problems}

We use the Figure 2.18 and Figure 2.19 as an example to describe the performance
profiles. There are performance results from 3 algorithms (A, B, and C) on 4
problems. Without loss of generality, we normalize the time over the best time per
problem. Considering the accepted slowdown factors 1, 1.3, and 1.6, we can have
the performance profile as the right side of Figure 2.18 for the data as the left side
of Figure 2.18. For x = 1, it indeed plots the ratio for the best performance among



2.8. Performance Profile 27

Figure 2.18: The performance profile example with a detail view for x = 1.

Figure 2.19: The performance profile example with a detailed view for x = 1.3.

the algorithm, so we get 50%, 25%, and 25% for A, B, and C, respectively, as shown
in the highlighted part of Figure 2.18. Figure 2.19 shows the selected cases for each
algorithm when the maximum slowdown factor is 1.3. We pick all cases whose time is
less than 1.3 for x = 1.3 because the best time for all problems is 1 by normalization.
We get 50%, 100%, and 75% for A, B, and C, respectively. Doing this calculation for
all values of the slowdown factor gives us the performance profile in the end.

The performance profile does not only show the best algorithm (for x = 0) but
also shows the best choice when allowing some slowdown or wanting a more general
solution. From the example, algorithm A is the best one in terms of absolute
performance. However, algorithm B is a more general solution. If we choose
algorithm B, we will only get a 1.3x slowdown at most for all problems. However,
choosing algorithm A may give a 1.5 slowdown in some cases. The performance
profile gives us a different view of the algorithm selection with different slowdown
factor allowances under the problem set. Besides the typical performance against
nonzero plots, we also use the performance profile when analyzing the performance of
the distinct algorithms for the complete set of matrices available in the Suite Sparse
Matrix Collection[DH11] in Chapter 4.
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Designing multigrid is complex with the hierarchy and many options for configuration.
We need a software library with a flexible interface to design the flexible multigrid,
which should be available on AMD, Intel, and NVIDIA GPUs. Similarly, the library
must support different precisions such that we can add the mixed-precision idea
into AMG. We also identified that no AMG implementation is portable to the GPU
hardware from supercomputers, which we would like to address in this dissertation.
We chose the ginkgo, which has sustainability and portability in the design and aims
for high-performance computing.

Efficient linear algebra libraries on GPU are an essential and important part of
many applications with high-performance computing interests. Moreover, software
sustainability, lifecycle, and correctness are considered more seriously nowadays.
There are several aspects and techniques, such as continuous integration/delivery
(CI/CD), unit tests, and portability, to improve libraries with these concerns. At the
same time, many projects have started to use object-oriented software design like
C++ to adopt more advanced functionalities and safer memory management.

Ginkgo is one of the libraries that follow these concerns and provides its own design
to provide a more stable, usable, high-performance sparse linear algebra library for
multicore and manycore architectures. Ginkgo uses the platform’s native language
with architecture-specific kernel optimization to build a high-performance library.
It directly uses CUDA for NVIDIA GPUs, HIP for AMD GPUs, SYCL (oneAPI)
for Intel GPUs, and OpenMP for general-purpose multicore processors. Ginkgo
strictly requires two reviewers for pull requests, follows the semantic version, contains
the unit tests, and sets up a long list of jobs for the CI/CD pipeline to ensure the
software maintains production quality. Ginkgo is an open-source effort licensed
under the BSD 3-clause license1. Ginkgo follows the community guidelines like xSDK
project [Bar+17], E4S [E4s] and the Better Scientific Software (BSSw [Bet]) initiative

1https://opensource.org/licenses/BSD-3-Clause

https://opensource.org/licenses/BSD-3-Clause
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Figure 3.1: Ginkgo library design separating the core containing the algorithms
from architecture-specific backends.

for the sustainability. Several libraries and applications are already using Ginkgo
or prepare to use Ginkgo such as SUNDIALS[Gar+22; Hin+05], OpenFOAM[Ope;
Wel+98], OpenCARP[ope+23; Pla+21], NekRS[Fis+22], MFEM[And+21; Mfe],
deal.ii[Arn+21] and hiop[PCW18].

In this chapter, we describe the design principles from Ginkgo library. Ginkgo
designed the backend model for portability and performance, and linear operator
abstraction for composable components. We extended the backend model from
NVIDIA GPU to support AMD and Intel GPU by addressing the challenges from
hardware and ecosystem differences in Section 2.1. The linear operator abstracts
the components’ interface such that we can reuse the components in several places
easily. Under this linear operator flexible interface, we provide high-performance
SpMV but extend the mixed-precision support in Chapter 4. We follow the linear
operator flexible interface to design the flexible AMG in Chapter 5 and extend to
mixed-precision AMG in Chapter 6.

3.1 Overview of Ginkgo’s design
3.1.1 Executor and Backend

To use platform-specific ecosystems for different devices, we split the library into the
core part for the generic, hardware-independent algorithm implementations and the
backend part for the hardware-specific kernel implementations in Figure 3.1. Note
that the core part does not know which device will be used in compile time because
the backend selection is done by the user at runtime. We use runtime polymorphism
to select the actual function on specific devices to connect the core and backend
implementation. The backend libraries are not embedded in the core library such
that we can use different compilers to compile each backend and then link them
together in the end. We will introduce the testing structure shown in Figure 3.1 in
Section 3.3

The Executor class provides the information about which backend is selected. We
have the following Executor support:
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1 // c o r e
2 // I t w i l l c a l l d i f f e r e n t k e r n e l based on runt ime Executo r type
3 this -> get_executor () ->run( make_kernel (...) );
4
5 // r e f e r e n c e
6 void kernel (std :: shared_ptr <const ReferenceExecutor > exec , ...) {
7 // imp l ementa t i on f o r r e f e r e n c e backend
8 }
9

10 // cuda
11 void kernel (std :: shared_ptr <const CudaExecutor > exec , ...) {
12 // imp l ementa t i on f o r cuda backend
13 // cuda_kerne l <<<...>>>(...) ;
14 }
15
16 // a l s o f o r the o t h e r backend

Listing 3.1: Executor component implementation concept

1 auto exec = gko :: ReferenceExecutor :: create ();
2 auto dev_exec = gko :: CudaExecutor :: create (0, OmpExecutor :: create ());
3 // auto dev_exec = HipExecuto r : : c r e a t e (0 , OmpExecutor : : c r e a t e ( ) ) ;
4
5 auto host_matrix = gko :: matrix ::Csr < >:: create (exec);
6 auto dev_matrix = gko :: matrix ::Csr < >:: create ( dev_exec );

Listing 3.2: The user can simply set up an executor to use and the application works
smoothly if changing it to a different executor.

• ReferenceExecutor for sequential CPU execution

• OmpExecutor for multicore processor

• CudaExecutor for NVIDIA GPUs

• HipExecutor for AMD GPUs

• DpcppExecutor for Intel GPUs/CPUs and other SYCL hardware

Each executor contains its own memory allocation/deallocation/copies, and Ginkgo
implements the corresponding kernels for these executors as in Listing 3.1. When the
core library wants to use a kernel function via Ginkgo’s own selector make_kernel,
each backend library needs to provide the implementation for the kernel function.
In the Ginkgo library configuration, users can specify backends or rely on auto-
detection, in which Ginkgo will compile the backends based on the available
compilers on the system.

From the users’ perspective, they only need to set up the executor for their devices
and use the executor for the operations. For example, in Listing 3.2, users can set up
a host executor and device executor. The functionalities’ usage is the same, and they
will return the correct object based on the given executor. Giving ReferenceExecutor
results in an object on the memory of a ReferenceExecutor (i.e., CPU memory),
but giving CudaExecutor results in an object on the memory of a CudaExecutor
(i.e., NVIDIA GPU memory). Suppose users want to test the same codes on
different platforms. In that case, they only need to change the CudaExecutor to the
HipExecutor without changing anything else to use AMD GPUs.
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3.1.2 LinOp and LinOpFactory
LinOp is one of the most important classes in Ginkgo, representing linear operators’
usage. The components in solving linear systems are the matrix format, precondi-
tioner, factorization, iterative solver, and Krylov solver. The LinOp can unify the
application programming interface (API) for these linear operators. The following
list denotes how we define the linear operator:

• Matrix Format: The matrix A gives the linear operator LA : x → Ax

• Solver: The solver solves the linear system Ax = b, which gives the linear
operator SA : b → A−1b. SA is based on the fixed system matrix A.

• Preconditioner: The preconditioner uses the application y = M−1x, which
is PM : x → M−1x. It is similar to the solver, but preconditioners sometimes
only take part of matrix A or modify the matrix A such that we use M, not A
directly here.

• Factorization: the factorization generates a composition of linear operators,
so it is still linear operators.

We need to emphasize the above statements are only based on theory. In practice,
the linear operator we introduced does not strictly fit the definition L(αx + βy) =
αL(x) + βL(y), where α, β are scalars and x, y are vectors. Several effects affect it,
such as the rounding error from finite precision arithmetic and the inexact application
(when doing only a few iterations of an iterative solver).

LinOp is the abstraction of linear operators in Ginkgo and provides the uniform in-
terface apply. Each LinOp contains two kinds of apply function: apply: L->apply(x,
y) is y = L(x) and advanced apply: L->apply(α, x, β, y) is y = αL(x) + βy,
where α, β are scalars and x, y are vectors. With LinOp’s help, we can use different
components of Ginkgo uniformly and flexibly to solve a problem. For example,
a conjugate gradient (CG) solver only needs to rely on the subcomponent’s apply
function so that we can give any matrix format shown in Section 2.4 or we can define
a matrix-free linear operator without storing the matrix explicitly.

The LinOpFactory type is a way in Ginkgo to configure and generate the LinOp
tailored for these parameters. C++ does not natively provide the optional key-value
input with any order and type. Thus, we have the LinOpFactory to handle the
options because the parameters in solvers/preconditioners should be optional and
contain default values. For example, we can generate a conjugate gradient (CG)
solver with/without a preconditioner or different stopping criteria. The factory uses
a specific prefix “with_” for the key. In Listing 3.3, build() creates the param-
eters set class. Users can set the preconditioner by using “with_precontioner”,
and criteria by using “with_criteria”. Those parameters are optional, so they
contain default values if they are not set. For example, the current settings of
Listing 3.3 give preconditioned CG, but it becomes a plain CG if we omit line 2
with_preconditioner(...). The criteria setting allows the users to specify one or
many conditions. We will introduce the detail of the criterion later in Section 3.1.3.
After setting everything up, “on(exec)” generates the LinOpFactory on the “exec”
Executor, which indicates the usage location. We can use the LinOpFactory to
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1 auto cg_factory = gko :: solver ::Cg < >:: build ()
2 . with_preconditioner ( linopfactory )
3 . with_criteria (stop_1 , stop_2 )
4 .on(exec);
5 auto cg = cg_factory -> generate (A);
6 // s o l v e Ax = b by CG with i n i t i a l gue s s x
7 cg -> apply (b, x)

Listing 3.3: LinOpFactory provides the optional key

1 auto stop_factory = gko :: stop :: ResidualNorm () :: build ()
2 // d e f a u l t i s 1e−15
3 . with_reduction_factor (1e -14)
4 // d e f a u l t i s based on the r i g h t hand s i d e
5 . with_baseline (mode :: absolute )
6 .on(exec);

Listing 3.4: Set up absolute residual norm stopping criterion with 1e-14.

generate the LinOp by calling generate(linop) at the end of Listing 3.3, which
gives the configured solver SA. The LinOpFactory can generate several LinOp with
different LinOp inputs thanks to the generate call. The generated LinOp always
relies on the child LinOp to provide its apply function. Because CG requires an
initial guess, we use the output vector as the initial guess in the beginning and then
update the solution in the output vector.

3.1.3 Stopping Criterion

Another important component for solvers is controlling when to stop the solver. The
stopping criterion can be based on a maximum number of iterations, a time limit, or
a residual criterion. We have the implicit residual criterion for some solvers like CG,
which provides the internal residual in the computation, and the explicit residual
criterion for all kinds of solvers, which is an actual residual from the current solution.
Listing 3.4 shows the setting for a stopping criterion requiring 1e-14 for the absolute
residual norm. Ginkgo uses the same idea as LinOpFactory to design the stopping
criterion interface for the optional parameters settings. If users do not provide any
parameters, the default will be a relative residual norm reduction of 1e-15 of the
right-hand side norm. Ginkgo allows one or many criteria for a solver.

3.2 Portability
The lifetime of software is usually longer than the lifetime of hardware. Supporting
the libraries on different vendors’ devices improves the usability and lifecycle of
software. As Ginkgo is the essential core component of numerical applications, the
portability onto different devices helps the users explore the new device’s possibilities
and not be limited by a certain vendor. However, portability is a big challenge for
the performance-aimed library for the following reasons:

• Hardware: Different vendors have their own target user group and focus such
that they have different strategies for designing their hardware. The different
designs usually mean different techniques to use the device efficiently.
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• Ecosystem: Vendors develop their own ecosystems to use the device. There
may be some common ecosystems for multiple vendors, but the new techniques
are only in their ecosystems first. For example, HIP can also compile for
NVIDIA GPUs, but it can not use dynamic parallelism or 16-bit atomic
operations. SYCL can also support AMD/NVIDIA or other vendor devices
as a portability layer, but with different limitations, like subwarps not being
officially supported in SYCL.

• Software stack/library support: Vendors’ support may differ, such that the
libraries must implement the missing components. CUDA uses cuSPARSE as
the vendor sparse library for NVIDIA GPUs, HIP uses hipSPARSE(rocSPARSE)
for AMD GPUs, and SYCL uses oneMKL for Intel GPUs. For example, roc-
SPARSE/hipSPARSE and oneMKL do not support the half-precision SpMV,
which is discussed in Section 4.2

Ginkgo focuses on the three main GPU vendors in high-performance computing -
AMD, Intel, and NVIDIA. Ginkgo was originally designed for NVIDIA devices, and
then it brought HIP support for AMD devices from version 1.2.0 and SYCL support
for Intel devices from version 1.4.0. The Ginkgo’s developers are familiar with the
CUDA ecosystem. Thus, our portability effort considers not only the supported
functionalities but also the code readability for CUDA developers. AMD and Intel
provide the porting tools “hipify” and “dpct”(Intel DPC++ Compatibility Tool)
to transfer CUDA code to HIP and SYCL codes. We also draw the evolution of
Ginkgo with more information in Figure 3.6. “dpcpp” is a compiler Intel provided
for SYCL. We use the term “dpcpp” for the SYCL backend in Ginkgo.2

3.2.1 Adding a New Backend

We develop Ginkgo with portability as the central design principle. After the first
major release with support only for NVIDIA, we extended Ginkgo for different
platforms like Intel and AMD GPUs. The different platform adoption does not
change the public interface, which only requires new minor revisions according to the
semantic versioning introduced in Section 3.3. We designed and used the following
general workflow to add a new backend:

1. Add a new executor that defines the memory interaction with the other execu-
tors as well as how to launch kernels on the device.

2. Setup compilation rules for the new ecosystem with dummy kernels.

3. Implement core components like the cooperative groups or atomic operation
wrappers.

4. Implement/Port kernels one by one for the new backend.

5. Optimize the code structure and performance.
2As Intel deprecated the dpcpp compiler, we consider renaming this backend name to SYCL. In

this dissertation, we use SYCL to describe the backend for Intel GPUs.
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The first two steps make Ginkgo able to run on the new ecosystem with the new
devices. The latter two steps ensure that the ecosystem can fit the Ginkgo’s
requirements, and expand the functionality support by porting or implementing the
function one after the other. Furthermore, we also optimize the kernel performance
to utilize devices fully. We repeat the last two steps to refine and add the codes
iteratively to improve Ginkgo.

