KIT | KIT-Bibliothek | Impressum | Datenschutz

Understanding and exploiting interfacial interactions between phosphonic acid functional groups and co-evaporated perovskites

Feeney, Thomas 1,2; Petry, Julian 1,2; Torche, Abderrezak; Hauschild, Dirk 3,4; Hacene, Benjamin ORCID iD icon 1; Wansorra, Constantin ORCID iD icon 3; Diercks, Alexander 1; Ernst, Michelle; Weinhardt, Lothar 3,4; Heske, Clemens 3,4; Gryn'ova, Ganna ; Paetzold, Ulrich W. ORCID iD icon 1,2; Fassl, Paul ORCID iD icon 1,2
1 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
3 Institut für Photonenforschung und Synchrotronstrahlung (IPS), Karlsruher Institut für Technologie (KIT)
4 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Interfacial engineering has fueled recent development of p-i-n perovskite solar cells (PSCs), with self-assembled monolayer-based hole-transport layers (SAM-HTLs) enabling almost lossless contacts for solution-processed PSCs, resulting in the highest achieved power conversion efficiency (PCE) to date. Substrate interfaces are particularly crucial for the growth and quality of co-evaporated PSCs. However, adoption of SAM-HTLs for co-evaporated perovskite absorbers is complicated by the underexplored interaction of such perovskites with phosphonic acid functional groups. In this work, we highlight how exposed phosphonic acid functional groups impact the initial phase and final bulk crystal structures of co-evaporated perovskites and their resultant PCE. The explored surface interaction is mediated by hydrogen bonding with interfacial iodine, leading to increased formamidinium iodide adsorption, persistent changes in perovskite structure, and stabilization of bulk α-FAPbI3, hypothesized as being due to kinetic trapping. Our results highlight the potential of exploiting substrates to increase control of co-evaporated perovskite growth.


Verlagsausgabe §
DOI: 10.5445/IR/1000168954/pub
Veröffentlicht am 31.05.2024
Postprint §
DOI: 10.5445/IR/1000168954
Frei zugänglich ab 09.03.2025
Originalveröffentlichung
DOI: 10.1016/j.matt.2024.02.004
Scopus
Zitationen: 5
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Institut für Photonenforschung und Synchrotronstrahlung (IPS)
Institut für Technische Chemie und Polymerchemie (ITCP)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.05.2024
Sprache Englisch
Identifikator ISSN: 2590-2385, 2590-2393
KITopen-ID: 1000168954
HGF-Programm 38.01.02 (POF IV, LK 01) Materials and Interfaces
Weitere HGF-Programme 56.12.11 (POF IV, LK 01) Materials - Quantum, Complex and Functional
Erschienen in Matter
Verlag Elsevier
Band 7
Heft 6
Seiten 2066-2090
Projektinformation 27plus6 (BMWK, 03EE1056B)
SHAPE (BMWK, 03EE1123A)
NEXUS (EU, EU 9. RP, 101075330)
Vorab online veröffentlicht am 08.03.2024
Schlagwörter perovskite solar cells; self-assembled monolayers; hole-transport layer; interfacial engineering; co-evaporation; density functional theory; x-ray emission spectroscopy; nuclear magnetic resonance spectroscopy; vapor deposition; perovskite crystal growth
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page