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Abstract: The top quark as the heaviest particle in the Standard Model (SM) defines an important

mass scale for Higgs physics and the electroweak scale itself. It is therefore a well-motivated degree of

freedom which could reveal the presence of new interactions beyond the SM. Correlating modifications

of the top-Higgs interactions in the 2-Higgs-Doublet Model (2HDM), we analyse effective field theory

deformations of these interactions from the point of view of a strong first-order electroweak phase

transition (SFOEWPT). We show that such modifications are compatible with current Higgs data

and that an SFOEWPT can be tantamount to a current overestimate of exotic Higgs searches’

sensitivity at the LHC in tt̄ and four top quark final states. We argue that these searches remain

robust from the point of accidental signal-background interference so that the current experimental

strategy might well lead to 2HDM-like discoveries in the near future.
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1 Introduction

The lack of direct evidence for new interactions beyond the Standard Model (BSM) at the Large

Hadron Collider (LHC) and other experiments is puzzling given the theoretically and experimentally

established need to go beyond the Standard Model (SM). As experiments are moving increasingly

towards model-independent methods to report measurements and BSM sensitivity, a range of estab-

lished BSM phenomena continue to signpost particular sectors of the SM for further phenomenological

scrutiny. One such sector is related to the interactions of the top quark. The top quark, as the

heaviest believed-fundamental particle enters a range of phenomenologically accessible final states

at the LHC. It decays before hadronisation thus enabling the direct analysis of its properties,

whilst abundantly produced in hadronic collisions. Furthermore, it creates a large radiative pull

of electroweak interactions, which is highlighted by the sensitivity of the electroweak fit to the top

mass [1], the metastability of the electroweak vacuum at high scales [2, 3], as well as, its role as

a threshold in Higgs physics (e.g. [4, 5]). It might be fair to say that the “right” theory of BSM

interactions seems further away from discovery than ever, but the top quark and its relation to the

weak scale might well hold the key to unlocking the secrets of electroweak symmetry breaking.1

The critical role of the top quark is apparent from its strong coupling to the Higgs field with

a Yukawa interaction of order unity in the SM. The qualitative pattern predicted by the SM has

been spectacularly validated by the discovery of the Higgs boson in H → γγ decays with direct

evidence from top-associated Higgs production providing mounting evidence of the SM-like character

of top-Higgs interactions, alluding to fundamental mass generation for the top quark through the

1This is echoed by the central part that the top plays in concrete models of BSM physics, ranging from supersymmetry

to strongly interacting models.
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electroweak vacuum. This relation also puts the top quark centre-stage for the emergence of the

non-trivial vacuum itself in the early history of our Universe, potentially playing the critical role

in facilitating a strong first-order electroweak phase transition (SFOEWPT) in the context of

electroweak baryogenesis to address the Sakharov criteria [6] for matter anti-matter asymmetry.

Additional sources of CP violation (under the assumption that baryogenesis proceeds canonically)

could be traceable into phases of the Yukawa interactions (for recent phenomenological analyses see

Refs. [7–9]), and their appearance is indicative of a richer scalar sector such as the 2-Higgs-Doublet

Model (2HDM) [10–13]. To this end, in this work, we focus on the possibility of obtaining an

SFOEWPT in the 2HDM with a specific focus on the role of the top quark. The characteristics of

additional SFOEWPT-relevant contributions in the scalar sector have been discussed in Refs. [14],

highlighting a qualitative agreement with similar discussions in the context of the SM: Additional

Higgs interactions that lead to an SFOEWPT show up predominantly as modifications of Higgs

pair interactions via modifications of the Higgs self-coupling. Following the canonical arguments

of thermodynamics, such modifications should predominantly be visible in the phenomenology of

the light degrees of freedom, in agreement with the findings of Ref. [14]. In flavon extensions of

the SM, it has been observed that large Yukawa coupling modifications can lead to the desired

SFOEWPT [15]. When these effects are captured by the top quark modifications, this can lead to

large departures from the expected phenomenology of the BSM states.

In this paper, we consider a motivated effective field theory (EFT) extension of the top quark

sector in the 2HDM. On the one hand, this addresses the emerging tension of observing an SFOEWPT

in the 2HDM of type II given the current Higgs coupling measurements [16–19]; on the other hand

the means of EFT enable us to remain agnostic to the particular extension of the 2HDM.2

This paper is organised as follows: Section 2 gives an overview of the 2HDM type II and its

EFT extension relevant to this work. Section 3 details the relevance of these modifications for an

SFOEWPT which is backed up by a comprehensive scan over the 2HDM’s type II EFT extension.

As these results are relevant for the phenomenology programme at the LHC, we perform a detailed

analysis of the EFT modifications for Higgs physics as a function of an SFOEWPT in Sec. 4.2. We

conclude in Sec. 5.

2 The 2HDM and its Dimension-6 Yukawa Extension

We start our discussion with the canonical 2HDM dimension-4 Yukawa terms which are given by

by [27, 28]

Ldim-4
Yuk = −Y e

1 L̄Φ1e− Y e
2 L̄Φ2e− Y d

1 Q̄Φ1d− Y d
2 Q̄Φ2d− Y u

1 Q̄Φ̃1u− Y u
2 Q̄Φ̃2u+ h.c. , (2.1)

where Φ1,2 are SU(2)L doublets with hypercharge Y = 1. The two doublets are expanded as

Φ1 =

 ϕ+1
1√
2
(v1 + ζ1 + iψ1)

 , Φ2 =

 ϕ+2
1√
2
(v2 + ζ2 + iψ2)

 . (2.2)

2Employing matching computations [20–25], results can then be connected to concrete UV extensions of the 2HDM.

