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MHD Flow in Curved Pipes Under a Nonuniform
Magnetic Field

Chiara Mistrangelo and Leo Bühler

Abstract— In fusion reactors, a very hot deuterium–tritium
plasma is confined in a toroidal volume by means of a strong
magnetic field. In the blanket structure that surrounds the
fusion plasma, high-energy neutrons, produced in the D-T fusion
reaction, are absorbed by the lithium-containing liquid metal
releasing their kinetic energy in the form of volumetric thermal
load and breeding the fuel component tritium. The liquid
metal flows from the blanket toward external ancillary systems
for purification and tritium extraction. When the electrically
conducting fluid moves in the strong plasma-confining magnetic
field, induced electric currents generate electromagnetic Lorentz
forces, which modify velocity distribution and increase pressure
losses compared with hydrodynamic flows. These magnetohy-
drodynamic (MHD) effects have to be investigated to determine
their impact on blanket performance. A number of studies on
pressure -driven and buoyant MHD flows in geometries related
to blanket modules are available, while only few works consider
MHD flows in pipelines connecting blanket and ancillary systems.
In the present study, we investigate numerically liquid metal
MHD flows in the pipes, which cross the shield that protects
the superconducting magnets from neutron radiation-induced
damages. The geometry features two bends in series that turn the
flow from the radial direction perpendicular to the magnetic field
into a direction parallel to it and then back to a perpendicular
orientation. The correct radial distribution of the magnetic field,
as expected along the pipe axis, is taken into account. The flow
experiences strong 3-D effects caused by Lorentz forces due to
large-scale current loops driven by axial potential differences
along the bend axis. In spite of very strong local MHD effects
on velocity and pressure distribution, the overall pressure drop
does not increase significantly compared with the one in a fully
developed flow in a straight pipe of same length.

Index Terms— Curved pipes, liquid metal blankets, magneto-
hydrodynamics (MHD), nonuniform magnetic field.

I. INTRODUCTION

IN FUSION power reactors, a hot deuterium–tritium plasma
is confined in a toroidal vacuum vessel by means of

an imposed magnetic field. Lithium-containing liquid metals,
such as the eutectic alloy lead lithium (PbLi), are foreseen
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Fig. 1. View on the ITER TBM and the PbLi pipes across the shield [1].

as breeder material for in situ production of the fuel compo-
nent tritium. Moreover, PbLi serves as a neutron multiplier,
heat carrier, and coolant in blankets of future thermonuclear
reactors. The blanket is the structure that faces the plasma on
one side (first wall) and the protecting shield on the other
side (back plates), as shown in Fig. 1, where the design
of the ITER test blanket module (TBM) with pipelines is
displayed [1]. The liquid metal from the blanket has to
circulate toward ancillary systems for tritium extraction and
purification. When the electrically conducting fluid moves in
the strong magnetic field that confines the fusion plasma,
electric currents are induced that generate electromagnetic
Lorentz forces [2], which modify velocity distribution and
increase pressure losses compared with hydrodynamic flow
in the same geometry. These magnetohydrodynamic (MHD)
effects have to be carefully analyzed to assess their impact on
the performance of a fusion blanket. In recent years, a number
of studies on pressure-driven and buoyant MHD flows in
geometries related to blanket modules and in liquid metal
manifolds enhanced the understanding of MHD phenomena
in such components [3], [4], [5], [6], although the prediction
of such flows in complete blanket modules for fusion relevant
parameters is still ongoing [7]. On the other hand, only few
works [8], [9] considered the MHD flow in supply and return
pipe lines connecting the blanket modules with the ancillary
systems, and to the best of our knowledge, bend flows in
nonuniform magnetic fields, as present in ITER, have not been
considered so far.

In the present work, we investigate the liquid metal flows
in the pipes which cross the shield that protects the supercon-
ducting magnets from neutron radiation-induced damages and
associated heating. The supplying pipe features two bends in
series that turn the flow from the radial direction perpendicular
to the toroidal magnetic field B into a direction parallel to it
and then back to a perpendicular orientation (Fig. 1). In fully
developed MHD flows in straight pipes in uniform magnetic
fields, electric currents close within duct cross sections remain-
ing confined in 2-D planes parallel to the magnetic field.
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Fig. 2. Model geometry used for the numerical analysis, coordinate system,
and main dimensions. The pipe has an inner diameter of 2L = 0.065 m and
a wall with thickness tw = 0.003 m.