3.2.2 CUDA to HIP
One of the most essential differences between NVIDIA and AMD GPUs is the warp
(or wavefront) size. The warp size is 32 for NVIDIA devices, but the wavefront size
is 64 for AMD server devices. Warp and wavefront allow the memory exchange at
the register level, which is a lightweight memory operation compared to the shared
or global memory. Ginkgo develops several high-performance kernels based on this
important size as a core feature. As we describe the design in Section 3.1.1, HIP
codes and CUDA codes are compiled separately. We specify a compile-time constant
in the headers for these different sizes and carefully deal with the difference between
block size and memory size. For example, although the wavefront size is 64, the block
size only allows a maximum of 1024 in AMD GPUs. It introduces the illegal block
size (2048) if we use the whole wavefront for the kernels requiring squared wavefront
size like dense matrix transpose. In this case, we need to restrict the kernel to still
use size 32 x 32 not 64 x 64 on AMD GPUs.
HIP did not provide the cooperative group interface3 when we ported the Ginkgo
CUDA backend to HIP backend. However, the cooperative group is a good abstraction
to avoid painful suffix or mask calculations, which CUDA 9 introduced, and we use it
a lot for warp memory operations. The cooperative group allows us to focus on the
operation of the current group, not the entire warp when we write small sub-warp
operations. Ginkgo cooperative group needs to support register swapping (such as
shuffle, shuffle_up, shuffle_down, shuffle_xor) and the voting functions
(such as ballot, any, all) via registers in a warp. Different synchronization
functions from different levels of groups are also required. Furthermore, Ginkgo
adds the identifiers for the grid, block, and warp levels to help the usage of the C++
pattern “substitution failure is not an error (SFINAE[Sfi])” in kernel design. Thus,
we provide our own cooperative group implementation by wrapping the low-level
HIP API call with an interface similar to CUDA. We also show that our cooperative
group does not introduce overhead in Figure 3.2 from [TCA20].
Another portability issue is that __launch_bound__ has a different meaning between
CUDA and HIP. __launch_bound__ can give information as a hint to the compiler
for optimizing the kernel under the given limit. CUDA uses __launch_bound__(
max_threads_per_block, min_blocks_per_multiprocessor), but HIP uses
__launch_bound__(max_threads_per_block, min_warps_per_execution_unit).
HIP also provides the corresponding formula for the second input:
min_warps_per_execution_unit = (min_blocks_per_multiprocessor *
max_threads_per_block) / 32. Fortunately, Ginkgo mainly uses the first parameter
only, so we rarely need to deal with this difference.
HIP provides math libraries with the same interface as CUDA for almost all function-
alities but changes the name from CUDA to HIP. For example, cuSPARSE for sparse

3HIP starts to support some of the cooperative group from version 4.5.0
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Figure 3.2: Ginkgo’s cooperative groups vs. legacy functions for different data
types on V100 (left) and RadeonVII (right) from [TCA20]

functionality becomes hipSPARSE. With Ginkgo’s cooperative groups, the device
kernels look similar up to some configuration changes. We can simply copy those
device codes to the HIP side with the changed parameters, but duplicating the almost
identical codes is not good for maintainability. Thus, we extract the device kernels
to the shared folder “cuda_hip” between CUDA and HIP. The “cuda_hip” folder
only contains the codes without any parameter settings. Thus, we use “cuda_hip”
to represent the shared components between CUDA and HIP in Figure 3.6. Before
including these shared codes, we define the parameters set for optimization or devices.
By doing so, we keep the flexibility for optimization and reduce the duplication. We
have a more detailed discussion and the performance discussion about using HIP
on NVIDIA GPUs in [TCA20; Tsa+21]. All in all, only using specific non-portable
intrinsics or relying on different hardware features requires separate kernels between
CUDA and HIP.

3.2.3 CUDA to SYCL(oneAPI)
Unlike HIP, SYCL is very different from CUDA. From Table 2.1, we see that SYCL
does not share the same technical terms as CUDA or HIP. SYCL also introduces
several differences in kernel submission, index of work-items, shared memory usage,
and the sub-group(warp) concept. We can not use the same shared code strategy as
HIP for SYCL. We make the ported code close to CUDA-style and support most
functionalities. We also use the portability tool - “dpct” provided by Intel. “dpct”
was a closed-source tool when we ported to SYCL. We designed several approaches
to port our code quickly and fit our requirements by constraining the tool’s behavior.
Since then, Intel deprecated the tool and replaced it with SYCLomatic [Syc].

Difficulty with the porting tool: Unlike CUDA and HIP, which provide index
information like threadIdx.x without any arguments in the function, SYCL must
pass the extra argument nd_item to the function and access the index information
from that object. Sometimes, the access of index information may be in a deep code,
so we need to pass nd_item from the top level to that function. It is a big challenge
to handle this manually. “dpct” helps us to add the ‘nd_item‘ for the indexing
information, also deals with the shared memory pointer (see Section 2.1 in Chapter 2),
and changes the name of the index if the function requires the information. However,
“dpct” tries to access all local files to know the complete library to decide whether to
add the nd_item or not. However, “dpct” will stop the porting process if it faces
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too many issues. It also stops even if the issues are in different files. As a big library,
we prefer porting codes step by step such that we have small pull requests. Thus, we
isolate the target code and treat the other headers as system headers to avoid these
challenges.

Workaround to enable porting smoothly: However if we hide all functionalities
as system headers, dpct will not help us to add the index information automatically.
For those device kernels, we keep them as local headers if they do not introduce
an issue to dpct. Suppose the device code introduces an issue to dpct. In that
case, we design a method - a fake interface such that we can provide our own
implementation for SYCL and dpct can still help us with index passing. Because
dpct can not port these codes to SYCL, we need to prepare their SYCL version on
our own first. We prepare fake interfaces that use the same interface without any
actual implementation but add auto x = threadIdx.x; only if the kernels need the
indexing information. We replace the function name and corresponding headers with
these fake interfaces as local headers in preprocessing. When dpct ports the codes,
it knows the functions require the index information and adds the nd_item for us.
There is only one line auto x = threadIdx.x; in fake interfaces, so dpct converts
them easily and successfully. In post-processing, we replace the fake interface with
our own implementation. Thanks to the fake interface workaround, we successfully
port all our CUDA kernels to SYCL and still rely on dpct’s help.

The cooperative groups in SYCL: As Section 3.2.2 mentioned, Ginkgo uses the
cooperative group a lot and the feature is important for performance. We also provide
a cooperative group wrapper for using the SYCL sub-group for register exchanges.
We also use this workaround to make dpct port the CUDA code smoothly. Without
this workaround, dpct always stops at the cooperative group and complains that it
is not supported. We visualize the fake interface trick and the kernel porting process
in Figure 3.3. The blocks of the top two rows show that actual porting only touches
the files we provide, not the actual CUDA implementation which introduces failure
to dpct. We provide the equivalent implementation for SYCL from CUDA shown
on the right side. After porting, we replace these function calls with the proper
function name so that it can use the working SYCL implementation at the bottom
of Figure 3.3. Due to the threadIdx.x trick, dpct still adds nd_item (item_ct1)
in the function call at the blue and yellow part.

Although we provide the cooperative group interface to exchange the register data in
sub-groups, it can not exceed the vendor support. SYCL does not support different
“sub-sub-group” communicating in a sub-group at the same time. We can not use the
cooperative group in SYCL like the subwarp in CUDA. However, Intel GPU provides
two sub-group sizes (16, 32) in newer GPU. We can use them as sub-sub-group sizes
virtually if we do not need the communication out of this size within a larger sub-
group. The single thread case with sub-sub-group size = 1 does not need any actual
communication such that we can handle it without any sub-group functionalities.
Thus, we can use (1, 16, 32) as virtual sub-sub-group size options on Intel GPUs.

SYCL does not support early return with synchronization: Another problem
to be aware of is early return usage in SYCL. SYCL requires all work-items to arrive
at any barrier, but CUDA only considers the living threads. We need to rewrite
the conditions like Listing 3.5 to ensure the work-items do not return early. On the
top of Listing 3.5, CUDA kernels only need to use one condition to terminate the
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Figure 3.3: Using the fake interface to provide our SYCL implementation for porting.

unused threads. However, in the SYCL kernels on the bottom, we need to declare
the variables in the top levels if more than one if-block needs the variables. We
also need to use many if-blocks with corresponding barriers. Both of these problems
make the code more complex. Intel recognized the early return issue and the lack of
sub-sub-group, so they started to implement an extension to solve them.

SYCL kernel launch: As previously shown in Section 2.1, SYCL gives a different
view on kernel submission and indexing. To provide a CUDA-style kernel submission
interface, we implement our own kernel launch command and handle some simple
conversions in an additional host function. Assuming the kernel requires dynamic
and static shared memory, we use Listing 3.6 to describe the additional host kernel.
SYCL has a dimension scheme that is a reversed version of CUDA/HIP in terms of
the memory access pattern. The porting tool dpct always converts the dim3(x, y,
z) to nd_range(z, y, x) to overcome this issue in line 9, 10 of Listing 3.6. We use
a dim3 interface for SYCL in the additional host function, and then it is converted
to the proper range in the kernel launch command. The conversion also includes the
preparation of nd_range in line 22. SYCL allocates shared memory in the kernel
submission before launching kernels, which leads to a long code for kernel submission.
We also put the shared memory allocation in the additional host functions. Although
we need an additional host interface to provide CUDA-style interfaces, it gives the
same view when using the kernel. It is easier to check the CUDA and SYCL code
at the same time because we do not need to reverse the grid/block and the kernel
submission has the same ordering of input arguments.

Figure 3.4 visualizes the original SYCL kernel call and its difference from CUDA and
HIP in terms of shared memory allocation, parallel resource assignment, and kernel
placement. With the additional layer of Figure 3.5, we provide the same interface for
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1 // CUDA k e r n e l
2 __global__ void func (...) {
3 i f ( condition ) return; // e a r l y r e t u r n
4 // some work
5 __syncthreads ();
6 // some work
7 }
8
9 // SYCL k e r n e l

10 void func (... , nd_item <3> item_ct1 ) {
11 // Need to d e c l a r e some v a r i a b l e s i f i t i s needed i n both work b l o c k .
12 i f (! condition ) {
13 // some work
14 }
15 item_ct1 . barrier (...) ;
16 i f (! condition ) {
17 // some work
18 }
19 }

Listing 3.5: SYCL does not allow early return

the top kernel call among CUDA, HIP, and SYCL. The additional layer calculates
the parallel resource assignment from CUDA dim3 to SYCL nd_range and avoids
the shared memory allocation expanding the main code length. This effort is mainly
for porting, and there is no restriction on the style in Ginkgo. Thus, developers
can still write the SYCL-style codes in Ginkgo if they prefer.

Maintenance challenges: Because of the big difference between SYCL and CUDA,
we can not provide a unified way to reduce the codebase. Instead, we develop a C++-
lambda-based framework for simple component-wise kernels and reductions. Because
component-wise kernels do not require any data exchange among the threads and do
not need heavy optimizations, we decided to extract them to this unified framework
to reduce the codebase size. The reduction abstraction only supports different
operations between the elements and the final output operation, so we also put the
optimized implementation into the unified framework. The unified kernels allow us to
write the code once, and then we can generate the corresponding kernels for different
backends thanks to CMake[Cma]. These are still distinct kernel implementations
for different backends from the compilers’ perspective, unlike other C++-lambda
abstraction layers such as Kokkos[CETS14]. Thus, we have also represented the
unified components for OpenMP, CUDA, HIP, and SYCL in Figure 3.6. We have also
discussed more details about SYCL challenges in [TCA22; TCA23] and discussed
CUDA/HIP/SYCL together in [CTA22]
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1 // CUDA launch k e r n e l
2 cuda_kernel <<<gridsize , blocksize , dynamic_memory_size , stream > > >(...);
3
4 // SYCL launch k e r n e l ( o r i g i n a l l y )
5 queue -> submit ([&]( sycl :: handler & cgh) {
6 sycl :: accessor <.... > dynamic_shared_memory (cgh);
7 sycl :: accessor <.... > static_shared_memory (cgh);
8 cgh. parallel_for (
9 sycl :: nd_range <3 >( range <3 >(1 , 1, gridsize ) * range <3 >(1 , 1, blocksize ),

10 range <3 >(1 , 1, blocksize )),
11 [=]( sycl :: nd_item <3> item_ct1 ) {
12 sycl_kernel (... , item_ct1 , dynamic_shared_memory ,

static_shared_memory );
13 });
14 });
15
16 // a d d i t i o n a l ho s t k e r n e l
17 void sycl_kernel (dim3 grid , dim3 block , size_t dynamic_memory_size , queue_t * queue ,

...) {
18 queue -> submit ([&]( sycl :: handler & cgh) {
19 sycl :: accessor <.... > dynamic_shared_memory (cgh);
20 sycl :: accessor <.... > static_shared_memory (cgh);
21 cgh. parallel_for (
22 sycl_nd_range (grid , block ),
23 [=]( sycl :: nd_item <3> item_ct1 ) {
24 sycl_kernel (... , item_ct1 , dynamic_shared_memory ,

static_shared_memory );
25 });
26 });
27 }
28
29 // gko ’ s cuda−s t y l e l aunch k e r n e l
30 sycl_kernel (gridsize , blocksize , dynamic_memory_size , queue , ...);

Listing 3.6: The proposed new style for kernel submission in Ginkgo’s SYCL
backend
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Figure 3.4: Different kernel calling styles between CUDA/HIP(on the left) and
SYCL(on the right).

Figure 3.5: With an additional layer for SYCL, the top calling layer for kernels looks
the same among Ginkgo’s backends.
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3.3 Sustainability
Software sustainability is also an important aspect of the Ginkgo library. Ginkgo
follows the existing guidelines and policies from the xSDK project [Bar+17], E4S [E4s]
and the Better Scientific Software (BSSw [Bet]) initiative. Also, Ginkgo matches
the FAIR Principles for Research Software (FAIR4RS in [Hon+22]). FAIR defines
the following four principles:

• (F)indable: Software and its associated metadata are easy for both humans
and machines to find.

• (A)ccessible: Software and its metadata are retrievable via standardized
protocols.

• (I)nteroperable: Software interoperates with other software by exchanging
data and/or metadata, and/or through interaction via application programming
interfaces (APIs), described through standards.

• (R)eusable: Software is both usable (can be executed) and reusable (can be
understood, modified, built upon, or incorporated into other software).

For easy adoption, Ginkgo is open source on GitHub with the modified BSD
license, which can also be used for commercial purposes. We also have the following
requirements to ensure that we have a production-ready code quality.

• Unit testing: we use the googletest[Goo] to implement for unit tests and
functional tests. It is also an important criterion in the peer review process.
From Ginkgo’s design in Figure 3.1, we use the reference backend for serial
execution and the unit testing of this backend can check the correctness
in small cases and the correct properties. Based on the correct reference
implementation, we have the unit testing to compare the results between the
parallel implementations (OpenMP, CUDA, HIP, SYCL) and the reference
implementation under a certain precision threshold.

• CI/CD: We set a large set on GitHub action pipeline mainly for Windows
and MacOS, and GitLab pipeline for Linux on customized runners with actual
GPUs. The pull request must pass all tests before being merged. Other than
unit testing, Ginkgo also contains software quality helpers like codecov [Cod]
for testing coverage rate and the sanitizers to detect illegal memory access and
thread issues.

• Documentation: We use Doxygen [Dox] to generate the documentation based
on the comments above the corresponding codes, and enforce correct documen-
tation of the public API.

• Semantic versioning: We follow the rule of semantic versioning, so we do
not break the public interface when releasing minor versions unless it fixes
fatal bugs. The semantic version gives three numbers for a given version in
[Pre]: Major.Minor.Patch, and this combination must be unique. The numbers
increase according to the following rules.
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– Major: on an incompatible API change.
– Minor: when adding functionality in a backward compatible manner.
– Patch: when making backward compatible bug fixes.

• Peer review: It requires the code to be understandable to others. The reviewers
may catch some fatal bugs, recognize missing parts, or provide better opti-
mization ideas. Also, the reviewers need to check the above concerns in the
pull request. As [ACK19] mentioned, peer reviews are challenging to scientists
due to the time pressure and academic credit system, but it is still useful for
sustainability and quality. Ginkgo requires at least two peer reviews for every
pull request.

With the GitHub repository and JOSS publication [Anz+20a], Ginkgo achieves the
Findable and Accessible principles. Ginkgo reads the user data from matrix market
format [BPR96] and JavaScript Object Notation (JSON [Jso]), which achieves
the Interoperable principle as well as providing APIs which care for user data.
Ginkgo’s CI pipelines, spack and vcpkg packages, and several integrations such
as MFEM, SUNDIALS, deal.ii, OpenCARP, and hiop with Ginkgo ensure the
Reusable principle.