We will not discuss this further in this work. It is furthermore worth noting that considering non-SM degrees as

dynamical rather than turning directly to SMEFT is particularly motivated given the limitations that SMEFT faces

when considering electroweak phase transitions [26].
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Here, v1 and v2 are the vacuum expectation value (vev) of Φ1 and Φ2, respectively, with v
2
1 + v

2
2 = v2

and v ≃ 246 GeV. The ϕ+i label the charged fields and ζi is the neutral CP-even and ψi is the

neutral CP-odd field for i = 1, 2. Motivated by the possibility of connecting the 2HDM of type II to

high-scale supersymmetry, we will focus on this scenario in the following; it is also worth pointing

out that the 2HDM of type I does not face comparable tension as the 2HDM when considered from

the perspective of an SFOEWPT [16–18, 29]. In the type II case, the Yukawa interactions reduce to

Ldim-4
Yuk = −Y e

1 L̄Φ1e− Y d
1 Q̄Φ1d− Y u

2 Q̄Φ̃2u+ h.c. . (2.3)

After spontaneous symmetry breaking, we have five physical fields, two CP-even neutral scalars H

and h (ordered in mass to mH > mh), one CP-odd scalar A and a charged pair H±. These fields

are related to the interaction fields through the rotation matrix R(x) as:H
h

 = R(α)

ζ1
ζ2

 ,

G0

A

 = R(β)

ψ1

ψ2

 ,

G±

H±

 = R(β)

ϕ±1
ϕ±2

 , (2.4)

with

R(x) =

 cosx sinx

− sinx cosx

 . (2.5)

The mixing angle β is also expressed as:

tanβ =
v2
v1
, (2.6)

which provides the relation to v ≃ 246 GeV via v1 = v cosβ and v2 = v sinβ. The Higgs boson

couplings to fermions f in the mass basis fields are given by

Ldim-4
Yuk = −

∑
f=u,d,ℓ

mf

v

(
ξfh f̄fh+ ξfH f̄fH − iξfA f̄γ5fA

)

+

[√
2Vud
v

ū
(
md ξ

d
APR +mu ξ

u
APL

)
d H+ +

√
2

v
mℓ ξ

l
A(ν̄PRℓ)H

+ + h.c.

]
, (2.7)

where PL,R are the left and right chirality projectors and the coupling modifiers ξ for the type II case

are listed in Tab. 1. The mass-coupling relations will be modified by the dimension-6 interactions

which we detail below.

Having set the stage of the renormalisable d = 4 part of the 2HDM, we can now turn to its EFT

deformation. The extension of these Yukawa interactions to the effective dimension-6 level results

Model ξuh ξ
d(e)
h ξuH ξ

d(e)
H ξuA ξ

d(e)
A

type II cosα/ sinβ − sinα/ cosβ sinα/ sinβ cosα/ cosβ cotβ tanβ

Table 1. Coupling modifiers ξ for 2HDM type II and up- and down-type quarks.
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O
1(21)
Lτ (L̄τΦ1)(Φ

†
2Φ1) O

2(22)
Lτ (L̄τΦ2)(Φ

†
2Φ2) O

2(11)
Lτ (L̄τΦ2)(Φ

†
1Φ1)

O
1(12)
Lτ (L̄τΦ1)(Φ

†
1Φ2) O

1(21)
Qb (Q̄ bΦ1)(Φ

†
2Φ1) O

2(22)
Qb (Q̄ bΦ2)(Φ

†
2Φ2)

O
2(11)
Qb (Q̄ bΦ2)(Φ

†
1Φ1) O

1(12)
Qb (Q̄ bΦ1)(Φ

†
1Φ2) O

2(22)
Qt (Q̄tΦ̃2)(Φ

†
2Φ2)

O
1(12)
Qt (Q̄ t Φ̃1)(Φ

†
1Φ2) O

2(11)
Qt (Q̄ t Φ̃2)(Φ

†
1Φ1) O

1(21)
Qt (Q̄ t Φ̃1)(Φ

†
2Φ1)

O
1(11)
Lτ (L̄τΦ1)(Φ

†
1Φ1) O

2(12)
Lτ (L̄τΦ2)(Φ

†
1Φ2) O

1(22)
Lτ (L̄τΦ1)(Φ

†
2Φ2)

O
2(21)
Lτ (L̄τΦ2)(Φ

†
2Φ1) O

1(11)
Qb (Q̄ bΦ1)(Φ

†
1Φ1) O

2(12)
Qb (Q̄ bΦ2)(Φ

†
1Φ2)

O
1(22)
Qb (Q̄ bΦ1)(Φ

†
2Φ2) O

2(21)
Qb (Q̄ bΦ2)(Φ

†
2Φ1) O

1(11)
Qt (Q̄ t Φ̃1)(Φ

†
1Φ1)

O
2(21)
Qt (Q̄ t Φ̃2)(Φ

†
2Φ1) O

1(22)
Qt (Q̄ t Φ̃1)(Φ

†
2Φ2) O

2(12)
Qt (Q̄ t Φ̃2)(Φ

†
1Φ2)

Table 2. Dimension-6 2HDMEFT operators of class Ψ2Φ3. Each of these operators has a distinct Hermitian

conjugate. Here, L̄ = (ν̄τ τ̄) and Q̄ = (t̄ b̄). The operators coloured in magenta violate the Z2 symmetry.

from the class3 ∼ Ψ2Φ3 which modifies the 2HDM Yukawa Lagrangian [31–34]

LEFT = L2HDM +
∑
i

Ci

Λ2
Oi =⇒ LEFT

Yuk = Ldim-4
Yuk +

∑
i

Ci

Λ2
Oi . (2.8)

Here, Oi are the dimension-6 operators and Ci are the corresponding Wilson Coefficients (WCs).

