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Abstract: To facilitate reliable deployments of autonomous robots in the real
world, Out-of-Distribution (OOD) detection capabilities are often required. A
powerful approach for OOD detection is based on density estimation with Normal-
izing Flows (NFs). However, we find that prior work with NFs attempts to match
the complex target distribution topologically with naı̈ve base distributions leading
to adverse implications. In this work, we circumvent this topological mismatch us-
ing an expressive class-conditional base distribution trained with an information-
theoretic objective to match the required topology. The proposed method enjoys
the merits of wide compatibility with existing learned models without any perfor-
mance degradation and minimum computation overhead while enhancing OOD
detection capabilities. We demonstrate superior results in density estimation and
2D object detection benchmarks in comparison with extensive baselines. More-
over, we showcase the applicability of the method with a real-robot deployment.
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1 Introduction

The reliable identification of Out-of-Distribution (OOD) data, which is not well represented in the
training set, poses a pressing challenge on the path towards trustworthy open-world robotic sys-
tems such as self-driving cars [1], delivery drones [2] or healthcare robots [3]. For example, with
widespread adoption in the perception pipeline, existing object detectors have been reported to over-
confidently misclassify an OOD object into a known class, which might obfuscate the decision-
making module and eventually cause catastrophic consequences in safety-critical scenarios [1, 4, 5].

Normalizing Flows (NFs) are a popular class of generative models [6, 7, 8, 9] that may be used
for OOD detection. NFs represent complex probability distributions [10] with a learnable series of
transformations from a simple base distribution to a complex target distribution. However, NFs’
expressivity [11, 12, 13] and numerical stability [14, 15] is limited by a fundamental constraint: the
supports of the base and target distribution should preserve similar topological properties (Definition
3.3.10 in Runde [16]). The topological properties subsume different geometrical characteristics of
the target distribution, including its continuity, the number of connected components, or the number
of modes. Increasing the capacity of the transformation may mitigate this constraint. Yet, this
raises computation and memory demands [11, 17, 12]. An alternative to overcome the topological
mismatch is to increase the flexibility of the base distribution, which is surprisingly under-explored
in the OOD detection literature.

Therefore, we propose to equip NFs with efficient but flexible base distributions for OOD detection
in robot learning. Concretely, we replace the frequently used uni-modal Gaussian base distribution

∗: work done when working at DLR.
code: https://github.com/DLR-RM

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

ar
X

iv
:2

31
1.

06
48

1v
1 

 [
cs

.R
O

] 
 1

1 
N

ov
 2

02
3

https://github.com/DLR-RM


(              )

#

"Valve": 0.91  
"Valve": 0.94  

(      ,       )

In-Distribution Valve

Out-of-Distribution Valve

Known Valve

Unknown Valve

Topology-matching Normalizing Flows Log-Likelihood (LL)

Figure 1: The proposed architecture. We overcome the topological mismatch problem in NFs to
accurately model In-Distribution (ID) density. That is, the Conditional Resampled Base Distribu-
tions (cRSB) base distribution trained with Information Bottleneck (IB) pψ(z|y) can, e.g., adapt the
numbers of modes to match target distribution with complex topology. Then we can identify OOD
objects by low predicted log-likelihoods more reliably (best viewed in color).

with the cRSB, a class-conditional version of a learnable base distribution for mitigating the topo-
logical problem in NFs – Resampled Base Distributions (RSB) [13]. cRSB can learn the required
topological properties, like adapting the number of modes, to match the unknown topological struc-
ture of the latent class-specific target distribution (Figure 1). Moreover, we adapt our cRSB with
an adapted IB objective [18] to balance fusing class-conditional information with the marginalized
density estimation capabilities in NFs. IB [19] is an information-theoretic objective to incorporate
task-specific details e.g. class conditions, which are commonly ignored in pure generative model-
ing. This delivers a topology in the base distribution that is more accurately aligned to the one in the
target distribution (see Figure 3).

Our OOD detection approach using topology-matching NFs is powerful and yet resource-efficient
for open-set object detection. It is applicable to diverse object detectors (e.g., Faster-RCNN [20] and
Yolov7 [21] used in this work) with minor changes and no loss of prediction performance. Moreover,
our approach is sampling-free, i.e., only a single forward pass is required for efficient test-time
inference while keeping the space memory tractable. As a result, our method is suitable for robotic
applications that require a fast and robust perception module. We empirically show the state-of-
the-art performance of the proposed idea using synthetic density estimation and 2D object detection
tasks against extensive baselines. To further validate the applicability in robotics, we examine an
object detector equipped with the proposed method on an exemplary inspection and maintenance
aerial robot, showing the practical benefits of negligible memory and run-time overhead.

