
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-024-09639-w

Strong Norm Error Bounds for Quasilinear Wave Equations
Under Weak CFL-Type Conditions

Benjamin Dörich1

Received: 10 October 2022 / Revised: 28 October 2023 / Accepted: 31 January 2024
© The Author(s) 2024

Abstract
In the present paper, we consider a class of quasilinear wave equations on a smooth,
bounded domain. We discretize it in space with isoparametric finite elements and
apply a semi-implicit Euler and midpoint rule as well as the exponential Euler and
midpoint rule to obtain four fully discrete schemes. We derive rigorous error bounds
of optimal order for the semi-discretization in space and the fully discrete methods
in norms which are stronger than the classical H1 × L2 energy norm under weak
CFL-type conditions. To confirm our theoretical findings, we also present numerical
experiments.
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1 Introduction

In the present paper, we consider the quasilinear wave equation

λ(u(t, x))∂t t u(t, x) = �u(t, x) + g(t, x, u(t, x), ∂t u(t, x)), (1.1)

for t ∈ [0, T ], x ∈ Ω ⊂ R
N , N = 1, 2, 3. We assume the domain Ω to be bounded

with a sufficiently regular boundary and impose homogeneousDirichlet boundary con-
ditions. We discretize (1.1) in space using isoparametric finite elements and employ
for the time discretization a semi-implicit Euler and midpoint rule as well as an expo-
nential Euler and midpoint rule. We derive error bounds in norms stronger than the
standard energy H1 × L2-norm.

The first wellposedness results for a large class of quasilinear wave type equation
were given by Kato in [25, 26]. This approach was refined in [11] for the problem
(1.1) to account for the state-dependent norms necessary in the analysis. A typical
example in nonlinear acoustics is the model λ(u) = 1 − um for some m ∈ N. Hence,
in order to ensure λ(u) > 0, a key ingredient in the proof is to establish pointwise
bounds on u (as well as ∂t u), often via Sobolev’s embedding H2 ↪→ L∞. To inherit
this property in the spatial discretization, we need pointwise bounds on the numerical
approximations in the error analysis. However, since the finite elements space is not
H2-conforming, we cannot follow the above approach.

So far in the literature, bounds in H1 × L2 are shown by inverse estimates which
yield a factor h−β for some β ≥ 1 with the spatial mesh width h. This induces
unsatisfactory CFL-type conditions and excludes linear finite elements. In contrast
with this, we adapt the idea from the wellposedness and perform the error analysis
not in the energy space H1 × L2, but employ a discrete version of the H2-norm.
A discrete variant of Sobolev’s embedding and a suitably defined solution space for
the numerical approximation allow us to remove lower bounds on the polynomial
degree of the finite element space and significantly improve the CFL-type condition
compared to the literature. For the temporal step size τ and the spatial mesh width
h, we show convergence in N = 2 under the restriction τ � hα , for any α > 0, and
in N = 3 we have τ � h1/2+α for the first-order methods in time and τ � h1/4+α

for the second-order method. In addition, we fully remove the CFL-type condition for
N = 1.

The strategy of the semi discrete proof relies on a bootstrap argument. We set up
a suitable solution space for the numerical approximation and show that the initial
value lies in this. Instead of the usual choice of interpolated initial values, we have to
use a Ritz map for which we provide a computable alternative of the correct order.
Since we are working with a finite-dimensional subspace, this directly yields local
wellposedness up to some time t∗h > 0. On this possibly short time interval, we prove
convergence in the stronger norm and use this to extend t∗h beyond T and to close the
argument. For the fully discrete error bounds, this approach is generalized using an
induction argument.

We give a brief overview of the literature on the numerical treatment of quasilinear
wave equations. In the pioneering works [10, 24, 27, 37], existence of solutions to
quasilinear and nonlinear evolution equations is established, and one can find approx-
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imation rates of the implicit and semi-implicit Euler method. Within an (extended)
Kato framework, optimal order for these methods was achieved in [22] and rigorous
error bounds for the time discretization by higher-order Runge–Kutta methods are
derived in [23, 28].

Concerning the spatial discretization, the results in [21] yield optimal order of
convergence for the equation (1.1), however, only for polynomials of degree greater
than two. For the strongly dampedWestervelt equation, continuous and discontinuous
Galerkin methods were analyzed in [1, 34]. Very recently, mixed finite elements for
the Kuznetsov and Westervelt equations were studied in [33].

In [31], error bounds for two variant of the midpoint rule are derived of optimal
order, but only for polynomials of degree greater than two and under a stronger CFL-
type condition compared to our results. In the case of one-dimensional wave equation
subject to periodic boundary conditions, full discretization error bounds are established
in [19]. A sophisticated energy technique combined with the properties of the spectral
discretization yields convergence without a CFL-type condition.

For a slightly different quasilinear wave equation, optimal error bounds in L2 for
continuous finite elements were considered in the literature. One-step methods of
different order are analyzed in [3, 4, 17], and two-step methods are considered in [5].
For a class of linearly implicit single-step schemes as well as a linearly and a fully
implicit two-step scheme, optimal error bounds are derived in [32]. However, all of
these results require a CFL-type condition at least as strong as τ � h and do not allow
for linear finite elements. We expect that our technique can be generalized to these
problems, but this will be part of future research.

The paper is organized as follows: We describe in Sect. 2 the analytical framework,
the space discretization by isoparametric Lagrange finite element, and state our main
results. The proof of the spatial convergence rates is given in Sect. 3, where we first
reduce the main result to error bounds in a stronger energy norm which is established
afterward. In Sect. 4, we extend this technique to the fully discrete case for the three
presented methods. Certain stability estimates and the bounds on the defects are given
in Sect. 5, and some postponed results are shown in AppendicesA, B, C, and D.

Notation

In the rest of the paper, we use the notation

a � b,

if there is a constant C > 0 independent of the spatial parameter h and the time step
size τ such that a ≤ Cb. For the sake of readability, we introduce the notation tn = nτ

and

xn :=x(tn)

for an arbitrary time-dependent, continuous object x(t). If it is clear from the context,
we write L p instead of L p(Ω) or L p(Ωh).
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2 General Setting

For a bounded domain Ω ⊂ R
N , N = 1, 2, 3, with boundary ∂Ω ∈ Cs , s ∈ N, we

study the quasilinear wave Eq. (1.1) with homogeneous Dirichlet boundary conditions
and initial values

u(0) = u0, ∂t u(0) = v0.

We note that the operator−� is positive and self-adjoint on L2(Ω), and we define the
spaces H = L2(Ω) and V = H1

0 (Ω). Throughout the paper, we impose the following
conditions on the function λ and g. Additional requirements are stated in our main
results.

Assumption 2.1 (λ1) The function λ : R → R satisfies λ ∈ C2(R,R).
(λ2) There is some radius r̂∞ > 0 such that there is a constant cλ = cλ(̂r∞) > 0

such that

cλ ≤ λ(x), |x | ≤ r̂∞.

(g1) The function g : [0, T ] × Ω ×R×R → R satisfies g ∈ C2([0, T ] × Ω ×R×
R,R).

(g2) For x ∈ ∂Ω and y = z = 0 it holds g(t, x, y, z) = 0.

The conditions (λ1), (g1) are structural assumptions which allow us to show crucial
stability estimates. The lower bound in (λ2) prevents the degeneracy of (1.1). The
main effort in the discretization and error analysis is to ensure that this condition is
inherited. We note that condition (g2) implies in particular that for u, v ∈ V one has
g(t, u, v) ∈ V , and that all conditions are already required for the wellposedness. We
recall an example for the quasilinear problem (1.1) given in [11].

Example 2.2 Let K ∈ C4(R,R) with 1 + K ′(0) > 0 and consider the problem

∂t t (u + K (u)) = Δu,

for example, with the Kerr model K (z) = αz3 for α ∈ R. If we rewrite it in the form
(1.1), we obtain

λ(z) = 1 + K ′(z), g(t, x, u, v) = −K ′′(u)v2,

which satisfy Assumption 2.1. Denoting the fractional powers of the Laplacian by
Hk :=D

(

(−Δ)k/2
)

, under suitable smallness assumptions on the initial values, the
existence of a solution

u ∈ C([0, T ],H3) ∩ C1([0, T ],H2) ∩ C2([0, T ],H1)

is shown in [11, Thm. 4.1]. ♦
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Equivalently to (1.1), we consider the quasilinear wave equation in first-order for-
mulation

Λ(y(t))∂t y(t) = Ay(t) + G(t, y(t)), t ∈ [0, T ], y =
(

u
∂t u

)

, (2.1)

with initial value y(0) = y0 in the product space X = V × H , and

y0 =
(

u0

v0

)

, Λ(y) =
(

Id 0
0 λ(u)

)

,

A =
(

0 Id
� 0

)

, G(t, y) =
(

0
g(t, u, ∂t u)

)

.

Remark 2.3 The assumption on the regularity of the boundary is not essential in the
error analysis, which also works on a convex, polygonal domain. Hence, one could
apply a conforming finite element method. However, since the wellposedness of quasi-
linear equations requires a regular boundary, we will work in the nonconforming
framework in the following.

Space Discretization

We study the nonconforming space discretization of (2.1) based on isoparametric finite
elements. For further details on this approach, we refer to [15, 16]. In particular, we
introduce a shape-regular and quasi-uniform triangulation Th , consisting of isopara-
metric elements of degree k ∈ N and let ∂Ω ∈ Ck+1. The computational domain Ωh

is given by

Ωh =
⋃

K∈Th
K ≈ Ω,

where the subscript h denotes the maximal diameter of all elements K ∈ Th . In the
following, we require that h is sufficiently small such that all cited results below hold
true. We note that the smallness only depends on the geometry of the domain Ω and
the polynomial degree k. The semi-discrete approximations are given by uh(t) ≈ u(t)
and vh(t) ≈ ∂t u(t). Based on the transformations FK mapping the reference element
̂K to K ∈ Th , we introduce the finite element space of degree k

Wh = {ϕ ∈ C0(Ωh) | ϕ|K = ϕ̂ ◦ (FK )−1 with ϕ̂ ∈ Pk(̂K ) for all K ∈ Th} .

Here, Pk(̂K ) consists of all polynomials on ̂K of degree at most k. The discrete
approximation spaces are given by

Hh = (

Wh, (· | ·)L2(Ωh)

)

, Vh = (

Wh, (· | ·)H1
0 (Ωh)

)

,

and we set Xh = Vh × Hh .
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Following the detailed construction in [16, Sec. 5], we introduce the lift operator
Lh : Hh → H . In particular, for p ∈ [1,∞] there are constants cp,Cp > 0 with

cp ‖ϕh‖L p(Ωh)
≤ ‖Lhϕh‖L p(Ω) ≤ Cp ‖ϕh‖L p(Ωh)

, ϕh ∈ L p, (2.2a)

cp ‖ϕh‖W 1,p(Ωh)
≤ ‖Lhϕh‖W 1,p(Ω) ≤ Cp ‖ϕh‖W 1,p(Ωh)

, ϕh ∈ W 1,p, (2.2b)

cf. [16, Prop. 5.8]. By construction, the boundary nodes of Ωh lie on ∂Ω and zero
boundary conditions are preserved by Lh , see [16, Sec. 8.5]. Further by [15, Sec. 4],
the lift preserves values at the nodes, i.e., in particular

IhLhϕh = ϕh, ϕh ∈ Vh, (2.3)

where we denote the nodal interpolation operator by Ih : C0(Ω) → Vh and, enriching
the space Wh by basis functions corresponding to the boundary nodes, its extension
I eh : C(Ω) → C(Ωh). Further, we define the adjoint lift operators LH∗

h : H → Hh

and LV∗
h : V → Vh by

(

LH∗
h ϕ | ψh

)

Hh
= (ϕ | Lhψh)L2(Ω) , ϕ ∈ H , ψh ∈ Hh, (2.4a)

(

LV∗
h ϕ | ψh

)

Vh
= (ϕ | Lhψh)H1

0 (Ω) , ϕ ∈ V , ψh ∈ Vh . (2.4b)

We note that in the conforming case, i.e., Ω = Ωh , LH∗
h and LV∗

h coincide with
the L2-projection πh : L2(Ωh) → Hh and the Ritz projection Rh : H1

0 (Ωh) → Vh ,
respectively, given by

(πhψ | ψh)Hh
= (ψ | ψh)L2(Ωh)

, ψ ∈ L2(Ωh), ψh ∈ Hh, (2.5a)

(Rhψ | ψh)Vh = (ψ | ψh)H1
0 (Ωh)

, ψ ∈ H1
0 (Ωh), ψh ∈ Vh . (2.5b)

For uh, vh ∈ Vh we define the discrete operator λh(uh) : Hh → Hh and the discrete
right-hand side gh by

λh(uh)ϕh = πh
(

Ihλ(Lhuh) ϕh
)

, gh(t, uh, vh) = Ihg(t,Lhuh,Lhvh), (2.6)

respectively. Denoting by IΩh
h : C(Ωh) → Vh the nodal interpolation operator with

the same nodes as Ih , we have by (2.3) the identity Ihλ(Lhuh) = IΩh
h λ(uh) and

similarly for gh . The first-order counterparts of (2.6) are given by

yh =
(

uh
vh

)

, Λh(yh) =
(

Id 0
0 λh(uh)

)

, Gh(t, yh) =
(

0
gh(t, uh, vh)

)

. (2.7)

Moreover, we show in Sect. 2.5 that under certain assumption on uh ∈ Vh there exists
a modified L2-projection Qh(uh) : L2(Ωh) → Vh such that the inverse of λ(uh) is
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given by

λ−1
h (uh)ϕh = Qh(uh)

(

(Ihλ(Lhuh))
−1ϕh

)

, Λ−1
h (yh) =

(

Id 0
0 λ−1

h (uh)

)

. (2.8)

Finally, we introduce the operators �h : Vh → Hh and Ah : Xh → Xh given by

− (�hϕh | ψh)Hh
= (ϕh | ψh)Vh , Ah =

(

0 Id
�h 0

)

, ϕh, ψh ∈ Vh . (2.9)

Note that �h is symmetric and Ah is skew-symmetric with respect to Hh and Xh ,
respectively, but they are not uniformly bounded with respect to h. The spatially
discrete quasilinear wave equation in first-order formulation then reads

Λh(yh(t))∂t yh(t) = Ah yh(t) + Gh(t, yh), t ∈ [0, T ], (2.10)

with the initial value yh(0) = y0h .

