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Abstract  

The use of autonomous robots for assistance tasks in hospitals has the potential to free up qualified staff and improve 

patient care. However, the ubiquity of deformable and transparent objects in hospital settings poses significant challenges 

to vision-based perception systems. We present EfficientPPS, a neural architecture for part-aware panoptic segmentation 

that provides robots with semantically rich visual information for grasping and manipulation tasks. We also present an 

unsupervised data collection and labelling method to reduce the need for human involvement in the training process. 

EfficientPPS is evaluated on a dataset containing real-world hospital objects and demonstrated to be robust and efficient 

in grasping transparent transfusion bags with a collaborative robot arm. 

 

1 Introduction 

Aging populations increase demand for hospitals and re-

tirement facilities to provide affordable, high-quality care. 

At the same time, many societies face growing workforce 

shortages in the health care sector, making the provision of 

affordable care increasingly difficult. The use of robots in 

hospitals enables the automation of many routine tasks, 

promising to free up qualified staff to focus on more com-

plex, patient-focused tasks that require human skills and 

judgment. While routine for humans, however, even com-

paratively simple fetch-and-place tasks in hospital settings 

can be highly challenging for robots, as they often involve 

deformable or transparent objects such as syringes, tubes 

or transfusion bags. Reliable grasping and manipulation of 

such objects requires robust, intelligent perception systems 

capable of detecting objects in unstructured environments 

with variable lighting conditions, while at the same time 

providing semantic information about the detected objects 

such as object types or graspable regions. 

To that end, we contribute EfficientPPS, a robust and effi-

cient neural architecture for part-aware panoptic segmen-

tation, which simultaneously solves panoptic and part seg-

mentation in one single network. This allows for the detec-

tion and annotation of part-whole relationships to provide 

robots with semantically rich visual information for use in 

downstream tasks such as grasping and manipulation. In 

order to address the specific challenges posed by transpar-

ent objects in hospital settings, we also contribute a data 

collection and weakly supervised labelling method to re-

duce the amount of human involvement in the training pro-

cess. Our work is the first to study part and panoptic seg-

mentation of transparent objects. We evaluate EfficientPPS 

on a dataset containing several real-world hospital objects, 

as well as in the context of grasping transparent transfusion 

bags with a collaborative robot arm.  

1.1 Related Work 

1.1.1 Panoptic Segmentation 

Originally developed in the context of autonomous driving, 

panoptic segmentation methods promise robust semantic 

segmentation of dynamic scenes, while at the same time 

Figure 1 EfficientPPS enables the part-panoptic segmen-

tation of transparent objects for robotic manipulation in 

hospital assistance tasks. 



distinguishing between different instances of the same ob-

ject class [1]. Early panoptic segmentation approaches per-

formed instance and semantic segmentation separately and 

combine them in a postprocessing step [1], which leads to 

considerable computational overhead. More recent models 

perform instance and semantic segmentation with separate 

“heads” sharing a common backbone network [2]–[5]. Ef-

ficientPS [6] leverages the EfficientNet architecture [7] as 

a backbone to balance high-precision panoptic segmenta-

tion with improved computational efficiency. 

1.1.2 Part-Aware Panoptic Segmentation 

Studies in the field of neuropsychology have shown that 

humans rely on part decomposition to perceive objects [8]. 

In robotics, part affordances commonly guide the genera-

tion of task-dependent grasps [9], particularly in conjunc-

tion with part-aware perception methods [10]–[14]. Chal-

lenging real-world tasks involving goal-directed manipula-

tion in dynamic environments, such as grasping a transfu-

sion bag in such a way that it can be placed on a hanger, 

can be solved more robustly with perception methods com-

bining panoptic segmentation with part-aware perception. 

While the first implementations of part-aware panoptic 

segmentation [15] used two different networks for panoptic 

segmentation and part parsing, fusing the results in a post-

processing step, a first unified transformer-based architec-

ture for part-aware perception in the context of autonomous 

driving has been proposed [16]. We introduce a parameter-

efficient unified architecture for part-aware panoptic seg-

mentation based on EfficientPS [6], along with an unsuper-

vised data collection method geared toward robust segmen-

tation of transparent objects. 

2 Efficient Part-Aware Panoptic 

Segmentation 

We propose EfficientPPS, a novel network architecture for 

part-aware panoptic segmentation with a single model, as 

well as an unsupervised training data collection pipeline. 