3.4 Summary
Ginkgo is a C++ high-performance sparse linear algebra library on several acceler-
ators. We provide Ginkgo with good sustainability, general wide portability, high
code quality, and many functionalities. Figure 3.1 shows the design of Ginkgo and
Figure 3.6 shows the components reducing code duplication and the version history.
Figure 3.7 shows the overview about the supported highlighted routines in Ginkgo
among different backends. We have several advanced SpMV implementation and
competitive performance [Anz+20b; Ali+21; Anz+20c], Krylov solver performance
[Anz+22], advanced preconditioners [Tsa+22; Fle+21; Anz+19b], batched methods
on matrix, solver, and preconditioner [NA23; Kas+23; Kas+22; Agg+22; Agg+21],
GPU-resident direct solver [Świ+23], and algebraic Multigrid [TBA23a; TBA23b].
Besides the library infrastructure and optimization, we have provided an online inter-
active visualization tool GPE [Anz+19a] with continuous benchmarks. We extended
Ginkgo’s support to AMD and Intel GPUs during this dissertation. Thanks to
Ginkgo’s backend design, we can optimize the critical kernels such SpMV using
the vendor native API in Chapter 4. We also extensively use Ginkgo’s flexible
linear operator and factories to achieve a flexible AMG in Chapter 5. Furthermore,
we extend SpMV and AMG with mixed precision in Chapter 4 and Chapter 6.
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Figure 3.6: Ginkgo library structure with more details and the version.
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Figure 3.7: Ginkgo highlighted supported functionalities among different accelera-
tors.
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The sparse matrix-vector product (SpMV ) is the backbone of sparse iterative
methods and graph neural networks. SpMV is a heavily used and performance-
critical operation in many applications, from Google’s PageRank [LM12] to fluid
flow simulations. SpMV is also a central kernel for the AMG method, and as this
dissertation designs a platform portable mixed precision AMG algorithm, developing
a high-performance portable SpMV is a natural first step. Operations on sparse
matrices are usually memory-bound on all modern processors, including GPUs.
Optimizing the SpMV kernel or finding a good way to compress the matrix for
general purpose or specific applications, as well as supporting modern hardware
is always an important research area in the high-performance computing (HPC)
community.

In this chapter, we present the four SpMV formats (COO, CSR, ELL, and HYB
introduced in Section 2.4) in Ginkgo and their realization on AMD, NVIDIA, and
Intel GPUs. We also run performance experiments for each format using up to 2800
matrices from the SuiteSparse Collection [DH11] on AMD MI250x (1GCD), NVIDIA
H100 (PCIE), Intel Max1550 (1tile). We also discuss some differences in the kernel
design among these devices. All SpMV kernels are already available in the Ginkgo
library introduced in Chapter 3.

The optimization of the SpMV kernels for GPU or CPU is still an area of active
research[Dal+15; Hon+19; MG16]. Many of the algorithm developments increase
the accumulation efficiency by using prefix-sum computations [MGG15] and intra-
warp communication [Hon+11] on high-performance computing hardware. [Gro+16;
Anz+20b] give a recent and comprehensive overview of SpMV research.
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4.1 Design, Implementation, and Acceleration
We implement all SpMV kernels in the vendors’ native languages as Chapter 3
mentioned: CUDA for NVIDIA GPUs, HIP for AMD GPUs, and SYCL(oneAPI)
for Intel GPUs. Due to the different hardware characteristics and limits shown
in Table 2.3, one parameter set for all devices is insufficient. We optimize these
kernels’ parameters or implementations for the distinct architectures to achieve higher
performance. For example, we modify the load balance COO and CSR strategy for
AMD and Intel GPU, which was previously discussed for NVIDIA architectures in
[Anz+20b].

4.1.1 CSR

In the CSR SpMV, we can assign one thread to a row to compute the A(i, ∗) × b(∗)
results, which leads to a low occupancy of the GPU. To increase the utilization and
use the warp technique, we assign a subwarp to each row for accumulation. Each
subwarp will handle its own partial summation and then use subwarp reduction to
the lead threads for writing the result to the global memory without using the more
expensive atomicAdd. [TCA20] shows the CSR SpMV by using a single thread per
row is not always slower than the classical CSR kernels. Assigning the same resource
to those very imbalanced matrices may be inefficient in the end. Because some sparse
matrices only contain short rows, some threads in warp will not have work to do if
we always assign a full warp to each row. We select the subwarp/sub-sub-group size
allowed depending on the devices. The allowed subwarp size is 2k(0 ≤ k ≤ 5) for
NVIDIA GPUs, 2k(0 ≤ k ≤ 6) for AMD GPUs, (1, 16, 32) for the latest Intel GPU,
and an additional 8 for the old Intel GPUs. We add 1 into the Intel GPUs allowed
list because it can be considered a single thread without any sub-sub-group function
support. Thus, we have sub-group sizes (1, 16, and 32) for Intel Max1550. As
mentioned in Section 3.2.3, 1 is not the hardware-supported subgroup size. However,
we consider it in the list because it does not need communication with the other
threads. In the kernel generation, we select the closest subwarp size smaller or equal
to the maximum number of nonzeros in rows, that is,

subwarp size = max {k ≤ max_row_nnz|k ∈ device allowed size}

Depending on the problems, sparse matrices may be very pretty imbalanced, as
shown in Figure 4.1 and Figure 4.2, which contains a few extremely long rows
compared to the rest of the rows. When using the classical SpMV algorithm, which
assigns a subwarp per row, the resources on short rows are idle after finishing their
work because we still need to wait for the resources processing on the long rows
as in Figure 4.1. Thus, the classical SpMV does not work well on imbalanced
matrices. We instead use a load balance design for this situation by distributing
the work according to the nonzeros in Figure 4.2. Load-balance SpMV assigns a
similar nonzeros workload per resource. Each resource has a similar workload, but
we instead need to use atomicAdd to avoid collisions because more than one resource
may add partial results to the output vector at the same time. We will give more
detail on a typical load-balance kernel implementation with the example of COO in
Section 4.1.2.
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Algorithm 11 Ginkgo’s classical CSR kernel.
1: Get row = the row index
2: Compute subrow = the step size to next row
3: Get step_size = the step size to the next element of value (subwarp size)
4: Get subid = the local id of this subwarp.
5: Initialize value c = 0
6: for row = row .. #rows, row+ = subrow do
7: for idx = row_ptr[row] .. row_ptr[row + 1], idx+ = step_size do
8: Compute c+ = val[idx + subid] ∗ b[col[idx + subid]]
9: end for

10: Perform warp reduction of c on the warp
11: if the leading thread in subwarp then
12: Write c to the output vector
13: end if
14: end for

Similarly to the COO load balance design of Section 4.1.2, we pre-generate the
starting index for each warp to launch a load balance version for CSR. We also
provide an automatic strategy to pick between the classical or load-balance strategy
in Algorithm 12. There are two variables for the kernel decision. nnz_limit sets
the condition for the limit of the total nonzero count, and row_len_limit sets the
other condition for the limit of the maximum number of stored elements in a row.
We select nnz_limit = 108 and row_len_limit = 768 for AMD GPUs to select the
load-balance strategy, nnz_limit = 106 and row_len_limit = 1024 for NVIDIA
GPUs, and nnz_limit = 3 × 108 and row_len_limit = 25600 for Intel GPUs. As
we can see, the classical strategy is usually very competitive on Intel GPUs, which
might related to the higher kernel overhead on Intel GPUs.

Algorithm 12 Ginkgo’s CSR strategy.
1: Compute max_row_nnz = the maximal number of stored element per row.
2: if #nnz > nnz_limit or max_row_nnz > row_len_limit then
3: Use load-balance CSR Kernel
4: else
5: Use classical CSR Kernel
6: end if

4.1.2 COO
[FA17] introduced a load balanced COO SpMV by parallelizing across the nonzeros
of a sparse matrix instead of parallelizing over the rows. In the nonzero-parallel
distribution Figure 4.2, all subwarps have the same amount of nonzeros to process, and
the coalesced access to memory is ensured. The atomicAdd functionality is needed
to avoid race conditions when handling a row with several warps that simultaneously
write partial results. Thus, the performance of atomic operations on the output vector
is critical for the load-balance SpMV. For threads of the same warp, a warp-local
segmented scan can be used for the local reduction, thereby reducing the number
of atomic collisions in the output vector. We detail the algorithm in Algorithm 13
which uses the CUDA terms from Table 2.1.
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Figure 4.1: Row (Warp) parallel scheme (classical SpMV) on imbalanced matrix. A
subwarp handles the blocks with the same color.

Figure 4.2: Nonzero parallel scheme (load balance SpMV) on imbalanced matrix. A
subwarp handles the blocks with the same color.

The parameter ω in Equations (4.1) to (4.3) controls the level of oversubscription.
More active threads can hide the latency of data access and the atomicAdd [FA17;
TCA20], but they also increase the number of atomicAdd collisions and the overhead
from context switching. From the experimental results on all real matrices from the
SuiteSparse Matrix Collection, we choose the following parameter configuration for
ω:

ωNVIDIA =



8 (nz < 2 · 105),
32 (2 · 105 ≤ nz < 2 · 106),
128 (2 · 106 ≤ nz < 2 · 107),
512 (2 · 107 ≤ nz < 2 · 108),
2048 (2 · 108 ≤ nz),

(4.1)

ωAMD =


2 (nz < 105),
8 (105 ≤ nz < 107).
32 (107 ≤ nz)

(4.2)

ωIntel =


8 (nz < 2 · 107),
32 (2 · 107 ≤ nz < 2 · 108).
256 (2 · 108 ≤ nz)

(4.3)

4.1.3 ELL
[Anz+20b] applies the same concepts of classical CSR to ELL, which accelerates
kernels by assigning multiple threads to each row. Moreover, it uses “early stopping”
to free resources if threads operate on the unused padding added to the ELL structure.
Instead, we realize non-coalesced global memory access has a larger impact than the
atomicAdd usage to shared memory for AMD architectures in [TCA20]. The original
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Algorithm 13 Load-balancing COO kernel algorithm [FA17]
1: Get ind = index of the first element to be processed by this thread
2: Get current_row = row_idx[ind].
3: Compute the first value c = A[ind] × x[col_idx[ind]]
4: for i = 0 .. nz_per_warp; i+ = warp_size do
5: Compute next_row, row index of the next element to be processed
6: if any thread in the warp’s next_row != current_row or it is the final

iteration then
7: Compute the segmented scan according to current_row.
8: if first thread in segment then
9: atomicAdd c on output vector by the first entry of each segment

10: end if
11: Reinitialize c = 0
12: end if
13: Get the next index ind
14: Compute c+ = A[ind] × x[col_idx[ind]]
15: Update current_row to next_row
16: end for

design [Anz+20b] uses threads of the same subwarp to handle one row like classical
CSR, which results in adjacent threads always reading non-coalesced global memory
due to the column-major storage for ELL. Ginkgo rearranges the algorithm by
assigning the threads of the same warp to handle one column of ELL storage to
achieve coalesced memory access. However, several warps will work on the same row,
leading to a race condition. We first use atomicAdd on the shared memory, not the
global memory, if there is only one thread block on the same row. This creates a
hierarchical reduction using shared memory atomics and global memory atomics.
Figure 4.3 visualizes the different memory access strategies. From the paper, we
conclude that both versions perform well on NVIDIA GPUs, but only the coalesced
memory works better for AMD GPUs. We only keep the coalesced memory version
for all GPU backends for maintenance. We detail the coalesced memory version in
Algorithm 14 and the parameter settings in Algorithm 15

Figure 4.3: Comparison of the memory access for different ELL SpMV kernels in
[Anz+20b].
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Algorithm 14 Ginkgo’s ELL SpMV kernel.
1: Initialize Value c = 0
2: Compute row = the row idx
3: Compute y = the start index of row
4: Compute step_size = the step size to the next element
5: Initialize shared memory data
6: for idx = y .. max_row_nnz, idx+ = step_size do
7: Compute ind = index of this element in the ELL format
8: if A(row, colidx[ind]) is unused then
9: break

10: end if
11: Perform local operation c+ = A(row, colidx[ind]) ∗ x[colidx[ind]]
12: end for
13: Perform atomicAdd c to shared memory data[threadIdx.x]
14: if thread 0 in group then
15: atomicAdd data[threadIdx.x] on the output vector
16: end if

Algorithm 15 Ginkgo’s automatic ELL kernel configuration.
1: Initialize num_group = 1
2: Initialize nblock_per_row = 1
3: Compute ell_ncols = maximum number of nonzero elements per row
4: Get nwarps = total number of warps available on the GPU
5: if ell_ncols / nrows > 1e − 2 then
6: Compute num_group = min(16, 2ceil(log2(ell_ncols)))
7: if num_group == 16 then
8: Compute nblock_per_row = max(min(ell_ncols/16, nwarps/nrows), 1)
9: end if

10: end if

Algorithm 14 shows the ELL SpMV kernels in Ginkgo. Each thread accumulates
the result into the register by Line 11 until the unused part or the end of rows, add
the result in the shared memory by atomic operation by Line 13 as many threads
of the same block may process on the same row. In the end, only one thread per
row in a block adds the result from shared memory to global memory atomically,
as many blocks may process on the same row. Some parameters in Algorithm 14
like num_group and nblock_per_row need to be decided by Algorithm 15. The
strategy of Algorithm 15 is to try to increase the occupancy of GPUs when targeting
short-and-wide matrices, so it may have many thread blocks on the same row. The
kernel still keeps the early-stopping technique in lines 8-10 introduced in [Anz+20b].
After accumulating the partial result, each thread will perform an atomicAdd to
the shared memory. Then, the leading thread will perform atomicAdd to the global
memory of the output vector in the end.

In CUDA and HIP, we consider the available subwarp size for the number of working
threads for each row in the warp. Thus, we first only consider the sizes (1, 16, 32) as
the virtual sub-sub-group for the SYCL backend during the porting effort. However,
we only use the shared memory without the communication in the sub-group in
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Figure 4.4: ELL performance comparison on Max1550 (1tile): ELL with available
sub-group size (1, 2, 4, 8, 16, 32) against (1, 16, 32)

Algorithm 14. We do not need to worry about the sub-group size, so we also consider
the options among (1, 2, 4, 8, 16, 32) for the number of threads for a row in the
sub-group, which leads to the performance comparison in Figure 4.4. ELL is also
an important component in HYB. The updated implementation shows apparent
speedup in Figure 4.5. If the hybrid is the required format in the application, the
ELL with more options gives a clear benefit for HYB format.

4.1.4 HYBRID(HYB)
The HYB format is a combination of COO and ELL, which tries to get both
benefits from COO and ELL. HYB splits the matrix to store the regular part in the
ELL format and then put the rest of the value (irregular part) in the COO format.
From the paper[Anz+20b], we have derived a strategy based on the nonzeros-per-row
distribution and the ratio between the maximum nonzeros-per-row and the number
of rows. For R being the set of the nonzeros-per-row values, we define the function
QR and FR:

QR(x) := min {t ∈ N | x < FR(t)} , FR(t) := |{r ∈ R | r ≤ t}|
|R|

.

The method introduced in [Anz+20b] uses n%-quantile of the nonzeros of the row,
which is QR(n%) here. We can also calculate the minimal storage for the HYB
format by selecting

n% =
⌊

#rows × sizeof(index)
sizeof(value) + 2 × sizeof(index) + 1

⌋

with the size of value and index type. When using double (64-bit) for value type
and int(32-bit) for index type, the hybrid25 provides minimal storage. We also
notice that hybrid with minimal storage does not imply the best performance. In
Ginkgo, we also have another limitation such that the ELL part can only allow up
to #rows ∗ 0.0001 for columns. We consider the resulting strategy “hybridlimit{n}”
and select hybridlimit33 (label “HYB”) as our default strategy.
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Figure 4.5: HYB performance comparison on Max1550 (1tile): The component ELL
with available sub-group size (1, 2, 4, 8, 16, 32) against (1, 16, 32)

4.2 Mixed SpMV Support
In Ginkgo, we support bfloat16, half, single, and double precision SpMV and the
corresponding complex versions. The SpMV implementation uses the accessors
introduced in [GAQ23], which is a helper that can read the data stored in the global
memory to the arithmetic format in the register for operations directly without an
explicit copy. In Ginkgo, the arithmetic precision is chosen as the precision can
losslessly store input, output, and matrix precision. We choose the single precision
as the arithmetic precision between half-precision and bfloat16 precision. Figure 4.6
visualizes the difference between implicit and explicit precision conversion with the
example

Ysingle precision = Ahalf precisionXdouble precision

The explicit precision conversion must copy A from half precision to double precision
before operations and copy Y from double precision to single precision in global
memory when writing results. In Section 2.2, we established that the small arithmetic
intensity characterizes SpMV as a memory-bound operation. However, mixed
precision SpMV reads the data in low precision without requiring an explicit copy
of the data for high precision arithmetic, therewith reducing the memory footprint
and combining faster execution with higher accuracy than low precision SpMV.