TABLE I
OPERATING CONDITIONS OF THE WCLL TBM AND MODEL DIMENSIONS

In curved geometries, axial potential gradients occur that drive
currents along 3-D loops traversing different cross-sectional
planes. These currents induce electromagnetic Lorentz forces
that affect velocity and pressure distribution in the double-bend
pipe considered in the present study [9]. In the problem under
investigation, we take into account additionally the influence
of a realistic magnetic field that varies spatially along the radial
direction (see Fig. 3).

II. MODEL GEOMETRY

In Fig. 2, the model geometry is displayed together with
the used coordinate system that is centered in the middle of
the double bend. The dimensions of the pipes connecting the
WCLL TBM to the ancillary systems have been taken from
the most recent design for ITER. As for previous numeri-
cal studies, where the magnetic field was assumed constant
across the shield [9], operating conditions have been provided
by Fusion for Energy (F4E), which is the EU organization
managing Europe’s contribution to ITER, and the data used
for the present simulations are summarized in Table I.

For applications in ITER, the magnetic field across the
shield is not uniform and its radial distribution is plotted in
Fig. 3. The solid lines indicate the distribution of the toroidal
magnetic field at different poloidal positions, as provided by
F4E. The red dashed line is obtained by fitting the curves
in the region of interest and this distribution is used for the
numerical simulations. The focus of the present simulations
is on MHD flow in the bends, the center of which is located
at X = 2.369 m. The positions of the model geometry in
the spatially varying magnetic field and colored contours of B
are shown in the subplot on the top left of the figure. Over
a sufficiently long range upstream and downstream of these
bends, the magnetic field is well-approximated by the used
fitting function across the entire shield (see the sketch on the
bottom of Fig. 3 showing the position of TBM and shield).
Since the numerical simulations require well-defined entrance
and exit boundary conditions, it is assumed that the magnetic
field is constant in a certain portion of the inlet and the outlet
pipes at sufficient distance from the bends.

III. GOVERNING EQUATIONS AND FLOW PARAMETERS

We consider the incompressible, viscous, MHD flow of an
electrically conducting fluid, such as a liquid metal, exposed

Fig. 3. Radial distribution of the magnetic field. Solid lines represent
calculated distribution of the toroidal magnetic field taken at different poloidal
positions. The red dashed line is a fitting curve used for the numerical
calculations in the present study. Contours of magnetic field strength in the
model geometry are shown in the subplot on the top left side of the figure.

to an externally applied magnetic field, which is governed by
equations for balance of momentum, conservation of mass,
where currents are calculated by Ohm’s law

ρ

(
∂

∂t
+ v · ∇

)
v = −∇ p + ρν∇

2v + j × B (1)

∇ · v = 0, j = σ(−∇φ + v × B). (2)

Here, v, j, B, and φ stand for the velocity, current den-
sity, applied magnetic flux density, and electric potential,
respectively. The physical properties of the fluid, density ρ,
kinematic viscosity ν, and electric conductivity σ , are assumed
to be constant and taken at the mean temperature T0 = 307
◦C (Table I) from the material database reviewed in [10]
(Table II).

The electric potential φ is determined by a Poisson equation
obtained by combining Ohm’s law (2) with the condition for
charge conservation ∇ · j = 0

∇
2φ = ∇ · (v × B). (3)

In the wall, this equation reduces to ∇
2φw = 0.

The flow is characterized by two dimensionless parameters,
the Hartmann number, Ha, and the Reynolds number, Re

Ha = B0L
√

σ

ρν
, Re =

u0L
ν

. (4)

The former one gives a nondimensional measure for the
strength B0 of the imposed magnetic field and its square
describes the ratio between electromagnetic and viscous
forces. The Reynolds number indicates the ratio of inertia to
viscous forces and can also be expressed as Re = Ha2/N,
where N = σ L B2

0/(ρu0) is the interaction parameter. The
typical length scale of the problem L is the internal radius
Ri of the pipe (see Fig. 2) and the characteristic velocity
u0 is chosen as the mean velocity in the pipe. Equations
are formulated according to the inductionless or quasi-static
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TABLE II
MATERIAL PROPERTIES OF PBLI [10] AND OF WALL

MATERIAL [15] AT 307 ◦C

approximation, which is valid at low magnetic Reynolds num-
ber, Rem = µσ Lu0 = 3 · 10−3 (for u0 = 0.1 m/s) ≪ 1, where
µ is the magnetic permeability. It states that the magnetic field
induced by currents in the fluid is negligible compared with
the externally applied field B [11], [12].