For our work, we consider operators dealing with the third generation fermions i.e. τ, t, b. The

structures of these operators are given explicitly in Tab. 2. For the type II scenario, the Z2 symmetry

is enforced with the following transformations in these operators: for the τ lepton and the b quark,

Φ1 → Φ1 and Φ2 → −Φ2 and for the t quark Φ1 → −Φ1 and Φ2 → Φ2. The operators violating the

Z2 symmetry are coloured in magenta. This complete set of operators modifies the fermion mass

terms and the scalar-fermions couplings.

In the broken phase, these interactions lead to corrections to the fermion masses compared to

the dimension-4 mass-Yukawa coupling relation,

∆MΨ = − 1

2
√
2Λ2

[
C

1(11)
QΨ v31 + v21v2(C

1(12)
QΨ + C

1(21)
QΨ + C

2(11)
QΨ )

+ v1v
2
2(C

1(22)
QΨ + C

2(12)
QΨ + C

2(21)
QΨ ) + C

2(22)
QΨ v32

]
for Ψ ≡ {t, b, τ}. (2.9)

For the considered type II scenario, the modified third-generation fermion mass terms are then

Mt =
v2√
2

[
Y t
2 − 1

2Λ2

(
C

1(11)
Qt

v31
v2

+ v21(C
1(12)
Qt + C

1(21)
Qt + C

2(11)
Qt )

+v1v2(C
1(22)
Qt + C

2(12)
Qt + C

2(21)
Qt ) + C

2(22)
Qt v22

)]
, (2.10a)

Mb =
v1√
2

[
Y b
1 − 1

2Λ2

(
C

1(11)
Qb v21+v1v2(C

1(12)
Qb + C

1(21)
Qb + C

2(11)
Qb )

3The dimension-6 effective operators for 2HDMEFT are classified into 8 classes following the convention of the

Warsaw basis given in [30].
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+ v22(C
1(22)
Qb + C

2(12)
Qb + C

2(21)
Qb )+C

2(22)
Qb

v32
v1

)]
, (2.10b)

Mτ =
v1√
2

[
Y τ
1 − 1

2Λ2

(
C

1(11)
Lτ v21+v1v2(C

1(12)
Lτ + C

1(21)
Lτ + C

2(11)
Lτ )

+ v22(C
1(22)
Lτ + C

2(12)
Lτ + C

2(21)
Lτ )+C

2(22)
Lτ

v32
v1

)]
. (2.10c)

These mass-coupling relations are different to the ones for d = 4 quoted in (2.7), but we recover

M = m for Λ → ∞. For our work, the 2HDM dim-4 Yukawa couplings given in Eq. (2.3) are

specifically for the third-generation fermions. Taking masses of fermions as the dimension-6 extended

input quantities, i.e.

Mt =
v2√
2
Yt
2 , Mb =

v1√
2
Yb
1 , Mτ =

v1√
2
Yτ
1 , (2.11)

the dimension-4 Yukawa couplings are redefined as

Y t
2 → Yt

2 +
1

2Λ2

(
C

1(11)
Qt

v31
v2

+ v21(C
1(12)
Qt + C

1(21)
Qt + C

2(11)
Qt ) (2.12a)

+v1v2(C
1(22)
Qt + C

2(12)
Qt + C

2(21)
Qt ) + C

2(22)
Qt v22

)
,

Y b
1 → Yb

1 +
1

2Λ2

(
C

1(11)
Qb v21+v1v2(C

1(12)
Qb + C

1(21)
Qb + C

2(11)
Qb ) (2.12b)

+ v22(C
1(22)
Qb + C

2(12)
Qb + C

2(21)
Qb )+C

2(22)
Qb

v32
v1

)
,

Y τ
1 → Yτ

1 +
1

2Λ2

(
C

1(11)
Lτ v21+v1v2(C

1(12)
Lτ + C

1(21)
Lτ + C

2(11)
Lτ ) (2.12c)

+ v22(C
1(22)
Lτ + C

2(12)
Lτ + C

2(21)
Lτ )+C

2(22)
Lτ

v32
v1

)
.

These replacements shift the dimension-6-induced coupling modifications into the Higgs-fermion

interactions for given fermion masses; the coupling modifiers ξ mentioned in Tab. 1 get additional

dimension-6 corrections. The modified scalar fermion couplings are given by (assuming Vtb = 1)

ξth =
cosα

sinβ
+
v3

Mt

1√
2Λ2

[
− C

2(22)
Qt cosα sin2 β+

cos2 β

2

(cosα cosβ

sinβ
+ 3 sinα

)
C

1(11)
Qt

−sinβ

2
cos (α+ β)

(
C

2(21)
Qt + C

2(12)
Qt + C

1(22)
Qt

)
+ cosβ sinβ sinα

(
C

1(12)
Qt + C

1(21)
Qt + C

2(11)
Qt

)]
,

(2.13a)

ξtH =
sinα

sinβ
+
v3

Mt

1√
2Λ2

[
− C

2(22)
Qt sinα sin2 β+

cos2 β

2

(sinα cosβ

sinβ
− 3 cosα

)
C

1(11)
Qt

−sinα

2
sin (α+ β)

(
C

2(21)
Qt + C

2(12)
Qt + C

1(22)
Qt

)
− cosβ sinβ cosα (C

1(12)
Qt + C

1(21)
Qt + C

2(11)
Qt )

]
,

(2.13b)

ξtA = cotβ +
v3

Mt

1√
2Λ2

[sinβ
2

(−C2(21)
Qt + C

2(12)
Qt + C

1(22)
Qt ) + cosβ C

1(12)
Qt +

cotβ cosβ

2
C

1(11)
Qt

]
,

(2.13c)

ξbh = − sinα

cosβ
+

v3

Mb

1√
2Λ2

[
−C2(22)