2.1 EfficientPPS Architecture 

EfficientPPS is a unified neural network architecture for 

part-aware panoptic segmentation (see Figure 2). It builds 

on EfficientPS [6], a compact and parameter-efficient net-

work architecture for panoptic segmentation. To support 

simultaneous panoptic and part segmentation, we extended 

EfficientPS by a part segmentation head for identifying 

part-whole relationships as well as a modified fusion mod-

ule to combine the predicted semantic, instance and part 

labels. 

2.1.1 Shared Backbone, Feature Extraction and 

Panoptic Segmentation 

EfficientPPS uses the same backbone and feature extrac-

tion architecture as EfficientPS [6]. A “shared backbone” 

encoder based on EfficientNet [7] transforms the input im-

age into latent space. The use of EfficientNet’s compound 

scaling permits the backbone encoder to achieve good per-

formance with a comparatively small number of parame-

ters. To effectively learn features at multiple scales, a 2-

way Feature Pyramid Network (FPN) [17] is employed. It 

consists of two branches: A lower branch (see Figure 2) 

upsamples lower-resolution features to higher resolutions, 

while an upper branch downsamples higher-resolution fea-

tures to lower resolutions [6]. To further reduce the number 

of network parameters, depthwise separable convolutions 

[18] are used throughout. Instance and semantic segmenta-

tion is performed in two separate “heads”, which operate 

on the same internal representation produced by the shared 

backbone. The instance head is implemented as a variant 

of Mask R-CNN [19], while the semantic head is based on 

depthwise separable convolutional layers and Dense Pre-

diction Cells [20]. 

We refer to [6] for details of the shared backbone, FPN fea-

ture extraction as well as the semantic and instance seg-

mentation heads. 

2.1.2 Part Segmentation Head 

The objective of part segmentation is the classification of 

pixels of the image into classes. Given an image of several 

syringes in a drawer, part segmentation associates a class 

label such as syringe_barrel, syringe_plunger 

or syringe_needle to each pixel of the image. To per-

form part segmentation, EfficientPPS adds an additional 

part segmentation head, which transforms the latent fea-

tures produced by the feature extraction backbone to pixel-

Figure 2 EfficientPPS architecture. By extending the architecture of EfficientPS by an additional “part segmentation 

head”, panoptic and part segmentation can be performed by a single network. A novel part-panoptic fusion module com-

bines predicted part, semantic and instance information. Our contribution is highlighted in bold. 



level class labels. For part segmentation, it is not consid-

ered which object instance the pixel belongs to. Therefore, 

part segmentation is a semantic segmentation task, and Ef-

ficientPPS uses the same network architecture as its seman-

tic segmentation head for part segmentation. 

2.1.3 Part-Panoptic Fusion Module 

Joint part and semantic segmentation poses the fundamen-

tal challenge of fusing scene-level and part-level seman-

tics. De Geus et al. [15] show that fusion of part and se-

mantic logits can exploit synergies, as errors made by the 

part segmentation module can be compensated by correct 

predictions of a semantic segmentation module and vice 

versa. However, they also show that requiring both mod-

ules to agree on the scene-level label (e.g. sy-

ringe_barrel at the part level and syringe at the 

scene level) decreases the overall predictive performance. 

To resolve this trade-off, we propose a part-aware panoptic 

fusion module to fuse scene-level and part-level logits 

adaptively before integrating instance segmentation infor-

mation (see Figure 3). The core objective is the amplifica-

tion or attenuation of logits from different segmentation 

heads according to an agreement function. The fusion mod-

ule should comply with the following criteria: 

 

Agreement: When both heads output logits representing a 

high probability, the resulting fused logit should be ampli-

fied to reflect this consensus. 

Disagreement: When one head outputs a high probability 

and the other head a low probability, the fused logit should 

have a value close to zero. 

Uncertainty: When one head outputs an uncertain proba-

bility, with a corresponding logit close to zero, the fused 

logit should reflect the logit value of the other head. 