2.1 Choice of the Initial Value

As already mentioned, an appropriately chosen initial value is a key ingredient in the
subsequent error analysis. An ideal initial value would include the adjoint lift operator
LV∗
h defined in (2.4b). However, in order to compute this operator, integrals over the

exact domain Ω have to be evaluated.
We thus propose an alternative that involves to use a finite element space of degree

k′ ≥ k + 1 denoted by ˜Vh over the computational domain ˜Ωh . Further, let ˜Lh and ˜Ih
be the corresponding lift and interpolation operators. Then, for u ∈ H2, we define the
modified Ritz map ˜Rhu via

(

˜Rhu | ϕh
)

Vh
= (

˜Ihu | ˜Lh
−1Lhϕh

)

˜Vh
, ϕh ∈ Vh . (2.11)

We use this operator together with the interpolation to define the initial value by

y0h =
(

u0h
v0h

)

=
(

˜Rhu0

Ihv0

)

. (2.12)

In AppendixA, we prove the following approximation property and discuss the com-
putation of ˜Rh .

Proposition 2.4 For u0 ∈ Hk+2(Ω)∩ V , the difference of the adjoint lift LV∗
h defined

in (2.4b) and ˜Rh in (2.11) satisfies the bound

∥

∥LV∗
h u0 − ˜Rhu

0
∥

∥

H1(Ωh)
+ h

∥

∥�h
(

LV∗
h u0 − ˜Rhu

0)
∥

∥

L2(Ωh)
≤ Chk+1

∥

∥u0
∥

∥

Hk+2 ,

where the constant C is independent of h.
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We emphasize that the precise construction of the initial value is not important in
the error analysis, but only the bounds obtained in Proposition 2.4. Hence, if we can
compute the adjoint lift exactly, which is the Ritz projection in the conforming case,
then one can also choose u0h = LV∗

h u0. However, we cannot make the standard choice
u0h = Ihu0, since this would imply the statement of Proposition 2.4 only with k instead
of k + 1.

2.2 Main Result for the Semi-Discretization in Space

Before we state our main error bounds, we chose some exponent p∗, depending on
the dimension N = 1, 2, 3, as

N < p∗

⎧

⎪

⎨

⎪

⎩

≤ ∞, N = 1,

< ∞, N = 2,

< 6, N = 3.

(2.13)

This choice in particular implies the Sobolev embeddings

H1 ↪→ L p∗
and H2 ↪→ W 1,p∗

↪→ L∞. (2.14)

Our first main result gives an error bound on the spatially discrete solution defined
in (2.10), and the proof is given in Sect. 3. Recall the fractional powers of the Dirichlet
Laplacian denoted by Hk :=D

(

(−Δ)k/2
)

.

Theorem 2.5 Let ∂Ω ∈ Ck+1, and Assumption 2.1 hold. Further, let the solution u
satisfy

u ∈ C([0, T ],H3 ∩ Hk+3(Ω)) ∩ C2([0, T ], V ∩ Wk+1,∞(Ω)),

λ(u) ∈ C([0, T ],Wk+1,∞(Ω)), g(·, u, ∂t u) ∈ C([0, T ], Hk+1(Ω)),
(2.15)

and choose the initial value (2.12). Then, there is h0 > 0 such that for all h ≤ h0, it
holds for t ∈ [0, T ]

‖u(t) − Lhuh(t)‖W 1,p∗ (Ω) + ‖∂t u(t) − Lhvh(t)‖H1(Ω) ≤ Chk

with a constant C > 0 which is independent of h.

Using (2.14), the theorem implies convergence in the maximum norm for uh and
in L p∗

for vh and is in particular applicable to linear finite elements. We note that the
results from the literature so far had the limitation k ≥ 2.

2.3 Main Results for Full Discretization

We further discuss the convergence of four different fully discrete schemes. We recall
that by τ > 0 we denote the time step size and define for n = 0, . . . , N the times
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tn = nτ , with T = Nτ . The fully discrete approximations are given by unh ≈ u(tn)
and vnh ≈ ∂t u(tn). The proofs of the convergence results are given in Sect. 4.

Semi-Implicit Euler Method

For a variant of the implicit Euler method, we introduce the discrete derivative

∂τan := 1
τ

(

an − an−1), n ≥ 1, ∂τa0:=a0, (2.16)

and consider as in [10, 22] the semi-implicit Euler method

Λh(y
n
h )∂τ y

n+1
h = Ah y

n+1
h + Gh(t

n, ynh ), n ≥ 0, (2.17)

by freezing the nonlinear parts at the numerical approximation in the last step. The
computation of the next approximation thus only requires the solution of a linear
system. For the analysis, we impose the following weak CFL-type condition

τ ≤ chN/p∗+ε0 (2.18)

with p∗ from (2.13) and some arbitrary ε0 > 0. This yields the following convergence
result.

Theorem 2.6 Let ∂Ω ∈ Ck+1, and Assumption 2.1 hold. Further, let the solution u in
addition to (2.15) satisfy

u ∈ C3([0, T ], L2(Ω)),

and choose the initial value (2.12). Then, under the condition (2.18) there are h0, τ0 >

0 such that for all h ≤ h0 and τ ≤ τ0, it holds for 0 ≤ tn ≤ T

∥

∥u(tn) − Lhu
n
h

∥

∥

W 1,p∗ (Ω)
+ ∥

∥∂t u(tn) − Lhv
n
h

∥

∥

H1(Ω)
≤ C

(

τ + hk
)

with a constant C > 0 which is independent of h and τ .

We emphasize that the CFL-type condition in (2.18) is essentially no restriction for
N = 2 since p∗ can be chosen arbitrarily large due to (2.13). For N = 3, the CFL
roughly yields τ � h1/2+ε. However, even for k = 1, the error behaves as τ + h, and
one would choose τ ∼ h anyway.

Semi-Implicit Midpoint Rule or Crank–Nicolson Scheme

As a second order in time method, we consider a variant of the midpoint rule proposed
in [28]

Λh(ȳ
n+1/2
h )∂τ y

n+1
h = Ah y

n+1/2
h + Gh(t

n+1/2, ȳn+1/2
h ), n ≥ 1, (2.19a)
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with average yn+1/2
h and extrapolation ȳn+1/2

h given by

yn+1/2
h = 1

2

(

yn+1
h + ynh

)

, ȳn+1/2
h = 3

2 y
n
h − 1

2 y
n−1
h . (2.19b)

The first approximation y1 is computed with the Euler method (2.17), and as before,
in every time step only a linear system has to be solved. For the analysis of the second-
order method, we can weaken the CFL-type condition compared to (2.18) and require
only

τ ≤ chN/2p∗+ε0 . (2.20)

Theorem 2.7 Let ∂Ω ∈ Ck+1, and Assumption 2.1 hold. Further, let the solution u in
addition to (2.15) satisfy

u ∈ C2([0, T ],H3) ∩ C3([0, T ],H2) ∩ C4([0, T ], L2(Ω)),

and choose the initial value (2.12). Then, under the condition (2.20) there are h0, τ0 >

0 such that for all h ≤ h0 and τ ≤ τ0, it holds for 0 ≤ tn ≤ T

∥

∥u(tn) − Lhu
n
h

∥

∥

W 1,p∗ (Ω)
+ ∥

∥∂t u(tn) − Lhv
n
h

∥

∥

H1(Ω)
≤ C(τ 2 + hk),

where C is independent of h and τ .

Since, there is again essentially no CFL-type condition for N = 2, we only discuss
the case N = 3. We require τ � h1/4+ε, whereas in [31] not only k ≥ 2 but also
τ � h3/4+ε has to be imposed.

Exponential Euler Method

We turn to exponential methods which employ the variation-of-constants formula and
an exact evaluation of thematrix exponential applied to a vector. For the approximation
ynh ≈ y(tn), we use the shorthand notationAn

h = Λ−1
h (ynh )Ah and consider themethod

which was proposed in [12]

yn+1
h = eτAnh ynh + τϕ1(τAn

h)Gh(t
n, ynh )

= ynh + τϕ1(τAn
h)

(

An
h y

n
h + Λ−1

h (ynh )Gh(t
n, ynh )

)

with the analytic function ϕ1(z) = ∫ 1
0 esz ds. We obtain the following error bound.

Theorem 2.8 Let ∂Ω ∈ Ck+1, and Assumption 2.1 hold. Further, let the solution u
satisfy (2.15), and choose the initial value (2.12). Then, under the condition (2.18)
there are h0, τ0 > 0 such that for all h ≤ h0 and τ ≤ τ0, it holds for 0 ≤ tn ≤ T

∥

∥u(tn) − Lhu
n
h

∥

∥

W 1,p∗ (Ω)
+ ∥

∥∂t u(tn) − Lhv
n
h

∥

∥

H1(Ω)
≤ C

(

τ + hk
)

,

where C is independent of h and τ .
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We note that the CFL-type condition is the same as in the error bound of the semi-
implicit Euler in Theorem 2.6.

Exponential Midpoint Rule

A second-order exponential variant is for example given by the exponential midpoint
rule proposed in [12]. Using the notation in (2.19b), we define

An+1/2
h :=Λ−1

h (ȳn+1/2
h )Ah

and consider the scheme

yn+1
h = eτAn+1/2

h ynh + τϕ(τAn+1/2
h )Λ−1

h (ȳn+1/2
h )Gh(t

n+1/2, ȳn+1/2
h )

= ynh + τϕ(τAn+1/2
h )

(

An+1/2
h ynh + Λ−1

h (ȳn+1/2
h )Gh(t

n+1/2, ȳn+1/2
h )

)

.

Employing the techniques established for the proofs of Theorems 2.6 and 2.8, and
combining them with the techniques in [12], allows for a convergence result as in
Theorem 2.7 under the weaker CFL-type condition (2.20).

Theorem 2.9 Let ∂Ω ∈ Ck+1, and Assumption 2.1 hold. Further, let the solution u in
addition to (2.15) satisfy

u ∈ C1([0, T ], Hk+3) ∩ C3([0, T ],Wk+1,∞(Ω)) ∩ C4([0, T ], H1(Ω)),

λ(u) ∈ C3([0, T ],Wk+1,∞(Ω)), g(·, u, ∂t u) ∈ C1([0, T ],H2) ∩ C3([0, T ], H1(Ω)),

and choose the initial value (2.12). Then, under the condition (2.20) there are h0, τ0 >

0 such that for all h ≤ h0 and τ ≤ τ0, it holds for 0 ≤ tn ≤ T

∥

∥u(tn) − Lhu
n
h

∥

∥

W 1,p∗ (Ω)
+ ∥

∥∂t u(tn) − Lhv
n
h

∥

∥

H1(Ω)
≤ C(τ 2 + hk),

where C is independent of h and τ .

2.4 Numerical Experiments

To illustrate our theoretical findings, we present some numerical experiments for the
non-exponential methods. We first illustrate the optimality of our error bounds using
a smooth solution and then consider the formation of a shock wave.

2.4.1 Smooth Solution

Let Ω = B1(0) ⊂ R
2 be the two-dimensional unit sphere and consider Eq. (1.1) from

Example 2.2 with α = − 1
6 and data given by

u0(x) = 1

10
sin(πr2)3x1x2 , v0(x) = 1

10
sin(πr2)3x1x2 ,
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λ(u) = 1 − 1

2
u2, g(t, u, v) = uv2 + ̂f (t),

where r2 = |x|2. The additional forcing term ̂f is chosen such that the exact solution
is given by

u(t, x) = 1

10
et sin(πr2)3x1x2.

A simple calculation shows that the regularity assumptions of Theorems 2.5, 2.6, and
2.7 are satisfied. The scaling by a factor 10 is used to approximately normalize the
W 1,∞-norm of the solution u.

Discretization

We discretize in space using the mass and stiffness matrices

(

Mh(uh)
)

i, j :=
(

(IΩh
h λ(uh))ϕi | ϕ j

)

L2(Ωh)
,

(

˜Mh
)

i, j :=
(

ϕi | ϕ j
)

L2(Ωh)
,

(

Lh
)

i, j :=
(∇ϕi | ∇ϕ j

)

L2(Ωh)
,

where we denote by (ϕi )i the nodal basis of Vh . Then, the discrete solution in (2.10)
satisfies

Mh
(

uh(t))∂t t uh(t) = −Lhuh(t) + ˜Mh I
Ωh
h g(t, uh(t), vh(t)),

by abusing the notation for the coefficient vectors and their corresponding function in
Vh . The Euler method in (2.17) is then given for n ≥ 0 by

(

Mn
h + τ 2Lh

)

vn+1
h = Mn

h vnh − τ Lhu
n
h + τ ˜Mh I

Ωh
h g(tn, unh, v

n
h ),

un+1
h = unh + τvn+1

h ,

where we abbreviate Mn
h = Mh

(

unh). For the fully discrete midpoint rule, (2.19) is
then given for n ≥ 1 by

(

Mn+1/2
h + τ 2

4
Lh

)

vn+1
h = (

Mn+1/2
h − τ 2

4
Lh

)

vnh − τ Lhu
n
h

+ τ ˜Mh I
Ωh
h g(tn+1/2, ūn+1/2

h , v̄
n+1/2
h ),

un+1
h = unh + τ

2

(

vnh + vn+1
h

)

,

denoting the extrapolations by ūn+1/2
h = 3

2u
n
h − 1

2u
n−1
h and v̄

n+1/2
h = 3

2v
n
h − 1

2v
n−1
h ,

and the mass matrix by Mn+1/2
h = Mh

(

ūn+1/2
h ). For the step n = 0, we use the

Euler scheme from above. We implemented the numerical experiments in C++ using
the finite element library deal.II (version 9.4) [2, 6]. A precise description of the
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implementation can be found for example in [29, Ch. 6.5.1]. For the implementation
of the initial value in (2.12), we refer to AppendixA. Concerning the computational
costs, let us note that in each step the right-hand side as well as the mass matrix have to
be assemble. The stiffness matrix is stored after assembling it before the time stepping.
In addition, a linear system for the sparse matrix Mh + τ 2

4 Lh has to be solved in each
step using the conjugate gradient method. The codes written by Malik Scheifinger
under the author’s supervision to reproduce the experiments are available at https://
doi.org/10.35097/1792.