Contributions. Our main contribution is a NFs-based OOD detection method that overcomes the
topological constraints while taking class-conditional information into account. We show that train-
ing with IB yields effective representation with superior OOD detection capabilities. We conduct
a comprehensive empirical evaluation using both synthetic density estimation and public object de-
tection datasets followed by a real-world robot deployment, which overall shows the effectiveness
of the proposed approach.
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2 Methodology

Problem Formulation Given an image x ∈ X and a trained object detector Fθ that localizes a
set of objects with corresponding bounding box coordinates bi ∈ R4 as well as class label yi ∈
Y = {1, 2, ..., C}, the task is to distinguish if (x,bi, yi) is ID, i.e., drawn from Pid, or OOD, i.e.,
belongs to the unknown distribution Pood. For conciseness, from now on we omit the suffix i and
use y to denote the class label without further notice. As discussed, a powerful OOD detection can
be obtained via density estimation using NFs. This density estimator identifies OOD objects with
low likelihoods after being trained only on data drawn from Pid. Following relevant prior [22, 23],
we use the semantically rich logit space (pre-softmax layer) for density estimation. To note that, our
method can be readily applied to other (high-dimensional) latent feature spaces.

(a) p(u|y = 0) (b) pϕ,ψ(u|y=0) (c) pψ(z|y = 0)
Figure 2: Filament connect modes in the modeled
class-conditional distribution (b) if using (trainable)
uni-modal base (c) for the multi-modal target (a).

NFs are known to be universal distribu-
tion approximators [10]. That is, they can
model a complex target distribution p(u)
on a space Rd by defining u as a trans-
formation Tϕ : Rd → Rd from a well-
defined base distribution pψ(z), where ϕ
and ψ are model parameters, respectively:

u = Tϕ(z) where z ∼ pψ(z) (1)

where z ∈ Rd and pψ is commonly chosen
as a uni-modal Gaussian. By designing Tϕ
to be a diffeomorphism, that is, a bijection where both Tϕ and T−1

ϕ are differentiable, We can com-
pute the likelihood of the input u exactly based on the change-of-variables formula [24]:

pϕ,ψ(u) = pψ(T
−1
ϕ (u))|det(JT−1

ϕ
(u))| , (2)

where JT−1
ϕ

(u) ∈ Rd×d is the Jacobian of the inverse T−1
ϕ with respect to u. When the target

distribution is unknown but samples thereof are available, we can estimate the parameter (ϕ, ψ) by
minimizing the forward Kullaback-Leibler Divergence (KLD), which is equivalent to maximizing
the expected Log-Likelihood (LL).

Topological Mismatch However, since the base distribution pψ(z) is usually a uni-modal Gaus-
sian (e.g. Figure 2c) and Tϕ is a diffeomorphism, problems arise for modeling data distribution with
different topological properties. These include well-separated multi-modal distributions or distribu-
tions with disconnected components (e.g., Figure 2a). For example, one can see that this leads to
density filaments between the modes in Figure 2b. Cornish et al. [11] have shown that flows require
a bijection with infinite bi-Lipshitz constant when modeling a target distribution with disconnected
support using a unimodal base distribution. Besides the diminishing modeling performance, this ren-
ders the bijection to be numerically ”non-invertible”, thus, causing optimization instability during
training and unreliability of likelihood calculation [14].

2.1 Conditional Resampled Base Distributions

One possible partial mitigation is by enriching the expressiveness of the flows. For example, by
(a) increasing the number of layers or parameters, (b) using more complex base distributions, or (c)
employing multiple NFs, e.g., mixtures of NFs. It is important to note that especially (a) and (c)
may escalate the computational cost and memory burden. Moreover, scaling the normalizing flow’s
expressivity, (a) or (c), often does not increase the stability of the optimization [15] or the likelihood
calculation. For these reasons, we pursue (b) and attempt to compensate for the complexity of the
transformation with the elasticity of the base distribution. In other words, we use a more flexible but
efficient base distribution to trade off a costly but sufficiently expressive bijection of the normalizing
flow. This way we aim to capture desirable topological properties of the target distribution [17].
Following the prior work [25], to model the fidelitous distribution of data with task-specific condi-
tions, e.g. class labels, we use a class-conditional base distribution. This way we get similar benefits
like combining multiple conditional flows (c), however, without having to burden the computational
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Figure 3: Visualization of density estimation using Real NVP with class conditional MoG, where
each class is modeled by a uni-modal Gaussian, and cRSB as well as the class-marginalized density
for the base distribution of cRSB.
cost on marginalization over classes. This is because, with (c), this operation requires repeated eval-
uation of the flows when each flow of the NFs mixture is class-conditional [26]. Even though a
class-conditional distribution can specialize on a smaller fraction of the dataset containing similar
instances, it will manifest in a multi-modal distribution.