4.2.1 Accessor
The idea of the accessor is to decouple the memory access out of the implementation.
The idea in Figure 4.6 to convert the data on the fly is not easy in practice when
considering the efficiency and the capability for different precision. We may rely
on the implicit type conversion by compilers during the arithmetic operation if we
only consider single and double precision. It is not trivial when we consider bfloat16
and half precision. As the bfloat16 and half precision are still new to programming
language, compilers may not deal with the arithmetic operation with the other types
well. Also, some compiler does not allow the arithmetic operation between two
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Figure 4.6: Implicit vs explicit precision conversion from memory with the exam-
ple Ysingle precision = Ahalf precisionXdouble precision. Explicit precision conversion needs
additional copies to prepare the objects with arithmetic precision. The red arrow
indicates the additional conversion in global memory. However, implicit precision
conversion can directly get the arithmetic precision in the register.

different precisions of complex numbers. Suppose we rely on the explicit type casting
(such as static_cast<target>(source) from C++), the casting usage increases
the maintenance difficulty. Thus, we need a way to decouple the precision conversion
out of the kernel implementation, and it must be efficient and support different
precision conversions.

Figures 4.7 to 4.9 reports the performance of the memory accessor in a roofline
analysis on AMD MI100, AMD RadeonVII, and NVIDIA V100 GPUs from [GAQ23].
They use FLOP/{the number of values} to demonstrate the performance based on the
number, not the size of data. We can recognize the difference between using different
precision on the same number of values (i.e., the same x-axis value in the figures).
They use fp32 for single precision and fp64 for double precision in [GAQ23]. The
horizontal dashed line indicates the theoretical performance peaks for single precision
(fp32) and double precision (fp64). When the kernels are in the memory-bound area
(i.e., before reaching the dashed line), the single precision implementation reaches
the 2x speedup of the double precision one because the single precision requests
only half the amount of memory of the double precision. The single precision still
reaches 2x speedup of the double precision for compute-bound kernels in Figures 4.7
and 4.9 because the server GPUs usually make single precision performance is 2x
speedup of the double precision performance as in Table 2.3. The single precision
shows 4x speedup than the single precision performance on AMD RadeonVII in
Figure 4.8 because the consumer GPUs usually have less double precision capability
as in Table 2.3.

[GAQ23] uses Figures 4.7 to 4.9 to show the accessor efficiency. accessor<fp64,
fp64> reads the double-precision data and processes the data in double precision
as normal. It sticks with fp64 in Figures 4.7 to 4.9, so accessor does not introduce
overhead when we do the same operation. accessor<fp64, fp32> reads the single-
precision data but processes the data in double precision. When the kernel is
memory-bound, accessor<fp64, fp32> shows the same performance as fp32. That
is, we can indeed get the performance benefit from reading the single-precision
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Figure 4.7: The roofline performance of accessor on AMD MI100 GPU from [GAQ23].
The Arithmetic Intensity uses FLOP/{the number of values}.
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Figure 4.8: The roofline performance of the accessor on AMD RadeonVII GPU from
[GAQ23]. The Arithmetic Intensity uses FLOP/{the number of values}.

data. When the kernel is compute-bound, accessor<fp64, fp32> can only reach
the fp64 peak, which shows the same thing as roofline model Section 2.2. We
compute the data in double precision, so the double-precision performance peak
bounds the compute-bound kernels. The accessor helps us to decouple the memory
and computing.

4.2.2 Use Accessor in SpMV

The accessor helps make the code clear and keep the performance. As we add the
bfloat16 and half precision formats into the Ginkgo precision support, we can not
directly rely on the implicit type conversion, which some compilers do not support
it with half and bfloat16 precision. We show the mixed-precision SpMV kernel
implementation with the static_cast in Listing 4.1 and the accessor in Listing 4.2.
In Listing 4.1, developers must remember to cast the data correctly to ensure that
the mixed-precision operation uses arithmetic precision. However, in Listing 4.2,
developers only need to wrap the data with the accessor and then access the data
through the accessor, which is almost like the original SpMV implementation. The
decoupling helps us easily ensure that the code does the correct mixed-precision
without worrying about the casting. Using casting is difficult when implementing
optimized SpMV kernels and advanced algorithms. Based on the accessor, we have
implemented ELL and CSR mixed-precision SpMV in Ginkgo.
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Figure 4.9: The roofline performance of the accessor on an NVIDIA V100 GPU from
[GAQ23]. The Arithmetic Intensity uses FLOP/{the number of values}.

1 // u s i n g s t a t i c _ c a s t
2 template <typename MatrixPrec , typename InputPrec , typename OutputPrec >
3 void csr_spmv ( MatrixPrec * A, InputPrec * X, OutputPrec * Y) {
4 // d e c i d e the a r i t h m e t i c p r e c i s i o n
5 using ArithmeticPrec = typename precision < MatrixPrec , InputPrec , OutputPrec >::

type;
6 for (row in A) {
7 // Keep the accumu la t i on i n a r i t h m e t i c p r e c i s i o n
8 ArithmeticPrec temp (0.0) ;
9 for ( int i = A_row_ptr [row ]; i < A_row_ptr [row +1]; i++) {

10 auto col = A_col_idx [i];
11 // c a s t the data to a r i t h m e t i c p r e c i s i o n
12 temp += static_cast < ArithmeticPrec >( A_val [i]) * static_cast <

ArithmeticPrec >(X[col ]);
13 }
14 // c a s t back to output p r e c i s i o n
15 Y[row] = static_cast < OutputPrec >( temp);
16 }
17 }

Listing 4.1: The mixed-precision CSR SpMV using static_cast

1 // u s i n g a c c e s s o r
2 template <typename MatrixPrec , typename InputPrec , typename OutputPrec >
3 void csr_spmv ( MatrixPrec * A, InputPrec * X, OutputPrec * Y) {
4 // d e c i d e the a r i t h m e t i c p r e c i s i o n
5 using ArithmeticPrec = typename precision < MatrixPrec , InputPrec , OutputPrec >::

type;
6 // Wrap the data wi th the a c c e s s o r
7 A_acc = accessor < ArithmeticPrec >(A);
8 X_acc = accessor < ArithmeticPrec >(X);
9 Y_acc = accessor < ArithmeticPrec >(Y);

10 for (row in A) {
11 // Keep the accumu la t i on i n a r i t h m e t i c p r e c i s i o n
12 ArithmeticPrec temp (0.0) ;
13 for ( int i = A_row_ptr [row ]; i < A_row_ptr [row +1]; i++) {
14 auto col = A_col_idx [i];
15 // a c c e s s o r g i v e s the a r i t h m e t i c −p r e c i s i o n data
16 temp += A_acc_val (i) * X_acc (col);
17 }
18 // a c c e s s o r accep t the a r i t h m e t i c −p r e c i s i o n data
19 Y_acc (row) = temp;
20 }
21 }

Listing 4.2: The mixed-precision CSR SpMV using the accessor
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4.2.3 Capability for Mixed-Precision SpMV

For convenience, we introduce the precision format notation in Table 4.1. We focus

DP IEEE 754 double precision (64-bits)
SP IEEE 754 single precision (32-bits)
HP IEEE 754 half precision (16-bits)
BF Google bfloat16 precision (16-bits)
I8 8-bit integer
I32 32-bit integer
CPX<V> complex number with V precision

Table 4.1: Precision format notation.

on the mixed-precision operations on CSR because CSR is the most widely used in
different algorithms and the commonly supported format in vendors’ libraries. We
list the precision support of CSR SpMV from Ginkgo, AMD rocSPARSE, Intel
oneMKL, and NVIDIA cuSPARSE in Table 4.2. As Table 4.2 lists, cuSPARSE and
rocSPARSE support some mixed-precision SpMV and the complex versions, but
oneMKL only supports real uniform precision SpMV. cuSPARSE always requires
the same precision for the matrix A, the input vectors X, and the specific arithmetic
precision. rocSPARSE may require the same precision for A and X, or for X and
Y . Although hipSPARSE provides the interface for cuSPARSE and rocSPARSE,
users still need to adapt the variable for different platforms due to an inconsistency
between cuSPARSE and rocSPARSE.

In contrast, Ginkgo’s design allows any combination of precision of the matrix A,
the input vectors X, and the output vectors Y on these platforms. The arithmetic
precision is automatically decided by Ginkgo such that users do not need to check
what arithmetic type is used for the current precision combination. For the uniform
precision operations with 16-bit floating point numbers, cuSPARSE and rocSPARSE
always use 32-bit floating point format as arithmetic precision for computation, but
Ginkgo still uses 16-bit floating point like the other uniform precision operations.
Thus, we mark the entry with 2 for cuSPARSE supporting 16-bit operations in
mixed section but 3 for ginkgo supporting 16-bit operation in uniform precision
section in Table 4.2. rocSPARSE and cuSPARSE support the 8-bit integer operations
additionally. Ginkgo provides the complete set of mixed precision without any
additional copy routine and overhead, as well as the corresponding complex number
version.

In the advanced apply signature from Chapter 3, there are three precision formats
that can be selected in A->apply(α, X, β, Y ). Matrix precision is for A, input
precision is for vector X, and output precision is for vector Y . The scalar α uses
the same precision as A and β uses the same precision as Y . This is slightly
different from the NVIDIA cuSPARSE and the AMD rocSPARSE design, which use
arithmetic precision for scalar parameters. Our scalar only relies on the storage type
of corresponding components. The benefit of this design is that we do not need to
know everything beforehand for the decision of the scalar storage. We compare the
precision format support of the mixed-precision SpMV with the formula Y = AX
in Ginkgo and the other three vendors’ libraries in Table 4.2. To reduce the table
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complexity, we only consider input, output, and matrix precision without the scalar
precision because these known factors always decide scalar precision.
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Figure 4.10: SpMV performance comparison on H100(PCIE)

4.3 Experiments
We evaluate CSR and COO from the vendor libraries, and CSR, COO, ELL,
HYB from Ginkgo library on three vendors’ GPUs. The details of the testing
environments are listed in Section 2.7. We perform 2 iterations for warmup and 10
iterations for performance measurements. We take the median value from these 10
iterations as the results. Intel oneMKL only supports the CSR format, so we can not
report the oneMKL COO format on Intel GPUs. We test SpMV with considered
formats on all real matrices from the SuiteSparse Matrix Collection [DH11], which
contains around 2, 800 matrices. We ignore some matrices on certain formats because
these matrices can not be stored in the corresponding GPU memory with certain
formats. For example, the imbalanced matrix with long rows leads to ELL requiring
a massive amount of memory on GPU.

4.3.1 Double Precision SpMV Performance
We consider IEEE double precision SpMV first in the following discussion. The
computation of GFLOP/s is under the assumption that the number of flops is 2nnz,
where nnz is the number of stored elements of the matrix data.
We collect the performance data in Figure 4.10 on H100. ELL achieves good
performance for matrices with few nonzeros, but starts to have some slower cases
than the others when the number of nonzeros is larger than 104 due to imbalanced
matrices. Although COO can not reach the highest performance, COO achieves
good performance for all matrices considered. cuSPARSE CSR shows some overhead
when the number of nonzeros is less than 106 because the cuSPARSE Generic API
may need additional work to wrap the data to its framework. The cuSPARSE
COO has less overhead than the cuSPARSE CSR. HYB shows a more stable
performance than ELL, which prevents the imbalanced matrices from using ELL
entirely. Ginkgo’s CSR and COO achieve a competitive performance against
cuSPARSE in large cases with less overhead in small cases.
As discussed in Section 2.8, we use a performance profile to plot the overview among
this dataset on H100 in Figure 4.11. Both Ginkgo’s CSR and ELL win 30% of
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Figure 4.11: SpMV performance profile on H100(PCIE)

problems (at x = 1), which is a higher rate than the others. When we allow a
little slowdown factor, Ginkgo’s COO and cuSPARSE COO can solve almost all
problems within 1.5x slowdown allowance, and HYB can solve almost all problems
within 1.75x slowdown allowance. Even if we allow 3x slowdown, ELL can only solve
60% problems due to the storage limit. CSR has a similar trend with COO but
loses a little generalization.

Figure 4.12 shows the performance results on AMD MI250X(1GCD). Overall, a clear
trend is that Ginkgo outperforms AMD hipSPARSE, which may be from using
unsafe atomic instruction. HIP provides a compiler option to turn on the hardware-
based floating point atomic operation with less guarantee, which is correct only on
coarse-grained memory. Although unsafe atomic operation contains unsafe in the
name, we use it correctly and safely in Ginkgo. We use hipMalloc, which is coarse-
grained memory, such that Ginkgo enables this instruction safely and correctly.
ELL on MI250X has a similar story to H100, which has slower performance with the
imbalanced matrices. hipSPARSE CSR encounters a similar performance drop for
the imbalanced matrices. With the load balance implementation, Ginkgo’s CSR
provides more stable performance than hipSPARSE. HYB still shows a performance
between COO and ELL.

Figure 4.13 uses the performance profile for the SpMV performance overview on
MI250X(1GCD). As Figure 4.11, Figure 4.13 also shows the Ginkgo’s SpMV kernels
win a high ratio of the dataset. Ginkgo’s CSR wins more cases and it is a more
general solution than Ginkgo’s COO, which is unlike H100 in Figure 4.11. ELL
solves around 70% of problems within 3x slowdown allowance. Although HYB is not
the fastest among all formats, it can solve more problems than COO and ELL when
we allow some slowdown. HYB shows a similar generality with Ginkgo’s CSR.

Figure 4.14 collects the performance data on Intel Max1550 (1tile). Unlike the other
platforms, COO and HYB are slower than the other formats in Ginkgo. COO
or load balanced CSR needs to initialize the vectors by zero first and then apply
atomic operations on the vectors, and HYB needs to use ELL kernels first and then
use COO kernels. The kernels generated for Intel GPUs may have a higher overhead
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Figure 4.12: SpMV performance comparison on MI250X(1GCD)
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Figure 4.13: SpMV performance profile on MI250X(1GCD)
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Figure 4.14: SpMV performance comparison on Max1550 (1tile). oneMKL only
supports CSR format.

than the others such that these SpMV composed of two kernels are slow. With
that observation, Ginkgo CSR usually selects classical CSR, not load balanced
CSR. Although we hit a similar peak on the cases that contain around 107 nonzeros,
Ginkgo CSR is slightly slower than oneMKL in extremely large cases. We know the
performance can be achieved by using one thread per row in classical CSR. Without
setting complex rules, we decided to provide a more stable performance, which
provides higher performance than oneMKL for those data points in the right-bottom
part. When the kernel overhead is lower in the future, the load balance should cover
this region to provide a similar peak performance. Max1550 only provides 1, 16, and
32 for sub-group size, which we mentioned in Section 4.1.1, so we do not have a good
option between 1 and 16, unlike the other backends.

Figure 4.15 shows the performance profile among all cases on Max1550 (1tile).
Ginkgo’s CSR is always at the top of Figure 4.15. As discussed in the previous
paragraph, the other formats in Ginkgo containing more than one kernel suffer from
kernel overhead. Without considering Ginkgo’s CSR, ELL solves more problems
within 1.25x - 2.00x slowdown allowance, but COO solves most of the problems
after 2x slowdown allowance.