Qb sin2 β

(
3 cosα

2
+

sinα sinβ

2 cosβ

)
+ sinα cos2 β C

1(11)
Qb
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−cosβ

2
cos (α+ β)

(
C

1(12)
Qb + C

1(21)
Qb + C

2(11)
Qb

)
− cosα cosβ sinβ

(
C

2(21)
Qb + C

2(12)
Qb + C

1(22)
Qb

) ]
,

(2.13d)

ξbH =
cosα

cosβ
+

v3

Mb

1√
2Λ2

[
C

2(22)
Qb sin2 β

(
−3 sinα

2
+

cosα sinβ

2 cosβ

)
− cosα cos2 β C

1(11)
Qb

−cosβ

2
sin (α+ β)

(
C

1(12)
Qb + C

1(21)
Qb + C

2(11)
Qb

)
− sinα cosβ sinβ

(
C

2(21)
Qb + C

2(12)
Qb + C

1(22)
Qb

) ]
,

(2.13e)

ξbA = tanβ +
v3

Mb

1√
2Λ2

[
C

2(22)
Qb

tanβ sinβ

2
+ sinβ C

2(12)
Qb +

cosβ

2

(
C

1(12)
Qb − C

1(21)
Qb + C

2(11)
Qb

)]
,

(2.13f)

ξτh = − sinα

cosβ
+

v3

Mτ

1√
2Λ2

[
−C2(22)

Lτ sin2 β

(
3 cosα

2
+

sinα sinβ

2 cosβ

)
+ sinα cos2 β C

1(11)
Lτ

−cosβ

2
cos (α+ β)

(
C

1(12)
Lτ + C

1(21)
Lτ + C

2(11)
Lτ

)
− cosα cosβ sinβ

(
C

2(21)
Lτ + C

2(12)
Lτ + C

1(22)
Lτ

) ]
,

(2.13g)

ξτH =
cosα

cosβ
+

v3

Mτ

1√
2Λ2

[
C

2(22)
Lτ sin2 β

(
−3 sinα

2
+

cosα sinβ

2 cosβ

)
− cosα cos2 β C

1(11)
Lτ

−cosβ

2
sin (α+ β)

(
C

1(12)
Lτ + C

1(21)
Lτ + C

2(11)
Lτ

)
− sinα cosβ sinβ

(
C

2(21)
Lτ + C

2(12)
Lτ + C

1(22)
Lτ

) ]
,

(2.13h)

ξτA = tanβ +
v3

Mτ

1√
2Λ2

[sinβ tanβ
2

C
2(22)
Lτ + sinβ C

2(12)
Lτ +

cosβ

2

(
C

1(12)
Lτ − C

1(21)
Lτ + C

2(11)
Lτ

)]
,

(2.13i)

which reduce to the usual 2HDM relations when decoupling Λ → ∞.

3 Effective Potential at Finite Temperature

The Yukawa interactions detailed above are joined by the renormalisable (dimension 4) Higgs

potential [27, 28]

Vd4(Φ1,Φ2) = m2
11(Φ

†
1Φ1) +m2

22(Φ
†
2Φ2)−m2

12(Φ
†
1Φ2 +Φ†

2Φ1) + λ1(Φ
†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

1

2
λ5[(Φ

†
1Φ2)

2 + (Φ†
2Φ1)

2]

+
(
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

)(
Φ†
1Φ2 +Φ†

2Φ1

)
, (3.1)

and we will focus on the CP-even case, λ6 = λ7 = 0. Furthermore, we will only consider the soft Z2

breaking terms ∼ m2
12, ignoring the magenta couplings detailed above for the Yukawa interactions.

We will limit our discussion to the top quark-specific interactions in the following.

The analysis of the symmetry properties at finite temperatures, see e.g. [35], requires the

calculation of the one-loop effective (Coleman-Weinberg) potential at zero temperature [36] in

addition to temperature corrections and associated Daisy resummation [37–39]. The potential is
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most economically calculated as outlined in [37, 40], yielding

V
(1)
eff (ω⃗, T ) =

∑
X=S,G,F

(−1)2sX (1 + 2sX)IX , (3.2)

for a general vacuum configuration ω⃗ in the scalar SU(2) space of Eq. (2.2). Equation (3.2) sums over

scalar (S), gauge field (G), fermion (F ) contributions with spin quantum numbers sS,G,F = 0, 1, 1/2

and associated one loop contributions

IS =
T

2

Bos∑
n

∫
d3k

(2π)3

∑
i

[
log det

(
−D−1

S, i

)]
,

IG =
T

2

Bos∑
n

∫
d3k

(2π)3

∑
i

[
log det

(
−D−1

GB, i

)]
,

IF = −T
Ferm∑
n

∫
d3k

(2π)3

∑
i

[
log det

(
−D−1

F, i

)]
,

(3.3)

where we have introduced the corresponding inverse propagators as D−1
X . At finite temperature

the periodicity conditions on the two-point function require us to sum over the discrete Matsubara

modes [41] in momentum space, e.g. D−1
S = ω2

n + ω2
k with

ω2
n = (2nπT )2 , n ∈ N0

ω2
k = k2 +m2 ,

(3.4)

in the imaginary time formalism. The integrals of Eq. (3.3) can be evaluated in the MS scheme

IX
MS

=
m4

X

64π2

[
log

(
m2

X

µ2

)
− kX

]
+
T 4

2π2
J±

(
m2

X

T 2

)
= V X

CW(Φ1,Φ2) + V X
T (Φ1,Φ2) ,

(3.5)

which shows the factorisation into the temperature-independent Coleman-Weinberg (CW) contribu-

tion and a temperature-dependent contribution. The ultraviolet (UV) finite constants kX are given

by

kX =

{
5
6 , X = G
3
2 , X = S, F

(3.6)

and the thermal fermionic (+) and bosonic (−) function J± [35, 37, 39]