 

The panoptic fusion module of EfficientPS [6] proposes the 

agreement function 

𝐿𝑆𝑒𝑚𝐼𝑛𝑠𝑡 = (𝜎(𝐿𝑆𝑒𝑚) + 𝜎(𝐿𝐼𝑛𝑠𝑡))

⊙ (𝐿𝑆𝑒𝑚 + 𝐿𝐼𝑛𝑠𝑡), 
 

where the fused logit 𝐿𝑆𝑒𝑚𝐼𝑛𝑠𝑡 is the Hadamard product 

of the output logits 𝐿𝑆𝑒𝑚 and 𝐿𝐼𝑛𝑠𝑡 of the semantic and 

instance heads, respectively. This results in final logits that 

increase in proportion to the agreement of the semantic and 

instance heads. We propose to fuse part and semantic in-

formation via the following function 

 

𝐿𝑃𝑎𝑟𝑡𝑆𝑒𝑚 = (𝜎′(𝐿𝑃𝑎𝑟𝑡) + 𝜎′(𝐿𝑆𝑒𝑚))

⊙ (𝐿𝑃𝑎𝑟𝑡 + 𝐿𝑆𝑒𝑚) 

 

where 𝜎′ is a sigmoid function rescaled to the range [-1, 

1]: 

𝜎′(𝑥) = 2𝜎(𝑥) − 1 

 

Our proposed scheme to fuse part and semantic infor-

mation is shown in Figure 4. Part-semantic fusion is per-

formed in two steps: 

 

1. Semantic-wise fusion: For each semantic class (e.g. 

syringe), the part logits for all corresponding part 

classes (e.g. syringe_barrel, sy-

ringe_plunger etc.) are selected from the outputs 

of the part head. By computing the maximum across the 

part class dimension, the part logits are flattened to re-

flect the probability of a pixel belonging to any of the 

selected part classes. Evaluation of the agreement func-

tion yields semantic logits which are “enhanced” with 

the predicted part information. The enhanced semantic 

units are passed to the panoptic fusion model to be 

fused with the instance information. 

 

2. Part-wise fusion: For each part class (e.g. sy-

ringe_barrel), the corresponding semantic class 

(syringe) is selected. Evaluation of the agreement 

function yields part logits which are “enhanced” with 

Figure 3 The part-panoptic fusion module. Part-panoptic 

fusion is split into distinct part-semantic and panoptic 

steps, which yield part, instance and semantic labels. 

Figure 4 The part-semantic fusion module. The logits out-

put by the semantic and part heads, respectively, are fused 

by a semantic-wise and a part-wise routine. Semantic-wise 

fusion takes a semantic class (e.g. syringe) and all asso-

ciated part classes (syringe_barrel etc.) and evaluates 

the agreement function to produce “enhanced” logits for 

each semantic class, which are forwarded to the panoptic 

fusion module. Part-wise fusion takes a part class (e.g. sy-

ringe_barrel) and its associated semantic class (sy-

ringe) to produce “enhanced” logits for each part class, 

from which the final part labels are computed. 



the predicted semantic information. From the resulting 

logits, the final part labels are created by finding the 

part class with the highest logit value for each pixel. 

 

The panoptic fusion module is identical to that of Effi-

cientPS [6], with the exception that it uses the “enhanced” 

semantic logits. The final output of the network are three 

labels per pixel: The predicted part class, semantic class 

and instance label. 

2.2 Unsupervised Data Collection for 

Transparent Objects 

In typical application contexts such as households or hos-

pitals, a large variety of objects must be perceived in vari-

ous configurations and lighting conditions. In hospitals, 

transparent or highly reflective objects such as tubes, sy-

ringes or transfusion bags are ubiquitous. We propose a 

data collection pipeline which reduces the need for human 

labelling while efficiently producing rich datasets for such 

challenging objects. 

We propose to acquire raw image data with a flange-

mounted camera and a six-axis robot arm (see Figure 5). 

By using a robot arm for data acquisition, the capturing an-

gle and position can be varied autonomously to capture the 

same scene from multiple points of view. We test two var-

iants of the pipeline: Variant A uses an RGB-D camera to 

use both colour and depth information for training data 

generation, while variant B uses a 2D RGB images and a 

monitor to project background textures. 

2.2.1 Variant A: Label Generation from RGB-D 

Images 

In a first variant of the pipeline, objects are placed directly 

on a table in the workspace of the robot. An RGB-D depth 

camera is mounted to the robot flange. To generate labelled 

training data, we propose a three-step labelling process, 

which explicitly addresses the challenges posed by trans-

parent objects: 

 

1. Object labelling: A progressive morphological filter 

[21] is applied to the raw point cloud to approximately 

segment objects from the background. Transparent ob-

jects often result in highly noisy depth estimates. For 

this reason, the segmentation is refined by performing 

RANSAC [22] with a plane to extract background 

points missed by the morphological filter. Euclidean 

cluster extraction is applied to associate the remaining 

ambiguous points with either the object or the back-

ground. 