Therefore, we propose to capture the complex topological properties in the target distribution with a
more expressive base distribution instead of the uni-model Gaussian. To the end, we introduce cRSB
by extending a powerful unconditional base distribution RSB [13] with class-conditional modeling.
RSB deforms a uni-modal Gaussian in a learnable manner to obtain more complex distributions via
Learned accept/reject sampling (LARS) [27]. LARS iteratively re-weighs samples drawn from a
proposal distribution π(z), e.g. a standard Gaussian, through a learned acceptance function aψ :
Rd → [0, 1]. To reduce the computation cost in practice, this process is truncated by accepting
the T -th samples if the previous T − 1 samples get rejected. To take into account class-conditional
information, we conditionalize the learnable acceptance function aψ(z|y). As a result, we have the
conditional base distribution:

pψ(z|y) = (1− αT )
aψ(z|y)π(z)

Zy
+ αTπ(z), (3)

where aψ : Rd → [0, 1]C and αT = (1 − Zy)
T−1, where Zy ∈ R is the normalization factor for

aψ(z|y)π(z). This factor can be estimated via Monte Carlo Sampling.

In Figure 3, we contrast the density estimation capabilities of NFs with the common MoG [8, 25]
base distribution and our cRSB on three tasks with class-conditional structure using an appropriate
learning objective (see next section). We find that our cRSB learns appropriate topology-matching
base distributions (right outer column) and as a result, the respective NFs do not have adverse effects
like filaments between the modes.

2.2 Training with Information Bottleneck

Unfortunately, directly training NFs with a conditional base distribution can lead to underperfor-
mance as observed in experiments (see Table 2 and appendix) and reported by Fetaya et al. [25].
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We attribute this to the lack of explicit control for the balance between generative and discrimi-
native modeling in the likelihood-based training objective of NFs. To alleviate this, we train the
normalizing flow with a class-conditional base distribution using the IB objective [19]. To abuse
the notations, we denote random variables by capital letters such as U , Z, Y , and their realizations
by lowercase letters such as u, z, y. The IB minimizes the Mutual Information (MI) I(U,Z) be-
tween U and Z, while simultaneously maximizing the MI I(Z, Y ) between Z and Y . Intuitively,
the IB trades off between the objectives of modeling the class conditional information p(u|y) with
the marginalized density p(u), thus allowing to leverage the class-conditional structure to facilitate
more effective density estimation for data characterized with semantic classes.

However, the IB is not directly applicable to latent class-conditional distributions in NFs since the
bijection Tϕ is lossless by design. Thus, for trading off the class-conditional information with den-
sity estimation capabilities, we adapt the approach proposed by Ardizzone et al. [18] for our cRSB.
Specifically, we inject a small amount of noise ϵ into the input U and hence Zϵ = T−1

ϕ (U + ϵ).
Further we define an asymptotically exact version of MI, namely the Mutual Cross-Information (CI)
(more details in appendix):

LIBNF = CI(U,Zϵ)− βCI(Zϵ, Y ) (4)

CI(U,Zϵ) = Ep(u),p(ϵ)

[
− log

∑
y′
pψ(zϵ|y′)− log |det(JT−1

ϕ
(u + ϵ))|

]
, (5)

CI(Zϵ, Y ) = Ep(y)

[
log

pψ(zϵ|y)p(y)∑
y′ pψ(zϵ|y′)p(y′)

]
, (6)

aψ(z|y = 0) aψ(z|y = 1)

w
/o

IB
w

/I
B

Figure 4: cRSB acceptance rate aψ(z) w/o
and w/ IB training for Two Moons.

where zϵ = T−1
ϕ (u + ϵ), p(ϵ) = N (0, σ2Id) is a

zero-meaned Gaussian with variance σ2, and β trades
off class information and generative density estimation.
With flexible conditional base distributions defined in
Eq. 3, we can train the topology-matching NFs with IB
by substituting cRSB into the conditional base prob-
ability pψ(z|y) in Eq. 5 and 6. More noteworthy, we
observed that the IB is able to regularize the acceptance
rate learning for cRSB to better assimilate the topolog-
ical structure of the target distribution, leading to an
overall improved performance on accurately approxi-
mating the complex target distribution (see Figure 4).