4.3.2 Half Precision SpMV Performance
In the following, we focus on the half-precision CSR, which Ginkgo multigrid mainly
uses in Chapter 6. We have two variants for classical CSR with half precision. One
is Algorithm 11, which was already introduced in the previous section, and the other
is the packed version Algorithm 16. NVIDIA GPUs prefer getting 128 bytes of data,
which is 4 bytes per thread in a warp. However, if we only read one half-precision
value per thread, we may not fully utilize the GPU bandwidth. Thus, we designed
a packed version listed in Algorithm 16 that always accesses two half-precision
values such that the compiler may optimize the code. We collect the problem-wise
comparison between two versions of CSR in Figure 4.16 on H100, Figure 4.17 on
MI250X(1GCD), and Figure 4.18 on Max1550 (1tile). The packed version on H100
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Figure 4.15: SpMV performance profile on Max1550 (1tile)

shows around 2x speedup but around 0.8x - 0.9x slowdown compared to the original
version. Including this slowdown effect, Ginkgo still shows better performance in
small cases and competitive performance in large cases compared to cuSPARSE in
Figure 4.19. Thus, we decided to use the packed version for half-precision CSR
on H100. However, we observe some big slowdown on MI250X in Figure 4.17, so
we currently choose the original version for MI250X. On Max1550, some cases give
more than 5x speedup, which might be from the better sub-group size choice on the
packed version. Because we can only use 1, 16, and 32 for sub-group size on Intel
Max1550, it does not give a smooth selection between 1 and 16. Thus, the packed
version chooses 1 for the sub-group size, which might be more suitable for the cases
leading to significant speedup. We also use the packed version for Max1550.

We collect the H100 half precision CSR results comparing Ginkgo and cuSPARSE
in Figure 4.19. Ginkgo’s CSR reaches a similar peak and performs better in small
cases. We only provide the performance comparison on H100 because oneMKL and
hipSPARSE do not fully provide half precision CSR. We provide the supported
precision set in the later Section 4.2. Full half-precision CSR means that the precision
formats from A, X, Y in Y = AX use half precision. cuSPARSE provides full half-
precision CSR with the requirement that the scalars and computation precision must
be single precision. Ginkgo provides half-precision SpMV with the same precision
for scalars and computation.

4.4 Summary
In this chapter, we introduce the implementation of the common sparse matrix format
in Ginkgo. With Ginkgo’s portability design in Section 3.2, we also demonstrate
that the specific parameters set can be configured for different devices. Ginkgo’s
SpMV performance is competitive with any of the other vendors’ libraries but is other
than the vendor libraries. Ginkgo’s SpMV is portable across the GPU platforms
from AMD, Intel, and NVIDIA. Ginkgo’s SpMV supports more combinations of
mixed precision than the other vendors’ libraries to enable straightforward experiment
usage in Table 4.2.
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Figure 4.16: Packed version and original version performance comparison on H100.

Figure 4.17: Packed version and original version performance comparison on MI250X.
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Figure 4.18: Packed version and original version performance comparison on Max1550.

Figure 4.19: Half-Precision Csr performance comparison on H100
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Algorithm 16 Ginkgo’s classical CSR SpMV: packed variant with altered memory
access

1: Get row = the row index
2: Compute subrow = the step size to next row
3: Get step_size = the step size to the next element of value (2 * subwarp size)
4: Get subid = the local id of this subwarp.
5: Initialize value c = 0
6: for row = row .. #rows, row+ = subrow do
7: for idx = row_ptr[row] .. row_ptr[row + 1], idx+ = step_size do
8: Compute c+ = val[idx + 2 ∗ subid] ∗ b[col[idx + 2 ∗ subid]]
9: if idx + 2 * subid + 1 < row_ptr[row+1] then

10: Compute c+ = val[idx + 2 ∗ subid + 1] ∗ b[col[idx + 2 ∗ subid + 1]]
11: end if
12: end for
13: Perform subwarp reduction of c on the subwarp
14: if the leading thread in subwarp then
15: Write c to the output vector
16: end if
17: end for
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We have introduced multigrid in Section 2.5. Because Algebraic Multigrid (AMG)
is widely used in scientific applications, there are several existing AMG libraries.
AmgX[Nau+15] is one of the popular AMG libraries developed by NVIDIA that
provides several coarsening methods, including parallel modified independent set
(PMIS) and parallel graph match (PGM), on single or multiple GPUs. The AmgX
library only supports execution on NVIDIA GPUs. HYPRE[FY02] is another pow-
erful library for distributed systems with its popular BoomerAMG[HY02] central
component. HYPRE provides several interfaces for users such that users can easily
use familiar formats from their domain, which avoids conversions to a generic matrix
format. Currently, HYPRE supports execution on AMD, Intel, and NVIDIA GPUs.
Other open-source GPU-enabled AMG implementations can be found in rocALU-
TION[Roc], an iterative sparse solver library developed by AMD, and MueLu[Teaa],
a multigrid package inside the Trilinos[Teab] ecosystem.

Many libraries do not have a platform-portable AMG needed by many applications.
NVIDIA’s AmgX also has the same issue because its implementation is only available
on NVIDIA hardware. Also, not all libraries have the flexibility to choose the
multigrid components and precision formats for the distinct levels individually. In
consequence, to enable the design of a mixed precision AMG, we develop a platform-
portable high-performance AMG inside the Ginkgo library that is competitive with
the vendor libraries but embraces platform portability and flexibility as central design
principles.

5.1 Flexible and Platform-Portable Algebraic Multi-
grid

The multigrid implementation embraces the design principles of Ginkgo pre-
sented in Chapter 3: flexibility, performance, and platform portability. We use
the MultigridLevel class to represent the essential components in the two (fine
+ coarse) levels of Multigrid in Figure 5.1, like the multigrid algorithm described
in Algorithm 2. Each coarsening method implements the MultigridLevel class to
generate the coarse matrix, restriction, and prolongation operations from the fine
matrix. In the recursive setting, the fine matrix of the current MultigridLevel is
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Figure 5.1: The MultigridLevel class with its components.

1 multigrid :: build ()
2 . with_max_levels (10u)
3 . with_min_coarse_row (64u)
4 . with_pre_smoother (sm) // pos t smoothe r use the same smoother as p re smoothe r by

d e f a u l t
5 . with_mg_level ( mglevel )
6 . with_coarsest_solver ( coarsest_solver )

Listing 5.1: Simple Multigrid.

the coarse matrix of the MultigridLevel above. As a Ginkgo’s LinOpFactory de-
sign introduced in Section 3.1.2, the MultigridLevel->generate(Fine) generates
Prolong × Coarse × Restriction.

The Multigrid solver provides the flexibility to set up the multigrid hierarchy from
one or more MultigridLevel. Ginkgo’s Multigrid allows a list of MultigridLevel,
pre/post smoothers, and coarsest solvers to combine different options from users.
The smoothers and the coarsest grid solvers accept LinOpFactory such that we
can use the existing solver/preconditioners in Ginkgo like Jacobi, Chebyshev, and
direct solvers. For example, we can use this flexible configuration to generate mixed
precision AMG settings by defining the different MultigridLevel and smoothers in
different precision formats.

Listing 5.1 shows the classical multigrid settings in Ginkgo. All levels will use the
same smoother and the same coarsening method (MultigridLevel). This is a standard
AMG V-cycle with a max multigridlevel depth of 10 (which gives a max level depth
of 11), a smoother that is used for all smoothing operations, a coarsening method,
and a coarse level solver(coarsest_solver). Note that the number of smoothing
sweeps is a parameter of the smoother object sm.

Besides the classical multigrid settings, our flexible design allows more complex
multigrid settings in Listing 5.2. The multigrid hierarchy is still the same as the
classical multigrid. We choose the W-cycle for the application. Users can set multiple
options in the list of presmoothers, postsmoothers, and MultigridLevels. In List-
ing 5.2, we set two options in presmoothers, postsmoothers, and MultigridLevel and
use with_post_uses_pre(false) to indicate we have different smoothers between
presmoothers and postsmoothers. With multiple options in the list, users can use
“with_level_selector(function)” to set a rule for selecting the option, which can
be based on the level index or the matrix properties. In Listing 5.2, we use the
level index to select the option from the lists of presmoothers, postsmoothers, and
MultigridLevels. The flexible design allows the setting that applies the aggressive
coarsening [Stu] on the first few levels, and the rest of the levels still use the normal
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1 multigrid :: build ()
2 . with_max_levels (10u)
3 . with_min_coarse_row (64u)
4 . with_cycle ( multigrid :: cycle :w) // use w c y c l e i n s t e a d o f v c y c l e
5 . with_pre_smoother (sm_1 , sm_2)
6 . with_post_smoother (sm_3 , sm_4)
7 . with_post_uses_pre ( fa l se ) // i n i d i c a t e we have d i f f e r e n t s e t t i n g s f o r pos t

smoothers
8 . with_mg_level (mglevel_1 , mglevel_2 )
9 . with_level_selector (

10 []( level , matrix ) {
11 // the f i r s t t h r e e l e v e l s ( the f i n e s t l e v e l i s 0) use the f i r s t o p t i o n

from smoother and mg_leve l
12 // Otherwise , use the second o p t i o n
13 i f ( level < 3) return 0;
14 else return 1;
15 }
16 )
17 . with_coarsest_solver ( iterative_solver , direct_solver )
18 . with_solver_selector (
19 []( level , matrix ) {
20 // I f the s i z e o f mat r i x i s l a r g e r than 1e5 , use the f i r s t o p t i o n −

i t e r a t i v e s o l v e r
21 // Otherwise , use the second o p t i o n − d i r e c t s o l v e r
22 i f (matrix -> get_size () [0] > 1e5) return 0;
23 else return 1;
24 }
25 )

Listing 5.2: Flexible Multigrid.

coarsening. Moreover, users can also give more than one option into the coarsest
solver list with the “with_solver_selector(function)” to select the coarsest solver
based on level index or the matrix properties. In Listing 5.2, we select the iterative
solver or direct solver based on the size of the coarsest matrix. We use this flexible
design to construct mixed-precision AMG in Chapter 6 by setting components with
different precision settings.

5.2 Performance Improvement
As smoother applications in the form of vector operations are relatively cheap, the
runtime of an AMG cycle is generally dominated by the residual computations that
involve sparse matrix-vector multiplications (SpMV s). Furthermore, we know that
any memory allocation on the GPU is detrimental to performance [AMD; NVI].
To improve the performance of the AMG algorithm, we implement the following
optimizations:

1. Only compute the residual if needed. We also implemented several
optimizations regarding the handling of residual vectors. The explicit residual
is not needed when using AMG as a preconditioner inside an iterative solver.
In this case, the residual is only computed if the user explicitly asks for it,
e.g. for monitoring convergence.

2. Use the residual computed in a solver. Furthermore, suppose we need
the residual in the AMG solver and an internal component already computed
it. In that case, this residual is accessible from outside the component to avoid
recomputation. If an initial guess is zero, the residual computation is skipped,
as we know the residual will be equal to the right-hand side vector.
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3. Split the termination check. We also “split” the termination check, such
that reaching an iteration limit terminates the algorithm before the residual is
computed for convergence checking purposes.

4. Avoid memory management in the execution. We use a workspace
for allocating the operator components and intermediate operations. This
workspace is available over the complete lifetime of the operator. Workspace
usage avoids any memory allocations or memory frees during the operator
application phases.

5. Optimize for zero initial guess. Many iterative solvers like IR in Algorithm 7
and Chebyshev iteration in Algorithm 8 solve the residual correction equation.
For a zero initial guess, we use the right-hand side as the residual vector directly
because r = b − Ax = b − 0 = b from a mathematical perspective. AMG uses
a zero initial guess at the finest level when it is a preconditioner. Also, the
rest of the levels start with a zero initial guess in Line 9 of Algorithm 2. Thus,
eliminating the unnecessary residual computation from zero initial guesses is
useful in AMG.

5.3 Parallel Graph Match (PGM)
In Section 2.5.2, we present two popular coarsening strategies with the corresponding
popular algorithms as examples. We take the PGM algorithm Algorithm 5 to examine
our AMG design and mixed precision evaluation. We detail the implementation in
Algorithm 17, which involves edge-case considerations like isolating points and the
controllable stopping setting.

5.4 High-Performance as the State-Of-The-Art Li-
brary

NVIDIA’s AmgX [Nau+15] is the high-performance AMG library which includes the
PGM as coarsening method. It is one of the state-of-the-art AMG libraries and is
widely used by CFD software like Fluent. We want to ensure our design can achieve
performance competitive to NVIDIA’s AmgX but combine it with more flexibility
and platform portability.

For the experimental performance evaluation, we use the MFEM library. MFEM[And+21;
Mfe] is a popular open-source finite element library with support for high-order meshes
and basis functions, among many other features. We pick two test cases in MFEM:
L-shape and Beam in Figure 5.2 as the experiment problems. We set a constant
coefficient of c = 1 for L-shape but a piecewise constant coefficient from 0.1 to 1 at
the midpoint of the length of the beam. We set several orders of basis functions
(passed by -o) and levels of mesh refinement (-l). All MFEM experiments use
standard tensor-product basis functions on the Legendre-Gauss-Lobatto nodes and
default choices for quadrature points based on the order of basis function. We con-
sider a modification of MFEM’s “example 1”, solving a standard diffusion problem
−∇ · (c∇u) = 1.

The experiments use MFEM’s CG solver with an AMG preconditioner either from
Ginkgo or NVIDIA’s AmgX. Each iteration of CG only involves one V-cycle
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Algorithm 17 Parallel Graph Match Algorithm with implementation detail in
[Nau+15].

1: procedure Parallel Graph Matching(A)
2: Let Weight = A+A′

2
3: Let G(V, E) be the adjacency graph of the coefficient matrix A
4: Let Fsn(i, S) := argmaxj∈S{Weight(i, j)/max(Weight(i, i),

Weight(j, j))} determine the strongest neighbor
5: Let W = V
6: while W is not ∅ and iteration < max_iterations do
7: for all v ∈ W do
8: Find v’s strongest neighbor w based on w = sn(v) and check if the

neighbor is aggregated or not.
9: Find v’s strongest neighbor in aggregated/unaggregated sets:

the strongest neighbor in aggregated group: Fsn(v, V \ W )
the strongest neighbor not in aggregated group: Fsn(v, W )

10: if All neighbors are aggregated then
11: Merge v into the aggregated group of the strongest neighbor
12: Remove v from the next outer iteration, so that W = W \ {v}
13: else if Has a non-aggregated strongest neighbor then
14: Store sn(v) := Fsn(v, W ) for next operation
15: else ▷ no neighbor

16: Assign the strongest neighbor as itself: sn(v) := v such that it will
be formed as an isolated aggregation in the next operation

17: end if
18: end for
19: for all v ∈ W do
20: if sn(sn(v)) = v then
21: Form aggregation, which takes the smaller of the row and column

indices as the identifier
22: Remove them from the next outer iteration so that W = W \

{v, sn(v)}
23: end if
24: end for
25: end while
26: if W is not ∅ then
27: Assign the rest of the unaggregated nodes to the aggregated group of its

strongest neighbor or form an isolated group when it is not connected to others
28: end if
29: Assign the aggregation index to each aggregation group
30: Build the prolongation P , which pvi = 1 when v is in i aggregated group
31: Get the restriction R = P T and Coarse matrix C = R × A × P
32: end procedure
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Figure 5.2: Meshes used for MFEM diffusion experiments. Left: L-shape mesh with
7 levels of uniform refinement (49,152 elements); Right: Beam mesh with 3 levels of
uniform refinement (4,096 elements).

problem size nonzero elements

beam (-o2 -l3) 37,281 21,67,425
beam (-o3 -l3)* 120,625 14,070,001

matrices in MFEM
beam (-o4 -l3) 279,873 57,251,713
beam (-o3 -l4) 924,385 111,573,601

integration test L-shape (-o3 -l7)* 443,905 11,066,881
L-shape (-o3 -l8) 1,772,545 44,252,161
L-shape (-o4 -l7) 788,481 28,323,841
L-shape (-o4 -l8) 3,149,825 113,270,785

2cubes_sphere 101,492 1,647,264
thermal2 1,228,045 8,580,313

SuiteSparse matrices cage14 1,505,785 27,130,349
for platform-independent cage13 445,315 7,479,343

tests offshore 259,789 4,242,673
tmt_sym 726,713 5,080,961

Table 5.1: Matrix characteristics for the selected MFEM discretizations and Suite
Sparse Matrix Collection matrices. The MFEM matrices marked with (*) were
exported from MFEM and also used in the platform-independent tests.

application of AMG. To generate the same preconditioner, we use the same setting
and algorithm for Ginkgo and NVIDIA’s AmgX. The AMG uses the following
settings:

• coarsening: PGM with deterministic aggregation of size 2

• hierarchy limitation: 10 maximum number of levels (which is a parameter value
in Ginkgo, but AmgX uses 11 to have the same hierarchy limitation) or 64
for minimum matrix size. If the generation reaches one of the limits, it will
stop generations.