2. Part labelling: Because the object classes considered 

for the experiments (see Section 3) afford colour-based 

part segmentation, object points are assigned to parts 

via colour thresholding. 

3. Mapping into pixel space: The segmented point cloud 

is projected into the pixel plane using the camera’s pro-

jection matrix. This projection is not bijective: There 

may be pixels for which there is no point in the point 

cloud, or multiple points may correspond to the same 

pixel. We use a k-NN-based projection algorithm, 

which treats the projected points as training examples. 

For each pixel, the nearest k neighbours of the projected 

points vote for its label. 

2.2.2 Variant B:  Label Generation from 2D 

RGB Images with Monitor 

The appearance of transparent objects changes signifi-

cantly with the background. We explore a second variant 

of the data generation pipeline, which employs a monitor 

to collect datasets with a wide range of backgrounds (see 

Figure 5) and avoids the need for depth information. For 

each new camera position, angle, and configuration of ob-

jects in the scene, a reference segmentation is performed 

with two images, one with a blue background and one with 

a black background. Then, a large number of additional im-

ages are taken with randomly selected backgrounds from 

the DTD dataset [23]. To achieve this, the following steps 

are performed: 

1. Apply morphological closing on each colour channel of 

the image with the blue background to remove small 

noises in the colour space. 

2. Employ colour quantization to reduce the number of 

colours in the first image. 
3. Perform segmentation in HSV space and locate the out-

line contour of the object to close all holes inside. 

Figure 6 Examples from the training and test datasets con-

taining transparent objects, with and without overlaps. 

Figure 5 Hardware setup for unsupervised training data 

collection. An RGB-D camera is mounted to the flange 

of a robot arm to collect training data from a variety of 

perspectives. A monitor is used to generate diverse back-

grounds. 



4. Extract the mask from the blue-background image. 
5. Apply the mask to the black-background image. 
6. Perform morphological closing on each channel, apply 

colour quantization, and perform segmentation in HSV 

colour space. 
7. Locate the outline contour of the object. 
8. Repeat the process to identify the part of the object, ex-

tracting the reference mask and applying it to other im-

ages with random backgrounds. 
The resulting training dataset permits the training of mod-

els which are highly robust to different backgrounds, a re-

quirement when facing transparent objects. While in prin-

ciple similar to [24], our pipeline in variant B is the first to 

leverage a monitor and robot to train a background-invari-

ant (part-)panoptic segmentation model. 

3 Experiments 

To assess the quality of part-aware panoptic segmentation 

with EfficientPPS, a series of experiments was conducted. 

We evaluate EfficientPPS on datasets containing partially 

overlapping transparent, deformable medical objects on 

various backgrounds and perform ablation studies to deter-

mine the benefit of our proposed part-panoptic fusion mod-

ule. Moreover, we demonstrate the applicability of Effi-

cientPPS to robotic grasping.  

3.1 Datasets 

Using variant A of the data collection method outlined in 

Section 2.2, we collect one large training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 

containing transparent objects from three distinct semantic 

classes representative of objects encountered in medical as-

sistance settings: 

 transfusion_bag, a three-chambered transparent 

bag containing three different types of transfusion fluid 

in clear, transparent light brown and milky white col-

ours. We define three part classes: transfu-

sion_bag_seal, transfusion_bag_center 

and transfusion_bag_other, defining the seal-

ing cap, the central chamber and the remainder of the 

bag, respectively; 

 bottle, a semi-transparent plastic bottle containing 

NaCl solution; 

 medical_bag, a catch-all class for several types of 

transparent bags of different shapes containing clear 

transfusion fluid or syringes; 

 table, the table on which the objects are located. 

Due to the requirements of the automatic data labelling 

pipeline, the training dataset contains only scenes with 

non-overlapping objects. To increase the diversity of the 

training data, additional data augmentation was applied 

(rotational and vertical flipping). 