Numerical Results

For the problem described above, we performed experiments for the time and space
discretization, where we used finite elements of order k = 1, 2, 3. In the error bounds
of Sect. 2, for N = 2, the normW 1,p ×H1 is used for p < ∞ arbitrarily large. Hence,
we chose p = ∞ in our experiments, but note that the plots were qualitatively very
similar for finite p. Since the computation of the lift of a finite element function is
very laborious, and in application usually also not available, we do not compute the
full error in the form Lhu − uh . Instead, in our numerical examples we consider the
error

E(t):= ‖uh(t) − Ihu(t)‖W 1,∞(Ωh)
+ ‖vh(t) − Ih∂t u(t)‖H1(Ωh)

,

for the nodal interpolation operator Ih which is of the same order by the standard
interpolation estimates. Note that in practice, one is only interested in uh , and the
computation of the error here is only relevant to confirm our theoretical error bounds.

In the left part of Fig. 1, the convergence of the error with respect to the spatial mesh
width h is shown when using the semi-implicit midpoint rule with τ = 8 · 10−4. We
observe that for finite elements of order k the error converges with order k in space as
predicted by Theorem 2.5 and 2.7 until the error for k = 3 is dominated by the error

Fig. 1 Left: error E(0.8) of the semi-implicit midpoint rule (with time step size τ = 8 · 10−4 and τ =
2.67 · 10−4) combined with finite elements of order k = 1, 2, 3 plotted against the mesh width h. The
dashed lines indicate order hk for k = 1, 2, 3. Right: Error E(0.8) of the semi-implicit Euler method and
midpoint rule combined with finite elements of order k = 3 (h = 1.52 · 10−2) plotted against the time step
size τ . The dashed lines indicate order 1 and 2
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of the temporal approximation. For k = 3, we ran the same experiment again with
the smaller time step size τ = 2.67 · 10−4 to remove this plateau. Running the same
experiment with the semi-implicit Euler method instead of the midpoint rule yields
a qualitatively similar picture. Due to slower convergence in time, the error already
stagnates at about 10−3.

In the right part of Fig. 1, we consider the convergence of the error with respect to
the time step size τ for the semi-implicit Euler method and midpoint rule. In space,
we discretized with finite elements of order k = 3 and h = 1.52 · 10−2 such that the
spatial error is negligible. Aligning to Theorem 2.6, we observe convergence of order
1 in time for the Euler method and, confirming Theorem 2.7, convergence of order 2
for the midpoint rule.

2.4.2 SteepeningWave

In this second experiment, we consider the formation of a shock wave which is an
often observed phenomenon in nonlinear waves. Since we are in a bounded domain,
we force the wave to form a large gradient close to the origin. To this end, we chose
our data by

u0(x) = (1 − r2)3 arctan(x1) , v0(x) = −(1 − r2)3
αx1

x21 + 1
,

λ(u) = 1 − 1

2
u2, g(t, u, v) = uv2 + ̂f (t),

where r2 = |x|2. The additional forcing term ̂f is chosen such that the exact solution
is given by

u(t, x) = (1 − r2)3 arctan

(

x1
1 − αt

)

. (2.21)

We observe that for αt → 1, the maximum norm of ∇u tends to infinity. We thus
simulate up to the end time T = 1 for different, increasing values of α < 1, and in
Fig. 2 we depicted the corresponding solutions at the end time. The discretization in
space and time is performed as described in Sect. 2.4.1.

Numerical Results

We restrict ourselves to the approximation quality in the spatial discretization in this
case and thus apply the semi-implicit midpoint rule with τ = 8 · 10−4 and linear and
quadratic finite elements. We then use increasing values of α = 0.6, 0.8, 0.9, 0.95,
which can be translated into simulating closer to the blow-up point αt = 1. We
depicted the convergence in Fig. 3. In the linear case, we observe that we obtain a
reasonable approximation for moderate values of α, which correspond to the smooth
case. However, when a shock occurs, our method suffers from large errors due to
the large gradient. Compared to the linear polynomials, using quadratic polynomials
appears to be advantageous, not only because of the better resolution near the blow-up,
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Fig. 2 Plots of the (exact) shock wave solution given in (2.21) for the final time t = 1 and different values
of α = 0.6, 0.8, 0.9, 0.95

but also because of smaller error constants. Nevertheless, in the quadratic case, the
error constants become large for α → 1 as well.

2.5 Additional Results for Isoparametric Finite Elements

In this section, we provide further estimates on the spatially discrete objects which
are used throughout the paper. As shown in [16, Thm. 5.9], we have for the nodal
interpolation operator for m ∈ {0, 1}, 1 ≤ p ≤ ∞, and 1 ≤ � ≤ k the estimates

∥

∥(Id − Lh I
e
h )ϕ

∥

∥

Wm,p(Ω)
� h�+1−m ‖ϕ‖W �+1,p(Ω) , ϕ ∈ W �+1,p(Ω). (2.22)

Further, by [9, Thm. 3.1.6] � = 0 is allowed for N < p ≤ ∞. Another crucial property
of the interpolation concerns the stability when applied to the product of functions.
We give a proof in AppendixB.

Lemma 2.10 Let ψh ∈ Vh, δ > 0, and ϕ ∈ W 1,N+δ(Ω). Then,

‖Ih(ϕ Lhψh)‖L2 ≤ C ‖ϕ‖L∞ ‖ψh‖L2 ,

‖Ih(ϕ Lhψh)‖H1 ≤ C ‖ϕ‖W 1,N+δ ‖ψh‖H1 ,

where the constant C > 0 is independent of h.
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Fig. 3 Error E(1.0) of the semi-implicit midpoint rule (with time step size τ = 8 · 10−4) combined with
finite elements of order k = 1 (left) and order k = 2 (right) plotted against the mesh width h for the values
of α = 0.6, 0.8, 0.9, 0.95. The dashed lines indicate order h or h2, respectively

Concerning the adjoint lifts defined in (2.4), we show in AppendixB the following
bounds for 1 ≤ � ≤ k

∥

∥LH∗
h ϕ

∥

∥

Hh
� ‖ϕ‖L2(Ω) , ϕ ∈ L2(Ω), (2.23a)

∥

∥(Ih − LH∗
h )ϕ

∥

∥

Hh
� h�+1 ‖ϕ‖H�+1(Ω) , ϕ ∈ H �+1(Ω) ∩ V . (2.23b)

An interpolation argument between [16, Lem. 3.8] and [14, Thm. 2.5] yields

∥

∥(Id − LhLV∗
h )ϕ

∥

∥

W 1,p(Ω)
� h� ‖ϕ‖W �+1,p(Ω) , ϕ ∈ H �+1(Ω) ∩ V , (2.24)

for 2 ≤ p ≤ ∞, 0 ≤ � ≤ k. We will further make use of the inverse estimates, cf. [8,
Thm. 4.5.11] or [30, Lem. 5.6],

‖ϕh‖Vh ≤ Ch−1 ‖ϕh‖L2(Ωh)
, ‖ϕh‖Lq ≤ ChN/q−N/p ‖ϕh‖L p , (2.25)

for 1 ≤ p ≤ q ≤ ∞.
For uh ∈ Vh with ‖uh‖L∞ ≤ r̂∞ and ‖uh‖W 1,N+δ ≤ r , we define an inner product

for ϕ,ψ ∈ L2(Ωh) and the corresponding L2-projection Qh(uh) : L2(Ωh) → Vh
used in (2.8) for ψh ∈ Vh by

(ϕ | ψ)λh := (Ihλ(Lhuh) ϕ | ψ)L2(Ωh)
, (Qh(uh)ψ | ψh)λh = (ψ | ψh)λh ,

and obtain by the standard techniques for p ∈ [2,∞] and ψ ∈ L p, ϕ ∈ H1(Ωh)

‖πhψ‖L p(Ωh)
� ‖ψ‖L p(Ωh)

, ‖πhϕ‖H1(Ωh)
� ‖ϕ‖H1(Ωh)

, (2.26a)

123



Foundations of Computational Mathematics

‖Qh(uh)ψ‖L p(Ωh)
� ‖ψ‖L p(Ωh)

, ‖Qh(uh)ϕ‖H1(Ωh)
� ‖ϕ‖H1(Ωh)

, (2.26b)

see for example [35] in the case p = ∞. The constants are controlled by the norms
of uh in L∞ and W 1,N+δ .

Finally, we introduce the first-order lift operator Lh : W �,p(Ωh)
2 → W �,p(Ω)2,

� = 0, 1, 2 ≤ p ≤ ∞, the adjoint lift Lh
∗ : X → Xh , and the reference operator

Jh : V × V → Xh defined by

Lh =
(

Lh 0
0 Lh

)

, Lh
∗ =

(

LV∗
h 0
0 LH∗

h

)

, Jh =
(

LV∗
h 0
0 LV∗

h

)

, (2.27)

which are bounded uniformly in h due to (2.2), (2.23), and (2.24). From the proof of
[20, Lem. 4.7], we then obtain the identity

Ah Jh = Lh
∗A, (2.28)

which is used several times in the proofs.

3 Error Analysis for the Space Discretization

In this section, we give the proof of Theorem 2.5. We decompose the error into

y(t) − Lhyh(t) = (

Id − Lh Jh
)

y(t) + Lh
(

Jh y(t) − yh(t)
)

=:eJh (t) + Lheh(t),

where the projection error eJh is easily bounded using (2.24). The first part of the proof
consists in reducing the bound on ‖eh‖W 1,p∗×H1 to an estimate in the stronger norm
induced by ‖Ah ·‖Xh

, and not in the standard Xh-norm.
The second part consists in establishing the stronger norm bound on ‖Aheh‖Xh

in
Sect. 3.2. We note that a key idea is to set up an appropriate solution space for the
numerical approximation, see (3.3), which allows for an appropriate formulation of
the error equation. We give a detailed explanation in Remark 3.6.

3.1 Reduction to Stronger Norm Estimates

For p∗ defined in (2.13), we chose some fixed δ > 0 such that

1

2
− 1

N + δ
≤ 1

p∗ , (3.1)

a radius r∞ < r̂∞ from Assumption 2.1, and another radius r ′∞ > 0, such that

‖u‖L∞(L∞) ≤ r∞, and max
{‖u‖L∞(W 1,N+δ) , ‖∂t u‖L∞(W 1,N+δ)

} ≤ 1
2r

′∞, (3.2)
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where ‖x‖L∞(X) :=max[0,T ] ‖x(t)‖X . We denote by t∗h the time with

t∗h := sup{t ∈ [0, T ] | sup
s∈[0,t]

‖Lhuh(s)‖L∞ ≤ r̂∞ and

sup
s∈[0,t]

‖Lhuh(s)‖W 1,N+δ , sup
s∈[0,t]

‖Lhvh(s)‖W 1,N+δ ≤ r ′∞}. (3.3)

Weassume for amoment that the set is not empty andhence t∗h > 0, see Proposition 3.5.
The following result is a direct consequence of Lemma 2.10 and the key ingredient
to ensure wellposedness of the discrete equation. In addition, it enables us to employ
energy techniques in the error analysis.

Lemma 3.1 Let Assumption 2.1 hold. We have for t ∈ [0, t∗h ], 1 ≤ p ≤ ∞, and
j = 0, 1 the bounds

∥

∥∂
j
t λh(uh(t))ϕh

∥

∥

L p ≤ Cλ ‖ϕh‖L p ,
∥

∥∂
j
t λ−1

h (uh(t))ϕh
∥

∥

L p ≤ Cλ ‖ϕh‖L p ,
∥

∥λh(uh(t))ϕh
∥

∥

H1 ≤ Cλ ‖ϕh‖H1 ,
∥

∥λ−1
h (uh(t))ϕh

∥

∥

H1 ≤ Cλ ‖ϕh‖H1 ,

with a constant Cλ > 0 depending only on λ, its derivatives and r̂∞, r ′∞, but is
independent of h and t∗h .

Proof We use the definition of λh and λ−1
h in (2.6) and (2.8), respectively, to conclude

the assertion from Assumption 2.1, the stability in (2.26), the interpolation property
(2.22), and (3.3). ��

Making extensive use of Lemma 3.1, we show via energy techniques in Sect. 3.2
the following error bound on

(

∥

∥�h
(

LV∗
h u(t) − uh(t)

)∥

∥

2
L2 + ∥

∥LV∗
h ∂t u(t) − vh(t)

∥

∥

2
H1

)1/2 = ∥

∥Aheh(t)
∥

∥

Xh
.

(3.4)

Note that initially the result is only valid as long as the bounds in (3.3) hold.

Proposition 3.2 Under the assumptions of Theorem 2.5, it holds for 0 ≤ t ≤ t∗h
∥

∥Aheh(t)
∥

∥

Xh
≤ Chk,

where C is independent of h and t∗h .

From this bound, we are able to extract convergence as well as to extend the final time
t∗h beyond T for sufficiently small h. Concerning uh , we show in the following lemma
how to obtain convergence in the maximum norm and first-order Sobolev norms, but
postpone the proof to AppendixC. Further, we may directly deduce the bounds on uh
in (3.3). Note that this lemma can be seen as a discrete analogue to (2.14) and is an
improved variant of the results in [7, 13]. Similar bounds were already shown in [18,
Thm. 1.12] and [36, Thm. 3].
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Lemma 3.3 Let p∗ be given by (2.13). Then, there is a constant C independent of h
such that

‖ϕh‖L∞(Ωh)
+ ‖ϕh‖W 1,p∗ (Ωh)

≤ C ‖�hϕh‖L2(Ωh)

for all ϕh ∈ Vh. In the case N = 3, the statement also holds for p∗ = 6.

A further ingredient in the proof of the main result is to employ the H1-bound on vh
in Proposition 3.2 to derive boundedness in L∞ andW 1,N+δ and thus extend the final
time t∗h .

Lemma 3.4 Let ϕh ∈ Vh and ϕ ∈ Wk+1,∞(Ω) ∩ V , and assume that

∥

∥LV∗
h ϕ − ϕh

∥

∥

H1(Ωh)
≤ Chk . (3.5)

Then, we have for p∗ defined in (2.13) and δ chosen in (3.1)

‖Lhϕh‖L∞(Ω) ≤ ‖ϕ‖L∞(Ω) + Chk−N/p∗
,

‖Lhϕh‖W 1,N+δ(Ω) ≤ ‖ϕ‖W 1,N+δ(Ω) + Chk−N/p∗
,

with a constant C independent of h.

Since k ≥ 1, the choice in (2.13) enables to us to deduce the desired bounds (3.3) in
L∞ and W 1,N+δ from approximation properties in H1 and hence allows us to extend
the final time t∗h .