2.3 Detecting OOD Objects

During test time, we detect the OOD data based on the predicted Log-Likelihood (LL). To note
that, only one forward pass is required to evaluate the acceptance function in cRSB. Practically,
we use Monte Carlo sampling to estimate the normalization factor Z offline so that no additional
computation required for this during inference. We marginalize the density over classes for the base
distribution defined in Eq. 3 and compute the final LL given the logits u′ from the test image:

LLtest(u′) = log
∑
y′

(pψ(T
−1
ϕ (u′)|y′)) + log |det(JT−1

ϕ
(u′))|. (7)

We then expect LL for ID objects to be higher than OOD ones.

3 Related Work

Normalizing Flows NFs [28] are a popular class of deep generative models. NFs have shown appli-
cability in a variety of areas such as image generation [29, 30], uncertainty estimation [31, 32, 33]
and OOD detection [6, 34, 35]. For NFs, one trend has been designing expressive flow-based ar-
chitectures. Notable examples are affine coupling flows [29, 30], auto-regressive flows [36, 37],
invertible ResNet blocks [38] and ODEs-based maps [39]. The major focus of these works is on
reducing computing requirements for Jacobian computations while ensuring that each mapping is
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invertible. Another research direction, currently emerging, is on addressing the topological mis-
match [28, 10] of NFs. Targeting this problem, some existing works attempt to increase the learning
capacity of the transformation via mixture models [26], latent variable models [11, 40] or inject-
ing carefully specified randomness [41, 12]. These methods may be limited in their applicability
to robotics because they either increase memory consumption by expanding the width of transfor-
mations or approximate the exact likelihood. Recently, these constraints have been addressed by
improving the expressivity of the base distribution [13, 17]. In this paper, we build upon this class of
methods since they only add slight computation overheads and thus are well suited for applications
in robotics.

Normalizing Flows for OOD Detection NFs have been widely adapted for OOD detection due
to its superior density estimation [42]. For example, though with some counter-intuitive obser-
vations on raw data space [34], NFs have demonstrated encouraging OOD detection results with
additional refinements for raw data [43, 44, 45] or directly based on task-relevant feature embed-
dings [6, 7, 46, 47]. In this work, we directly apply NFs on the feature space. To note that, another
principle direction is to estimate the error bound for this task [48]. Recently hybrid models [49, 7, 50]
have shown remarkable performance gain on OOD detection by modeling the joint distribution of
both data and its class labels. Such works suggest that class labels can provide useful information.
However, directly performing class conditional modeling with NFs for OOD detection results in
performance degradation. Tishby et al. [19], Ardizzone et al. [18] mitigate such performance degra-
dation by utilizing IB for training NFs. This explicitly controls the trade-off between generative and
discriminative modeling [9]. However, these works on OOD detection utilize NFs without much
concern for the fundamental topological problem as the first citizen. Therefore, complementary to
these approaches, we examine the problem of topological mismatch of NFs for OOD detection.

OOD Detection in Object Detectors OOD detection research has focused on image classifica-
tion [42], which may be limited in relevance to robotic vision. In robotics, we may often need
both categorization and localization of objects of interest. Therefore, we focus on object detection
in open-set conditions here. In this domain, uncertainty estimation [51] has been considered pro-
pitious for OOD detection but suffered from computation burdens on runtime [52, 53, 54, 55] or
memory costs [56]. To address this, instead of directly applying uncertainty estimation techniques
for object detection [54, 2], another popular approach is to explicitly formulate the problem as OOD
detection tasks [23, 57, 8, 58, 59]. Amongst them, NFs has been utilized as an expressive density
estimator [8, 58]. However, despite the encouraging results, these approaches have not examined the
problem of topological mismatch in NFs. As this might prevent additional performance improve-
ments, this work examines the topology-matching NFs for OOD detection in object detectors.

4 Experiments

We next demonstrate the efficacy of our method. First, we evaluate on synthetic density estimation
for distributions with distinct topological properties. We then evaluate the OOD detection perfor-
mance on two object-detection data-sets adapted from their public counterparts [60, 61] for open-
set (OS) experiments: Pascal-VOC-OS and MS-COCO-OS based on Glow [30] and a pre-trained
Faster-RCNN [20] provided by Miller et al. [23] for a fair comparison. To showcase the practicality,
we deploy the one-stage object detector Yolov7 [21] equipped with the proposed method on a real
aerial manipulation robot along with the run-time and memory analysis. We empirically found that,
to parameterize the acceptance function in LARS, a simple multi-layer perceptron (MLP) (2x128 for
density estimation and 3x128 for object detection) is sufficient. We select the hyper-parameters (e.g.,
T , ϵ, σ, β) based on the validation set. More details can be found in the supplementary materials.