J±(x
2) =

∫ ∞

0
dk k2 log

(
1± e−

√
k2+x2

)
. (3.7)

The presence of Matsubara zero-modes leads to infrared problems linked to the breakdown

of perturbation theory at high temperatures [42]. These infrared problems are resolved through

reordering the perturbative series expansion by including thermal corrections Π to the masses, which
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O111111
6 (Φ†

1Φ1)
3 O222222

6 (Φ†
2Φ2)

3

O111122
6 (Φ†

1Φ1)
2(Φ†

2Φ2) O112222
6 (Φ†

1Φ1)(Φ
†
2Φ2)

2

O122111
6 (Φ†

1Φ2)(Φ
†
2Φ1)(Φ

†
1Φ1) O122122

6 (Φ†
1Φ2)(Φ

†
2Φ1)(Φ

†
2Φ2)

O121211
6 (Φ†

1Φ2)
2(Φ†

1Φ1) + h.c. O121222
6 (Φ†

1Φ2)
2(Φ†

2Φ2) + h.c.

Table 3. Dimension-6 operators of class Φ6 involving Φ1 and Φ2.

re-sums the problematic direction of the expansion parameters [35, 38, 43–46]. Concretely, we employ

the Arnold-Espinosa approach [46] replacing

VT → VT + Vdaisy , (3.8)

with

Vdaisy = − T

12π

[nHiggs∑
i=1

(
(m2

i )
3/2 − (m2

i )
3/2
)
+

ngauge∑
a

(
(m2

a)
3/2 − (m2

a)
3/2
)]

. (3.9)

The m masses are derived by including thermal mass corrections in the hard thermal limit. In total,

the relevant 1-loop potential for our study is given by

V (T ) = Vd4(T = 0) + VCW(T = 0) + VT (T ) + Vdaisy(T ) . (3.10)

The modifications of the Yukawa couplings (together with correlated four- and five-point interactions)

outlined in the previous section lead to a modification of the contributions of IF through new

mF (Φ1,2) contributions, thus changing the V (T ) away from its expectation in the d = 4 2HDM

at T = 0. These changes are mirrored in the temperature-dependent part alongside modifications

to the plasma interactions parametrised by m: Effective interactions will typically introduce new

contributions to the thermal masses [47, 48], which we have included throughout (it is worth

highlighting though that these do not play a relevant role for the parameter choices that we consider

in this work).4

As done in Refs. [49, 50], it is convenient to mirror on-shell renormalisation conditions by

considering additional finite counter-term contributions at T = 0 to enforce an agreement between

tree-level and one-loop effective potential minima, masses and mixing which is expressed by

0 =
∂

∂ϕi
(V CW + V CT)

∣∣∣∣
⃗̄ωtree

=
∂2

∂ϕi∂ϕi
(V CW + V CT)

∣∣∣∣
⃗̄ωtree

. (3.11)

Here we denote ϕi as the degrees of freedom in Eq. (2.2) and have further defined ⃗̄ωtree as the vacuum

selected by Eq. (3.1), which can be aligned in our CP-even case without loss of generality in the

(ζ1, ζ2) direction.

4Note also that the redefinition of the Yukawa interactions of Eq. (2.11) already changes the dependence MF (Φ1,Φ2)

such that only in the vacuum at T = 0 we recover the effective dimension-4 relations.
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Figure 1. The 1-loop T = 0 vacuum structure (in arbitrary units) in the ζ1, ζ2 parameter space for a

representative parameter choice λ1 = 2.74, λ2 = 0.24, λ3 = 5.53, λ4 = −2.59, λ5 = −2.23, (m2
11,m

2
22,m

2
12) =

(11212.6,−6324.6, 7738.6) GeV2. This gives rise to the tree-level vacuum depicted by the red dot. The solid

contours are computed from the top quark contribution to the effective potential linearised in Λ, which admits

a solution to Eqs. (3.11). Overlayed in dashed contours is the full, un-truncated fermionic contribution to the

effective potential employing the solution in the linearised approximation. The Wilson coefficients are chosen

C
2(22)
Qt = C

1(12)
Qt = C

2(11)
Qt = C

1(22)
Qt = C

1(21)
Qt = 4π, Λ = 1 TeV, indicating that the linearised approximation is

under good control for up to relatively large, yet perturbative Wilson coefficient choices.

When considering effective field theories, these requirements are subtle. The CW effective

potential re-sums the dimension-6 EFT insertions to all orders in the Λ−2 expansion. In general,

this means that the system of equations, Eq. (3.11), is over-constrained when only considering

the renormalisation of the d = 4 parameters. But also including the scalar d = 6 interactions of

Tab. 3 (see also [14, 33]) are insufficient unless the effective potential is truncated at d = 6. For

investigations using numerical implementations such as BSMPT [51–53], this poses a technical difficulty

as the expansion in Λ is no longer under analytical control: Eq. (3.11) are unattainable for general

parameter choices. Analytical cross-checks show that this, however, does not lead to numerically

relevant deviations for perturbative Wilson coefficient choices where we can trust our results in the

first place. This is demonstrated in Fig. 1 which shows the top-quark contribution to the effective

potential in the presence of top-specific Wilson coefficients.

4 Phenomenology of the Electroweak Phase Transition

4.1 Scan Methodology

The exploration of the top-EFT extended 2HDM is performed numerically using ScannerS [54–56].