We define four different test datasets containing more com-

plex, realistic scenes. 𝐷𝑡𝑒𝑠𝑡
1  and 𝐷𝑡𝑒𝑠𝑡

2  are tabletop scenes 

without and with overlapping objects, respectively. 𝐷𝑡𝑒𝑠𝑡
3  

and 𝐷𝑡𝑒𝑠𝑡
4  are objects in cabinet drawers without and with 

overlapping objects, respectively (see Figure 6). All test 

datasets contain objects which are partially out of frame 

and objects not known at training time. Due to the inclusion 

of overlapping objects in the test data, ground-truth labels 

for the test datasets are generated via manual annotation. 

3.2 Quantitative Results 

We trained EfficientPPS on 𝐷𝑡𝑟𝑎𝑖𝑛  using EfficientNet-B0 

[7] as a shared backbone, initialized with weights pre-

trained on ImageNet [25]. EfficientPPS was trained on a 

single consumer-grade GPU (NVIDIA RTX 2060 SUPER) 

with mixed precision activated during training [26]. Input 

images were resized to 480x480 pixels. The network was 

trained to minimize Part-Panoptic Quality (PartPQ) [15], a 

part-aware extension of the Panoptic Quality metric [1]. 

Beyond our proposed model with the part-panoptic fusion 

module, referred to as MP, we train three ablations reflect-

ing the prior state-of-the-art fusion strategies used in [15]: 

Figure 7 Top row: Example of segmentation results for EfficientPPS with part-panoptic fusion (MP) and 3 ablations. Part-

panoptic fusion (MP) reduces “bleeding” of the transfusion_bag (green) into the table (blue) and improves part 

segmentation, notably for transfusion_bag_seal (red). Bottom row: Segmentation results for different scenes 

featuring overlapping objects, diverse backgrounds and camera perspectives. 



 A baseline model MB where no fusion is performed. 

This can lead to conflicting labels in the final predic-

tions, such as bottle for the semantic channel and 

transfusion_bag_seal for the part channel; 

 a model MC where fusion is performed with the “con-

sensus” strategy, where semantic and part predictions 

are forced to agree on the scene-level label. Conflict-

ing combinations are set to void; 

 and a model MT using “top-down merging”, which al-

ways keeps the semantic label and sets only the part 

label to void in case of conflicts. 

The results are shown in Table 1. The part-aware panoptic 

fusion module performs equivalently or better than existing 

strategies in all cases, but improves PartPQ most for multi-

part objects and complex scenes (𝐷𝑡𝑒𝑠𝑡
3  and 𝐷𝑡𝑒𝑠𝑡

4 ). As ex-

pected for transparent objects, overlapping scenes and un-

structured backgrounds decrease segmentation accuracy. 

However, in some cases, we observe improved perfor-

mance even for single-part objects in scenes with overlap-

ping objects. We expect this to be due to the part head hav-

ing learned some (additional) features which are also ben-

eficial for semantic or instance segmentation. 

3.3 Qualitative Results 

Detection of transparent and deformable objects is a chal-

lenging vision problem which lacks comparable bench-

marks, making the interpretation of the PartPQ values in 

Table 1 difficult. Figure 7 visualizes some segmentation 

results. As shown in the top row, our proposed part-panop-

tic fusion module not only improves the robustness of part 

segmentation (see the two red regions for transfu-

sion_bag_seal, but also semantic and instance seg-

mentation (see the reduced “bleeding” of the transfu-

sion_bag labels into the table region). EfficientPPS 

generally deals well with overlapping objects, as shown in 

e.g. the bottom left image. It is noteworthy that Effi-

cientPPS can successfully label distinct instances (as visu-

alized with the bounding boxes in Figure 7 even when ob-

jects are overlapping, despite having been trained only on 

scenes without overlaps. As expected, less structured back-

grounds such as the drawer are more challenging, particu-

larly in the case of medical_bag and bottle, and can 

generate significant bleeding (bottom center-right) or noisy 

labels (bottom center-left). We found EfficientPPS gener-

ally robust against variations in camera angle and distance 

(see bottom right). Increasing the resolution from 480x480 

pixels should further improve results, and particularly 

avoid spurious detections (bottom right). 

To test the robustness of EfficientPPS with respect to dif-

ferent sensor hardware, we tested MP (trained on images 

from an Intel RealSense camera) on footage from the Ki-

nect Azure camera of the HoLLiE humanoid assistance ro-

bot [27]. Segmentation results were robust against sensor 

noise, object pose variations and occlusions by humans 

(see Figure 1 (bottom left) and the companion video). 