Datasets and Metrics For density estimation, there are three synthetic datasets: two moons, two
rings, and a circle of Gaussians. We employ the KLD between the target and the model distributions
to measure the performance. For OOD detection, since existing object detection datasets are not
ready for fair evaluation [4], we strictly follow the experimental protocol in [23]. For real robot
deployment, we generate 2k synthetic images of two objects (a valve and a crawler robot) rendered
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based on their CAD models and additionally labeled 2k real images. 1k synthetic images are
used for training and another 1k for testing with all real images. We use the Area Under Receiver
Operation Curve (AUROC) and the True Positive Rate(TPR) at different False Positive Rate (FPR)
(5%, 10%, 20%) as metrics for this task, as they represent the performance of the potential operating
points for safety-critical applications, which requires the FPR to be sufficiently low.

4.1 Density Estimation
Table 1: Performance on density estimation
for different flow architectures w.r.t. KLD, i.e.,
DKL(p(u, y)||pϕ,ψ(u, y)). Better base distribution
is highlighted in bold.

Flow architecture Real NVP NSFs
Base distribution MoG IB cRSB IB MoG IB cRSB IB

Two Moons 1.179 1.066 0.909 0.906
Two Rings 2.032 1.704 1.647 1.602

Circle of Gaussians 2.335 1.667 1.766 1.653

We compare the density estimation perfor-
mance in Table 1 and provide qualitative re-
sults in Figure 3. We find that the cRSB
base distribution consistently outperforms the
class-conditional Mixture of Gaussians (MoG).
The performance improvement by cRSB can be
generalized across two different NFs architec-
tures, i.e. Real NVP and NSFs.

4.2 OOD Detection in Object Detection
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Figure 5: t-SNE visualization for (a) feature em-
beddings from the object detector (b) latents of
the proposed learned base distribution cRSB and
(c) the uni-modal Gaussian on the training set of
Pascal-VOC-OS.

We compare our method (cRSB IB) with both
flow-based and non-flow-based approaches.
The latter consists of Mahalanobis Distance
(MD) [62], Relative Mahalanobis Distance
(RMD) [63], GMMDet [23], Softmax, Entropy
and, their Deep Ensemble variants with five
models [56]. Among flow-based approaches,
we have six different base distributions, in-
cluding unconditional ones (uni-modal Gaus-
sian, MoG, RSB) and their conditional variants
(MoG CLS, cRSB CLS) [25] and MoG trained with IB (MoG IB) [8, 18]. From Table 2, we can
observe that flows with uni-modal Gaussian are able to provide satisfactory performance, i.e., better
than most of non flow-based baselines, while flows with more expressive base distributions such
as MoG and RSB can bring more benefits on Pascal-VOC-OS than MS-COCO-OS. When trained
with IB, the more flexible conditional base distribution (cRSB IB) can mostly have greater per-
formance gains (on both Pascal VOC and COCO) than its strong competitor (MoG IB) (only on
COCO) in comparison with their counterparts without IB (MoG CLS). These results demonstrate
the effectiveness of cRSB with IB for OOD detection in complicated 2D object detection tasks. We
further provide the visualization from data before and after the flow transformation with different
base distributions in Figure 5, evidencing the ability of matching complex topology of the target data
distribution with cRSB.

4.3 Real Robot Deployment

Next, we validate the applicability in an application of robotic inspection and maintenance, where it
is crucial to avoid false positives of OOD objects that appear routinely in outdoor environments. In
this experiment, we train Yolov7 with only synthetic images of two objects (a valve and a crawler
robot) and deploy on the robot around only real objects. The task is to identify the falsely detected
real objects as OOD since they are from a distribution different to the synthetic ones. Besides,
the performance drop when compared with Table 2 is potentially attributed to the ”closer” OOD
data because the synthetic images are rendered in a highly photorealistic manner. However, our
method still outperforms other baseline approaches in Figure 6c, where ours can notably achieve
higher TPR around the low FPR region, which are commonly used as operating points for the robot.
Computational efficiency is another important requirement. We compare the runtime and space
memory consumption against a vanilla Yolov7 using the NVIDIA’s embedded GPU called Jetson
Orin in Figure 6. The results indicate that the computational overhead of having an OOD detector is
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Table 2: OOD detection performance on Pascal-VOC-OS and MS-COCO-OS datasets for different
methods based on the Faster-RCNN from 3 random runs. The highest values are marked in bold
and the second highest in italics.