As kinematic boundary conditions at the wall, the no-slip
condition, v = 0, is applied. The external surface of the wall
is electrically insulating, ∂φw/∂n = 0, and at the fluid–wall
interface the flow satisfies continuity of electric potential and
normal component of current density, φ = φw and jn = jnw,
i.e., there is no contact resistance. At the inlet of the pipe,
no axial currents, i.e., ∂φ/∂x = 0, a uniform magnetic
field B0, and velocity u0, are imposed. The conductance
of the wall with specific conductivity σw and thickness tw
compared with the one of the fluid is described by the wall
conductance ratio c. This parameter can be defined according
to two different formulations, one applies for circular pipes
with walls of arbitrary thickness [13] and the other one
is more general in terms of geometry but only valid for
thin walls, tw ≪ L [14]

cM =
σw

σ

R2
o − R2

i

R2
o + R2

i
= 0.1175, cW =

σwtw
σ L

= 0.123. (5)

For the operating conditions defined in Table I, a maximum
magnetic field of 3T and the material properties given in
Table II nondimensional parameters characterizing the MHD
pipe flow across the shield become Ha = 2621, N = 1318,
and the hydrodynamic Reynolds number based on L is Re =

Ha2/N = 5215. Hydrodynamic flows at comparable Reynolds
numbers are expected to be turbulent. However, for strong
magnetic fields (large Ha), the MHD flow becomes laminar,
since inertia forces are negligible compared with the strong
electromagnetic forces (large N ) [16], [17]. The MHD flow
in the core is mainly governed by a balance between pressure
and electromagnetic Lorentz forces, while viscous forces are
important only in the thin boundary layers along walls.

Numerical simulations are performed by means of a finite
volume solver implemented in the frame of the open source
code OpenFOAM. A cell-centered finite volume method is
used to discretize the equations. A segregated solver is
employed, and for the coupling between pressure and veloc-
ity the pressure implicit with splitting of operators (PISO)
algorithm available in OpenFOAM is applied. The Lorentz
force is treated explicitly and defined at cell centers. Required
centroid currents are obtained by interpolation from face
current fluxes using the identity j = ∇ · (jr), where r is
the distance vector [18], [19], to avoid spurious contributions
to the electromagnetic force due to discretization errors. The
standard Gaussian finite volume integration is used for dis-
cretization of convective terms, together with a second order

Fig. 4. Example of mesh used to discretize the fluid domain in the bends. The
mesh consists of regions that are topologically different. There is a uniform
structured core grid (1), wall-aligned prism layers to resolve the near-solid
region (2) and the wall, and unstructured transition meshes to join the various
zones (4).

skewness-corrected interpolation scheme required when using
nonorthogonal meshes as in the present study.

In addition to numerical simulations by OpenFOAM,
asymptotic analyses are performed that are valid for
Ha ≫ 1 and N → ∞, i.e., for strong magnetic fields and
neglecting inertia effects. These results obtained using bound-
ary fit coordinates, as described in [20], are compared with
the present full numerical simulations.

IV. COMPUTATIONAL MESH

Different types of computational meshes have been tested
to find the most suitable one for the prediction of MHD flows
exposed to strong magnetic fields in arbitrary geometries.
A number of software have been considered for automatic gen-
eration of the grid and also the topology of the cells have been
varied. The performance of the code when using hexa-, poly-,
and tetrahedral elements has been investigated. Most accurate
results have been obtained using hex-dominant meshes with
thin prism elements in boundary regions. Best performance
and suppression of numerical instabilities and disturbances
require additionally the use of corrections for the calculation
of gradients, especially for the electric potential, when using
meshes with nonorthogonal cells. The nonorthogonality of a
grid is defined as the angle formed by the vector connecting
two adjacent cell centers and the vector normal to the shared
face. In case of orthogonal meshes, the angle is zero since the
face normal and the center joining vectors are aligned.

Fig. 4 shows details of the mesh in the fluid domain used
for the solution of the present problem. The mesh in the pipe
cross section is characterized by a uniform structured core
region (1) and wall-parallel prism layers (2) closer to the solid
domain and in the wall. It has been observed that the presence
of an additional uniform structured zone (3) for the transition
between the mesh portions (1) and (2) leads to more stable
simulation runs. The various structured grids are joined by
thin unstructured layers (4). The number of these irregular
cells has been minimized and their position has been shifted
to a certain distance from the boundary regions in which larger
variable gradients are expected.
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Fig. 5. Scaled pressure plotted along the axial direction for a uniform
magnetic field B = 3 T. Solid lines are the results from an asymptotic
solution valid for large Ha and N → ∞, and the dashed lines are obtained
by full numerical simulations. On the top of the figure, color contours of the
transverse component of the Lorentz force density fLz normalized by p0/L
are displayed on the bend surface.