3.4 EfficientPPS for Robotic Grasping 

We demonstrate the suitability of EfficientPPS in the con-

text of an assistance robot for hospital assistance tasks. Us-

ing EfficientPPS trained on Variant B of the data-collection 

pipeline described in Section 2.2, we developed a robot 

skill to grasp transfusion bags in order to hang them. Be-

cause the lug for hanging the bag is on the opposite side of 

the bag than the nozzle (transfusion_bag_seal), 

the grasp point is computed at runtime using the part-pan-

optic annotation of transfusion_bag_seal. We 

tasked the robot to grasp a transfusion bag in 15 different 

poses. In each pose, the bag could be grasped successfully 

after at most 3 trials. 

4 Conclusion 

In this paper, we present EfficientPPS, a parameter-effi-

cient network architecture for part-aware panoptic segmen-

tation, as well as an unsupervised training data collection 

and annotation method using a flange-mounted camera and 

a robot arm. We evaluate EfficientPPS on a dataset con-

taining challenging transparent and deformable medical 

objects and demonstrate its use for robotic grasping. 

4.1 Discussion and Outlook 

EfficientPPS leverages multi-scale and multi-level feature 

extraction to achieve good instance, semantic and part seg-

mentation in a single network. Its compact size permits it 

to be trained on a single consumer GPU and run at 5 Hz on 

consumer hardware, making it ideal for use in low-power 

embedded systems. To our knowledge, this work is the first 

to study panoptic segmentation of transparent objects. 

Table 1 Part-aware Panoptic Quality (PartPQ) measured 

for EfficientPPS with the part-panoptic fusion module 

(MP) and four ablations on four datasets. Part-panoptic fu-

sion improves PartPQ over alternative fusion strategies 

particularly (but not exclusively) for objects with multiple 

parts. 

 

 

 

 

𝑫𝒕𝒆𝒔𝒕
𝟏  table transfusion_bag medical_bag bot-

tle 

total 

MB 93.5 84.1 68.8 63.4 77.4 

MC 93.5 83.2 68.8 63.4 77.2 

MT 93.5 84.3 68.8 63.4 77.5 

MP 93.5 84.3 68.8 63.4 77.5 

𝑫𝒕𝒆𝒔𝒕
𝟐

 
table transfusion_bag medical_bag bot-

tle 

total 

MB 90.6 37.3 43.9 53.4 56.3 

MC 90.6 36.3 43.9 53.4 56.1 

MT 90.6 37.9 43.9 53.4 56.5 

MP 90.7 43.1 44.1 53.4 57.8 

𝑫𝒕𝒆𝒔𝒕
𝟑

 
table transfusion_bag medical_bag bot-

tle 

total 

MB - 66.8 18.5 35.4 40.2 

MC - 66.4 18.5 35.4 40.1 

MT - 67.1 18.5 35.4 40.3 

MP - 67.4 18.5 35.4 40.3 

𝑫𝒕𝒆𝒔𝒕
𝟒

 
table transfusion_bag medical_bag bot-

tle 

total 

MB - 61.2 13.3 20.4 31.6 

MC - 61.0 13.3 20.4 31.6 

MT - 61.4 13.3 20.4 31.7 

MP - 61.5 13.3 20.4 31.7 



The proposed data collection pipeline enables the collec-

tion of training datasets without requiring human labelling. 

The use of both depth and colour information to generate 

labels is a promising approach for transparent objects, 

which are notoriously difficult to detect via either modality 

in isolation. The use of a monitor to generate autonomously 

labelled datasets of transparent objects with a wide range 

of backgrounds is promising, as it enabled the training of 

EfficientPPS at a sufficient segmentation quality to enable 

robotic grasping, while avoiding the need for depth infor-

mation at data collection time. 

It its current iteration, EfficientPPS showed limited perfor-

mance on overlapping objects and more unstructured envi-

ronments, rendered particularly challenging with transpar-

ent objects. Further evaluation with larger datasets, a wider 

range of objects and inclusion of overlapping objects in the 

training data is required to determine the precise cause of 

this limitation. We will conduct a quantitative comparison 

between variants A and B of the proposed data collection 

pipeline to assess the respective impacts of 3D information 

or the use of a monitor for data collection. Moreover, future 

work will evaluate and compare the performance of Effi-

cientPPS on large-scale standard datasets such as COCO 

[28] or CityScapes [29] and compare its performance with 

larger models [16]. 
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