We have modified the original implementation of the real 2HDM (R2HDM) to include the operators

given in Tab. 2. Furthermore, we modified accordingly the code HDECAY [57–59] for the computation

of the QCD corrected branching ratios of all scalar particles. We choose the 2HDM mass spectrum,

tanβ, the soft-breaking m2
12, the coupling of the heavy CP-even Higgs boson to massive gauge bosons

cHV V , as well as the corresponding Wilson coefficients (setting Λ = 1 TeV) as input parameters.
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mh [GeV] mH [GeV] mA [GeV] mH± [GeV] tanβ cHV V m2
12 [GeV2]

125.09 130...3000 30...3000 800...3000 0.8...30 -0.3...1.0 10−5...107

Table 4. Scan ranges of the 2HDM input parameters.

The light Higgs boson is selected to have a mass of

mh = 125.09 GeV (4.1)

and behave SM-like. Points are generated from random numbers and their consistency with phe-

nomenological constraints is checked by ScannerS using HiggsBounds [60–63] and HiggsSignals [64,

65]. Flavour constraints are taken into account through consistency with Rb [66, 67] and B → Xsγ

[67–72]. Given the Yukawa type II considered here, the charged Higgs mass is constrained to

be mH± ≥ 800 GeV [72], virtually independent of tanβ.5 The input parameters’ minimum and

maximum allowed ranges are provided in Tab. 4. The imposed limit on the charged Higgs mass

effectively removes phenomenological sensitivity to this state, and we will focus on modifications of

the neutral states, which are much more accessible at the LHC. The coupling modifiers analogous to

Eq. (2.13) are given in appendix A for completeness.

The experimentally and theoretically validated parameter points found with ScannerS are

further investigated with our code BSMPT [51–53]. Our scan methodology works like follows:

1. We scan for a dim-4 point (all Wilson coefficients Ci
Qt = 0) that is in agreement with theoretical

and experimental constraints with ScannerS and whose strength of the electroweak phase

transition is ξd4c < 1 (no SFOEWPT yet) which we check with BSMPT.

For each dim-6 Wilson coefficient direction Ci
Qt we then check the following:

2. The selected dim-6 direction is varied with Ci
Qt = ±0.01 and we evaluate the response in ξd6c

by tracing the phases in a range of T d4
c ± 15GeV around the dim-4 critical temperature T d4

c .6

For the minimum phase tracing, we use the new minimum tracing algorithms of BSMPTv3 [53].

3. From the results for ξd6c,±0.01, we make a prediction for the Wilson coefficient Ci,SFOEWPT
Qt

leading to an SFOEWPT, assuming a linear response.

4. The prediction is checked with ScannerS including special focus on the h125tt̄ coupling. If the

predicted point is found to be valid, we derive ξd6c with BSMPTv3 as described in step 2. Here,

we adjust the temperature ranges for minima tracing iteratively.

5. We keep the point as a valid linear response dim-6 SFOEWPT point if ξd6, predc differs from

ξSFOEWPT
c = 1 by less than 1%. For relative differences above 10% we discard the point due to

5The bound on mH± is currently subject to investigation given the recent results by Belle-II [72–74].
6Due to our lack of analytical control over the Λ−1 expansion, our non-linearized calculation manifests itself into

small deviations from the EW minimum at T = 0GeV, as well as small deviations from EW symmetry restoration at

T = 300GeV. Because we analytically found them to be numerically irrelevant for perturbative Wilson coefficient

choices, we are only interested in studying the impact of Ci
Qt on the behaviour of the false and true coexisting minima

phases around the dim-4 critical temperature.
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mh [GeV] mH [GeV] mA [GeV] mH± [GeV] tanβ cHV V m2
12 [GeV2]

125.09 683 872 868 1.658 0.00350 205007

T d4
c [GeV] v(Tc)

d4 [GeV] ξd4c

226.29 215.69 0.95

Table 5. Input parameters of the benchmark point used for Fig. 2.

C
1(12)
Qt /Λ2 [1/TeV2]

0.94

0.96

0.98

ξd
6
c

ξd4
c = 0.953176

C
1(21)
Qt /Λ2 [1/TeV2]

0.94

0.96

0.98

ξd
6
c

ξd4
c = 0.953176

−0.2 −0.1 0.0 0.1 0.2

C
2(11)
Qt /Λ2 [1/TeV2]

0.94

0.96

0.98

ξd
6
c

ξd4
c = 0.953176

−0.2 −0.1 0.0 0.1 0.2

C
2(22)
Qt /Λ2 [1/TeV2]

0.94

0.96

0.98

ξd
6
c

ξd4
c = 0.953176

Figure 2. Response in ξd6c (in blue) in all Wilson coefficient directions separately for a representative

parameter point of the Type-2 2HDM with ξd4c ≃ 0.95. The dim-4 ξd4c is marked as a black line. The displayed

point is given in Table 5.

showing a non-linear response that violates our assumption of perturbative Wilson coefficient

choices. For 1% < |1 − ξd6, predc | < 10% we make an updated linearised prediction for the

dim-6 Wilson coefficient strength needed for an SFOEWPT based on the previous iteration

Ci,SFOEWPT
Qt = Ci,prev

Qt ·
(

1− ξd4c

ξd6, prevc − ξd4c

)
(4.2)

and repeat steps 4. and 5. until a valid linear-response dim-6 SFOEWPT point is found or

the point has to be discarded due to detected non-linearities.

In Fig. 2 we show the detailed response in ξd6c for one picked exemplary linear-response parameter

point. The point is given in Tab. 5 in detail. As can be seen in these plots the generic response to

EFT parameter modifications is linear. This means that although the potential receives non-linear

contributions from the EFT correlation changes, these formally higher-order modifications are not

relevant within the region that we study in this work. These results can therefore be taken as a

consistency check of the dimension 6 approach outlined in the previous section.
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Figure 3. Correlation of dimension-6 modified signal cross sections σd6 relative to their dimension-4

2HDM expectation σd4. The cross sections σd4
inf, σ

d6
inf include interference effects with other signal contributions

(e.g. propagating A, h contributions in case of H production) in the 2HDM as well as, most importantly,

interference effects with QCD-induced tt̄ production. We include points that are characterised by ξd4c < 0.96.