V. NUMERICAL RESULTS

Before performing full numerical simulations in the nonuni-
form magnetic field B(x) as present across the shield,
simulations for a uniform field B = 3 T have been carried
out and compared with the asymptotic results to test the
problem setup and code performances for such MHD flow.
In Fig. 5, the pressure normalized by p0 = σ Lu0 B2 is
plotted along the scaled axial coordinate of the geometry
both in the middle (z/L = 0) and near the side walls
(z/L = ±1) of the ducts. It can be seen that asymptotic
results valid for large Ha and N → ∞ (solid lines) and
full numerical simulations (dashed lines) exhibit quite good
agreement for pressure variation in the 3-D region of the
geometry. We find increased pressure gradients when entering
and leaving the bends and a weak locally reversed pressure
gradient in the center of the step-shaped duct inside a virtual
cylinder. The latter is bordered by internal layers that develop
parallel to the magnetic field and tangent to the bend walls.
A more detailed description of this peculiar region is given in
the following when describing results for the MHD flow in a
nonuniform B(x). The results of 3-D numerical simulations
show slightly smaller pressure gradients in fully developed
flow regions at some distance from the bends compared
with the asymptotic solution. This can be explained by the
fact that the latter analysis uses the definition cW of the
wall conductance parameter (5) according to Walker [14]
that assumes that walls are very thin, tw ≪ L . Instead, the
numerical approach resolves the finite thickness of the wall
with a fine grid. In Fig. 5, the red dotted line corresponds to
the theoretically predicted constant pressure gradient in fully
developed pipe flow, ∂x p = −cM/(cM + 1), whose validity
is not restricted to thin walls [13]. This formulation agrees
well with the numerical results and confirms together with
the asymptotic results the quality of the used mesh and the

Fig. 6. Results for Ha = 2621 and N = 1318. Contours of (a) velocity
magnitude and (b) axial velocity on the vertical symmetry plane at z = 0.
The red dashed line marks the virtual cylinder.

correct implementation of algorithms and numerical schemes
for nonorthogonal meshes.

The color plot on the top of Fig. 5 shows on the fluid–wall
interface contours of the transverse component of the Lorentz
force fLz scaled by p0/L . These forces are responsible for the
pressure difference between the center of the bend (z/L = 0)
and the sides (z/L = ±1).

In the following, the results are presented for the geometry
described in Fig. 2 and the magnetic field distribution as
plotted in Fig. 3. We consider a double-curved pipe with a
radial–toroidal–radial orientation, which transports the liquid
metal from the region with large magnetic field, i.e., from the
blanket, toward the ancillary systems where B is much smaller.

Fig. 6 shows contours of (a) velocity magnitude and (b)
axial velocity on the vertical symmetry plane at z = 0.
The strongest velocity gradients occur across the thin internal
layer that develops along magnetic field lines tangent to the
wall of the double bend. Together with the boundary layers,
it forms a virtual cylinder, marked by the red dashed line,
in the periphery of which the 3-D MHD phenomena are mainly
confined. The tangent cylinder emerges from the line on the
geometry where B · n = 0 and it spreads through the fluid
along magnetic field lines. In this sense, it is comparable
to internal Ludford layers that develop likewise in the fluid,
originating from singularities in the geometry [21]. Those
layers are also closely related to the characteristic surfaces
introduced by [22].

The contours of the axial velocity component [Fig. 6(b)]
clearly show that the fluid domain splits into three cores: those
upstream and downstream the bends have similar characteris-
tics, and the velocity distribution is pretty uniform resembling
the main features of a fully developed velocity profile. In the
middle core, the velocity in the center reduces significantly,
while the largest portion of the flow rate is transported by
boundary and internal layers where high-velocity jets are
present. The evolution of the velocity distribution and the
progressive growth of the velocity magnitude in the layers can
be seen in Fig. 7 in which 3-D velocity profiles, colored by
the velocity magnitude, are plotted at different axial positions.
The red velocity streamlines in Fig. 7 show the exchange of
flow between internal layers.