Pascal-VOC-OS MS-COCO-OS

AUROC TPR at AUROC TPR at
5%FPR 10%FPR 20%FPR 5%FPR 10%FPR 20%FPR

Softmax 0.901 60.1 72.8 83.1 0.882 61.3 70.6 78.1

Entropy 0.905 59.8 72.9 82.9 0.903 61.2 70.6 80.2

MD [62] 0.9 54.1 68.8 83.3 0.902 57.2 71.4 85.5

RMD [63] 0.838 15.2 28.4 77.4 0.531 1.7 2.6 7.1

Ensemble Softmax [56] 0.885 47.8 72.6 83.1 0.898 66.2 73.5 82.3

Ensemble Entropy [56] 0.887 47.8 72.5 83.1 0.906 66.2 73.5 82.3

GMMDet [23] 0.931 70.7 80.5 89.3 0.924 69.5 80.2 87.9

Flows Gaussian 0.915± 0.002 72.2± 0.75 77.8± 0.89 86.1± 0.67 0.924± 0.001 68.2± 0.73 81.2± 0.61 89.4± 0.04

Flows MoG 0.919± 0.002 69.0± 2.4 77.0± 2.5 86.5± 1.2 0.925± 0.001 68.3± 0.30 80.5± 0.50 89.6± 0.05

Flows RSB [13] 0.924± 0.003 72.8± 0.88 79.3± 1.0 87.1± 0.82 0.925± 0.001 68.6± 0.87 81.3± 0.31 89.5± 0.34

Flows MoG CLS [25] 0.923± 0.001 69.2± 1.5 78.2± 1.3 88.5± 0.82 0.930 ± 0.001 68.5± 0.73 82.2 ± 0.31 89.7 ± 0.30

Flows MoG IB [8] 0.934 ± 0.002 73.1± 1.3 79.6± 0.6 87.8± 0.2 0.924± 0.002 71.1 ± 0.9 79.6± 0.46 88.6± 0.63

Flows cRSB CLS 0.919± 0.001 72.5± 0.37 78.8± 0.27 86.8± 0.42 0.924± 0.001 68.3± 0.14 81.1± 0.30 89.3± 0.18

Flows cRSB IB (ours) 0.946 ± 0.003 78.5 ± 0.97 84.0 ± 0.83 90.8 ± 0.76 0.934 ± 0.002 73.3 ± 2.0 84.3 ± 0.40 91.3 ± 0.28

relatively small when compared to the vanilla Yolov7. Overall, these experiments validate our claim
that our method features efficient runtime inference and cost-effective memory consumption.

(a) (b) (c)
Figure 6: Results from experiments on a real robot. Run-time, memory consumption, and ROC
curve are reported. Compared to the vanilla Yolov7 , the proposed method does not yield significant
computational costs, while providing performance gains in OOD detection.

5 Limitations

The proposed method is envisioned to work on feature embeddings instead of raw data to counteract
the NFs artifacts of assigning higher likelihoods to OOD data [10]. This leads to two limitations.
First, it’s can’t directly applied to the tasks/models that could not provide useful feature embeddings
extracted from the raw data. Second, its performance is restricted to the quality of features. As
reported by previous work [23, 8], learning more compact and centralized features can often lead to
increased performance for OOD detection while feature collapse can be harmful to OOD detection.
Besides, there are two limitations during deployment. The first is the prolonged initialization time
for calculating the normalization factor in LARS based on Monte Carlo sampling. This might not be
friendly for applications that require instant response at the beginning. Moreover, the current version
of the proposed method does not consider the sequential nature of observations at deployment.

6 Conclusion

To endow robots with introspective awareness against OOD data, we propose the NFs equipped with
effective yet lightweight cRSB and train with IB objective. Such NFs are able to mitigate the fun-
damental topological mismatch problem, facilitating more effective OOD detection capabilities. We
present empirical evidence that the proposed method achieves superior performance both quantita-
tively and qualitatively. To demonstrate the run-time efficiency and minimum memory overheads,
we deployed on a real-robot system. Overall, we hope that the results of our work stemming from
an enriched base distribution can push forward the direction of NFs-based OOD detection in robot
learning.
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