4.2 Results and Implications of a Top-Philic SFOEWPT

Small modifications of the top interactions can have a sizeable impact on Higgs signal strengths

µ(h→ XY ) =
[σ(h)× BR(h→ XY )]d6

[σ(h)× BR(h→ XY )]d4
(4.3)

where σ(h) is the light Higgs production cross section and BR(h→ XY ) the branching ratio into

the final state h → XY . In particular, the branching ratio of the h → γγ decay, which is already

significantly constrained and will provide a formidable avenue to constrain this direction in the

future, limits the freedom of BSM interactions. The coupling modifier of the 2HDM can move

quickly away as a function of the Wilson coefficients from the alignment limit that is preferred by the

increasingly SM-consistent outcome of Higgs measurements at the LHC. This becomes particularly

clear in a dedicated scan of individual operator directions of Tab. 2. Indeed we find the Higgs signal

strength constraints that are part of our workflow, Sec. 4.1, limit our freedom of Wilson coefficients,

highlighting scan points that achieve ξd6c > 1 from distances 1− ξd4c ≃ 10%, i.e. we can only bridge

small d4 phase transition distances without violating signal strength constraints. This consistency

with the SM outcome naturally moves us to a parameter domain where EFT modifications can be

trusted.

In parallel, we require a priori significant Yukawa-sector modifications to enable a stronger phase

transition in comparison with the SM alone (see also the discussion in Ref. [15] in the context of a

different model).7 Parametric freedom in signal strength constraints (that are included in our scan

as described in Sec. 4.1) can be achieved for mixing angles that reduce the sensitivity to a particular

7We note at this point that requiring ξd6c = 1 as a numerical value does not automatically guarantee an SFOEWPT.

What we are interested in predominantly in the following are the phenomenological consequences at the LHC that are

implied by “gradients” in ξd4c → ξd6c ≳ 1. This enables us to qualitatively understand exclusion constraints or the lack

of new physics signatures through the lens of overcoming the shortfalls of the 2HDM type II.
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Wilson coefficient for the 125 GeV Higgs.8 Compatibility of the 2HDM predictions with the currently

observed consistency of h = HSM favours regions of tanβ ∼ O(1) at a coupling modifier ξth ≃ 1,

Eq. (2.13a), isolating the alignment limit cosα ≃ sinβ in the Yukawa sector. For these parameter

choices, sinα < 0 in our conventions, so that the negative Wilson coefficient choices that drive

ξd6c → 1 are correlated with slightly enhanced coupling modifiers ξth. This increases the thermal

contribution to the Higgs potential from the lightest and therefore most relevant degrees of freedom

for the thermodynamical problem at hand.

In case of the O
1(12)
Qt interactions, the correlated modification for the heavy H, Eq. (2.13b), is

then a reduced coupling strength |ξtH(C
1(12)
Qt )| < |ξtH(C

1(12)
Qt = 0)|, which is mirrored by the CP-odd

state as tanβ > 0, Eq. (2.13c). The new physics operators can modify the h coupling strengths

at the order of 10% given current Higgs constraints, and a sizeable Wilson coefficient to drive the

EWPT requires suppression to maintain consistency with light Higgs observations. Depending on

the particular regions of parameter space where ξd6c ≃ 1 and agreement with available data can

be achieved in the scan detailed above, an interesting phenomenological implication arises, which

especially highlights O
1(12)
Qt . Heavy physics parametrised by C

1(12)
Qt that points towards an SFOEWPT

is correlated with an underproduction of the additional Higgs bosons in the 2HDM in the dominant

gluon fusion channels gg → H/A→ tt̄, Fig. 3. The relative reduction due to angular suppression of

the Wilson coefficient to maintain consistency with h data is not given for the heavy states whose

phenomenology therefore significantly departs from the d4 2HDM expectation.

Contrary to the O
1(12)
Qt , the structure of O

2(22)
Qt is such that

ξt,d6H

ξt,d6h

∣∣∣∣
O

2(22)
Qt

=
ξt,d4H

ξt,d4h

∣∣∣∣
O

2(22)
Qt

= tanα , (4.4)

ξt,d6h

ξt,d4h

∣∣∣∣
O

2(22)
Qt

=
ξt,d6H

ξt,d4H

∣∣∣∣
O

2(22)
Qt

= 1− C
2(22)
Qt

v2

Λ2

v√
2Mt

sin3 β . (4.5)

Due to the vacuum structure of this operator, the h, and H phenomenology modifications are fully

correlated, independent of the size of the Wilson coefficient. An enhanced strength of the phase

transition then manifests itself through a dedicated pattern in strengths of H vs h interactions that

can depart from the 2HDM d4 expectation at 20% enhancement whilst the CP odd Higgs boson

interactions are unchanged to leading approximation.

Interactions related to O
1(21)
Qt , O

2(11)
Qt impact the neutral Higgs sector identically, and therefore the

phenomenology is correlated. We, therefore, show their results combined in Fig. 3. The qualitative

picture is similar to O
1(12)
Qt , however, as ξd6c is more sensitive to the Wilson coefficient in this case.

This can be seen, e.g., in the steeper gradient displayed for C
1(21)
Qt , C

2(11)
Qt for the sample parameter

point in Fig. 2 compared to C
1(12)
Qt . Hence, the quantitative impact is reduced.