• pre-/post-smoothing: 1 iteration weighted Jacobi smoother (weight = 0.9).

• coarsest solver: 4 iteration weighted Jacobi smoother (weight = 0.9).

we consider several orders of basis functions (-o) and levels of mesh refinement (-l),
which define the problem names in Table 5.1.

In Table 5.2, we list the iteration counts and runtime performance for different
CG/preconditioner configurations on the NVIDIA V100 GPU. We first focus on
four discretizations for the Beam geometry on the top of Table 5.2. The iteration
counts of the AMG-preconditioned CG solver are generally similar. Because Ginkgo
does not use the same SpMV kernel as NVIDIA, different rounding errors may



5.4. High-Performance as the State-Of-The-Art Library 75

geometry problem NVIDIA AmgX Ginkgo AMG
runtime [ms] #iter runtime [ms] #iter

Beam -o 2 -l 3 20.71 15 20.27 15
-o 3 -l 3 52.94 20 39.93 21
-o 4 -l 3 155.47 26 128.69 27
-o 3 -l 4 329.68 29 294.68 29

L-shape -o 3 -l 7 242.27 93 178.02 93
-o 3 -l 8 1211.38 180 1033.96 173
-o 4 -l 8 3452.91 251 3044.24 236
-o 4 -l 7 551.99 129 407.27 122

Table 5.2: MFEM Beam (top) and L-shape (bottom) examples using MFEM’s
AMG-preconditioned CG solver on NVIDIA V100 GPU. Both AMGs are executed
in IEEE double precision. The data is from our previous work [TBA23a]

lead to slightly different convergences. CG preconditioned with NVIDIA’s AmgX
preconditioner converges one iteration sooner in two cases. However, it is more
expensive per iteration than Ginkgo’s AMG preconditioner. In the end, Ginkgo’s
AMG is approximately 20-40% faster than NVIDIA’s AmgX for the three larger
problems in terms of total solving time. Compared to the Beam geometry, the
L-shape geometry is numerically more challenging due to its re-entrant corner.
We use the same experiment settings and report the results in the bottom part of
Table 5.2. Here, the trend of the AmgX-preconditioned CG requiring fewer iterations
is reversed, as in this case, Ginkgo’s AMG enables faster convergence. Combined
with the faster preconditioner application per iteration, Ginkgo’s AMG gets an
attractive runtime improvement over AmgXfor all discretizations of the L-shape
geometry. The total speedup with the L-shape geometry is approximately 20-40%
from Ginkgo’s AMG. Overall, the Ginkgo AMG accelerates the solution process by
20%-40% compared to NVIDIA’s AmgX.

We also evaluate Ginkgo’s AMG and NVIDIA’s AmgX as stand-alone solvers. The
hierarchy of AMG is still the same setting as the above preconditioner. We also
use a relative residual stopping criterion of 10−9 and allow for at most 100 AMG
iterations. We export the MFEM matrix and the corresponding right-hand side from
the (-o3 -l3) configuration of the Beam geometry and the (-o3 -l7) configuration of the
L-shape geometry. Additionally, we use selected matrices from SuiteSparse[DH11]. In
Table 5.3, We also compare against the popular academic AMG library HYPRE[FY02]
in Table 5.3. However, HYPRE has its own coarsening method such as PMIS,
which is introduced in Section 2.5, and PMIS is different from PGM. We add both
coarsening strategies to the comparison to demonstrate that they can result in
different convergence characteristics.

We summarize the performance of the standalone AMG solver on V100 in Table 5.3.
Except for 2cubes_sphere problem, Ginkgo’s AMG is competitive or outperforms
NVIDIA’s AmgX. HYPRE PMIS shows a different convergence behavior than PGM,
indicating that different applications may need different coarsening algorithms for
good performance and convergence. HYPRE here is only as a reference for different
algorithms, so discussing the difference between PMIS and PGM is out of the scope
of this dissertation.
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NVIDIA AmgX Ginkgo’s AMG HYPRE AMG
problem [ms] #it res.norm [ms] #it res.norm [ms] #it res.norm

beam(o3l3) 199.44 87 9.03e-10 152.87 84 9.75e-10 82.394 30 9.68e-10
L-shp.(o3l7) 251.01 100 7.43e-04 236.43 100 6.89e-04 67.892 33 9.99e-10

2cubes. 130.14 88 7.94e-10 160.63 91 8.88e-10 187.48 100 1.33e-8
thermal2 284.73 100 1062.42 304.79 100 1062.74 327.42 100 5.7206
cage14 79.30 15 4.28e-10 84.01 14 6.73e-10 119.67 *86 8.46e-10
cage13 40.99 17 7.29e-10 42.61 18 5.37e-10 44.87 *87 8.68e-10
offshore 180.92 100 1.76e33 172.48 100 1.95e33 236.34 100 inf

tmt_sym 211.65 100 858.151 197.63 100 858.84 265.46 100 1.45e6

Table 5.3: Comparison of performance, convergence, and accuracy of different AMG
solvers on the NVIDIA V100 GPU. For HYPRE, we mark * on iteration when
HYPRE does not generate any level for the problem. All AMGs are executed in
IEEE double precision. The data is from our previous work [TBA23a].

Ginkgo’s AMG on AMD MI100 Ginkgo’s AMG on Intel P630
problem [ms] #it res.norm [ms] #it res.norm

beam (o3l3) 235.23 84 9.80e-10 3535.40 85 8.53e-10
L-shape (o3l7) 272.28 100 6.88e-04 5756.48 100 6.89e-04

2cubes. 130.63 91 8.88e-10 1806.15 91 8.88e-10
thermal2 287.12 100 1062.74 6715.82 100 1062.7
cage14 105.50 14 6.75e-10 3449.86 14 6.77e-10
cage13 62.27 18 5.37e-10 1031.46 18 5.37e-10
offshore 207.69 100 1.95e33 3155.41 100 1.95e33

tmt_sym 208.72 100 858.843 4043.05 100 857.767

Table 5.4: Comparison of performance, convergence, and accuracy of Ginkgo’s
AMG solver on the AMD MI100 GPU and Intel P630 GPU. Both AMGs are executed
in IEEE double precision. Intel P630 GPU is an integrated GPU, so we do not expect
the performance of Intel P630 good. The data is from our previous work [TBA23a]

Other than NVIDIA’s AmgX, Ginkgo’s AMG is portable to other accelerators. We
collect the same experiment results on AMD MI100 and Intel Gen9 P630 GPU in
Table 5.4.

5.5 Summary
We designed a portable high-performance AMG which is competitive with the
existing state-of-the-art NVIDIA’s AmgX. We achieve this by using the hardware-
native language to implement the hardware-specific kernels inside the generic AMG
framework. Compared to vendor libraries like NVIDIA’s AmgX, Ginkgo’s AMG
does not only come with platform portability, but also with more flexibility in terms
of choosing the multigrid components like smoothers and the precision format in
the distinct levels, resulting in the mixed precision AMG that we will discuss in
Chapter 6.
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In this chapter, we combine the building blocks from the previous Chapter 5 to design
a high performance mixed-precision AMG. All the building blocks are designed as
platform-portable components such that the resulting mixed-precision AMG can run
on GPUs from different vendors and general-purpose CPUs. The mixed precision
SpMV design allowing for input data with different precision formats allows to
implement the mixed precision AMG without explicitly forming additional copies of
the matrices. We start mixed-precision AMG from a simple idea, which sets each level
with different precision in Section 6.3. It works well with double precision AMG mixed
with some single precision operations. However, it encounters numerical challenges
when using half precision for the lower multigrid levels. To resolve these issues, we
designed a new mixed-precision scheme in Section 6.4, which allows different precision
within a single level. Another idea to resolve these issues is adding a non-IEEE
standard bfloat16 precision format, which uses 16 bit as the half precision but has
the same range as the single precision, in Section 6.5. We do not only try the V-cycle
AMG-preconditioned CG experiments, but also standalone mixed-precision AMG in
Section 6.6 and W-cycle AMG-preconditioned CG in Section 6.7. We demonstrate
the mixed-precision AMG can improve the performance and reach the same accuracy
as the double precision AMG on high-performance GPUs.

Listing 6.1 shows the setup of mixed precision AMG with two MultigridLevels
and smoothers using different precisions. Similar to Listing 5.2, we can set different
components for the multigrid hierarchy. The difference between the components is
the precision format, we select the preicison format for smoothers and MultigridLevel
for each level individually. Listing 6.1 shows how to generate an AMG configuration
that uses DP for the first level and SP for all subsequent levels. We give the
double precision smoother and MultigridLevel, and single precision corresponding
version into the option list. We provide the function to select the first option (double
precision components) at the first (finest) level but the second option (single precision
components) at the rest of the levels. Assuming we always generate more than 1
level, we put the single precision solver as the coarsest solver.
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1 multigrid :: build ()
2 . with_max_levels (10u) // e q u a l to NVIDIA/AMGX 11 max l e v e l s
3 . with_min_coarse_row (64u)
4 . with_pre_smoother (sm , sm_f)
5 . with_mg_level (pgm , pgm_f )
6 . with_level_selector (
7 []( const size_type level , const LinOp *) -> size_type {
8 // Only the f i r s t l e v e l i s g e n e r a t e d by M u l t i g r i d L e v e l ( doub l e ) .
9 // The subsequent l e v e l s a r e g e n e r a t e d by M u l t i g r i d L e v e l ( f l o a t )

10 return level >= 1 ? 1 : 0;
11 })
12 . with_coarest_solver ( coarest_solver_f )

Listing 6.1: Mixed precision Multigrid.

problem size elements abs. value range

MFEM beam (-o3 -l3) 120,625 14,070,001 8.9×10−7 – 1.0
L-shape (-o3 -l7) 443,905 11,066,881 4.0×10−3 – 6.0

2cubes_sphere 101,492 1,647,264 6.7×10−15 – 2.5×1010

thermal2 1,228,045 8,580,313 1.7×10−7 – 4.9
SuiteSparse cage14 1,505,785 27,130,349 0.011 – 0.94

cage13 445,315 7,479,343 0.012 – 0.93
offshore 259,789 4,242,673 7.2×10−21 – 7.5×1014

tmt_sym 726,713 5,080,961 8.5×10−14 – 19

Table 6.1: Matrix characteristics for the selected problems.

In Chapter 5, we have demonstrated that Ginkgo’s AMG is competitive to NVIDIA’s
AmgX. In the following experiments, we will focus on the enhanced flexibility and
mixed precision options of Ginkgo’s AMG. We run the following experiments on
three GPUs - NVIDIA H100 (PCIE), AMD MI250X (1GCD), Intel Max1550 (1 tile)
with their characteristics in Table 2.3 and corresponding environments in Section 2.7.
We run the experiments with 2 warm-up iterations and collect the median value from
the 5 repetition iterations.

6.1 Experimental Settings
As the experiments in Chapter 5, we use Ginkgo as the main application to test the
performance across several platforms. We take the same matrix set as the previous
chapter, that is two configurations of MFEM cases and matrices from the SuiteSparse
Matrix Collection [DH11]. Table 6.1 shows the characteristics of the test matrices
including the range of values.

The maximum number of multigrid levels is 11. If the coarse matrix needs less than
64 rows, it will stop the hierarchy generation. For the AMG-preconditioned conjugate
gradient (CG) solver, we set the stopping criterion as implicit relative residual norm
reduction of 10−12 or a maximum of 800 iterations. We have two kinds of smoothers
for pre-/post-smoothing. One is the weighted scalar Jacobi with a weight of 0.9 in
Algorithm 9. The other is ℓ1-Jacobi-Chebyshev which uses the ℓ1-Jacobi as the inner
solver of Chebyshev iteration in Algorithm 8.

We apply 1 iteration for pre-/post-smoothing but 4 iterations for the coarsest solver
with the weighted Jacobi smoothers. We apply 2 iterations for pre-/post-smoothing
and the coarsest solver with ℓ1-Jacobi-Chebyshev.
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6.2 SpMV Performance as a Proxy for AMG

For an idea of the potential performance benefits of mixed precision AMG on
our target architectures, we analyze the performance of the sparse matrix-vector
operation (SpMV) used in residual computations and smoothers. We expect the
residual computations on each level to be the major limiting factor of performance;
in comparison, the solution phase of our smoothers, as well as the restriction and
prolongation operations, are simpler. The SpMV is a memory-bound operation, with
performance tied to the amount of memory traffic required rather than the number
of floating point operations performed. The memory involved in a SpMV operation
of an n × n CSR matrix with nnz non-zero elements can be written as:

(nnz + n + 1) × I + (nnz + 2n) × V.

I and V are the sizes, in bytes, of the IndexType and ValueType used for the CSR
matrix storage. When nnz >> n, the storage is approximated as nnz × (I + V ).
Thus, in terms of reduced memory traffic, the speedup of a lower precision ValueType
V2 over higher precision V1 can be estimated as

nnz(I + V1)
nnz(I + V2)

= I + V1

I + V2
.

For example, the speedup of single-precision SpMV over double-precision SpMV
would be 1.5x, and the speedup of half-precision SpMV over double-precision SpMV
would be 2x in theory. We extract the original matrices and the coarse matrices from
levels 0-10 in the 11-levels AMG hierarchy from the problems in Table 6.1. We follow
the same experimental settings as in Section 6.2 to collect the SpMV performance.
We run two warmup iterations and use the median value of 10 iterations repetitions.
Figure 6.1 shows the speedup from single and half-precision on H100. The single and
half-precision SpMV show similar performance and do not have a big speedup against
double precision SpMV on the small matrices at the coarse levels. In the cage13,
cage14, offshore, and l-shape problems, the single precision cases can reach around
1.5x speedup, and the half precision cases can reach around 2.0x speedup at the
fine levels. In the thermal2 and tmt_sym problems, half-precision SpMV can reach
close to 3.0x. The higher speedup in practice than expected may be caused by the
cache fitting or the half subwarp size performing better on these problems. We also
collect performance data on MI250X (1GCD) in Figure 6.2. Thermal2 and tmt_sym
problems show a noticeable difference between single precision and half-precision at
fine levels, which may be from the same reasons as on H100. The single precision
SpMV shows better performance than double precision SpMV. The difference between
single and half-precision on H100 is larger than on MI250X because HIP does not
support 16-bit shuffle natively. Figure 6.3 shows the performance difference from the
three precisions on Max1550 (1tile). Only a few cases like 2cubes_sphere, cage13,
and cage14 show speedups.

We can compute the storage approximation for an entire AMG cycle based on the
number of SpMVs on each level. In our implementation, the coarsening usually
aggregates two nodes together, while the exact compression ratio depends on the
sparsity pattern. Figure 6.4 reports the relative nonzero count of the matrices in the
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Figure 6.1: H100 speedup of single and half-precision SpMVs compared to double
precision for the matrices produced on each level of AMG. The half-precision SpMV
uses the “packed half” version
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Figure 6.2: MI250X speedup of single and half-precision SpMVs compared to double
precision for the matrices produced on each level of AMG.
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Figure 6.3: Max1550 speedup of single and half-precision SpMVs compared to double
precision for the matrices produced on each level of AMG. The half-precision SpMV
uses the “packed half” version

Figure 6.4: The ratio of the number of stored elements in each level of a multigrid
hierarchy to that of the finest level (level 0), using Parallel Graph Match [Nau+15]
with size 2 for aggregation.
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distinct AMG levels compared to a compression ratio of 2. Accumulating over an
AMG hierarchy of N + 1 levels, we have

N∑
i=0

Ci
1
2i

{(nnz + n + 1) × I + (nnz + 2n) × Vi}

≈
N∑

i=0
Ci

nnz × (I + Vi)
2i

,

where Vi is the size of the precision on level i and Ci is a constant determined by the
total number of SpMVs performed on that level. For example, in the Jacobi smoother
V-cycle configuration below, we have Ci = 2 for all but the coarsest level, coming
from one pre- and one post-smoother application on those levels. From here, we can
compute an estimate for the potential speedup of the mixed precision configuration
as ∑N

i=0 Ci
(I+V )

2i∑N
i=0 Ci

(I+Vi)
2i

.