The origin of the 3-D MHD effects in the region close
to the bends can be explained by looking at the distribution
of the electric potential, as shown in Fig. 8. On the top (a),
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Fig. 7. Results for Ha = 2621 and N = 1318. Three-dimensional velocity
distribution at different axial positions. When approaching the bends, the
velocity starts increasing in the boundary layers while reducing in the center.
Red velocity streamlines indicate how the flow moves across the bend center
from one internal layer to the other one.

Fig. 8. Results for Ha = 2621 and N = 1318. (a) Contours of electric
potential and (b) its axial variation in the center of the geometry (z/L = 0)

and near the sides (z/L = ±1). The two vertical red lines in (b) indicate the
length of the shield. The figure on the right shows the beginning (P1) and
the end (P2) of the bends.

colored contours of electric potential are plotted on the
fluid–wall interface. The strongest axial potential gradients are
localized near the virtual cylinder indicated by the red dashed
lines. Moderate axial potential variations are also present in
the straight pipes caused by the radial profile of the magnetic
field B(x). Only in the regions where the magnetic field
is assumed constant, at sufficient distance from the bends,
where fully developed conditions are reached, the potential
is constant along x with changes only in the transverse z
direction. The axial profiles of electric potential in the center
of the geometry (z/L = 0) and near the sides (z/L = ±1)

are plotted in Fig. 8(b). Highest values of potential magnitude
are found near the sides in the inlet region, where the electric
potential scaled by φ0 = u0 BL is (φ/φ0)(x = −∞, z/L =

±1) = ±0.894. This value is in agreement with predictions
for fully developed flow in electrically conducting pipes [13],
where (φ/φ0)F D(z/L = ±1) = ±(1 + cM)−1

= 0.8948, with
conductance parameter cM = 0.1175 (5). When approaching
the bends, a significant local reduction in the magnitude of
wall potential can be observed near the sides at z/L = ±1.
In Fig. 8(b), cross sections at positions P1 and P2 indicate the
beginning and the end of the bends (see figure on the right).

Fig. 9. Results for Ha = 2621 and N = 1318. Electric current streamlines
that close exclusively in the fluid. The red dashed line indicates the virtual
cylinder.

The axial variations in electric potential drive axial currents
that close through the wall and the fluid giving rise to 3-D
electric currents j3−D and Lorentz forces fL that affect velocity
and pressure distribution. In the identified virtual cylinder, the
3-D currents close exclusively in the fluid domain. In Fig. 9,
some characteristic current streamlines are displayed. (a) Side,
(b) top, and (c) 3-D views should facilitate the understanding
of the complex current paths. The orange and cyan lines form
two vortex tubes elongated in the toroidal direction (Fig. 9(c)
on the bottom) which meet almost in the center of the virtual
cylinder (b). In the lower part of the bends, there are current
lines that circulate across the entire cross section of the virtual
cylinder (blue lines), and in the right half the red lines follow
partly the bend wall and then turn upstream forming larger
loops.

When seeding the current streamlines in the external periph-
ery of the virtual cylinder, currents induced in the fluid close
their path through the wall, as visible in Fig. 10 (blue lines).
Here different views show how the current flows in the wall,
where a saddle point can be identified near the middle of
the bends in the side walls z/L = ±1. Orange and cyan
current lines circulate only in the fluid as displayed in Fig. 9.
These streamlines are also plotted here to clarify the position
of the virtual cylinder compared with the blue current lines.
In Fig. 10(c) on the bottom, red current lines outside the bends
in the straight pipes exhibit as well a certain axial component
due to the spatial gradient in the magnetic field distribution.
However, in these pipes the 3-D MHD effects are much weaker
than in the bends. In the regions at the inlet and outlet of the
geometry (not visible in Fig. 10), where the magnetic field is
assumed constant, fully developed conditions are reached and
currents circulate there in 2-D cross-sectional planes.

The axial variation in pressure along lines in the center of
the geometry at z/L = 0 and near the sides at z/L = ±1 is
plotted in Fig. 11. The pressure has been scaled by the quantity
p0 = σu0 B2L . The two vertical dashed lines indicate the
position of the shield behind the ITER TBM (see figure on
the bottom) and x/L = 0 is the middle of the step. For better
visualization, the distribution in the center has been enlarged in
the subplot on the right-hand side. Near the sides at z/L = ±1,
3-D MHD effects are weaker than in the middle of the pipes
since transverse Lorentz forces compensate the stronger axial
gradients in the center. Solid lines are the results obtained by
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Fig. 10. Results for Ha = 2621 and N = 1318. Blue and red current
streamlines close also in the wall. The current paths in the fluid (orange and
cyan) are the same as in Fig. 9(c).