It is well-known that these searches are limited by accidental signal background interference [75],

however, the reduction in signal rate does not qualitatively change the observed outcome on which

the model-dependent investigations at the LHC (e.g. [76, 77]) are based. This means that when

8The operator ∼ C
1(21)
Qt is particularly worth highlighting here as it is the only Z2 symmetry conserving operator

that modifies the interactions with the CP-odd scalar, thus offering additional phenomenological handles at the LHC.
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Figure 4. Correlation of the modified production cross-section for pp → tt̄tt̄ (σd6/σd4) with modification

in the strength of the phase transition (ξd6c /ξd4c ). The corresponding contributions for the different effective

operators are shown and the points are chosen with ξd4c < 0.96.

considering the correlation changes anticipated from dimension-6 deformations of the 2HDM type II,

the established experimental strategies remain valid. In Fig. 4, we also show the implications for

four top final states pp → tt̄tt̄ (which includes all Higgs contributions in s and t channels). This

process has been motivated as an additional (interference-robust) tool to constrain or observe new

physics [78–82] (see also the recent LHC results of [83, 84]). The implications for the four top final

states are identical to gg → H/A→ tt̄, cf. Fig. 3.

What is perhaps most important at this point in the LHC programme is that when we consider

the aforementioned correlation changes that address cosmological shortcomings of the 2HDM at face

value, the LHC sensitivity is currently overestimated , predominantly for C
1(12)
Qt , for which also the

CP-odd scalar has a suppressed phenomenology (such states are abundantly produced compared

to the CP-even scalar due to a different threshold behavior [85]). This alludes to the tantalising

possibility that the 2HDM type-II could indeed be realised at the TeV scale with additional heavier

physics modifying the expected correlations in such a way that the current constraints are weakened,

yet shortfalls of the SM (and the 2HDM) are cured. This constitutes an exciting prospect for the

LHC Run-3.

5 Conclusions

The requirement of a strong first-order electroweak phase transition is a strong hint for a source of

new physics beyond the Standard Model. Yet, current analyses at the high-energy regime of the LHC

seem to indicate that electroweak symmetry breaking is well-described by the ad-hoc implementation

of the SM. On the one hand, these recent observations imply mounting pressure on BSM scenarios

such as the 2HDM type II that we have considered in this work. On the other hand, consistency

with the SM hypothesis could indicate top-philic cancellations as part of high-scale physics which

is well-expressed using effective field theory in the intermediate energy regime between the 2HDM
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and its extension. Taking this as motivation we analyse Yukawa sector modifications as potential

sources to facilitate a strong first-order electroweak phase transition in the early universe. While

such cancellations reproduce the alignment limit of the 2HDM to maintain consistency with current

Higgs data they show up as characteristic deformations of the 2HDM heavy states’ phenomenology.

Not only is this qualitatively different from the scalar sector deformations discussed in Ref. [14], but

the implied phenomenological consequences for the LHC are encouraging: Current analysis strategies,

whilst remaining robust strategies to lead to discoveries in the future, can overestimate the new

physics potential of exotic Higgs searches in the 2HDM when its deformations to an SFOEWPT are

considered as a result of O
1(12)
Qt .
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A EFT Modifications of Charged Higgs Interactions

With Ψ2Φ3 insertions, the dimension-4 charged Higgs couplings to the fermions Eq. (2.7) get modified.

For the third-generation fermions, these modifications are

Ldim-6
charged =

√
2

v

[
t̄

{(
Mb Vtb tanβ +

v3 sinβ

2
√
2Λ2

(
C

2(12)
Qb + C

2(21)
Qb + C

2(11)
Qb cotβ + C

2(22)
Qb tanβ

))
PR

+Vtb

(
Mt cotβ +

v3 cosβ

2
√
2Λ2

(
C

1(12)
Qt + C

1(21)
Qt + C

1(11)
Qt cotβ + C

1(22)
Qt tanβ

))
PL

}
b H+

+ ν̄τ

(
Mτ tanβ +

v3 sinβ

2
√
2Λ2

(
C

2(12)
Lτ + C

2(21)
Lτ + C

2(11)
Lτ cotβ + C

2(22)
Lτ tanβ

))
PR τ H

+ + h.c.

]
.

(A.1)

Again for Λ → ∞, the standard 2HDM relations of Eq. (2.7) are recovered.

References

[1] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, R. Kogler et al., The Electroweak Fit of the

Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205,

[1209.2716].

[2] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori et al., Higgs mass and

vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098, [1205.6497].

– 15 –

http://dx.doi.org/10.1140/epjc/s10052-012-2205-9
https://arxiv.org/abs/1209.2716
http://dx.doi.org/10.1007/JHEP08(2012)098
https://arxiv.org/abs/1205.6497


[3] A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner and O. L. Veretin, Stability of the Electroweak Vacuum:

Gauge Independence and Advanced Precision, Phys. Rev. Lett. 115 (2015) 201802, [1507.08833].

[4] U. Baur, T. Plehn and D. L. Rainwater, Measuring the Higgs Boson Self Coupling at the LHC and

Finite Top Mass Matrix Elements, Phys. Rev. Lett. 89 (2002) 151801, [hep-ph/0206024].

[5] C. Englert, M. McCullough and M. Spannowsky, Gluon-initiated associated production boosts Higgs

physics, Phys. Rev. D 89 (2014) 013013, [1310.4828].

[6] A. D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe,

Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35.

[7] C. Englert, P. Galler, A. Pilkington and M. Spannowsky, Approaching robust EFT limits for

CP-violation in the Higgs sector, Phys. Rev. D 99 (2019) 095007, [1901.05982].
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[51] P. Basler and M. Mühlleitner, BSMPT (Beyond the Standard Model Phase Transitions): A tool for the

electroweak phase transition in extended Higgs sectors, Comput. Phys. Commun. 237 (2019) 62–85,

[1803.02846].
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