6.3 Uniform Level Configurations
Algorithm 18 V-cycle multigrid method with color notation for precision. We
use blue, red, and brown colors, respectively, to indicate the precision for: matrices
(A), working vectors on the fine level (r), and working vectors on the next coarsest
level (g, e). The presmoothers and postsmoothers also use the working precision for
computation and matrix precision for the system matrix.

1: procedure Vcycle(A, x, b)
2: x = PreSmooth(x, b)
3: r = b - Ax
4: g = Restrict(r)
5: e = zero
6: Vcycle(Coarse, e, g)
7: x += Prolong(e)
8: x = PostSmooth(x, b)
9: end procedure

We implement the mixed precision AMG based on a simple idea. We do not need to
solve the coarse level very accurately because the coarse matrix is not the original
matrix. We try to use lower precision alternatively to achieve higher performance at
coarse levels. Uniform level configurations imply that the level uses the same precision
for the matrix A, residual r, initial guess x, and the right-hand side b in Algorithm 18.
The precision changes are on the fly with prolongation and restriction because the
explicit copy contains overhead and reduces the performance. In Algorithm 18, the
uniform precision configuration prepares vector g and e (brown color) for the next
coarse level precision. We denote DP - double precision, SP - single precision, and
HP - half precision as in Table 4.1. For the level settings, we describe the settings
from the finest level. If there is any following precision, it changes the precision after
one level. We have the following settings in this section:

• DP : all levels use double precision.
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Ginkgo’s AMG (DP) Ginkgo’s AMG (DP-SP) Ginkgo’s AMG (DP-SP-HP) Ginkgo’s AMG (DP-HP)
problem res. norm #iter time[ms] res. norm #iter time[ms] res. norm #iter time[ms] res. norm #iter time[ms]

2cubes 6.56e-09 20 14.62 6.56e-09 20 12.91 NaN 800 493.44 NaN 800 485.06
cage13 3.68e-10 11 15.49 3.68e-10 11 14.09 4.24e-10 11 14.18 6.15e-10 15 17.79
cage14 3.41e-10 10 32.98 3.41e-10 10 29.80 3.73e-10 10 29.04 7.02e-10 13 35.15

offshore 1203.64 800 770.56 1533.85 800 688.64 NaN 800 706.05 NaN 800 671.65
thermal2 2.18e-06 349 489.08 2.38e-06 425 536.09 NaN 800 952.22 NaN 800 919.08
tmt_sym 6.95e-05 359 371.70 7.41e-05 401 379.21 NaN 800 703.40 NaN 800 684.14

beam(o3l3) 3.05e-15 44 43.65 3.05e-15 44 40.89 5.53e-15 86 80.72 7.27e-15 127 117.62
l-shape(o3l7) 4.64e-14 160 195.31 4.78e-14 171 191.62 3.74e-11 800 869.77 2.19e-07 800 868.83

Table 6.2: Performance of CG preconditioned with an AMG V-cycle, scalar Jacobi
smoother with uniform level precision configurations, on H100. The “packed half”
SpMV implementation was used.

• DP − SP : the first level uses double precision and the rest of the levels use
single precision

• DP − SP − HP : the first level uses double precision, the second level uses
single precision, and the rest of the levels use half precision

• DP − HP : the first level uses double precision and the rest of the levels use
half precision.

From Table 6.2, we see that mixed precision AMG with single precision performs
well because we get performance improvement without facing any convergence issue
in these cases. When adding half-precision, mixed-precision AMG faces convergence
challenges in many cases. We observe the following reasons for these challenges and
provide a solution.

• The matrix values of 2cubes_sphere and offshore are originally out of the range
of half-precision such that we get Inf ∗ 0 = NaN when applying the matrix in
half precision with a zero vector.

• The Jacobi smoother in thermal2 and tmt_sym is out of the range of half-
precision. Some diagonal values are within the range of half precision, but the
inverted values are not.

• The residual of L-shape is too small for coarse levels leading underflow issue of
half precision.
When the residual changes the precision after restriction, the residual becomes
zero in half precision due to underflow. For the coarse level, this means that
the right-hand side is zero such that the linear system has a trivial solution -
all zeros. Thus, the coarse levels only prolongate the zero update to fine levels,
which does not contribute to the overall correction. L-shape does not face the
NaN issue like the other cases, but the convergence with half precision is slower
than the other configurations. The underflow issues may appear after a few
iterations, not from the beginning.

We use three different strategies to overcome the numeric challenges. First, we apply
row/column scaling as Algorithm 2.5 of [HPZ19], detailed in Algorithm 19, to the
2cubes_sphere and offshore matrices to ensure all values are in the range of half
precision range. We would like to compare the convergence of higher precision and
mixed precision directly, so the scaling on these matrices is applied for all precision
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configurations, not just those involving half. In PGM, we add a scaling of 1/2 to the
restriction matrix to avoid the values being out of the half precision. The (DP-SP-HP)
configuration can solve the 2cubes_sphere after scaling the matrix. Secondly, we
decouple the precision setting in the level in Section 6.4 to use higher precision in
the vectors to avoid the underflow/overflow issues. Third, because the challenges are
mainly from the small range of IEEE half precision, we use the bfloat16 precision
format alternatively in Section 6.5, which has the same range as single precision in
Table 2.2.

Algorithm 19 Symmetry-preserving row and column equilibration (one iteration of
Algorithm 2.5 in [HPZ19]).

1: procedure Scale(A)
2: for all i in 0...n − 1 do
3: Let ri = max(abs(A(i, :)))1/2

4: Let ci = max(abs(A(:, i)))1/2

5: end for
6: for all row, col in A do
7: A(row, col) = A(row,col)

rrowccol

8: end for
9: end procedure

6.4 Non-Uniform Level Configurations
We split the precision requirement between working vectors and matrix storage to
use the higher precision for working vectors but still lower precision in matrices. By
using higher precision in the working vectors, the residual computation is in higher
precision to combat roundoff errors. Also, the higher precision in residual vectors
avoids underflow issues, which was leading to zero vectors in half precision. Moreover,
the smoother precision follows the working vector precision, so we do not encounter
the overflow issue when inverting diagonal values. We still retain most of the benefit
from half precision in SpMV because the matrix memory footprint is the primary
performance concern in SpMV. However, decoupling precision incurs some extra cost
and memory usage in the generation step once because it passes the matrix with the
highest precision to the next coarse level generation and the level generation needs
to keep both of them for different usages. However, it improves the performance
with fewer convergence issues for applications that are used several times.

Non-uniform level configurations are configurations where the matrix and the vectors
do not use the same precision format. The mixed-precision SpMV will use the highest
precision format among the input, output, and matrix precisions for the arithmetic
operation as we mentioned in Section 4.2. The mixed precision application will
change the precision on the fly without any explicit conversion and write the desired
precision to the output memory directly. In these configurations, the working vector
precision always uses more bits than the matrix precision, so the working vector
precision always indicates the precision for arithmetic operations. The notation here
is similar to the configuration in Section 6.3. We consider the following non-uniform
configurations:
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• The vector precision (also the arithmetic precision in our cases):

1. (DP-SP): the first level’s vector uses double precision, but the rest of the
levels’ vectors use single precision.

2. (DP): all vectors use double precision.

• The matrix precision:

1. (SP): all matrices in multigrid use single precision.
2. (HP): all matrices in multigrid use half precision.
3. (DP-SP-HP): the first level’s matrix uses double precision, the second

level’s matrix uses single precision, and the other levels’ matrices use half
precision.

We have 6 possible combinations from these two lists. In the following discussion,
we use the notation (Working Precision, Matrix Precision) to represent the precision
selection in the configuration. To use the same notation style, we map the uniform
level configuration to repeat settings in both entries. For example, (DP-HP) in the
uniform level configuration will be represented as (DP-HP, DP-HP) in the following
discussion.

We notice that the offshore test matrix fails in all configurations in Table 6.2. In this
section, we set up another more complicated smoother - ℓ1-Jacobi-Chebyshev to solve
the offshore system. The ℓ1-Jacobi-Chebyshev smoother uses the symmetric positive
definite (SPD) property of the matrix in Section 2.6. We omit the cage13 and cage14
test cases in the ℓ1-Jacobi-Chebyshev experiments because they are not SPD matrices.
We also omit the offshore test case in the weighted Jacobi smoother because it does
not converge in the complete double precision setting. The ℓ1-Jacobi-Chebyshev can
improve the convergence of the offshore problem within the 800 iterations limit.

In the following section, we present the speedup information and the factors of
performance and convergence in one figure. First, we show the speedup in the bar plot
from mixed precision against the double precision. If the case name contains “*”, the
problem is pre-scaled to fit the half-precision range. Suppose a certain configuration
does not give any speedup against a complete double-precision configuration. In that
case, it will not have a bar for that configuration. We embed additional information
into the speedup figures with the notation in Table 6.3. Suppose there is a bar for
one configuration with ◦ label. In that case, the configuration is still faster than the
complete double configuration within more iterations. That is, the mixed-precision
improvement can cover the additional iterations. Suppose there is no bar for one
configuration with ◦. In that case, the configuration is slower than the complete
double configuration because the configuration needs more iterations to converge.

On H100, we collect the performance data of AMG preconditioned CG with Jacobi
smoothers in Figure 6.5 and with ℓ1-Jacobi-Chebyshev smoothers in Figure 6.6.
Except for (DP-HP, DP-HP), all mixed-precision configurations performs better
than double-precision configuration with 2cubes_shpere problem. Although (DP-HP,
DP-HP) performs better per iteration with 2cubes_shpere problem, it needs more
iterations to converge such that the performance is slower than the double-precision
configuration. It is the same reason why some configurations miss a speedup bar
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label meaning
NaN (×) the result residual norm of the configuration is NaN
More iter (◦) the configuration requires more iterations than the

complete double precision configuration
No speedup per iter (△) the time per iteration of the configuration is not

faster than the complete double precision configu-
ration

Not converged (▽) the configuration does not converge

Table 6.3: The label meaning in the speedup figures.
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Figure 6.5: Speedup in terms of total solve time for CG with AMG V-cycle precon-
ditioning and scalar Jacobi smoother configuration. Results are for H100 with the
packed half SpMV variant. * denotes the matrix was scaled prior to solving. The
detailed meanings of labels are available in Table 6.3.

but with ◦(More Iter) mark only, such as (DP-HP, DP-HP) with cage13 and cage14
problems. With thermal2 and tmt_sym problems, the uniform configuration with half
precision shows the NaN mark(×), which we discussed in the Section 6.3. Except for
the (DP-SP, DP-SP) configuration, all (DP-SP, *) configurations with the tmt_sym
problem need more iterations than double precision configuration. However, the
speedup per iteration of mixed-precision can cover the additional iterations. The
tmt_sym and thermal2 problems require double precision for working precision to
use the same number of iterations for convergence. The l-shape problem needs more
iterations with (DP-SP, SP) and (DP-SP, HP) but not with (DP-SP, DP-SP-HP).
We can get up to 1.15x speedup with single precision and up to 1.35x speedup
with half precision. The non-uniform level configuration performs better in terms of
performance and convergence than the uniform level configuration.

We collect performance data with ℓ1-Jacobi-Chebyshev smoothers in Figure 6.6 on
H100. We can solve the offshore problem with ℓ1-Jacobi-Chebyshev smoothers. For
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Figure 6.6: Speedup in terms of total solve time for CG with AMG V-cycle precon-
ditioning and scalar Jacobi smoother configuration. Results are for H100 with the
packed half SpMV variant. * denotes the matrix was scaled prior to solving. The
detailed meanings of labels are available in Table 6.3.

the offshore problems, the uniform configuration with half precision needs more
iterations to reach the required stopping criterion although it still uses less time per
iteration. For the thermal2 and tmt_sym problems, we have a similar story in terms
of performance to the Jacobi smoothers. The beam and l-shape problems show fewer
speedup bars because the speedup per iteration is insufficient to cover the additional
iterations. Mixed precision configurations show up to 1.3x speedup compared to the
double precision configurations.

We also give the iteration counts in Figures 6.5 and 6.6 on H100. For both smoother
options, the (DP-HP, DP-HP) configuration always needs the most number of
iterations because it is the earliest one to change the working and matrix precision to
half. Although (DP-SP, HP) and (DP, HP) change the matrix precision at the finest
level, they do not affect the convergence. The thermal2 and tmt_sym problems
using (DP, *) for the working precision give the same convergence no matter if the
matrix is in lower precision. From the above observation, the working precision is
more important for the convergence than the matrix precision. (DP-SP, DP-SP-HP)
on the beam problem with ℓ1-Jacobi-Chebyshev smoothers takes fewer iterations
than double precision, in which case rounding error has some positive effect and
makes a more impactful update at the coarse levels with lower precision.

Figure 6.9 shows the performance overview for AMG preconditioned CG with Jacobi
smoothers and Figure 6.10 shows the overview for AMG preconditioned CG with
ℓ1-Jacobi-Chebyshev smoothers. For 2cubes_sphere, half precision renders only
small performance advantages over single precision. The (DP-SP, HP) configuration
shows that the highest speedup is around 1.12x with the cage14 problem. Because
CSR with pack/no-pack versions or different subwarp sizes (in Section 4.3.2) can



88 6. Mixed Precision Algebraic Multigrid

2cubes* cage13 cage14 thermal2 tmt_sym beam l-shape

101

102

#
It

er
at

io
ns

AMG Preconditioned CG with Jacobi

(DP, DP)
(DP-SP, DP-SP)
(DP-SP-HP, DP-SP-HP)
(DP-HP, DP-HP)

(DP-SP, SP)
(DP-SP, HP)
(DP-SP, DP-SP-HP)
(Working Precision, Matrix Precision)

(DP, SP)
(DP, HP)
(DP, DP-SP-HP)

(DP, DP)
(DP-SP, DP-SP)
(DP-SP-HP, DP-SP-HP)
(DP-HP, DP-HP)

(DP-SP, SP)
(DP-SP, HP)
(DP-SP, DP-SP-HP)
(Working Precision, Matrix Precision)

(DP, SP)
(DP, HP)
(DP, DP-SP-HP)

Figure 6.7: Total iterations for CG with AMG V-cycle preconditioning and scalar
Jacobi smoother configuration. Results are shown for H100 with the packed half
SpMV variant. * denotes the matrix was scaled prior to solving.
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Figure 6.8: Total iterations for CG with AMG V-cycle preconditioning and ℓ1-Jacobi-
Chebyshev smoother configuration. Results are shown for H100 with the packed half
SpMV variant. * denotes the matrix was scaled prior to solving.
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Figure 6.9: Speedup in terms of total solve time for CG with AMG V-cycle pre-
conditioning and scalar Jacobi smoother configuration. Results are for one GCD of
MI250X. * denotes the matrix was scaled prior to solving. The detailed meanings of
labels are available in Table 6.3.

introduce different accumulations order and lead to different summations in the end.
(DP-SP, DP-SP-HP) needs more iterations in l-shape case on MI250X, but not on
H100. With mixed precision, we can reach up to 1.125x speedup on MI250X with
Jacobi smoother settings. In Figure 6.10, (DP-SP, SP) for the beam problem shows
a quite significant speedup against the other problems because the single precision
matrix may fit in the GPU cache well. Except for that, the other mixed precision
cases can also show up to 1.12x speedup.

We show the performance data on Intel Max1550 in Figure 6.11 for Jacobi smoothers
settings and Figure 6.12 for ℓ1-Jacobi-Chebyshev smoothers. Unlike H100 and
MI250X, we observe speedup mainly for the cage14 problems. Only a few mixed
precision configurations show speedup for the other problems. It might be related
to the larger overhead of kernel execution or the fewer options for sub-group size
than the other hardware such that the speedup of the mixed-precision usage does
not play a major role.
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Figure 6.10: Speedup in terms of total solve time for CG with AMG V-cycle
preconditioning and ℓ1-Jacobi-Chebyshev smoother configuration. Results are for
one GCD of MI250X. * denotes the matrix was scaled prior to solving. The detailed
meanings of labels are available in Table 6.3.
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Figure 6.11: Speedup in terms of total solve time for CG with AMG V-cycle
preconditioning and scalar Jacobi smoother configuration. Results are for one tile of
Max1550 with the packed half variant SpMV. * denotes the matrix was scaled prior
to solving. The detailed meanings of labels are available in Table 6.3.
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Figure 6.12: Speedup in terms of total solve time for CG with AMG V-cycle
preconditioning and ℓ1-Jacobi-Chebyshev smoother configuration. Results are for
one tile of Max1550 with the packed half variant SpMV. * denotes the matrix was
scaled prior to solving. The detailed meanings of labels are available in Table 6.3.

