KIT | KIT-Bibliothek | Impressum | Datenschutz

Greener, Safer and Better Performing Aqueous Binder for Positive Electrode Manufacturing of Sodium Ion Batteries

Xu, Ruochen; Pamidi, Venkat ; Tang, Yushu ORCID iD icon 1,2; Fuchs, Stefan 3; Stein, Helge S. ORCID iD icon 3; Dasari, Bosubabu 1; Zhao-Karger, Zhirong 1; Behara, Santosh; Hu, Yang; Trivedi, Shivam; Anji Reddy, M.; Barpanda, Prabeer 1; Fichtner, Maximilian 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
3 Institut für Physikalische Chemie (IPC), Karlsruher Institut für Technologie (KIT)

Abstract:

P2-type cobalt-free MnNi-based layered oxides are promising cathode materials for sodium-ion batteries (SIBs) due to their high reversible capacity and well chemical stability. However, the phase transformations during repeated (dis)charge steps lead to rapid capacity decay and deteriorated Na+ diffusion kinetics. Moreover, the electrode manufacturing based on polyvinylidene difluoride (PVDF) binder system has been reported with severely defluorination issue as well as the energy intensive and expensive process due to the use of toxic and volatile N-methyl-2-pyrrolidone (NMP) solvent. It calls for designing a sustainable, better performing, and cost-effective binder for positive electrode manufacturing. In this work, we investigated inorganic sodium metasilicate (SMS) as a viable binder in conjunction with P2-Na0.67Mn0.55Ni0.25Fe0.1Ti0.1O2 (NMNFT) cathode material for SIBs. The NMNFT-SMS electrode delivered a superior electrochemical performance compared to carboxy methylcellulose (CMC) and PVDF based electrodes with a reversible capacity of ~161 mAh/g and retaining ~83 % after 200 cycles. Lower cell impedance and faster Na+ diffusion was also observed in this binder system. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000168964
Veröffentlicht am 01.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Physikalische Chemie (IPC)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1864-5631, 1864-564X
KITopen-ID: 1000168964
Erschienen in ChemSusChem
Verlag Wiley-VCH Verlag
Seiten e202301154
Vorab online veröffentlicht am 18.01.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page