Proof (of Lemma 3.4) For ψh ∈ Vh , we combine the inverse estimate (2.25) and the
Sobolev embedding H1(Ωh) ↪→ L p∗

(Ωh) and conclude by (3.1)

‖ψh‖L∞(Ωh)
≤ Ch−N/p∗ ‖ψh‖L p∗ (Ωh)

≤ Ch−N/p∗ ‖ψh‖H1(Ωh)
, (3.6a)

‖ψh‖W 1,N+δ(Ωh)
≤ ChN/(N+δ)−N/2 ‖ψh‖H1(Ωh)

≤ Ch−N/p∗ ‖ψh‖H1(Ωh)
, (3.6b)

with a constantC independent of h. For the desired bound, we expand with the adjoint
lift LV∗

h and obtain by (2.24)

‖Lhϕh‖L∞(Ω) ≤ ‖ϕ‖L∞(Ω) + ∥

∥ϕ − LhLV∗
h ϕ

∥

∥

L∞(Ω)
+ ∥

∥LhLV∗
h ϕ − Lhϕh

∥

∥

L∞(Ω)

≤ ‖ϕ‖L∞(Ω) + Chk ‖ϕ‖Wk+1,∞(Ω) + C
∥

∥LV∗
h ϕ − ϕh

∥

∥

L∞(Ωh)
.

SinceLV∗
h ϕ−ϕh ∈ Vh , the first assertion then follows from (3.6a) together with (3.5).

The second estimate is derived fully analogously. ��
Hence, once we have shown Proposition 3.2, we can give the proof of our first main

result.
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Proof (of Theorem 2.5)
Inserting the adjoint lift, we obtain for t ∈ [0, t∗h ]with (2.24), (3.4), and Lemma 3.3

the bound

‖u(t) − Lhuh(t)‖W 1,p∗ ≤ ∥

∥(Id − LhLV∗
h )u(t)

∥

∥

W 1,p∗ + C ‖Aheh(t)‖Xh
≤ Chk ,

and similarly

‖∂t u(t) − Lhvh(t)‖H1 ≤ ∥

∥(Id − LhLV∗
h )∂t u(t)

∥

∥

H1 + C ‖Aheh(t)‖Xh
≤ Chk ,

with a constant C independent of h and t∗h . Hence, it remains to show t∗h = T .
Combining the bounds in Proposition 3.2 and Lemma 3.3, we show by (3.2) for h
sufficiently small that

∥

∥Lhuh(t
∗
h )

∥

∥

L∞(Ω)
≤ ∥

∥u(t∗h )
∥

∥

L∞(Ω)
+ Chk < r̂∞ ,

∥

∥Lhuh(t
∗
h )

∥

∥

W 1,N+δ(Ω)
≤ ∥

∥u(t∗h )
∥

∥

W 1,N+δ(Ω)
+ Chk < r ′∞ ,

as well as with Proposition 3.2 and Lemma 3.4

∥

∥Lhvh(t
∗
h )

∥

∥

W 1,N+δ(Ω)
≤ ∥

∥∂t u(t∗h )
∥

∥

W 1,N+δ(Ω)
+ Chk−N/p∗

< r ′∞.

Thus, the continuity of the discrete solution yh and the equivalence of all norms in
finite-dimensional spaces yields t∗h ≥ T . In particular, the statement of Theorem 2.5
is true for t ∈ [0, T ]. ��

3.2 Proof of Proposition 3.2

The rest of this section is devoted to the proof of Proposition 3.2. The first step is to
show that the set defined in (3.3) is not empty.

Proposition 3.5 The initial error satisfies

‖Aheh(0)‖Xh
≤ Chk,

where C is independent of h. In particular, it holds 0 < t∗h ≤ T .

Proof The bound directly follows from the choice (2.12), the interpolation properties
in (2.22), and the bounds in Proposition 2.4. To show that t∗h > 0, we proceed as in
the proof of Theorem 2.5 with t = 0 instead of t = t∗h . ��

With the aid of Lemma 3.1, we are able to define with Λh(yh) from (2.7) the
state-dependent inner products

(ϕh | ψh)Λh ,t := (Λh(yh(t))ϕh | ψh)Xh
, t ∈ [0, t∗h ], ϕh, ψh ∈ Xh .
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The corresponding norm is equivalent to the norm of Xh , i.e., we have

cΛh ‖ϕh‖Xh
≤ ‖ϕh‖Λh ,t ≤ CΛh ‖ϕh‖Xh

, t ∈ [0, t∗h ], ϕh ∈ Xh, (3.7)

with the constants from Lemma 3.1.

Error Equation

We study the bound on the discrete error eh and derive an evolution equation for it.
Inserting the projected solution Jh y of (2.1) in (2.10), we obtain

Λh(yh(t))Jh∂t y(t) = Ah Jh y(t) + Gh(t, Jh y)

+ (

Λh(yh(t)) − Λh(Jh y(t))
)

Jh∂t y(t) + δh(t)

with defect

δh(t) = (

Λh(Jh y(t))Jh − JhΛ(y(t))
)

∂t y(t)

+ (

JhA − Ah Jh
)

y(t) + (

JhG(t, y) − Gh(t, Jh y)
)

.
(3.8)

This leads us to the error equation

Λh(yh(t))∂t eh(t) = Aheh(t) + Γh(t) + δh(t), (3.9)

where the stability term is given by

Γh(t):=
(

Gh(t, Jh y(t)) − Gh(t, yh(t))
)

+ (

Λh(yh(t)) − Λh(Jh y(t))
)

Jh∂t y(t). (3.10)

Remark 3.6 Let us explain themain differences to the error analysis presented byMaier
and Hochbruck [21, 31] and Makridakis [32]. In [21, 31], instead of Λh(yh) they use
Λh(Ih y) which has the properties from Lemma 3.1. However, to bound the stability
term, inverse inequalities are used which induce restrictions on the polynomial degree
and also the CFL-type condition. Our technique is more related to [32], where bounds
on ‖uh‖W 1,∞ replace (3.3).

However, in both approaches the error analysis is performed in H1× L2. They thus
have to impose stronger CFL-type conditions to close the argument. ♦

We introduce the state-dependent operator

Ah(t) = Λ−1
h (yh(t))Ah

and define the modified error as

ẽh(t):=Ah(t)eh(t).
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Differentiating the termΛh(yh(t))̃eh(t) and using (3.9) lead to the following modified
error equation

Λh(yh(t))∂t ẽh(t) = Ahẽh(t) − (

∂tΛh(yh(t))
)

ẽh(t)

+ AhΛ
−1
h (yh(t))

(

Γh(t) + δh(t)
)

.
(3.11)

We state two results on the stability term and the defect and postpone their proofs to
Sect. 5.

Lemma 3.7 For 0 ≤ t ≤ t∗h , it holds

‖AhΓh(t)‖Xh
≤ C ‖Aheh(t)‖Xh

with a constant C independent of h and t∗h .

Similarly, we show the optimal error bound of the defect in the stronger norm.

Lemma 3.8 For 0 ≤ t ≤ t∗h it holds

‖Ahδh(t)‖Xh
≤ Chk

with a constant C independent of h and t∗h .

In addition, we note that by (2.7) and Lemma 3.1 there is a constant C independent of
h and t∗h such that for all xh ∈ Xh it holds

‖AhΛh(yh(t))xh‖Xh
≤ C ‖Ahxh‖Xh

, 0 ≤ t ≤ t∗h . (3.12)

With these two lemmas and the bound on the initial error in Proposition 3.5, we
conclude the remaining estimate.

Proof (of Proposition 3.2) We first compute

∂t ‖̃eh(t)‖2Λh ,t = ((

∂tΛh(yh(t))
)

ẽh(t) | ẽh(t)
)

Xh
+ 2 (Λh(yh(t))∂t ẽh(t) | ẽh(t))Xh

.

Inserting the error equation (3.11), we use the skew-symmetry of Ah and combine the
bounds in (3.12) and Lemmas 3.1, 3.7, and 3.8 to obtain

∂t ‖̃eh(t)‖2Λh ,t ≤ C ‖̃eh(t)‖2Λh ,t + Ch2k .

The application of a Gronwall lemma together with Proposition 3.5 and (3.7) then
yields the assertion. ��
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4 Error Analysis for the Full Discretization

We carry over the results and techniques established in the last section to the fully
discrete schemes. We work with a discrete analogous of (3.3) given by a final time
step n∗ which allows us to perform the next time step to tn

∗+1, that is

n∗:=max
{

0 ≤ n ≤ N − 1 | max
k=0,...,n

∥

∥

∥Lhu
k
h

∥

∥

∥

L∞ ≤ r̂∞, and

max
k=0,...,n

max
{

∥

∥

∥Lhu
k
h

∥

∥

∥

W 1,N+δ
,

∥

∥

∥Lhv
k
h

∥

∥

∥

W 1,N+δ
,

∥

∥

∥Lh∂τu
k
h

∥

∥

∥

W 1,N+δ

} ≤ r ′∞
}

.

(4.1)

In particular, we will establish n∗ ≥ N − 1. Note that by (2.16) formally, we have to
show that n∗ ≥ 1 for the last term in (4.1), which can be interpreted as providing both
the base cases n = 0, 1 in the induction. However, the case n = 0 is already covered
by Proposition 3.2, such that the set in (4.1) is not empty, and it holds n∗ ≥ 0.

Further, note that similar to Lemma 3.1 we conclude from the bounds in (4.1) that
for 0 ≤ n ≤ n∗, 1 ≤ p ≤ ∞, and j = 0, 1 it holds

∥

∥∂ j
τ λh(u

n
h)ϕh

∥

∥

L p ≤ Cλ ‖ϕh‖L p ,
∥

∥∂ j
τ λ−1

h (unh)ϕh
∥

∥

L p ≤ Cλ ‖ϕh‖L p , (4.2)

and the bounds in Lemma 3.1 in the H1-norm remain valid.
Throughout this section, we employ several times the estimate from Lemma 3.3,

and also a straightforward extension of Lemma3.4 including the temporal convergence
rate.

Lemma 4.1 Let ϕh ∈ Vh and ϕ ∈ Wk+1,∞(Ω) ∩ V , and assume that for some � ∈
{1, 2} it holds

∥

∥LV∗
h ϕ − ϕh

∥

∥

H1(Ωh)
≤ C

(

τ � + hk
)

.

Then, we have

‖Lhϕh‖L∞(Ω) ≤ ‖ϕ‖L∞(Ω) + Ch−N/p∗(
τ � + hk

)

,

‖Lhϕh‖W 1,N+δ(Ω) ≤ ‖ϕ‖W 1,N+δ(Ω) + Ch−N/p∗(
τ � + hk

)

,

with a constant C independent of h and τ .

4.1 Euler

First note that for the Euler method (2.17), we have by construction ∂τukh = vkh such
that it is sufficient to check the first three conditions. As above, we define the discrete
error by enh = Jh y(tn)− ynh and aim to show as in Proposition 3.2 the following bound.
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Proposition 4.2 Under the assumptions of Theorem 2.6, for 0 ≤ n ≤ n∗ + 1 it holds
the bound

∥

∥Ahe
n
h

∥

∥

Xh
≤ C

(

τ + hk
)

,

where C is independent of h, τ and n∗.

As in the spatially discrete case, this estimate allows us to immediately conclude
our main result.

Proof (of Theorem 2.6) We proceed along the lines of the proof of Theorem 2.5 to
conclude the convergence up to tn

∗+1. In addition, Lemma 3.3 and the CFL-type
condition (2.18) together with Lemma 4.1 for � = 1 further allow us to prove n∗ ≥
N − 1 for h, τ sufficiently small, and the assertion is shown for all n. ��

The rest of this section is devoted to the proof of Proposition 4.2. In order to derive
the error equation, we insert the projected exact solution Jh y of (2.1) in the scheme
(2.17) and derive

Λh(y
n
h )Jh∂τ y(t

n+1) = Ah Jh y(t
n+1) + Gh(t

n, Jh y(t
n))

+ (

Λh(y
n
h ) − Λh(Jh y(t

n))
)

Jh∂τ y(t
n+1) + δn+1

Eu

with defect δn+1
Eu = δn+1

h,Eu + δn+1
τ,Eu given by

δn+1
h,Eu = (

JhA − Ah Jh
)

y(tn+1) + JhG(tn, y(tn)) − Gh(t
n, Jh y(t

n))

+ (

Λh(Jh y(t
n))Jh − JhΛ(y(tn))

)

∂τ y(t
n+1), (4.3a)

δn+1
τ,Eu = JhΛ(y(tn))∂τ y(t

n+1) − JhΛ(y(tn+1))∂t y(t
n+1)

+ JhG(tn+1, y(tn+1)) − JhG(tn, y(tn)). (4.3b)

This yields the discrete error equation

Λh(y
n
h )∂τ e

n+1
h = Ahe

n+1
h + Γ n

h + δn+1
Eu , (4.4)

where the stability term is given by

Γ n
h := (

Gh(t
n, Jh y(t

n)) − Gh(t
n, yh)

)

+(

Λh(y
n
h ) − Λh(Jh y(t

n))
)

Jh∂τ y(t
n+1). (4.5)

In order to obtain a recursion for en+1
h , we recall the state-dependent operator and

define the corresponding resolvent

An
h = Λ−1

h (ynh )Ah, REu,n :=
(

I − τAn
h

)−1
. (4.6)
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A simple calculation shows that for the inner product

(ϕh | ψh)n := (

Λh(y
n
h )ϕh | ψh

)

Xh
, ϕh, ψh ∈ Xh,

which satisfies by (4.1) the same bounds as in (3.7), we obtain

∥

∥REu,nϕh
∥

∥

n ≤ ‖ϕh‖n ,

and rewrite (4.4) as

en+1
h = REu,ne

n
h + τREu,nΛ

−1
h (ynh )

(

Γ n
h + δn+1

Eu

)

.

Since An
h commutes with REu,n , we obtain

An
he

n+1
h = REu,nAn

he
n
h + τREu,nAn

hΛ
−1
h (ynh )

(

Γ n
h + δn+1

Eu

)

which has to be resolved. Proceeding as in Lemma 3.7, and noting that for any norm
it holds

∥

∥∂τ y(t
n)

∥

∥ ≤ max
t∈[tn−1,tn ]

‖∂t y(t)‖ , (4.7)

we have for 0 ≤ n ≤ n∗ the stability bound

∥

∥AhΓ
n
h

∥

∥

Xh
≤ C

∥

∥Ahe
n
h

∥

∥

Xh

with a constant C independent of h, τ and n∗. Similarly, we show the optimal consis-
tency error of the defect in the stronger norm, see Sect. 5 for the proof.

Lemma 4.3 For 0 ≤ n ≤ n∗, it holds
∥

∥Ahδ
n+1
Eu

∥

∥

Xh
≤ C

(

τ + hk
)

with a constant C independent of h, τ and n∗.