6.5 Adding BFLOAT16 Precision Into the Multi-
grid Hierarchy

We also add the bfloat16 precision to Ginkgo because the issues discussed in
Section 6.3 are mainly coming from the range issue of half precision. The bfloat16
precision gives the same range as the single precision, which avoids underflow/overflow
issues encountered when using the half precision. Because bfloat16 has the same
memory footprint as half precision, bfloat16 performs similarly to half precision.
Some cases need more iterations to converge than complete double precision due
to fewer fraction bits with bfloat16. We evaluate the performance of uniform and
non-uniform precision settings by replacing half precision with bfloat16 precision.
We use BF as the short notation for bfloat16. The experiments test the following
precision configurations additionally:

• Uniform Precision: (DP-BF, DP-BF) and (DP-SP-BF, DP-SP-BF)

• Non-Uniform Precision: (DP-SP, BF), (DP-SP, DP-SP-BF), (DP, BF), and
(DP, DP-SP-BF)

We also collect the data with uniform level configurations like Table 6.2 in Table 6.4
on H100. The main difference between half precision and bfloat16 precision is
that bfloat16 no longer gives NaN for the 2cubes_sphere, offshore, thermal2, and
tmt_sym problems. For the 2cubes_sphere, cage13, cage14, and beam problems,
the mixed precision configurations with bfloat16 precision use the same number of
iterations as the double precision. However, thermal2, tmt_sym, and l-shape need
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Ginkgo’s AMG (DP-SP-HP) Ginkgo’s AMG (DP-HP) Ginkgo’s AMG (DP-SP-BF) Ginkgo’s AMG (DP-BF)
problem res. norm #iter time[ms] res. norm #iter time[ms] res. norm #iter time[ms] res. norm #iter time[ms]

2cubes NaN 800 493.44 NaN 800 485.06 6.70e-09 20 13.53 1.15e-08 20 13.31
cage13 4.24e-10 11 14.18 6.15e-10 15 17.79 3.67e-10 11 13.88 3.71e-10 11 13.76
cage14 3.73e-10 10 29.04 7.02e-10 13 35.15 3.40e-10 10 29.46 3.42e-10 10 27.60

offshore NaN 800 706.05 NaN 800 671.65 1416.76 800 713.00 2045.25 800 692.75
thermal2 NaN 800 952.22 NaN 800 919.08 2.80e-06 597 730.73 2.92e-06 635 723.24
tmt_sym NaN 800 703.4 NaN 800 684.14 9.59e-05 649 593.51 9.87e-05 754 665.21

beam(o3l3) 5.53e-15 86 80.72 7.27e-15 127 117.62 3.15e-15 44 42.90 3.29e-15 44 42.99
l-shape(o3l7) 3.74e-11 800 869.77 2.19e-07 800 868.83 5.01e-14 186 203.06 5.10e-14 192 208.69

Table 6.4: Performance of CG preconditioned with an AMG V-cycle, scalar Jacobi
with uniform level precision configurations containing the half precision or bfloat16
precision, on H100. The “packed half” SpMV implementation was used.

more iterations than the double precision due to the lower accuracy of bfloat16,
which already showed with (DP-SP) uniform configuration in Table 6.2. Bfloat16
precision gives the same representation range of floating point as single precision, so
we do not face the numerical unrecoverable issue with half precision introduced in
Section 6.3.

Besides Table 6.4, we also collect the performance overview with all uniform and non-
uniform level configurations from the two kinds of smoothers setups in Figures 6.13
and 6.14 on H100, Figures 6.15 and 6.16 on MI250X, and Figures 6.17 and 6.18
on Max1550. We do not pre-scale the 2cube_sphere and offshore problem in these
figures, so the uniform levels with half precision do not converge for these problems.

Figures 6.13 and 6.14 show the performance overview without scaling on H100.
Bfloat16 and half precision perform similarly if they use the same number of iterations
to solve the problem. The similar performance is expected as both precision formats
use the same number of bits to represent floating point. Like the uniform level
observation, the mixed precision configurations with bloat16 all converge without
NaN issue. For beam and l-shape, (DP-SP, DP-SP-BF) needs more iterations, but
(DP-SP, DP-SP-HP) does not, which may be related to the fraction bits length
between half precision and bfloat16 precision. In Figure 6.14, (DP-SP, DP-SP-HP)
gives better performance than (DP-SP, DP-SP-BF). Although bfloat16 precision
reduces the concern about underflow and overflow, half precision can still give
performance and accuracy benefits when the problem is with sensible accuracy.

We show the performance overview of all configurations, including bfloat16 on MI250X
in Figures 6.15 and 6.16. Bfloat16 and half precision still perform similarly when
using the same iterations. For the beam problem in Figure 6.16, the cases with more
iterations on MI250X are different from the cases on H100 because the AMD GPU
supports up to 64 sub-wavefront size and the different 16-bits SpMV implementation
that lead to different accumulation results. The thermal2 problem can be solved
with bfloat16 uniform level configurations. However, it requires too many additional
iterations to beat the performance of the double-precision configuration.

We collect the performance data in the overview plot Figure 6.17 for scalar Jacobi
smoothers and Figure 6.18 for ℓ1-Jacobi-Chebyshev smoother on Max1550. We
mainly have the speedup from mixed precision with the cage14 problem. It might
also be related to the larger kernel execution overhead than the other hardware
such that we need larger speedup from mixed precision SpMV to show a noticeable
speedup in total runtime.
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Figure 6.13: Speedup in terms of total solve time for CG with AMG V-cycle
preconditioning and scalar Jacobi smoother configuration. Results are for H100 with
the packed half SpMV variant. The detailed meanings of labels are available in
Table 6.3.
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Figure 6.14: Speedup in terms of total solve time for CG with AMG V-cycle
preconditioning and ℓ1-Jacobi-Chebyshev smoother configuration. Results are for
H100 with the packed half SpMV variant. The detailed meanings of labels are
available in Table 6.3.
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Figure 6.15: Speedup in terms of total solve time for CG with AMG V-cycle
preconditioning and scalar Jacobi smoother configuration. Results are for one GCD
of MI250X. The detailed meanings of labels are available in Table 6.3.
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Figure 6.16: Speedup in terms of total solve time for CG with AMG V-cycle
preconditioning and ℓ1-Jacobi-Chebyshev smoother configuration. Results are for
one GCD of MI250X. The detailed meanings of labels are available in Table 6.3.
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Figure 6.17: Speedup in terms of total solve time for CG with AMG V-cycle
preconditioning and scalar Jacobi smoother configuration. Results are for one tile of
Max1550 with the packed half variant SpMV. The detailed meanings of labels are
available in Table 6.3.
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Figure 6.18: Speedup in terms of total solve time for CG with AMG V-cycle
preconditioning and ℓ1-Jacobi-Chebyshev smoother configuration. Results are for
one tile of Max1550 with the packed half variant SpMV. The detailed meanings of
labels are available in Table 6.3.
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6.6 Standalone Multigrid Solver

This section uses Ginkgo’s AMG as a standalone solver on H100. We collect the
performance and convergence data in Figure 6.19 and Figure 6.20. We use 1e-9 for
the absolute residual norm stopping criterion, and the other parameters are the same
as the preconditioner settings in Section 6.1. Four cases converge in complete double
precision configuration (i.e. (DP, DP)): cubes_sphere, cage13, cage14, and beam.
Thus, we show these four cases in the figures of this section with different precision
configurations. Because we already consider bfloat16 as an option for precision, we do
not apply the scaling method such that the configuration with half precision results
in NaN issue with the 2cubes_sphere problem. The uniform level configuration
(DP-HP, DP-HP) is generally poor for convergence, but it is expected, as we discussed
the challenges of using half precision previously: the cage13 and cage14 problems
need more iterations to recover the rounding effects, and the 2cubes_sphere and
beam problems can not converge in the (DP-HP, DP-HP) configuration. As we
observe in the experiments using Ginkgo’s AMG as a preconditioner, the non-
uniform configuration with bfloat16/half precision matrices usually performs the best
except for the beam problem. Because there is no additional workload outside of
multigrid, the standalone AMG shows higher speedup than the preconditioned CG.
The cage14 problem achieves up to 1.45x speedup with (DP-SP, HP) and (DP-SP,
BF) configurations. (DP-HP, DP-HP) requires more iterations than (DP-BF, DP-BF)
with the cage13 and cage14 problems also due to the underflow issue. However, for
the beam problem, (DP, BF) and (DP-SP, BF) show more iterations than (DP, HP)
and (DP-SP, HP) in Figure 6.20. From the experiments, using a double precision
smoother only at the finest level but the other component in lower precision is
sufficient to reach the desired stopping criterion without any outer CG solver or
iterative refinement.

6.7 Other Multigrid Cycles

We observe higher speedups when using Ginkgo’s mixed precision AMG as a
standalone solver instead of embedding it into a CG iterative solver. This is expected
as embedding AMG into a CG as a preconditioner reduces the effect of using low
precision inside the lower multigrid levels compared to the more significant portion
of double precision computations. Another speedup limitation in the V-cycle is the
reduced problem size in coarse levels. Even if we reach a good speedup in the coarse
levels, the speedup contribution may not be noticeable because the coarse level takes
little time overall. Some applications use the W-cycle or F-cycle rather than V-cycle
for better convergence. W-cycle(Figure 2.15b) or F-cycle use the coarse level more
often than V-cycle(Figure 2.15a) such that the coarse levels play a more important
role than the V-cycle in the overall performance. To assess the mixed precision
benefit in the cycles other than the V-cycle, we try the same preconditioned CG
configuration of Section 6.1 on a small W-cycle with four levels. In Figures 6.21
and 6.22, we can get up to 1.55x speedup with Jacobi smoothers and 1.35x speedup
with ℓ1-Jacobi Chebyshev smoothers on H100. As with the V-cycle, when separating
the precision of working vectors and matrices at a level, we can use lower precision
for the matrix at the finest level to enable even higher speedups.
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Figure 6.19: Speedup in terms of total solve time for a standalone V-cycle AMG
solver (scalar Jacobi smoother configuration) on H100, using packed half SpMV. The
detailed meanings of labels are available in Table 6.3.

2cubes cage13 cage14 beam

102

#
It

er
at

io
ns

Standalone AMG with Jacobi

(DP, DP)
(DP-SP, DP-SP)
(DP-SP-HP, DP-SP-HP)
(DP-HP, DP-HP)
(DP-SP-BF, DP-SP-BF)
(DP-BF, DP-BF)

(DP-SP, SP)
(DP-SP, HP)
(DP-SP, DP-SP-HP)
(DP-SP, BF)
(DP-SP, DP-SP-BF)
(Working Precision, Matrix Precision)

(DP, SP)
(DP, HP)
(DP, DP-SP-HP)
(DP, BF)
(DP, DP-SP-BF)

(DP, DP)
(DP-SP, DP-SP)
(DP-SP-HP, DP-SP-HP)
(DP-HP, DP-HP)
(DP-SP-BF, DP-SP-BF)
(DP-BF, DP-BF)

(DP-SP, SP)
(DP-SP, HP)
(DP-SP, DP-SP-HP)
(DP-SP, BF)
(DP-SP, DP-SP-BF)
(Working Precision, Matrix Precision)

(DP, SP)
(DP, HP)
(DP, DP-SP-HP)
(DP, BF)
(DP, DP-SP-BF)

Figure 6.20: Total iterations for a standalone V-cycle AMG solve (scalar Jacobi
smoother configuration) on H100, using packed half SpMV.
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Figure 6.21: Speedup in terms of total solve time for CG with AMG W-cycle
preconditioning and scalar Jacobi smoother configuration with 4 levels. Results are
for H100 with the packed half SpMV variant. The detailed meanings of labels are
available in Table 6.3.
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Figure 6.22: Speedup in terms of total solve time for CG with AMG W-cycle precon-
ditioning and ℓ1-Jacobi-Chebyshev smoother configuration with 4 levels. Results are
for H100 with the packed half SpMV variant. The detailed meanings of labels are
available in Table 6.3.
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6.8 Summary
In this chapter, we used the mixed precision SpMV in Chapter 4 and the flexible
design in Chapter 5 to implement and evaluate a mixed precision algebraic multigrid
method which allows mixing usage of double precision, single precision, half precision,
and bfloat16 precision. When using AMG as a preconditioner, we can use single or
even half/bfloat16 precision to reach higher performance without losing convergence
in some cases. In uniform configurations handling all components of a multigrid
level in the same format, mixed precision AMG using single precision for subsequent
levels is a good option. Using half precision results in a significant amount of
underflow/overflow problems. We proposed the non-uniform level configurations,
which can set the precision for the matrices and working vectors separately. The
non-uniform level configurations avoid the underflow issue from half precision because
the working vectors with higher precision can properly handle the small values.

Thanks to the bfloat16 precision, we can reduce the underflow/overflow issues.
Scaling or decoupling the precision at the same level can be used to overcome the
convergence issues introduced by the half precision. By using higher precision for
working vectors in non-uniform configurations, we observe that mixed precision with
single/half/bfloat16 precision is a viable option. Using higher precision in the working
vector maintains the convergence without losing the benefit from mixed precision
much. Some cases that are sensitive to rounding errors in the lower levels may still
prefer the half precision over the bfloat16 precision because half precision can be
more accurate than the bfloat16 precision. Accelerators and ecosystems may only
have native support for half precision because it is from the IEEE standard. Without
native support from hardware and ecosystems, the lack of optimization with the
bfloat16 precision may lead to low performance. We also demonstrate the portability
of the developed mixed precision AMG by running performance and convergence
experiments on GPUs from different vendors: AMD MI250X(1 GCD), Intel Max1550
(1 tile), and NVIDIA H100(PCIE).
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7. Conclusion

We designed and developed the first open-source high-performance mixed-precision
AMG, which is portable across GPUs from AMD, Intel, and NVIDIA. We reach this
target from the aspects of portability, high performance, and flexibility. We developed
mixed precision AMG on Ginkgo because Ginkgo enforces several principles to
ensure software sustainability. To achieve portability, we extend Ginkgo’s support
from NVIDIA GPUs to AMD, Intel, and NVIDIA GPUs in Chapter 3, which allows
developers to use the native vendors’ language to optimize the GPU kernels. As
SpMV is the backbone of AMG, we design and implement high-performance SpMV
routines that are competitive with vendors’ libraries. Furthermore, we provide a
comprehensive set of mixed-precision SpMV allowing any precision formats input in
Chapter 4. We design platform-portable and high-performance AMG in Chapter 5,
which shows competitive performance against the state-of-the-art library NVIDIA’s
AmgX on NVIDIA GPUs. Combining these building blocks, we develop the high-
performance mixed-precision AMG for scientific applications, which is available on
AMD, Intel, and NVIDIA GPUs in Chapter 6. Although mixed-precision AMG
introduces numerical challenges for some problems, we discuss several strategies to
overcome these. We demonstrate that using low precision in the AMG hierarchy can
improve the performance without hurting the accuracy as a preconditioner or solver.

In the future, we can push these works further in several directions. As the RISC-V
processor receives increasing interest, Ginkgo can use the extensible design to add
RISC-V support or use the existing SYCL backend but optimize the kernels for the
RISC-V processor. We can implement a new matrix format, which is suitable for
application usage, or try to use tensor cores for sparse matrix formats. Continuing to
improve the SpMV performance and adapt to the new devices is always in Ginkgo’s
mind. The mixed precision AMG design does not restrict the coarsening method, so
we can also add more algebraic methods or even geometric multigrid if necessary.
With a numerical analysis, we may find some low-overhead algorithms to decide the
precision for different levels on a given matrix and algorithms. Because the coarse
matrix might not utilize the accelerators fully, we can consider additive multigrid
like BFX [BPX90] to apply the smoother concurrently for different levels. Another
interesting direction is to use asynchronous concepts in the multigrid design [WC19].
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