Fig. 11. Results for Ha = 2621 and N = 1318. Scaled pressure plotted along
the axial direction. On the right in the subplot, the distribution in the bends
has been enlarged for better visualization. Solid lines are the results from an
asymptotic solution valid for Ha ≫ 1 and N → ∞, and the dashed lines are
obtained by full numerical simulations.

an asymptotic approach valid for Ha ≫ 1 and N → ∞, while
the dashed lines are from full numerical simulations. The two
sets of data evidence a very good agreement, indicating that
inertia forces are unimportant. When increasing the flow rate,
inertia forces become stronger and weak deviations from the
inertialess solution are visible in the middle of the bends.

In Fig. 12, the axial pressure gradient scaled by p0/L is
plotted along the normalized coordinate x/L . Close to the inlet
and the outlet of the geometry, where the magnetic field is
assumed constant, the flow reaches fully developed conditions
characterized by a constant pressure gradient. The dot-dashed
line indicates the theoretical value ∂x p = −cM/(cM + 1) for
fully established pipe flow [13]. While the magnetic field B(x)

becomes smaller along the radial direction, the magnitude of
the pressure gradient reduces progressively as well. When
the flow approaches the step, the magnitude of the pressure
gradient starts increasing rapidly up to a local maximum
before reducing abruptly and becoming even reversed within
the bend region. Similar phenomena are observed behind the
bends, where another local maximum occurs. Afterward, the
pressure gradient decreases and it recovers the expected fully

Fig. 12. Radial pressure gradient ∂x p along the center of the pipe,
normalized by p0/L . Results are plotted along the scaled coordinate x/L
for Ha = 2621 and N = 1318. The horizontal dot-dashed line indicates the
theoretical solution for fully developed flow according to [13].

developed flow value in the outlet duct where the magnetic
field is assumed constant. This faster axial variation in the
pressure near the bends for −5 < x/L < 5 is due to the
occurrence of 3-D currents (see Fig. 9) that create additional
electromagnetic Lorentz forces, which influence locally the
pressure distribution. It can be observed that the presence of
the bends causes significant 3-D MHD effects which, however,
remain confined to the region immediately around the bends
where they affect mainly the local velocity distribution.

VI. CONCLUSION

Numerical simulations of liquid metal MHD flows in double
bends with circular cross section, as those foreseen across the
radiation shield behind the ITER TBM, have been performed
for a realistic distribution B(x) of the toroidal magnetic field.
The latter varies in the radial direction from a value of B ≈ 3T
near the back plate of the TBM to much smaller values at the
far end of the shield. The results have been obtained using
a realistic distribution of B(x) according to the input data
provided by F4E (Fig. 3).

Due to the nonuniform magnetic field B(x), the pressure
drops along x approximately as ∂x p(x)∼ B2(x), which leads
to a rapid decrease in pressure along the radial coordinate x .
However, since the variation in B along x happens over a
longer distance compared with the pipe diameter, 3-D effects
in the straight pipes remain moderate and the flow at a
certain distance from the bends resembles a locally quasi fully
developed flow with almost uniform core velocity and only
slight local overspeed in the Roberts layers that form near the
walls whose normal vector is perpendicular to the magnetic
field [23]. Close to the bends, strong 3-D modifications occur
in all the variables such as pressure, velocity, electric potential,
and currents. In the bends, the flow is carried preferentially
in thin parallel internal layers that create a virtual tangent
cylinder aligned with magnetic field lines.

In the core of the virtual cylinder, the velocity is very small.
Electric currents prefer not to cross this cylinder and they
either stay in its central core or flow around it. The pressure
distribution inside the virtual cylinder shows a plateau and
it has even a slightly reversed radial gradient. This effect
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TABLE III
PARAMETRIC STUDY: INFLUENCE OF REYNOLDS NUMBER ON TOTAL

PRESSURE DROP △pshield ACROSS THE SHIELD

compensates practically the increased pressure drop upstream
and downstream of the bends that is caused by Lorentz forces
originating from additional 3-D currents. The total pressure
drop along the entire shield has been determined and quantified
as nondimensional quantity 1pshield (see Fig. 11). The results
for ITER parameters, i.e., ṁ = 0.6498 kg/s, u0 = 0.02 m/s,
and B(x), according to Fig. 3 with B0 = 3T, yield a total
pressure drop 1pshield = 0.12 bar. Values of pressure drop for
higher velocities are displayed in Table III, and they are in
perfect agreement with data from the asymptotic theory.
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