Hence, we have already established the estimate

∥

∥An
he

n+1
h

∥

∥

n ≤ ∥

∥An
he

n
h

∥

∥

n + Cτ
∥

∥Ahe
n
h

∥

∥

Xh
+ Cτ

(

τ + hk
)

, (4.8)

and the last step toward the main result is to change the norms.

Lemma 4.4 For 1 ≤ n ≤ n∗, it holds for all ϕh ∈ Vh

∥

∥An
hϕh

∥

∥

n ≤ (1 + Cτ)

∥

∥

∥An−1
h ϕh

∥

∥

∥

n−1

with a constant C independent of h, τ and n∗.

123



Foundations of Computational Mathematics

Proof Expanding the norm as

∥

∥An
hϕh

∥

∥

2
n = (

Ahϕh | Λ−1
h (ynh )Ahϕh

)

Xh

= ∥

∥An−1
h ϕh

∥

∥

2
n−1 + τ

(

Ahϕh | ∂τΛ
−1
h (ynh )Ahϕh

)

Xh

and using (4.2) several times give the assertion. ��
With this, we are able to proof the estimate on Ahe

n+1
h .

Proof (of Proposition 4.2)
We first consider the case n∗ = 0. Hence, (4.8) with n = 0 directly yields the

assertion without the use of Lemma 4.4 and hence without any bound on ∂τukh . With
this, we established n∗ ≥ 1.

In the case n∗ ≥ 1, we employ Lemma 4.4 in (4.8) and make use of the norm
equivalences to obtain

∥

∥An
he

n+1
h

∥

∥

n ≤ (1 + Cτ)
∥

∥An−1
h enh

∥

∥

n−1 + Cτ
(

τ + hk
)

.

Resolving the recursion and using Proposition 3.5 yields the result. ��

4.2 Midpoint

The proof is very similar to the Euler method and hence, we only sketch the relevant
details. First note that by construction in (2.19) it holds

∂τu
k
h = 1

2 (v
k
h + vk−1

h ),

such that the last bound in (4.1) does not have to be shown separately. Again, we aim
at the following bound.

Proposition 4.5 Under the assumptions of Theorem 2.7, for 0 ≤ n ≤ n∗ + 1 it holds
the bound

∥

∥Ahe
n
h

∥

∥

Xh
≤ C

(

τ 2 + hk
)

,

where C is independent of h, τ and n∗.
Combining Lemma 4.1 with the weaker CFL-type condition (2.20) yields the conver-
gence result.

Proof (of Theorem 2.7) As in the proof of Theorem 2.6, the convergence follows
directly. To show that n∗ ≥ N − 1, we employ Lemma 4.1 with � = 2 together with
the CFL-type condition (2.20). ��

Hence, it remains to show Proposition 4.5. As for the Euler method, we derive the
following error equation

Λh(ȳ
n+1/2
h )∂τ e

n+1
h = Ahe

n+1/2
h + Γ n

h + δn+1
M , (4.9)
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with a stability term similar to the one in (4.5) satisfying

∥

∥AhΓ
n
h

∥

∥

Xh
≤ C

(∥

∥Ahe
n
h

∥

∥

Xh
+ ∥

∥Ahe
n−1
h

∥

∥

Xh

)

, (4.10)

and a composed defect δn+1
M = δn+1

h,M +δn+1
τ,M . The first component is basically the same

as δn+1
h,Eu in (4.3b), and the second satisfies

δn+1
τ,M = JhΛ(ȳn+1/2)∂τ y(t

n+1) − JhΛ(y(tn+1/2))∂t y(t
n+1/2)

+ JhA
(

y(tn+1/2) − 1
2 (y(t

n+1) + y(tn))
)

,

+ JhG(tn+1/2, y(tn+1/2)) − JhG(tn+1/2, ȳn+1/2),

(4.11)

such that we derive in Sect. 5 the desired order of convergence.

Lemma 4.6 For 0 ≤ n ≤ n∗, it holds
∥

∥Ahδ
n+1
M

∥

∥

Xh
≤ C

(

τ 2 + hk
)

with a constant C independent of h, τ and n∗.

We solve for en+1
h in the error equation (4.9) and define for the solution-dependent

operator An+1/2
h = Λ−1

h (ȳn+1/2)Ah the maps

R±,n+1/2:=I ± τ
2A

n+1/2
h , Rm,n+1/2:=R−1

−,n+1/2R+,n+1/2.

A simple calculation shows that for the inner product

(ϕn | ψh)n+1/2 :=(

Λh(ȳ
n+1/2)ϕn | ψh

)

Xh
, ϕn, ψh ∈ Xh,

we have

∥

∥R−1
−,n+1/2ϕh

∥

∥

n+1/2 ≤ ‖ϕh‖n+1/2 ,
∥

∥Rm,n+1/2ϕh
∥

∥

n+1/2 = ‖ϕh‖n+1/2 .

Rewriting (4.9) and multiplying by An+1/2
h , we obtain

An+1/2
h en+1

h = Rm,n+1/2A
n+1/2
h enh

+ τR−1
−,n+1/2A

n+1/2
h Λ−1

h (ȳn+1/2)
(

Γ n
h + δn+1

M

)

.
(4.12)

Finally, we have as in Lemma 4.4 the following bound when changing the norm.

Lemma 4.7 For 1 ≤ n ≤ n∗ it holds

∥

∥An+1/2
h ϕh

∥

∥

n+1/2 ≤ (1 + Cτ)
∥

∥An−1/2
h ϕh

∥

∥

n−1/2

with a constant C independent of h, τ and n∗.
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Proof First note that

∥

∥∂τ (
3
2u

k
h − 1

2u
k−1
h )

∥

∥

L∞ ≤ 3
2

∥

∥∂τu
k
h

∥

∥

L∞ + 1
2

∥

∥∂τu
k−1
h

∥

∥

L∞ ,

as well as

∥

∥
3
2u

k
h − 1

2u
k−1
h

∥

∥

L∞ = ∥

∥ukh + τ
2 ∂τu

k
h

∥

∥

L∞ .

This allows us to proceed as in Lemma 4.4 and to bound ∂
j
τ Λh(ȳn+1/2), j = 0, 1, and

the inverse Λ−1
h (ȳn+1/2). ��

We are then able to conclude the error bound for the midpoint rule.

Proof (of Proposition 4.5) Using the error equation (4.12), we employ Lemmas 4.6
and 4.7, and (4.10) to obtain

∥

∥An+1/2
h en+1

h

∥

∥

n+1/2 ≤ (1 + Cτ)
∥

∥An−1/2
h enh

∥

∥

n−1/2

+ Cτ
(∥

∥Ahe
n
h

∥

∥

Xh
+ ∥

∥Ahe
n−1
h

∥

∥

Xh

) + Cτ
(

τ 2 + hk
)

.

With the bound on Ahe0h from Proposition 3.5 and using the fact the first step is given
by the Euler method, we obtain with Proposition 4.2

∥

∥Ahe
1
h

∥

∥

Xh
≤ Cτ

(

τ + hk
)

,

which yields by a Gronwall lemma the assertion. ��

4.3 Exponential Euler

For the exponential method, we apply a similar approach and derive the necessary
bound in the stronger energy norm. However, there is no direct relation to the discrete
derivatives of the error. In this case, we have to prove an additional error estimate.

Proposition 4.8 Under the assumptions of Theorem 2.8, for 0 ≤ n ≤ n∗ + 1 there
hold the bounds

∥

∥Ahe
n
h

∥

∥

Xh
≤ C

(

τ + hk
)

,

and for 1 ≤ n ≤ n∗ + 1

∥

∥∂τ e
n
h

∥

∥

Xh
≤ C

(

τ + hk
)

,

where C is independent of h, τ , and n∗.

Once this is established, the last main result directly follows.
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Proof (of Theorem 2.8) In order to conclude the convergence rates, we only employ
the first estimate in Proposition 4.8. To show n∗ ≥ N−1, again the first estimate allows
us to guarantee the first three bounds in (4.1). The bound on Lh∂τukh follows from
the second estimate in Proposition 4.8 combined with Lemma 4.1 and the CFL-type
condition (2.18). ��

The rest of this section is devoted to the proof of Proposition 4.8. We introduce the
auxiliary approximation ỹn(tn + s) for s ∈ [0, τ ] as the solution of

Λh(y
n
h )∂t ỹ

n(tn + s) = Ah ỹ
n(tn + s) + Gh(t

n, ynh ), ỹn(tn) = ynh (4.13)

and thus satisfies ỹn(tn + τ) = yn+1
h . In order to derive the error equation, we insert

the projected exact solution Jh y in (4.13)

Λh(y
n
h )Jh∂t y(t

n + s) = Ah Jh y(t
n + s) + Gh(t

n, Jh y(t
n))

+ (

Λh(y
n
h ) − Λh(Jh y(t

n))
)

Jh∂t y(t
n + s) + δn+1

ExEu(t
n + s)

with defect δn+1
ExEu = δn+1

h,ExEu + δn+1
τ,ExEu given by

δn+1
h,ExEu(t

n + s) = (

JhA − Ah Jh
)

y(tn + s) + JhG(tn, y(tn)) − Gh(t
n, Jh y(t

n))

+ (

Λh(Jh y(t
n))Jh − JhΛ(y(tn))

)

∂t y(t
n + s),

δn+1
τ,ExEu(t

n + s) = JhΛ(y(tn))∂t y(t
n + s)− < JhΛ(y(tn + s)∂t y(t

n + s)

+ JhG(tn + s, y(tn + s)) − JhG(tn, y(tn)).

Similarly, we define the auxiliary error by

ẽnh(t
n + s):=Jh y(t

n + s) − ỹn(tn + s), ẽnh(t
n) = enh , ẽnh(t

n + τ) = en+1
h .

This yields the discrete error equation for s ∈ [0, τ ]

Λh(y
n
h )∂t ẽ

n
h(t

n + s) = Ah ẽ
n
h(t

n + s) + Γ n
h (tn + s) + δn+1

ExEu(t
n + s) (4.14)

with stability term

Γ n
h (tn + s):=(

Gh(t
n, Jh y(t

n)) − Gh(t
n, yh)

) + (

Λh(y
n
h ) − Λh(Jh y(t

n))
)

Jh∂t y((t
n + s)).

Using the variation-of-constants formula with the state-dependent operator defined in
(4.6), we obtain from (4.14)

ẽnh(t
n + s) = esA

n
h enh +

∫ s

0
e(s−σ)AnhΛ−1

h (ynh )
(

Γ n
h (tn + σ) + δn+1

ExEu(t
n + σ)

)

dσ.

To obtain the error bounds stated in Proposition 4.8, we need the following two esti-
mates which follow along the lines of Lemmas 3.7 and 4.3: For 0 ≤ n ≤ n∗ it holds
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sup
s∈[0,τ ]

∥

∥AhΓ
n
h (tn + s)

∥

∥

Xh
≤ C

∥

∥Ahe
n
h

∥

∥

Xh
, (4.15a)

sup
s∈[0,τ ]

∥

∥Ahδ
n+1
ExEu(t

n + s)
∥

∥

Xh
≤ C

(

τ + hk
)

, (4.15b)

with a constant C independent of h, τ and n∗. This allows us to conclude the bounds
in the two stronger norms.

Proof (of Proposition 4.8) We proceed as in the proof of Proposition 4.2 in order to
obtain the bound on Ahẽnh in the form

sup
s∈[0,τ ]

∥

∥Ahẽ
n
h(t

n + s)
∥

∥

Xh
≤ C

(

τ + hk
)

, (4.16)

which implies the first statement in the proposition. For the discrete derivative of the
error, we employ (4.7), (4.14), and (4.15) to conclude

∥

∥∂τ e
n
h

∥

∥

Xh
≤ sup

s∈[0,τ ]
∥

∥∂t ẽ
n
h(t

n + s)
∥

∥

Xh

≤ C sup
s∈[0,τ ]

∥

∥Ahẽ
n
h(t

n + s)
∥

∥

Xh
+ C

∥

∥Ahe
n
h

∥

∥

Xh
+ C

(

τ + hk
)

≤ C
(

τ + hk
)

,

where we used (4.16) in the last step. ��

4.4 Exponential Midpoint Rule

For the exponential midpoint rule, we combine the approaches presented for the semi-
implicit midpoint rule and the exponential Euler method. In particular, we have to
prove error bounds in the stronger norm as well as for the discrete derivative of the
error.

Proposition 4.9 Under the assumptions of Theorem 2.9, for 0 ≤ n ≤ n∗ + 1, there
hold the bounds

∥

∥Ahe
n
h

∥

∥

Xh
≤ C

(

τ 2 + hk
)

,

and for 1 ≤ n ≤ n∗ + 1

∥

∥∂τ e
n
h

∥

∥

Xh
≤ C

(

τ 2 + hk
)

,

where C is independent of h, τ and n∗.

Once this is established, the last main result directly follows.

Proof (of Theorem 2.9) We only combine the argument presented in the proofs of
Theorems 2.7 and 2.8 to conclude the assertion. ��
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The rest of this section is devoted to the proof of Proposition 4.9. We introduce the
auxiliary approximation ỹn(tn + s) for s ∈ [0, τ ] as the solution of

Λh(ȳ
n+1/2
h )∂t ỹ

n(tn + s) = Ah ỹ
n(tn + s) + Gh(t

n+1/2, ȳn+1/2
h ) (4.17)

with ỹn(tn) = ynh , and thus satisfies ỹn(tn + τ) = yn+1
h . In order to derive the error

equation, we insert the projected exact solution Jh y in (4.17) and conclude

Λh(ȳ
n+1/2
h )Jh∂t y(t

n + s) = Ah Jh y(t
n + s) + Gh(t

n+1/2, Jh ȳ
n+1/2) + δn+1

ExM(tn + s)

+ (

Λh(ȳ
n+1/2
h ) − Λh(Jh ȳ

n+1/2)
)

Jh∂t y(t
n + s)

with defect δn+1
ExM = δn+1

h,ExM + δn+1
τ,ExM,1 + δn+1

τ,ExM,2 given by

δn+1
h,ExM(tn + s) = (

JhA − Ah Jh
)

y(tn + s)

+ JhG(tn+1/2, ȳn+1/2) − Gh(t
n+1/2, Jh ȳ

n+1/2)

+ (

Λh(Jh ȳ
n+1/2)Jh − JhΛ(ȳn+1/2)

)

∂t y(t
n + s),

δn+1
τ,ExM,1(t

n + s) = JhΛ(ȳn+1/2)∂t y(t
n + s) − JhΛ(y(tn+1/2))∂t y(t

n + s)

+ JhG(tn+1/2, y(tn+1/2)) − JhG(tn+1/2, Jh ȳ
n+1/2),

δn+1
τ,ExM,2(t

n + s) = JhΛ(y(tn+1/2))∂t y(t
n + s) − JhΛ(y(tn + s))∂t y(t

n + s)

+ JhG(tn + s, y(tn + s)) − JhG(tn+1/2, y(tn+1/2)).

Deriving the error equation and using the variation-of-constants formula, we obtain
with the state-dependent operator An+1/2

h = Λ−1
h (ȳn+1/2

h )Ah

en+1
h = eτAn+1/2

h enh +
∫ τ

0
e(τ−σ)An+1/2

h Λ−1
h (ȳn+1/2

h )
(

Γ n
h (tn + σ) + δn+1

ExM(tn + σ)
)

dσ

with stability term

Γ n
h (tn + s):=Gh(t

n+1/2, Jh ȳ
n+1/2) − Gh(t

n+1/2, ȳn+1/2
h )

+ (

Λh(ȳ
n+1/2
h ) − Λh(Jh ȳ

n+1/2)
)

Jh∂t y(t
n + s).

Unlike for the exponential Eulermethod, one has to paymore attention to the derivation
of the error bound on the discrete derivatives. In order to show the error bound, we do
not only apply An+1/2

h to the error equation, but also apply the discrete derivative ∂τ .
In a straightforward manner, one can derive the following auxiliary result.

Lemma 4.10 Under the assumptions of Theorem 2.9, it holds for 0 ≤ σ ≤ τ

∥

∥∂τ

(

eσAn+1/2
h ϕn

h

) − eσAn+1/2
h ∂τϕ

n
h

∥

∥

Xh
≤ Cτ

∥

∥Ahϕ
n
h

∥

∥

Xh

with a constant C independent of h, τ and n∗.
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This leads to several error terms which appeared above similarly. Along the lines
of Lemmas 3.7, 4.3 and 4.6, we immediately conclude the following bounds: For
0 ≤ n ≤ n∗, the stability terms are bounded by

sup
s∈[0,τ ]

∥

∥AhΓ
n
h (tn + s)

∥

∥

Xh
≤ C

(∥

∥Ahe
n
h

∥

∥

Xh
+ ∥

∥Ahe
n−1
h

∥

∥

Xh

)

, (4.18a)

sup
s∈[0,τ ]

∥

∥∂τΓ
n
h (tn + s)

∥

∥

Xh
≤ C

∑

j∈{n−1,n}

∥

∥∂τ e
j
h

∥

∥

Xh
+ ∥

∥e jh
∥

∥

Xh
, (4.18b)

and further the defects satisfy

sup
s∈[0,τ ]

∥

∥Ahδ
n+1
h,ExM(tn + s)

∥

∥

Xh
+ sup

s∈[0,τ ]
∥

∥∂τ δ
n+1
h,ExM(tn + s)

∥

∥

Xh
≤ Chk, (4.19a)

sup
s∈[0,τ ]

∥

∥Ahδ
n+1
τ,ExM,1(t

n + s)
∥

∥

Xh
+ sup

s∈[0,τ ]
∥

∥∂τ δ
n+1
τ,ExM,1(t

n + s)
∥

∥

Xh
≤ Cτ 2, (4.19b)

sup
s∈[0,τ ]

∥

∥Ahδ
n+1
τ,ExM,2(t

n + s)
∥

∥

Xh
≤ Cτ, (4.19c)

with a constant C independent of h, τ and n∗. The main difficulty is to extract the
additional order of convergence in the defect δnτ,ExM,2.We show in Sect. 5 the following
lemma.

Lemma 4.11 Under the assumptions of Theorem 2.9, it holds

∥

∥

∥An+1/2
h

∫ τ

0
e(τ−σ)An+1/2

h Λ−1
h (ȳn+1/2

h )δn+1
τ,ExM,2(t

n + σ)
)

dσ
∥

∥

∥

Xh
≤ Cτ 3,

∥

∥

∥

∫ τ

0
e(τ−σ)An+1/2

h Λ−1
h (ȳn+1/2

h )∂τ δ
n+1
τ,ExM,2(t

n + σ)
)

dσ
∥

∥

∥

Xh
≤ Cτ 3,

with a constant C independent of h, τ , and n∗.

From this, we conclude the error bounds in Proposition 4.9.

Proof (of Proposition 4.9) Following the lines of the preceding proofs of Proposi-
tions 4.5 and 4.8, one establishes the error bound on

∥

∥Ahenh
∥

∥

Xh
. Applying the discrete

derivative to the error equation and employing the bounds in Lemma 4.10 combined
with (4.18) and (4.19) yield

∂τ e
n+1
h = eτAn+1/2

h ∂τ e
n
h +

∫ τ

0
e(τ−σ)An+1/2

h Λ−1
h (ȳn+1/2

h )∂τ δ
n+1
ExM(tn + σ) dσ + Δn

h,

where the remainder term Δn
h satisfies

∥

∥Δn
h

∥

∥

Xh
≤ Cτ

(∥

∥∂τ e
n
h

∥

∥

Xh
+ ∥

∥∂τ e
n−1
h

∥

∥

Xh

) + Cτ
(

τ 2 + hk).

Finally, the application of Lemma 4.11 yields the desired estimate on
∥

∥∂τ enh
∥

∥

Xh
and

closes the proof. ��
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5 Estimates for Stability Terms and Defects

This section is devoted to the proofs of the postponed stability and consistency estimate
from Sects. 3 and 4.

5.1 Stability

In the following, we give a detailed proof for the stability term given in (3.10). We
emphasize that the corresponding bounds used in Sect. 4 are derived fully analogously,
and we thus refrain from giving the details here.

Proof (of Lemma 3.7) We consider the two contributions of Γh in (3.10) separately.
(a) We first note by (2.6) and (2.7) that

Ah
(

Gh(t, Jh y)−Gh(t, yh)
)=

(

Ihg(t,LhLV∗
h u,LhLV∗

h ∂t u)− Ihg(t,Lhuh,Lhvh)

0

)

.

Without loss of generality, we show the assertion only for g(t, u, ∂t u) = g(∂t u) and
obtain

∥

∥Ah
(

Gh(t, Jh y) − Gh(t, yh)
)∥

∥

Xh

= ∥

∥Ihg(LhLV∗
h ∂t u) − Ihg(Lhvh)

∥

∥

Vh

= ∥

∥Ih
(

1
∫

0

g′(σLhLV∗
h ∂t u + (1 − σ)Lhvh) dσ (LhLV∗

h ∂t u − Lhvh)
)∥

∥

Vh

�
∥

∥

1
∫

0

g′(σLhLV∗
h ∂t u + (1 − σ)Lhvh) dσ

∥

∥

W 1,N+δ

∥

∥LhLV∗
h ∂t u − Lhvh

∥

∥

Vh
,

where we used Lemma 2.10 for the last estimate. The latter term is estimated with
(3.4) by Aheh in the Xh-norm. For the integral part, we use the stability of LhLV∗

h in
(2.24) with � = 0 to bound it by a constant depending on the W 1,N+δ-norms of ∂t u
and vh . Hence, the bounds in (3.3) yield the stability for Gh .

(b) Next, we consider by (2.6) and (2.7)

Ah
(

Λh(Jh y(t))−Λh(yh(t))Jh∂t y(t)=
(

πh

(

Ih
(

λ(LhLV∗
h u) − λ(Lhuh)

)

LV∗
h ∂2t u

)

0

)

,

and estimate with the stability of the L2-projection in (2.26) and of the interpolation
(2.22), the algebra property of W 1,N+δ , and the stability of LV∗

h in (2.24)
∥

∥Ah
(

Λh(Jh y(t)) − Λh(yh(t))Jh∂t y(t)
∥

∥

Xh

≤ C
∥

∥λ(LhLV∗
h u) − λ(Lhuh)

∥

∥

W 1,N+δ

∥

∥LV∗
h ∂2t u

∥

∥

W 1,N+δ

≤ C
∥

∥LV∗
h u − uh

∥

∥

W 1,N+δ

∥

∥∂2t u
∥

∥

W 1,N+δ ,
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with a constant depending on the W 1,N+δ-norms of u and uh . Using Lemma 3.3 and
(3.4), the first term is bounded by Aheh in the Xh-norm. ��

5.2 Defects

We first estimate the spatial defect (3.8) which will reappear in a modified form in the
defects of the full discretization.

Proof (of Lemma 3.8)

(a) We compute with (2.27) and (2.28)

Ah
(

JhA − Ah Jh
)

y(t) = Ah
(

Jh − Lh
∗)Ay(t) =

(

(LV∗
h − LH∗

h )�u
0

)

and, inserting the interpolation, estimate with (2.22), (2.23), (2.24), and (2.25),

∥

∥Ah
(

JhA − Ah Jh
)

y(t)
∥

∥

Xh
≤ Chk ‖�u‖Hk+1 .

(b) As above, we only consider the case g(t, u, ∂t u) = g(∂t u) and obtain with (2.6)
and (2.7)

Ah
(

JhG(t, y) − Gh(t, Jh y)
) =

(

LV∗
h g(∂t u) − Ihg(LhLV∗

h ∂t u)

0

)

.

From this, we conclude with (2.22) and (2.24)
∥

∥Ah
(

JhG(t, y) − Gh(t, Jh y)
)∥

∥

Xh

≤ ∥

∥(LV∗
h − Ih)g(∂t u)

∥

∥

Vh
+ ∥

∥Ihg(∂t u) − Ihg(LhLV∗
h ∂t u)

∥

∥

Vh

≤ Chk ‖g(∂t u)‖Hk+1 + C
∥

∥(Id − LhLV∗
h )∂t u

∥

∥

W 1,∞

≤ C(‖g(∂t u)‖Hk+1 + ‖∂t u‖Wk+1,∞) hk,

which gives the desired convergence rate.
(c) We compute with (2.6) and (2.7)

Ah
(

JhΛ(y)−Λh(Jh y)Jh
)

∂t y=
(

LV∗
h (λ(u)∂2t u)−πh

(

Ihλ(LhLV∗
h u)LhLV∗

h ∂2t u
)

0

)

,

such that again (2.22), (2.23) and (2.24) yield the estimate

∥

∥Ah
(

JhΛ(y) − Λh(Jh y)Jh
)

∂t y
∥

∥

Xh

≤ ∥

∥(LV∗
h − LH∗

h )λ(u)∂2t u
∥

∥

Vh
+ ∥

∥(LH∗
h − πhL−1

h )λ(u)∂2t u
∥

∥

Vh

+ ∥

∥λ(u)∂2t u − Lh Ihλ(LhLV∗
h u)LhLV∗

h ∂2t u
∥

∥

Vh

≤ C(‖λ(u)‖Wk+1,∞ ,
∥

∥∂2t u
∥

∥

Wk+1,∞) hk + h−1
∥

∥(LH∗
h − πhL−1

h )λ(u)∂2t u
∥

∥

Hh
.
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The last term is estimated using [16, Lem. 8.24] to obtain

∥

∥(LH∗
h − πhL−1

h )λ(u)∂2t u
∥

∥

Hh
� hk

∥

∥L−1
h λ(u)∂2t u

∥

∥

Hh

� hk
∥

∥(L−1
h − Ih)λ(u)∂2t u

∥

∥

Hh
+ hk

∥

∥Ihλ(u)∂2t u
∥

∥

Hh
,

and (2.22) together with (B.2) gives the desired bound. ��
For the fully discrete defects, we rely on further Lipschitz bounds of the nonlin-

earities Λ and G which we collect in the next lemma. Since we work in a first-order
framework, we denote in the following for any function x ∈ X , the projection onto
the first and second component by x1 or x2, respectively.

Lemma 5.1 Let x, y, z ∈ X, and let Assumption 2.1 hold.

(a) If x1, y1, z2 ∈ W 1,∞(Ω), then

∥

∥A
(

Λ(x) − Λ(y)
)

z
∥

∥

X ≤ C ‖x1 − y1‖H1(Ω) ,

where the constant depends on the W 1,∞-norms of x1, y1, z2.
(b) If x1, x2, y1, y2 ∈ W 1,∞(Ω), then

∥

∥A
(

G(t, x) − G(s, y)
)∥

∥

X ≤ C
(|t − s| + ‖x1 − y1‖H1(Ω) + ‖x2 − y2‖H1(Ω)

)

where the constant depends on the W 1,∞-norms of x1, x2, y1, y2.

Proof We expand the difference in part (a) as

∥

∥A
(

Λ(x) − Λ(y)
)

z
∥

∥

X = ∥

∥

(

λ(x1) − λ(y1)
)

z2
∥

∥

H1

= ∥

∥

∫ 1

0
λ′(σ x1 + (1 − σ y1))(x1 − y1)z2

∥

∥

H1

� sup
σ∈[0,1]

∥

∥λ′(σ x1 + (1 − σ y1))
∥

∥

W 1,∞ ‖x1 − y1‖H1 ‖z2‖W 1,∞ ,

and the assumptions in the lemma yield the bound. The very same computation yields
the second estimate (b). ��

Thus, the defect of the Euler method can be bounded in a straightforward way.

Proof (of Lemma 4.3) We recall the splitting δn+1
Eu = δn+1

h,Eu + δn+1
τ,Eu of the defect in

(4.3), and note that by proof of Lemma 3.8 it holds

∥

∥Ahδ
n+1
h,Eu

∥

∥

Xh
≤ Chk .

We treat the two parts in (4.3b) separately. The second term involving G is bounded
using (2.28) and Lemma 5.1. Further, we expand
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Ah JhΛ(y(tn))∂τ y(t
n+1) − Ah JhΛ(y(tn+1))∂t y(t

n+1) = Lh
∗A

(

Λ(y(tn))

− Λ(y(tn+1))
)

∂t y(t
n+1) + Lh

∗AΛ(y(tn))
(

∂τ y(t
n+1) − ∂t y(t

n+1)
)

,

such that Lemma 5.1 is employed on the first part. For the second part, note that by
the fundamental theorem of calculus we obtain in any norm

∥

∥∂τ z(t
n+1) − ∂t z(t

n+1)
∥

∥ ≤ τ

2
sup

s∈[0,τ ]
∥

∥∂2t z(t
n + s)

∥

∥,

and the claim follows. ��
Similarly, we bound the defect of the midpoint rule in (4.11), and as above we do

not have to treat the spatial part δn+1
h,M.

Proof (of Lemma 4.6) We first note that from Taylor expansions and the Peano kernel
theorem, we conclude in any norm the bounds

∥

∥∂τ z(t
n+1) − ∂t z(t

n+1/2)
∥

∥ ≤ τ 2

24
sup

s∈[0,τ ]
∥

∥∂3t z(t
n + s)

∥

∥,

∥

∥z(tn+1/2) − 1
2

(

z(tn+1) + z(tn)
)∥

∥ ≤ τ 2

4
sup

s∈[0,τ ]
∥

∥∂2t z(t
n + s)

∥

∥,

∥

∥z(tn+1/2) − ( 3
2 z(t

n) − 1
2 z(t

n−1)
)∥

∥ ≤ 3τ 2

8
sup

s∈[0,τ ]
∥

∥∂2t z(t
n + s)

∥

∥.

Combining this with Lemma 5.1 and the proof of Lemma 4.3 yields the desired bounds
on the defect. ��

We finally treat the principle defect of the exponential midpoint rule. We pursue
the strategy adapted from [12, Prop. 5.3]. Before we give the proof, we need two
auxiliary results. The first one allows us to compare function evaluations of finite
element objects with their interpolation. The proof is given in AppendixB.

Lemma 5.2 Let L ∈ N and assume that f : RL → R is sufficiently often differentiable
and that ϕi,h ∈ Vh satisfies

∥

∥ϕi,h
∥

∥

L∞ + ∥

∥ϕi,h
∥

∥

W 1,4 ≤ C

for i = 1, . . . .L. Then,

∥

∥ f (ϕ1,h, . . . , ϕL,h) − Ih f (Lhϕ1,h, . . . ,LhϕL,h)
∥

∥

L2(Ωh)
� h2,

∥

∥ f (ϕ1,h, . . . , ϕL,h) − Ih f (Lhϕ1,h, . . . ,LhϕL,h)
∥

∥

H1(Ωh)
� h,

with a constant independent of h.
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On the continuous level, the chain rule allows us to bound terms of the form
�(μ(u)w) by the norms of �u and �w. Even though this is not straightforward in
the discrete case, one can establish a very similar result. We recall the Ritz projection
Rh defined in (2.5) and note that the proof is given in AppendixD.

Lemma 5.3 Let uh, wh ∈ Vh and assume that ‖�huh‖L2 + ‖�hwh‖L2 ≤ C. Further,
let μ : R → R be twice continuously differentiable. Then,

‖�h Rh(μ(uh)wh)‖L2(Ωh)
≤ C

with a constant C independent of h.

With these preparations, we can provide the error bounds on the defects of the
exponential midpoint rule.

Proof (of Lemma 4.11) Let us denote

d1n (t):=Jh
(

Λ(y(tn+1/2)) − Λ(y(t))
)

∂t y(t),

d2n (t):=Jh
(

G(t, y(t)) − G(tn+1/2, y(tn+1/2))
)

,

then it remains to show for i = 1, 2

∥

∥

∥An+1/2
h

∫ τ

0
e(τ−σ)An+1/2

h Λ−1
h (ȳn+1/2

h )din(t
n + σ)

)

dσ
∥

∥

∥

Xh
≤ Cτ 3,

∥

∥

∥

∫ τ

0
e(τ−σ)An+1/2

h Λ−1
h (ȳn+1/2

h )∂τd
i
n(t

n + σ)
)

dσ
∥

∥

∥

Xh
≤ Cτ 3.

Following the lines of the proof of [12, Prop. 5.3], we observe that for the first bound
on d1n , we have to establish the bounds

∥

∥AhA
n+1/2
h Λ−1

h (ȳn+1/2
h )Jh

(

∂tΛ(y(t))
)

∂t y(t)
∥

∥

Xh
≤ C, (5.1a)

∥

∥AhΛ
−1
h (ȳn+1/2

h )Jh
(

Λ(y(tn+1/2)) − Λ(y(t))
)

∂2t y(t)
∥

∥

Xh
≤ Cτ, (5.1b)

∥

∥AhΛ
−1
h (ȳn+1/2

h )Jh
(

(

∂2t Λ(y(t))
)

∂t y(t) + (

∂tΛ(y(t))
)

∂2t y(t)
)

∥

∥

Xh
≤ C, (5.1c)

as well as for d2n the bounds

∥

∥AhA
n+1/2
h Λ−1

h (ȳn+1/2
h )Jh∂tG(t, y(t))

∥

∥

Xh
≤ C, (5.2a)

∥

∥AhΛ
−1
h (ȳn+1/2

h )Jh∂
2
t G(t, y(t))

∥

∥

Xh
≤ C . (5.2b)

For the discrete derivative, we have similar terms which have one Ah less, and instead
∂τ applied to objects following Λ−1

h (ȳn+1/2
h ). In the following, we only discuss the

bounds in (5.1a) and (5.2a) since the remaining ones are more standard.
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Denoting wh :=LV∗
h

(

λ′(u) ∂t u ∂2t u
)

, it is sufficient to show for the bound in (5.1a)
the estimate

∥

∥�hQh
(

(Ihλ(Lhū
n+1/2
h )−1)wh

)∥

∥

Hh
≤ C,

since the first component vanishes. In the following, we will often use that by (2.28)
and the assumptions of Theorem 2.9 it holds

‖�hwh‖L2(Ωh)
= ∥

∥LH∗
h �

(

λ′(u) ∂t u ∂2t u
)∥

∥

L2(Ωh)
≤ C,

and to keep the notation simple, we will write uh instead of ū
n+1/2
h . We split the term

using the inverse estimate in the form (A.1) in

∥

∥�h Qh
(

(Ihλ(Lhuh))
−1wh

)∥

∥

Hh
�

∥

∥�h Rh
(

λ(uh)
−1wh

)∥

∥

Hh

+ h−1
∥

∥Qh
(

(Ihλ(Lhuh))
−1wh

) − Rh
(

λ(uh)
−1wh

)∥

∥

Vh
.

The first term is bounded by Lemma 5.3 using

∥

∥�hū
n+1/2
h

∥

∥

L2(Ωh)
�

∥

∥�hu
n
h

∥

∥

L2(Ωh)
+

∥

∥

∥�hu
n−1
h

∥

∥

∥

L2(Ωh)
.

Tosplit the second term further,we addand subtract in the second termQh
(

λ(uh)−1wh
)

,
and obtain for the first term with the L2-stability of Qh in (2.26) and the inverse esti-
mate (2.25)

h−1
∥

∥Qh
(

((Ihλ(Lhuh))
−1 − λ(uh)

−1)wh
)∥

∥

Vh

≤ h−2
∥

∥(Ihλ(Lhuh))
−1 − λ(uh)

−1
∥

∥

L2(Ωh)
‖wh‖L∞

≤ h−2
∥

∥Ihλ(Lhuh) − λ(uh)
∥

∥

L2(Ωh)
‖�hwh‖L2(Ωh)

,

where we used in the last step Lemma 3.3, the identity

(Ihλ(Lhuh))
−1 − λ(uh)

−1 = (Ihλ(Lhuh))
−1(λ(uh) − (Ihλ(Lhuh))

)

λ(uh)
−1,

and the maximum norm estimate on uh . Finally, Lemma 5.2 leads to a uniform bound
in h. Using the identity

Qhϕ − Rhϕ = Qh
(

ϕ − Ihϕ) + Rh
(

Ihϕ − ϕ
)

,

the assertion follows, once we have established

h−2
∥

∥

(

Id − Ih)
(

λ(uh)
−1wh

)∥

∥

L2(Ωh)
+ h−1

∥

∥

(

Id − Ih)
(

λ(uh)
−1wh

)∥

∥

H1
0 (Ωh)

≤ C .

However, applying Lemma 5.2 once more gives precisely this estimate. The bound in
(5.2a) is derived in the very same way. ��
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Appendix A: Modified Ritz Map

In this section, we discuss the approximation property of ˜Rh as well as its computation.
Note that the same reasoning is valid in the conforming case.

Proof (of Proposition 2.4) We use the definitions in (2.4b) and (2.11) to compute

∣

∣

(

LV∗
h u − ˜Rhu | ϕh

)

Vh

∣

∣ = ∣

∣

(

u | Lhϕh
)

V − (

˜Ihu | ˜Lh
−1Lhϕh

)

˜Vh

∣

∣

≤ ∣

∣

(

u − ˜Lh˜Ihu | Lhϕh
)

V

∣

∣

+ ∣

∣

(

˜Lh˜Ihu | Lhϕh
)

V − (

˜Ihu | ˜Lh
−1Lhϕh

)

˜Vh

∣

∣

= Δ1 + Δ2.

We employ the stability of the lift in (2.2) and the interpolation property in (2.22) to
obtain

Δ1 � hk
′ ‖u‖Hk′+1(Ω)

‖ϕh‖Vh .

The geometric estimate in [16, Lem. 8.24] together with (2.2) allows us to bound

Δ2 � hk
′∥
∥˜Ihu

∥

∥

˜Vh

∥

∥˜Lh
−1Lhϕh

∥

∥

Vh
� hk

′ ‖u‖Hk′+1(Ω)
‖ϕh‖Vh ,

and the claim follows setting k′ = k + 1. Further, we use the definition of �h in (2.9)
and the inverse estimate (2.25)

‖�huh‖2L2 = − (uh | �huh)Vh � h−1 ‖uh‖Vh ‖�huh‖L2 , (A.1)

and obtain the second bound with one power less in h. ��
In order to compute (2.11), we have to solve a linear system with the stiffness

matrix corresponding to the bilinear form (· | ·)Vh and right-hand side ˜�u . For a basis
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ϕi , i = 1, . . . , L , of Vh , the entries are given by

(˜�u)i = (

˜Ihu | ˜Lh
−1Lhϕi

)

˜Vh
.

Going through the construction explained in [15, Sec. 4.1.2-−4.2], one observes that

ϕ̃i :=˜Lh
−1Lhϕi ∈ ˜Vh ; however, ϕ̃i is not a nodal basis function. Since also ˜Ihu ∈ ˜Vh ,

one only needs to modify the routines which are used to assemble the stiffness matrix
corresponding to (· | ·)

˜Vh . In particular, denoting for the reference element ̂K by ϕ̂i

and ̂ψ j the nodal basis polynomials of Pk(̂K ) and Pk′
(̂K ), respectively, one is left to

compute the inner products

(∇̂ψ j | ∇ϕ̂i
)

L2(̂K )
.

Then, the transformation maps to the elements in ˜Ωh are used to assemble the right-
hand side ˜�u .

Appendix B: Interpolation and Adjoint Lift

In appendix, we provide the proof of Lemma 2.10, (2.23), and Lemma 5.2. The fol-
lowing estimate appears to be standard, but since we could not find a reference in the
literature, we provide its proof here.

Lemma B.1 For m = 0, 1, there is a constant Cm > 0 independent of h such that

‖Ih(Lhϕh · Lhψh)‖Wm,2(Ωh)
≤ Cm ‖Lhϕh · Lhψh‖Wm,2(Ωh)

,

for all ϕh, ψh ∈ Vh.

Proof Writing Lh Ih = Id+ (Lh Ih − Id), by (2.2) it is sufficient to show the assertion
for Lh Ih − Id instead of Ih . Passing to the reference cell ̂K , we only consider the case
m = 1. We define the map

Id − ̂Ih : (

P2k(̂K ), |·|H1
) → (

Pk(̂K ), ‖·‖H1
)

,

which is a bounded linear operator with a constant C , such that for any ϕ ∈ P2k(̂K )

∥

∥(Id − ̂Ih)ϕ
∥

∥

H1(̂K )
≤ C |ϕ|H1(̂K ) .

Then, employing [16, Lem. 4.12] yields the result on an arbitrary cell K . ��
With this, we directly conclude the desired stability estimate.

Proof (of Lemma 2.10) By the nodal interpolation property (2.3) and Lemma B.1, we
obtain

‖Ih(ϕ · Lhψh)‖Vh = ∥

∥Ih(Lh I
e
hϕ · Lhψh)

∥

∥

Vh
≤ C

∥

∥Lh I
e
hϕ · Lhϕh

∥

∥

Vh
.
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Using Sobolev’s embedding and the stability of the interpolation from (2.22), we
further estimate

∥

∥Lh I
e
hϕ · Lhϕh

∥

∥

Vh
≤ C

∥

∥Lh I
e
hϕ

∥

∥

W 1,N+δ ‖ϕh‖Vh ≤ C ‖ϕ‖W 1,N+δ ‖ϕh‖Vh .

By the same reasoning, we obtain the bound in the L2-norm. ��
Proof (of (2.23))

The stability of LH∗
h directly follows from the definition (2.4) and the stability of

the lift Lh in (2.2). For the error bound, we first observe

∥

∥

∥(Ih − LH∗
h )ϕ

∥

∥

∥

Hh
= sup

‖ψh‖Hh=1

(

(Ih − LH∗
h )ϕ | ψh

)

L2(Ωh)

= sup
‖ψh‖Hh=1

(

((Lh Ih − Id)ϕ | Lhψh)L2(Ω)

+ (Ihϕ | ψh)L2(Ωh)
− (Lh Ihϕ | Lhψh)L2(Ω)

)

.

For the first term we apply (2.22), and for the difference we use [16, Lem. 8.24] to
obtain

∥

∥

∥(Ih − LH∗
h )ϕ

∥

∥

∥

Hh
� h�+1 ‖ϕ‖H�+1(Ω) + h� ‖Lh Ihϕ‖L2(Uh)

with the boundary layer Uh :={x ∈ Ω | dist(x, ∂Ω) ≤ h}. Below, we show

‖Lh Ihϕ‖L∞(Uh)
� h ‖Ihϕ‖W 1,∞(Ωh)

(B.1)

and use this together with vol(Uh)
1/2 � h1/2 to estimate

‖Lh Ihϕ‖L2(Uh)
� h1/2 ‖Lh Ihϕ‖L∞(Uh)

� h3/2 ‖Ihϕ‖W 1,∞(Ωh)
� h ‖Ihϕ‖W 1,6(Ωh)

,

where we used the inverse inequality (2.25) in the last step. The stability of the inter-
polation (2.22) and the Sobolev embedding yield

‖Lh Ihϕ‖L2(Uh)
� h ‖ϕ‖H2(Ω) , (B.2)

and thus the assertion. To show (B.1), we pick some x0 ∈ Uh and y0 ∈ ∂Ω with
|x0 − y0| ≤ h such that

(Lh Ihϕ)(y0) = 0, |(Lh Ihϕ)(x0)| = ‖Lh Ihϕ‖L∞(Uh)
.

Then, we use the fundamental theorem of calculus to see

|(Lh Ihϕ)(x0)| = |(Lh Ihϕ)(x0) − (Lh Ihϕ)(y0)|
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= |
∫ 1

0
(∇Lh Ihϕ)(sx0 + (1 − s)y0)(x0 − y0) ds|

≤ ‖Lh Ihϕ‖W 1,∞(Ω) |x0 − y0|,

which gives the assertion. ��
For the interpolation estimate in Lemma 5.2, we exploit that the (k+1)-st derivative

vanishes for polynomials of degree k. With this one can gain an additional power of h,
but does not have to apply an inverse estimate to the highest derivative. In a different
context, this was also used by Nitsche in [35, p. 7].

Proof (of Lemma 5.2) We perform the proof in the case L = 2, and explain the
generalization in the end. Thus, consider ϕh, ψh ∈ Vh satisfying the assumptions of
the lemma. We expand the expression over all elements, which gives

‖ f (ϕh, ψh) − Ih f (Lhϕh ,Lhψh)‖2L2(Ωh)
=

∑

K

‖ f (ϕh , ψh) − Ih f (Lhϕh ,Lhψh)‖2L2(K )

� h2(k+1)
∑

K

| f (ϕh , ψh)|2Hk+1(K )

� h4
∑

K

h2(k−1) | f (ϕh , ψh)|2Hk+1(K )
,

as well as

‖ f (ϕh, ψh) − Ih f (Lhϕh,Lhψh)‖2H1(Ωh)
� h2

∑

K

h2(k−1) | f (ϕh, ψh)|2Hk+1(K )
.

In the following, we show on each element K

h2(k−1) | f (ϕh, ψh)|2Hk+1(K )
≤ C

(‖ f (ϕh, ψh)‖2L2(K )
+ ‖ϕh‖2H1(K )

+ ‖ψh‖2H1(K )

+ ‖ϕh‖4W 1,4(K )
+ ‖ψh‖4W 1,4(K )

)

,

which, by summing over all K , gives the assertion by the Cauchy–Schwarz inequality

∑

K

‖ϕh‖H1(K ) ‖ψh‖H1(K ) ≤ ‖ϕh‖H1(Ωh)
‖ψh‖H1(Ωh)

,

∑

K

‖ϕh‖2W 1,4(K )
‖ψh‖2W 1,4(K )

≤ ‖ϕh‖2W 1,4(Ωh)
‖ψh‖2W 1,4(Ωh)

.

The constant C depends on the maximum norm of ϕh and ψh and is thus uniformly
bounded by assumption.

If we denote by ̂K the reference element, and denote by AK the affine part of the
element maps, we know from [16, Lem. 4.12] that

‖ϕ̂h‖L2(̂K ) � | det AK |−1/2 ‖ϕh‖L2(K ) ,
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|ϕ̂h |H1(̂K ) � h| det AK |−1/2 ‖ϕh‖H1(K ) ,

|ϕ̂h |2W 1,4(̂K )
� h2| det AK |−1/2 ‖ϕh‖2W 1,4(K )

.

On the other hand, by the same lemma [16, Lem. 4.12] it holds

hk−1 | f (ϕh, ψh)|Hk+1(K ) � | det AK |1/2
k+1
∑

r=0

hk−(r+1)
∣

∣ f (ϕ̂h, ̂ψh)
∣

∣

Hr (̂K )
.

We now treat the summands separately and show

| det AK |1/2hk−(r+1)
∣

∣ f (ϕ̂h, ̂ψh)
∣

∣

Hr (̂K )

�
(‖ f (ϕh, ψh)‖2L2(K )

+ ‖ϕh‖2H1(K )
+ ‖ψh‖2H1(K )

+ ‖ϕh‖4W 1,4(K )
+ ‖ψh‖4W 1,4(K )

)

(B.3)

for r = 0, . . . , k + 1, which then implies our claim. In the case r = 0, we directly
obtain

| det AK |1/2hk−1
∥

∥ f (ϕ̂h, ̂ψh)
∥

∥

L2(̂K )
� ‖ f (ϕh, ψh)‖L2(K ) ,

and (B.3) follows.
For r ≥ 1, we use the inverse estimate on the reference element in the forms

∥

∥∇m ϕ̂h
∥

∥

Lq (̂K )
� ‖∇ϕ̂h‖Lq (̂K ) , m ≥ 1, q ∈ [1,∞],

‖∇ϕ̂h‖Lq (̂K ) � ‖ϕ̂h‖L∞(̂K ) , q ∈ [1,∞],

differentiate the term f (ϕ̂h, ̂ψh), and reduce all derivatives by the inverse estimate to
∇ϕ̂h . Then, using the maximum norm bound on ϕ̂h and ̂ψh , we obtain

∣

∣ f (ϕ̂h, ̂ψh)
∣

∣

Hr (̂K )
�

(

∥

∥∇r ϕ̂h
∥

∥

L2 + (∥

∥∇ϕ̂h
∥

∥

L4 + ∥

∥∇̂ψh
∥

∥

L4

)2 + ∥

∥∇r
̂ψh

∥

∥

L2

)

.

(B.4)

Note that for r = 1, the quadratic term can be dropped. For r ≤ k, we employ the
inverse estimate once more, to obtain with k − (r + 1) ≥ −1

hk−(r+1)
∣

∣ f (ϕ̂h, ̂ψh)
∣

∣

Hr (̂K )
� h−1(

∥

∥∇ϕ̂h
∥

∥

L2 + ∥

∥∇̂ψh
∥

∥

L2

)

� | det AK |−1/2(‖ϕh‖H1(K ) + ‖ψh‖H1(K )

)

,

and (B.3) also follows for 1 ≤ r ≤ k.
For r = k + 1, we exploit that ∂k+1ϕ̂h = 0, and thus, (B.4) yields

h−2 | f (ϕ̂h)|Hk+1(̂K ) � h−2(
∥

∥∇ϕ̂h
∥

∥

L4 + ∥

∥∇̂ψh
∥

∥

L4

)2

� | det AK |−1/2(‖ϕh‖2W 1,4(K )
+ ‖ψh‖2W 1,4(K )

)

.
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This gives the claim of the lemma in the case L = 2.
In order to treat L > 2, we only need a modification of (B.4) since nothing changes

for r = 0. A straightforward computation gives

∣

∣ f (ϕ̂1,h, . . . ϕ̂L,h)
∣

∣

Hr (̂K )
�

L
∑

i=1

∥

∥∇r ϕ̂i,h
∥

∥

L2 +
L

∑

i, j=1

∥

∥∇ϕ̂i,h
∥

∥

L4

∥

∥∇ϕ̂ j,h
∥

∥

L4 ,

and the same ideas apply. ��

Appendix C: Discrete Sobolev embedding

The proof is adapted from the conforming case presented in [7, Lem. 4.1], but is able
to cover a larger range of exponents. Similar results including the discrete differential
operator �h are shown in [18, Thm. 1.12] and [36, Thm. 3].

Proof (of Lemma 3.3)
First, we define the inverse Sh of �h form (2.9) by

(Shϕh | ψh)Vh = − (ϕh | ψh)Hh
, ϕh, ψh ∈ Vh,

and its continuous counterpart S = Δ−1 satisfying

(Sϕ | ψ)V = − (ϕ | ψ)H , ϕ, ψ ∈ V .

We further define the modified solution operator ˜Sh = LV∗
h SLh and write Sh =

˜Sh + (Sh − ˜Sh). For the first term, we use the stability of the Ritz map in W 1,p∗
from

(2.24) with � = 0 and (2.14) to obtain

∥

∥˜Shϕh
∥

∥

W 1,p∗ (Ωh)
�

∥

∥SLhϕh
∥

∥

W 1,p∗ (Ω)
�

∥

∥SLhϕh
∥

∥

H2(Ω)
�

∥

∥ϕh
∥

∥

L2(Ωh)
.

It remains to bound the difference, stemming from the nonconformity, by the inverse
estimate (2.25)

∥

∥˜Shϕh − Shϕh
∥

∥

W 1,p∗ (Ωh)
≤ ChN/p∗−N/2

∥

∥˜Shϕh − Shϕh
∥

∥

Vh

≤ Ch−1 sup
‖ψh‖Vh=1

(

˜Shϕh − Shϕh | ψh
)

Vh

= Ch−1 sup
‖ψh‖Vh=1

(

(ϕh | ψh)Hh
− (Lhϕh | Lhψh)H

)

.

We use [16, Lem. 8.24] to obtain

∣

∣(ϕh | ψh)Hh
− (Lhϕh | Lhψh)H

∣

∣ � h ‖ϕh‖L2 ‖ψh‖Vh ,
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which yields

‖Shϕh‖L∞(Ωh)
+ ‖Shϕh‖W 1,p∗ (Ωh)

≤ C ‖ϕh‖L2(Ωh)
,

and hence the assertion. ��

D Chain Rule for the Discrete Differential Operator

In this section, we provide the proof of Lemma 5.3. We recall the Ritz projection
defined in (2.5) and first show a crucial bound in L2.

Lemma D.1 Let uh, ϕh ∈ Vh and assume that μ : R → R is continuously differential.
Then, it holds

‖Rh(μ(uh)ϕh)‖L2(Ωh)
≤ C ‖μ(uh)‖W 1,N+δ(Ωh)

‖ϕh‖L2(Ωh)

with a constant C independent of h.

Proof We first estimate

‖Rh(μ(uh)ϕh)‖L2(Ωh)
≤ ‖μ(uh)ϕh‖L2(Ωh)

+ ‖(Id − Rh)(μ(uh)ϕh)‖L2(Ωh)
,

and show in the following

‖(Id − Rh)(μ(uh)ϕh)‖L2(Ωh)
� h ‖(μ(uh)ϕh)‖H1(Ωh)

� h ‖μ(uh)‖W 1,N+δ(Ωh)
‖ϕh‖H1(Ωh)

. (D.1)

Using the inverse estimate (2.25), we conclude the assertion.
We now show (D.1) by an Aubin–Nitsche trick. We define e = (Id − Rh)w, for

some w ∈ H1
0 (Ωh), and consider the solution z ∈ H2(Ω) ∩ H1

0 (Ω) of

(z | ϕ)H1
0 (Ω) = (Lhe | ϕ)L2(Ω) , ϕ ∈ H1

0 (Ω).

This gives

‖Lhe‖2L2(Ω)
= (z | Lhe)H1

0 (Ω)

= (z − Lh Ihz | Lhe)H1
0 (Ω) + (Lh Ihz | Lhe)H1

0 (Ω) − (Ihz | e)H1
0 (Ωh)

+ (Ihz | e)H1
0 (Ωh)

.

The first term is bounded using (2.22) and elliptic regularity by

(z − Lh Ihz | Lhe)H1
0 (Ω) � h ‖z‖H2 ‖e‖H1 � h ‖e‖L2 ‖e‖H1 ,
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and, using the geometric estimates in [16, Lem. 8.24], for the second term it holds

(Lh Ihz | Lhe)H1
0 (Ω) − (Ihz | e)H1

0 (Ωh)
� h ‖Ihz‖H1 ‖e‖H1 � h ‖e‖L2 ‖e‖H1 .

By the definition of e and Rh , we have due to Ihz ∈ Vh

(Ihz | e)H1
0 (Ωh)

= (Ihz | w − Rhw)H1
0 (Ωh)

= 0,

and the claim follows. ��
With this, we obtain the boundedness in the discrete chain rule.

Proof (of Lemma 5.3) We use the definition of �h in (2.9) to obtain

‖�h Rh(μ(uh)wh)‖L2(Ωh)
= sup

‖ϕh‖Hh≤1
(μ(uh)wh | ϕh)H1

0

= sup
‖ϕh‖Hh≤1

∫

Ωh

μ′(uh)∇uhwh∇ϕh + μ(uh)∇wh∇ϕh dx .

The idea now is to express the integral in terms of �huh and �hwh and lower-order
terms, where the is no gradient on ϕh . Employing the identities

μ′(uh)wh∇ϕh = ∇(

μ′(uh)whϕh
) − ∇(μ′(uh)wh)ϕh,

μ(uh)∇ϕh = ∇(

μ(uh)ϕh
) − μ′(uh)∇uhϕh,

we derive
∫

Ωh

μ′(uh)∇uhwh∇ϕh + μ(uh)∇wh∇ϕh dx

=
∫

Ωh

∇uh∇
(

μ′(uh)whϕh
)

dx −
∫

Ωh

∇uh∇(μ′(uh)wh)ϕh dx

+
∫

Ωh

∇wh∇
(

μ(uh)ϕh
)

dx −
∫

Ωh

∇wh(μ
′(uh)∇uh)ϕh dx

= (

uh | μ′(uh)whϕh
)

H1 + (wh | μ(uh)ϕh)H1

−
∫

Ωh

∇uh∇(μ′(uh)wh)ϕh dx −
∫

Ωh

∇wh(μ
′(uh)∇uh)ϕh dx

= − (

�huh | Rhμ
′(uh)whϕh

)

L2 − (�hwh | Rhμ(uh)ϕh)L2

−
∫

Ωh

∇uh∇(μ′(uh)wh)ϕh dx −
∫

Ωh

∇wh(μ
′(uh)∇uh)ϕh dx .

This yields with the stability of Rh shown in Lemma D.1 the estimate

‖�h Rh(μ(uh)wh)‖L2(Ωh)
� ‖�huh‖L2

∥

∥μ′(uh)wh
∥

∥

W 1,N+δ + ‖�hwh‖L2 ‖μ(uh)‖W 1,N+δ

+ ∥

∥∇uh∇(μ′(uh)wh)
∥

∥

L2 + ∥

∥∇wh∇(μ′(uh)uh)
∥

∥

L2 .
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We then use Lemma 3.3 in the form ‖ψh‖W 1,N+δ � ‖�hψh‖L2 , and thus, the first
two terms are bounded. The other two are similar to each other, and it thus suffices to
bound

∥

∥∇uh∇(μ′(uh)wh)
∥

∥

L2 ≤ ∥

∥∇uhμ
′′(uh)∇uhwh

∥

∥

L2 + ∥

∥∇uhμ
′(uh)∇wh

∥

∥

L2

� ‖∇uh‖2L4 + ‖∇uh‖L4 ‖∇wh‖L4 ,

where we again used the maximum norm bounds uh and wh and μ ∈ C2(R), and the
claim is shown. ��
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